The stability of present-day Antarctic grounding lines – Part 1: No indication of marine ice sheet instability in the current geometry

Theoretical and numerical work has shown that under certain circumstances grounding lines of marine-type ice sheets can enter phases of irreversible advance and retreat driven by the marine ice sheet instability (MISI). Instances of such irreversible retreat have been found in several simulations of...

Full description

Saved in:
Bibliographic Details
Published inThe cryosphere Vol. 17; no. 9; pp. 3739 - 3759
Main Authors Hill, Emily A, Urruty, Benoît, Reese, Ronja, Garbe, Julius, Gagliardini, Olivier, Durand, Gaël, Gillet-Chaulet, Fabien, Gudmundsson, G. Hilmar, Winkelmann, Ricarda, Chekki, Mondher, Chandler, David, Langebroek, Petra M
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 07.09.2023
Copernicus
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Theoretical and numerical work has shown that under certain circumstances grounding lines of marine-type ice sheets can enter phases of irreversible advance and retreat driven by the marine ice sheet instability (MISI). Instances of such irreversible retreat have been found in several simulations of the Antarctic Ice Sheet. However, it has not been assessed whether the Antarctic grounding lines are already undergoing MISI in their current position. Here, we conduct a systematic numerical stability analysis using three state-of-the-art ice sheet models: Úa, Elmer/Ice, and the Parallel Ice Sheet Model (PISM). For the first two models, we construct steady-state initial configurations whereby the simulated grounding lines remain at the observed present-day positions through time. The third model, PISM, uses a spin-up procedure and historical forcing such that its transient state is close to the observed one. To assess the stability of these simulated states, we apply short-term perturbations to submarine melting. Our results show that the grounding lines around Antarctica migrate slightly away from their initial position while the perturbation is applied, and they revert once the perturbation is removed. This indicates that present-day retreat of Antarctic grounding lines is not yet irreversible or self-sustained. However, our accompanying paper (Part 2, Reese et al., 2023a) shows that if the grounding lines retreated further inland, under present-day climate forcing, it may lead to the eventual irreversible collapse of some marine regions of West Antarctica.
AbstractList Theoretical and numerical work has shown that under certain circumstances grounding lines of marine-type ice sheets can enter phases of irreversible advance and retreat driven by the marine ice sheet instability (MISI). Instances of such irreversible retreat have been found in several simulations of the Antarctic Ice Sheet. However, it has not been assessed whether the Antarctic grounding lines are already undergoing MISI in their current position. Here, we conduct a systematic numerical stability analysis using three state-of-the-art ice sheet models: Úa, Elmer/Ice, and the Parallel Ice Sheet Model (PISM). For the first two models, we construct steady-state initial configurations whereby the simulated grounding lines remain at the observed present-day positions through time. The third model, PISM, uses a spin-up procedure and historical forcing such that its transient state is close to the observed one. To assess the stability of these simulated states, we apply short-term perturbations to submarine melting. Our results show that the grounding lines around Antarctica migrate slightly away from their initial position while the perturbation is applied, and they revert once the perturbation is removed. This indicates that present-day retreat of Antarctic grounding lines is not yet irreversible or self-sustained. However, our accompanying paper (Part 2, ) shows that if the grounding lines retreated further inland, under present-day climate forcing, it may lead to the eventual irreversible collapse of some marine regions of West Antarctica.
Theoretical and numerical work has shown that under certain circumstances grounding lines of marine-type ice sheets can enter phases of irreversible advance and retreat driven by the marine ice sheet instability (MISI). Instances of such irreversible retreat have been found in several simulations of the Antarctic Ice Sheet. However, it has not been assessed whether the Antarctic grounding lines are already undergoing MISI in their current position. Here, we conduct a systematic numerical stability analysis using three state-of-the-art ice sheet models: Úa, Elmer/Ice, and the Parallel Ice Sheet Model (PISM). For the first two models, we construct steady-state initial configurations whereby the simulated grounding lines remain at the observed present-day positions through time. The third model, PISM, uses a spin-up procedure and historical forcing such that its transient state is close to the observed one. To assess the stability of these simulated states, we apply short-term perturbations to submarine melting. Our results show that the grounding lines around Antarctica migrate slightly away from their initial position while the perturbation is applied, and they revert once the perturbation is removed. This indicates that present-day retreat of Antarctic grounding lines is not yet irreversible or self-sustained. However, our accompanying paper (Part 2, Reese et al., 2023a) shows that if the grounding lines retreated further inland, under present-day climate forcing, it may lead to the eventual irreversible collapse of some marine regions of West Antarctica.
Theoretical and numerical work has shown that under certain circumstances grounding lines of marine-type ice sheets can enter phases of irreversible advance and retreat driven by the marine ice sheet instability (MISI). Instances of such irreversible retreat have been found in several simulations of the Antarctic Ice Sheet. However, it has not been assessed whether the Antarctic grounding lines are already undergoing MISI in their current position. Here, we conduct a systematic numerical stability analysis using three state-of-the-art ice sheet models: Ãa, Elmer/Ice, and the Parallel Ice Sheet Model (PISM). For the first two models, we construct steady-state initial configurations whereby the simulated grounding lines remain at the observed present-day positions through time. The third model, PISM, uses a spin-up procedure and historical forcing such that its transient state is close to the observed one. To assess the stability of these simulated states, we apply short-term perturbations to submarine melting. Our results show that the grounding lines around Antarctica migrate slightly away from their initial position while the perturbation is applied, and they revert once the perturbation is removed. This indicates that present-day retreat of Antarctic grounding lines is not yet irreversible or self-sustained. However, our accompanying paper (Part 2, Reese et al., 2023a) shows that if the grounding lines retreated further inland, under present-day climate forcing, it may lead to the eventual irreversible collapse of some marine regions of West Antarctica.
Theoretical and numerical work has shown that under certain circumstances grounding lines of marine-type ice sheets can enter phases of irreversible advance and retreat driven by the marine ice sheet instability (MISI). Instances of such irreversible retreat have been found in several simulations of the Antarctic Ice Sheet. However, it has not been assessed whether the Antarctic grounding lines are already undergoing MISI in their current position. Here, we conduct a systematic numerical stability analysis using three state-of-the-art ice sheet models: Úa, Elmer/Ice, and the Parallel Ice Sheet Model (PISM). For the first two models, we construct steady-state initial configurations whereby the simulated grounding lines remain at the observed present-day positions through time. The third model, PISM, uses a spin-up procedure and historical forcing such that its transient state is close to the observed one. To assess the stability of these simulated states, we apply short-term perturbations to submarine melting. Our results show that the grounding lines around Antarctica migrate slightly away from their initial position while the perturbation is applied, and they revert once the perturbation is removed. This indicates that present-day retreat of Antarctic grounding lines is not yet irreversible or self-sustained. However, our accompanying paper (Part 2, Reese et al. ,  2023 a ) shows that if the grounding lines retreated further inland, under present-day climate forcing, it may lead to the eventual irreversible collapse of some marine regions of West Antarctica.
Audience Academic
Author Urruty, Benoît
Langebroek, Petra M
Reese, Ronja
Hill, Emily A
Garbe, Julius
Gillet-Chaulet, Fabien
Chandler, David
Winkelmann, Ricarda
Gagliardini, Olivier
Durand, Gaël
Chekki, Mondher
Gudmundsson, G. Hilmar
Author_xml – sequence: 1
  fullname: Hill, Emily A
– sequence: 2
  fullname: Urruty, Benoît
– sequence: 3
  fullname: Reese, Ronja
– sequence: 4
  fullname: Garbe, Julius
– sequence: 5
  fullname: Gagliardini, Olivier
– sequence: 6
  fullname: Durand, Gaël
– sequence: 7
  fullname: Gillet-Chaulet, Fabien
– sequence: 8
  fullname: Gudmundsson, G. Hilmar
– sequence: 9
  fullname: Winkelmann, Ricarda
– sequence: 10
  fullname: Chekki, Mondher
– sequence: 11
  fullname: Chandler, David
– sequence: 12
  fullname: Langebroek, Petra M
BackLink https://hal.science/hal-04297044$$DView record in HAL
BookMark eNptkk2LFDEQhhtZwd3Vs9eApz30bj47HW_Dou7AoKLrOaTz0ZNhJhmTtDg3j979h_4S0464DkgICZWn3qo31EVzFmKwTfMcwWuGBL0pukW8JZyIFkNMHjXnSAjaQorp2T_3J81FzhsIOywgPW--368tyEUNfuvLAUQH9slmG0pr1AEsQlFJF6_BmOIUjA8j2PpgM_j57Qd4r1IB6CV4G4Gvb1oVH8MssVOpQsDrKr22ttTnhxI-gFJr6imlWgaMNu5sSYenzWOnttk--3NeNp9ev7q_vWtX794sbxerVjOESrVGnMM9Gzil3FFNCWJGu04IjtXQm6HrHRsGgUiHe-SYcMJxRLG1zLFuGMhlszzqmqg2cp98bfYgo_LydyCmUVZbXm-t7KzSXOi6naGGmaFHglsremiQURRXrauj1lptT6TuFis5x-qHCw4p_YIq--LI7lP8PNlc5CZOKVSrEvcd6lAPYf9Ajao24IOLJSm981nLBe8I70lHWaWu_0PVZezO6zoWztf4ScLVSUJliv1aRjXlLJcfP5yyN0dWp5hzsu6vMwTlPGmyaIm4nCdNzpNGfgEfUcck
CitedBy_id crossref_primary_10_1038_s43247_024_01297_8
crossref_primary_10_1038_s43017_023_00509_7
crossref_primary_10_1038_s41558_023_01887_y
crossref_primary_10_5194_tc_18_2653_2024
Cites_doi 10.1029/2019GL082526
10.5194/tc-8-2075-2014
10.1073/pnas.1512482112
10.5194/tc-6-1497-2012
10.5194/gmd-6-1299-2013
10.1017/9781009157896.001
10.5194/tc-2022-105
10.1017/jog.2019.53
10.5194/gmd-9-2471-2016
10.1098/rsta.2011.0306
10.1126/science.1256117
10.1073/pnas.1017313108
10.1002/essoar.10504661.2
10.1029/2019GL083826
10.1029/2008JF001170
10.1038/s41561-021-00877-z
10.5194/cp-9-2335-2013
10.5194/tc-6-573-2012
10.5194/tc-12-521-2018
10.1126/science.1249055
10.1029/JB094iB04p04071
10.1038/nclimate2226
10.5194/tc-15-1501-2021
10.1073/pnas.1912890117
10.1029/2008JF001179
10.1073/pnas.1904822116
10.5194/tc-16-397-2022
10.5194/tc-9-1579-2015
10.3189/2013JoG12J129
10.1017/jfm.2018.742
10.5194/tc-12-1969-2018
10.1038/nclimate2094
10.1017/jog.2018.30
10.1038/nature16147
10.5194/tc-5-715-2011
10.1002/2017GL072910
10.3189/2014JoG13J093
10.1038/s41561-019-0510-8
10.1017/S0022143000015744
10.1029/2019GL084941
10.1029/2010GL044819
10.1038/s41586-020-2727-5
10.1038/s41467-022-29892-3
10.5194/tc-6-1561-2012
10.1038/nature15706
10.1017/jog.2022.29
10.3189/2013JoG12J182
10.1038/s41558-017-0020-x
10.1017/jfm.2012.43
10.5194/tc-12-1479-2018
10.5194/tc-14-2283-2020
10.1029/2006JF000664
10.1002/2013GL059069
10.3189/S0022143000023327
10.1038/nclimate2912
10.1093/qjmam/hbp025
10.1016/0148-9062(85)90267-0
10.1017/jog.2021.79
10.5194/tc-13-177-2019
10.1098/rspa.1955.0066
10.1126/science.aaz5487
10.1002/2014GL060140
10.5194/gmd-8-1613-2015
10.5194/essd-15-1597-2023
10.1038/nature17145
ContentType Journal Article
Copyright COPYRIGHT 2023 Copernicus GmbH
2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2023 Copernicus GmbH
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H95
H96
HCIFZ
KL.
L.G
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PYCSY
1XC
VOOES
DOA
DOI 10.5194/tc-17-3739-2023
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Continental Europe Database
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Continental Europe Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Meteorology & Climatology
Environmental Sciences
EISSN 1994-0424
1994-0416
EndPage 3759
ExternalDocumentID oai_doaj_org_article_6eac79cc79fd4d5db8197ee980d1da42
oai_HAL_hal_04297044v1
A763783645
10_5194_tc_17_3739_2023
GeographicLocations Antarctica
Pine Island Glacier
GeographicLocations_xml – name: Antarctica
– name: Pine Island Glacier
GroupedDBID 29F
2WC
3V.
5GY
5VS
7XC
8CJ
8FE
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
AENEX
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
ESX
GROUPED_DOAJ
GX1
HCIFZ
IAO
IEA
ISR
ITC
K6-
KQ8
LK5
M7R
MM-
M~E
OK1
P2P
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
TUS
ZBA
~02
7QH
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H95
H96
KL.
L.G
PQEST
PQUKI
1XC
VOOES
ID FETCH-LOGICAL-c511t-203ff285b7447f4c4315dcf69972ab8db68f5bb9136281f59f9f7142ee5f56bb3
IEDL.DBID DOA
ISSN 1994-0424
1994-0416
IngestDate Tue Oct 22 15:12:50 EDT 2024
Tue Oct 15 16:00:23 EDT 2024
Thu Oct 10 16:00:33 EDT 2024
Thu Feb 22 23:50:02 EST 2024
Fri Feb 02 04:38:38 EST 2024
Sat Sep 28 21:26:47 EDT 2024
Fri Aug 23 02:44:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-203ff285b7447f4c4315dcf69972ab8db68f5bb9136281f59f9f7142ee5f56bb3
ORCID 0000-0001-5759-2412
0000-0002-1246-8781
0000-0003-3175-3163
0000-0003-3140-3307
0000-0003-4236-5369
0000-0003-0676-8910
0000-0001-6592-3840
0000-0002-7831-0215
0000-0001-9162-3518
0000-0003-1248-3217
0000-0001-7625-040X
OpenAccessLink https://doaj.org/article/6eac79cc79fd4d5db8197ee980d1da42
PQID 2861618008
PQPubID 105732
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_6eac79cc79fd4d5db8197ee980d1da42
hal_primary_oai_HAL_hal_04297044v1
proquest_journals_2861618008
gale_infotracmisc_A763783645
gale_infotracacademiconefile_A763783645
gale_incontextgauss_ISR_A763783645
crossref_primary_10_5194_tc_17_3739_2023
PublicationCentury 2000
PublicationDate 2023-09-07
PublicationDateYYYYMMDD 2023-09-07
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-07
  day: 07
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle The cryosphere
PublicationYear 2023
Publisher Copernicus GmbH
Copernicus
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref32
  doi: 10.1029/2019GL082526
– ident: ref65
  doi: 10.5194/tc-8-2075-2014
– ident: ref13
  doi: 10.1073/pnas.1512482112
– ident: ref24
  doi: 10.5194/tc-6-1497-2012
– ident: ref16
  doi: 10.5194/gmd-6-1299-2013
– ident: ref29
  doi: 10.1017/9781009157896.001
– ident: ref51
  doi: 10.5194/tc-2022-105
– ident: ref62
  doi: 10.1017/jog.2019.53
– ident: ref1
  doi: 10.5194/gmd-9-2471-2016
– ident: ref2
  doi: 10.1098/rsta.2011.0306
– ident: ref58
  doi: 10.1126/science.1256117
– ident: ref48
  doi: 10.1073/pnas.1017313108
– ident: ref23
  doi: 10.1002/essoar.10504661.2
– ident: ref41
  doi: 10.1029/2019GL083826
– ident: ref10
  doi: 10.1029/2008JF001170
– ident: ref38
  doi: 10.1038/s41561-021-00877-z
– ident: ref72
– ident: ref67
  doi: 10.5194/cp-9-2335-2013
– ident: ref45
  doi: 10.5194/tc-6-573-2012
– ident: ref18
  doi: 10.5194/tc-12-521-2018
– ident: ref31
  doi: 10.1126/science.1249055
– ident: ref35
  doi: 10.1029/JB094iB04p04071
– ident: ref57
– ident: ref11
– ident: ref37
  doi: 10.1038/nclimate2226
– ident: ref56
  doi: 10.5194/tc-15-1501-2021
– ident: ref33
  doi: 10.1073/pnas.1912890117
– ident: ref4
  doi: 10.1029/2008JF001179
– ident: ref55
  doi: 10.1073/pnas.1904822116
– ident: ref70
  doi: 10.5194/tc-16-397-2022
– ident: ref6
  doi: 10.5194/tc-9-1579-2015
– ident: ref46
  doi: 10.3189/2013JoG12J129
– ident: ref47
  doi: 10.1017/jfm.2018.742
– ident: ref49
  doi: 10.5194/tc-12-1969-2018
– ident: ref12
  doi: 10.1038/nclimate2094
– ident: ref26
  doi: 10.1017/jog.2018.30
– ident: ref54
  doi: 10.1038/nature16147
– ident: ref71
  doi: 10.5194/tc-5-715-2011
– ident: ref66
  doi: 10.1002/2017GL072910
– ident: ref14
  doi: 10.3189/2014JoG13J093
– ident: ref39
  doi: 10.1038/s41561-019-0510-8
– ident: ref36
  doi: 10.1017/S0022143000015744
– ident: ref42
  doi: 10.1029/2019GL084941
– ident: ref30
  doi: 10.1029/2010GL044819
– ident: ref17
  doi: 10.1038/s41586-020-2727-5
– ident: ref63
  doi: 10.1038/s41467-022-29892-3
– ident: ref19
  doi: 10.5194/tc-6-1561-2012
– ident: ref22
  doi: 10.1038/nature15706
– ident: ref27
  doi: 10.1017/jog.2022.29
– ident: ref21
  doi: 10.3189/2013JoG12J182
– ident: ref50
  doi: 10.1038/s41558-017-0020-x
– ident: ref25
– ident: ref60
  doi: 10.1017/jfm.2012.43
– ident: ref68
  doi: 10.5194/tc-12-1479-2018
– ident: ref7
  doi: 10.5194/tc-14-2283-2020
– ident: ref59
  doi: 10.1029/2006JF000664
– ident: ref40
  doi: 10.1002/2013GL059069
– ident: ref69
  doi: 10.3189/S0022143000023327
– ident: ref15
  doi: 10.1038/nclimate2912
– ident: ref61
  doi: 10.1093/qjmam/hbp025
– ident: ref34
  doi: 10.1016/0148-9062(85)90267-0
– ident: ref28
– ident: ref64
  doi: 10.1017/jog.2021.79
– ident: ref52
– ident: ref3
  doi: 10.5194/tc-13-177-2019
– ident: ref20
  doi: 10.1098/rspa.1955.0066
– ident: ref44
  doi: 10.1126/science.aaz5487
– ident: ref53
  doi: 10.1002/2014GL060140
– ident: ref8
– ident: ref5
  doi: 10.5194/gmd-8-1613-2015
– ident: ref43
  doi: 10.5194/essd-15-1597-2023
– ident: ref9
  doi: 10.1038/nature17145
SSID ssj0062904
Score 2.426635
Snippet Theoretical and numerical work has shown that under certain circumstances grounding lines of marine-type ice sheets can enter phases of irreversible advance...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 3739
SubjectTerms Analysis
Antarctic ice sheet
Environmental Sciences
Experiments
Geometry
Glaciation
Ice
Ice sheet models
Ice sheets
Ice shelves
Mathematical models
Modelling
Numerical stability
Perturbation
Polar environments
Sheet modelling
Simulation
Stability
Stability analysis
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLbYdoALGgNEYCBrQsAlWp3accIFddOmglg1DSbtZsW_2klbUpJsUm8cufMf8pfwXuJuCgcOPTR23dbv-b3P9nvfI-Rt7qw1aWbjTEjYoCQFj7UWNtaZk9b63Ocd2fPJLJ2e8y8X4iIcuDUhrHJtEztDbSuDZ-T7SZYitzu4rE_LHzFWjcLb1VBCY4NsJYzjNe3WwdHs9Gxti9MkH_X3ykiAyxPek_sAauH7rYkZrq9xHmMJ8YFf6uj774z0xgJjJP8x1Z3_Od4mjwNwpJNe0k_IA1fukIehhvlitUOiE8C_Vd0dk9N39PDqEsBo9-4p-QXaQAEHdpGwK1p5uuzTjmJbrOikbEHdYVyKOR5dmgtF9NnQPz9_01NQLso-0llF8X67P-LDIa4LzBykYGlos3Cuheb7r7gsKUBLanr6Jzp31bVr69Uzcn589P1wGocaDLEBKNbC1Iy9TzKhJefScwN4Q1jjU8y3LXRmdZp5oXXOwBFmzAsQrpeMJ84JL1Ktx8_JZlmV7gWhXJsCpzv3BvaEYEtynhphGCuk5WZsI_JhLQG17Kk2FGxRUFiqNYpJhZ9WKKyIHKCE7rohR3b3oKrnKiw5lYJPkbmBl7fcCqsB_Ejn8mxkmS14EpE9lK9CFowSw2zmxU3TqM_fztQErC6mt3ARkfehk6_aujBFyFqAv4TEWYOeu4OesEzNoHkP1Gjwi6eTrwqfISaQI85vGYyx1jIVbEmj7jX_5f-bX5FHODldBJzcJZttfeNeA2Rq9ZuwLv4CZ0wVeg
  priority: 102
  providerName: ProQuest
Title The stability of present-day Antarctic grounding lines – Part 1: No indication of marine ice sheet instability in the current geometry
URI https://www.proquest.com/docview/2861618008
https://hal.science/hal-04297044
https://doaj.org/article/6eac79cc79fd4d5db8197ee980d1da42
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgHOCCaAERKJVVIeASdZ2144TbtmpZEF1VhUp7s-KvbiWaVJsUaW8cufMP-SWdsbOFcOHCYSNt4jjJzHj8nMy8IeRV6aw1eWHTQkhYoGQVT7UWNtWFk9b60peB7Pl4lk_P-Me5mP9R6gtjwiI9cBTcXg6eQZYGft5yK6yGKUw6VxYjy2zFo_dlYr2Yij44z8pR_J6MxLeAOSKpD6AVvteZlOG4Gpcplg4fzEeBtv_WOd9dYGzkXy46zDtHj8jDHjDSSbzRTXLH1Vvkfl-7fLHaIskx4N5mGV6P09f04OsFgNDw7zH5AVZAAf-FCNgVbTy9iulGqa1WdFJ3YObQL8XcjpDeQhF1tvTX95_0BGRD2Ts6ayh-146v9rCLywozBil4GNounOvg8O9LXNQUICU1kfaJnrvm0nXL1RNydnT45WCa9rUXUgMQrAPRjL3PCqEl59JzAzhDWONzzLOtdGF1XnihdclgAiyYF6BULxnPnBNe5FqPn5KNuqndM0K5NhWKu_QG1oLgQ0qeG2EYq6TlZmwT8natAXUVKTYULE1QWaozikmFZytUVkL2UUO3zZAbO-wAi1G9xah_WUxCdlG_CtkvagyvOa-u21Z9-HyqJuBtMa2Fi4S86Rv5pltWpuqzFeCRkDBr0HJ70BKGpxkc3gUzGtzxdPJJ4T7EAnLE-TcGfaytTPU-pFVZkWM1AwBpz__HY78gD1CEIT5ObpONbnntXgKg6vQOubd_ODs53QljCLbv5-wG97QgiA
link.rule.ids 230,315,786,790,870,891,2115,21416,27955,27956,33777,43838,74657
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZYdxgXNAaIwABrQsAlWpPaccIFddOmDtpqGpu0mxX_aidtSWmySb1x5M5_yF_Ce4m7KRw49NDYdVu_5_c-2-99j5D3mTVGJ6kJUy5ggxLnLFSKm1ClVhjjMpc1ZM-TaTK6YF8v-aU_cKt8WOXaJjaG2pQaz8j34zRBbndwWV8WP0KsGoW3q76ExgbZRMrNtEc2D46mp2drW5zEWb-9V0YCXBazltwHUAvbr3UY4foaZCGWEO_4pYa-_95Ib8wxRvIfU934n-Nt8sQDRzpsJf2UPLLFDtnyNcznqx0STAD_lsvmmJx-oIfXVwBGm3fPyC_QBgo4sImEXdHS0UWbdhSafEWHRQ3qDuNSzPFo0lwoos-K_vn5m56CctHoM52WFO-32yM-HOImx8xBCpaGVnNra2h--IqrggK0pLqlf6IzW97Yerl6Ti6Oj84PR6GvwRBqgGI1TM3AuTjlSjAmHNOAN7jRLsF821ylRiWp40plETjCNHIchOtExGJrueOJUoMXpFeUhX1JKFM6x-nOnIY9IdiSjCWa6yjKhWF6YALyaS0BuWipNiRsUVBYstYyEhI_LVFYATlACd13Q47s5kG5nEm_5GQCPkVkGl7OMMONAvAjrM3SvolMzuKA7KF8JbJgFBhmM8tvq0qefD-TQ7C6mN7CeEA--k6urJe5zn3WAvwlJM7q9Nzt9IRlqjvNe6BGnV88Go4lPkNMIPqM3UUwxlrLpLcllXzQ_Ff_b35Htkbnk7Ecn0y_vSaPcaKaaDixS3r18ta-AfhUq7d-jfwFrj0YcA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYJgEXBAO0jAHWhIBL1Ca144QL6saqDraqGkzazYq_2kks6ZIMqTeO3PkP-Ut4L3E3lQOHHhq7buv39bP93s-EvMmsMTpJTZhyAQuUOGehUtyEKrXCGJe5rCV7Pp0k43P2-YJf-Pyn2qdVrnxi66hNqXGPvBenCXK7Q8jqOZ8WMf00-ri4DvEGKTxp9ddpbJAtwRIOC7Gtg6PJ9Gzll5M463dnzEiGy2LWEf0AgmG9RocR2togC_E68bUY1VL53zrsjTnmS_7jtttYNHpMHnkQSYed1J-Qe7bYJg_8febz5TYJTgELl1W7ZU7f0sPvlwBM23dPyS_QDAqYsM2KXdLS0UVXghSafEmHRQOqD-NSrPdoS14oItGa_vn5m05B0Wj0gU5Kimfd3XYfDnGVYxUhBa9D67m1DTTffcVlQQFmUt1RQdGZLa9sUy2fkfPR0bfDcejvYwg1wLIGpmbgXJxyJRgTjmnAHtxol2Dtba5So5LUcaWyCIJiGjkOgnYiYrG13PFEqcFzslmUhd0hlCmd43RnTsP6EPxKxhLNdRTlwjA9MAF5v5KAXHS0GxKWKygs2WgZCYmfliisgByghG67IV92-6CsZtKbn0wgvohMw8sZZrhRAISEtVnaN5HJWRyQfZSvREaMAnVrlt_UtTz-eiaH4IGx1IXxgLzznVzZVLnOfQUD_CUk0VrrubfWE0xWrzXvgxqt_eLx8ETiM8QHos_YjwjGWGmZ9H6llndWsPv_5tfkPpiHPDmefHlBHuI8tYlxYo9sNtWNfQlIqlGvvIn8BfE1HKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+stability+of+present-day+Antarctic+grounding+lines+%E2%80%93+Part+1%3A+No+indication+of+marine+ice+sheet+instability+in+the+current+geometry&rft.jtitle=The+cryosphere&rft.au=E.+A.+Hill&rft.au=B.+Urruty&rft.au=R.+Reese&rft.au=R.+Reese&rft.date=2023-09-07&rft.pub=Copernicus+Publications&rft.issn=1994-0416&rft.eissn=1994-0424&rft.volume=17&rft.spage=3739&rft.epage=3759&rft_id=info:doi/10.5194%2Ftc-17-3739-2023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6eac79cc79fd4d5db8197ee980d1da42
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon