Cross-Kingdom DNA Methylation Dynamics: Comparative Mechanisms of 5mC/6mA Regulation and Their Implications in Epigenetic Disorders

DNA methylation, a cornerstone of epigenetic regulation, governs critical biological processes including transcriptional modulation, genomic imprinting, and transposon suppression through chromatin architecture remodeling. Recent advances have revealed that aberrant methylation patterns—characterize...

Full description

Saved in:
Bibliographic Details
Published inBiology (Basel, Switzerland) Vol. 14; no. 5; p. 461
Main Authors Liu, Yu, Wang, Ying, Bao, Dapeng, Chen, Hongyu, Gong, Ming, Sun, Shujing, Zou, Gen
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.04.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA methylation, a cornerstone of epigenetic regulation, governs critical biological processes including transcriptional modulation, genomic imprinting, and transposon suppression through chromatin architecture remodeling. Recent advances have revealed that aberrant methylation patterns—characterized by spatial-temporal dysregulation and stochastic molecular noise—serve as key drivers of diverse pathological conditions, from oncogenesis to neurodegenerative disorders. However, the field faces dual challenges: (1) current understanding remains fragmented due to the inherent spatiotemporal heterogeneity of methylation landscapes across tissues and developmental stages, and (2) mechanistic insights into non-canonical methylation pathways (particularly 6mA) in non-mammalian systems are conspicuously underdeveloped. This review systematically synthesizes the evolutionary-conserved versus species-specific features of 5-methylcytosine (5mC) and N6-methyladenine (6mA) regulatory networks across three biological kingdoms. Through comparative analysis of methylation/demethylation enzymatic cascades (DNMTs/TETs in mammals, CMTs/ROS1 in plants, and DIM-2/DNMTA in fungi), we propose a unified framework for targeting methylation-associated diseases through precision epigenome editing, while identifying critical knowledge gaps in fungal methylome engineering that demand urgent investigation.
AbstractList DNA methylation regulates gene expression and genome stability. Challenges include tissue-specific spatiotemporal heterogeneity and poorly understood non-canonical 6mA pathways. This review compares conserved vs. species-specific 5mC/6mA networks across animals, plants, and fungi by analyzing enzymes (DNMTs/TETs, CMTs/ROS1, DIM-2/DNMTAs), proposing precision epigenome editing for therapies. Critical gaps persist in fungal methylome engineering, urging mechanistic studies to harness evolutionary insights for biotechnological and biomedical advances. DNA methylation, a cornerstone of epigenetic regulation, governs critical biological processes including transcriptional modulation, genomic imprinting, and transposon suppression through chromatin architecture remodeling. Recent advances have revealed that aberrant methylation patterns—characterized by spatial-temporal dysregulation and stochastic molecular noise—serve as key drivers of diverse pathological conditions, from oncogenesis to neurodegenerative disorders. However, the field faces dual challenges: (1) current understanding remains fragmented due to the inherent spatiotemporal heterogeneity of methylation landscapes across tissues and developmental stages, and (2) mechanistic insights into non-canonical methylation pathways (particularly 6mA) in non-mammalian systems are conspicuously underdeveloped. This review systematically synthesizes the evolutionary-conserved versus species-specific features of 5-methylcytosine (5mC) and N6-methyladenine (6mA) regulatory networks across three biological kingdoms. Through comparative analysis of methylation/demethylation enzymatic cascades (DNMTs/TETs in mammals, CMTs/ROS1 in plants, and DIM-2/DNMTA in fungi), we propose a unified framework for targeting methylation-associated diseases through precision epigenome editing, while identifying critical knowledge gaps in fungal methylome engineering that demand urgent investigation.
DNA methylation regulates gene expression and genome stability. Challenges include tissue-specific spatiotemporal heterogeneity and poorly understood non-canonical 6mA pathways. This review compares conserved vs. species-specific 5mC/6mA networks across animals, plants, and fungi by analyzing enzymes (DNMTs/TETs, CMTs/ROS1, DIM-2/DNMTAs), proposing precision epigenome editing for therapies. Critical gaps persist in fungal methylome engineering, urging mechanistic studies to harness evolutionary insights for biotechnological and biomedical advances.
DNA methylation, a cornerstone of epigenetic regulation, governs critical biological processes including transcriptional modulation, genomic imprinting, and transposon suppression through chromatin architecture remodeling. Recent advances have revealed that aberrant methylation patterns—characterized by spatial-temporal dysregulation and stochastic molecular noise—serve as key drivers of diverse pathological conditions, from oncogenesis to neurodegenerative disorders. However, the field faces dual challenges: (1) current understanding remains fragmented due to the inherent spatiotemporal heterogeneity of methylation landscapes across tissues and developmental stages, and (2) mechanistic insights into non-canonical methylation pathways (particularly 6mA) in non-mammalian systems are conspicuously underdeveloped. This review systematically synthesizes the evolutionary-conserved versus species-specific features of 5-methylcytosine (5mC) and N6-methyladenine (6mA) regulatory networks across three biological kingdoms. Through comparative analysis of methylation/demethylation enzymatic cascades (DNMTs/TETs in mammals, CMTs/ROS1 in plants, and DIM-2/DNMTA in fungi), we propose a unified framework for targeting methylation-associated diseases through precision epigenome editing, while identifying critical knowledge gaps in fungal methylome engineering that demand urgent investigation.
DNA methylation, a cornerstone of epigenetic regulation, governs critical biological processes including transcriptional modulation, genomic imprinting, and transposon suppression through chromatin architecture remodeling. Recent advances have revealed that aberrant methylation patterns-characterized by spatial-temporal dysregulation and stochastic molecular noise-serve as key drivers of diverse pathological conditions, from oncogenesis to neurodegenerative disorders. However, the field faces dual challenges: (1) current understanding remains fragmented due to the inherent spatiotemporal heterogeneity of methylation landscapes across tissues and developmental stages, and (2) mechanistic insights into non-canonical methylation pathways (particularly 6mA) in non-mammalian systems are conspicuously underdeveloped. This review systematically synthesizes the evolutionary-conserved versus species-specific features of 5-methylcytosine (5mC) and N6-methyladenine (6mA) regulatory networks across three biological kingdoms. Through comparative analysis of methylation/demethylation enzymatic cascades (DNMTs/TETs in mammals, CMTs/ROS1 in plants, and DIM-2/DNMTA in fungi), we propose a unified framework for targeting methylation-associated diseases through precision epigenome editing, while identifying critical knowledge gaps in fungal methylome engineering that demand urgent investigation.DNA methylation, a cornerstone of epigenetic regulation, governs critical biological processes including transcriptional modulation, genomic imprinting, and transposon suppression through chromatin architecture remodeling. Recent advances have revealed that aberrant methylation patterns-characterized by spatial-temporal dysregulation and stochastic molecular noise-serve as key drivers of diverse pathological conditions, from oncogenesis to neurodegenerative disorders. However, the field faces dual challenges: (1) current understanding remains fragmented due to the inherent spatiotemporal heterogeneity of methylation landscapes across tissues and developmental stages, and (2) mechanistic insights into non-canonical methylation pathways (particularly 6mA) in non-mammalian systems are conspicuously underdeveloped. This review systematically synthesizes the evolutionary-conserved versus species-specific features of 5-methylcytosine (5mC) and N6-methyladenine (6mA) regulatory networks across three biological kingdoms. Through comparative analysis of methylation/demethylation enzymatic cascades (DNMTs/TETs in mammals, CMTs/ROS1 in plants, and DIM-2/DNMTA in fungi), we propose a unified framework for targeting methylation-associated diseases through precision epigenome editing, while identifying critical knowledge gaps in fungal methylome engineering that demand urgent investigation.
Audience Academic
Author Gong, Ming
Liu, Yu
Wang, Ying
Bao, Dapeng
Zou, Gen
Sun, Shujing
Chen, Hongyu
AuthorAffiliation 2 National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; wyhrx@126.com (Y.W.); baodapeng@saas.sh.cn (D.B.)
1 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
AuthorAffiliation_xml – name: 1 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
– name: 2 National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; wyhrx@126.com (Y.W.); baodapeng@saas.sh.cn (D.B.)
Author_xml – sequence: 1
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
– sequence: 2
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
– sequence: 3
  givenname: Dapeng
  surname: Bao
  fullname: Bao, Dapeng
– sequence: 4
  givenname: Hongyu
  orcidid: 0000-0001-8223-7228
  surname: Chen
  fullname: Chen, Hongyu
– sequence: 5
  givenname: Ming
  surname: Gong
  fullname: Gong, Ming
– sequence: 6
  givenname: Shujing
  surname: Sun
  fullname: Sun, Shujing
– sequence: 7
  givenname: Gen
  orcidid: 0000-0001-5574-1824
  surname: Zou
  fullname: Zou, Gen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40427651$$D View this record in MEDLINE/PubMed
BookMark eNptks9v0zAUxyM0xMbYmRuyxIVLV9vxj4QLqtoNKgZIaJwtx3lJXSV2sdNJPfOPz1nLWCfsg633Pu9rP_v7Ojtx3kGWvSX4Ms9LPK2s73y7IwxzzAR5kZ1RLMuJlLk8ebI_zS5iXOM0JKYiF6-yU4YZlYKTs-zPPPgYJ1-ta2vfo8X3GfoGw2rX6cF6hxY7p3tr4kc09_1GhxS9g0SYlXY29hH5BvF-PhX9DP2Ednso065GtyuwAS37TWfNQzQi69DVxrbgYLAGLWz0oYYQ32QvG91FuDis59mv66vb-ZfJzY_Py_nsZmI4IcOEAAdhSi5AVnmhmwIqUxa84JLrAjipMUv5CqeshIrSAoQELZpKspJz2uTn2XKvW3u9Vptgex12ymurHgI-tEqHdLMOVC7LpjI1SytjhoiKVYzVDTWiqKQAmrQ-7bU226qH2oAbgu6ORI8zzq5U6-8UoQQXJRsVPhwUgv-9hTio3kYDXacd-G1UOSVUpuMlTuj7Z-jab4NLbzVSpBA4z8k_qtWpA-sanw42o6iaFSwRvJQjdfkfKs0a0kcngzU2xY8K3j3t9LHFvx5KwHQPmNFKAZpHhGA1GlU9M2p-Dwfb2z4
Cites_doi 10.1080/21655979.2021.2014387
10.1021/ja500979k
10.1016/S0092-8674(02)01133-9
10.1038/s41580-019-0159-6
10.20944/preprints202107.0525.v1
10.1074/jbc.M115.693861
10.1016/j.molcel.2020.02.018
10.1016/j.biotno.2024.03.002
10.1016/j.ccell.2019.03.003
10.1038/s41588-018-0306-6
10.1093/nar/gkae066
10.1038/s41579-018-0121-1
10.1038/s41467-023-44209-8
10.1089/cmb.2022.0179
10.1038/s41586-018-0751-5
10.1016/j.tig.2021.06.014
10.1126/science.1187945
10.1186/s13046-021-02151-x
10.1021/bi300797q
10.1002/bies.201500076
10.1038/s41576-024-00760-8
10.1126/sciadv.adn5861
10.1016/j.cell.2015.04.010
10.1093/genetics/135.2.357
10.3390/jof7080659
10.1186/s12864-019-5754-6
10.1073/pnas.1705233114
10.1016/j.ymeth.2020.06.022
10.1111/jipb.12879
10.1002/jcb.28063
10.3389/fpls.2016.01556
10.1002/bies.202000243
10.1016/j.jbc.2022.102462
10.3389/fcell.2022.882671
10.1534/genetics.118.301711
10.1038/s41467-024-51246-4
10.1007/s00299-017-2215-z
10.1039/D4FO01303D
10.1080/15592294.2015.1062204
10.1038/s41477-018-0214-x
10.1371/journal.pone.0133085
10.1016/j.arr.2019.01.011
10.1126/science.adf6287
10.1371/journal.pone.0015367
10.1038/s41580-018-0016-z
10.1093/nar/gky1104
10.1016/j.cell.2015.04.005
10.1016/j.molcel.2009.01.015
10.1038/s41556-024-01475-y
10.1073/pnas.1503362112
10.1016/j.jmb.2013.01.013
10.1038/s41477-022-01322-8
10.1371/journal.pgen.1004905
10.1038/ncomms10806
10.1021/acs.biochem.6b00982
10.1038/s41467-025-56928-1
10.3390/ijms26020763
10.3389/fpls.2018.00103
10.1038/s41576-019-0127-1
10.1016/j.micres.2023.127397
10.1038/nrg.2017.80
10.1093/nar/gkab322
10.3390/microorganisms13030584
10.1038/nature05515
10.1038/nature08829
10.1038/emboj.2012.331
10.1002/anie.202103945
10.1038/srep11087
10.2217/epi.12.36
10.1074/jbc.C111.284620
10.1007/978-1-4939-7804-5_15
10.1038/s41467-023-36019-9
10.1016/j.cell.2013.04.002
10.1007/s10815-025-03415-7
10.1021/ja0634829
10.1016/j.micres.2020.126694
10.1038/s41576-022-00456-x
10.1016/j.stem.2014.08.003
10.1093/nar/gkae611
10.1016/j.cell.2015.05.015
10.7554/eLife.81002
10.1038/s41467-024-50365-2
10.1016/j.molcel.2012.11.001
10.1016/j.molcel.2019.03.018
10.1016/j.tig.2022.03.010
10.1146/annurev-arplant-083123-054357
10.3389/fmicb.2020.616922
10.1021/acssynbio.4c00716
10.1534/genetics.120.303471
10.3389/fgene.2023.1085631
10.1126/science.1210944
10.1134/S0026893316060212
10.1016/j.canlet.2019.01.017
10.1016/j.fgb.2013.04.003
10.1016/j.cell.2015.04.018
10.1016/j.tibs.2005.12.008
10.1016/j.molcel.2018.07.005
10.1371/journal.pgen.1009448
10.1172/JCI146985
10.1007/s00203-019-01621-3
10.1038/nature08752
10.1038/nchembio.1042
10.1073/pnas.1419513111
10.1038/nchembio.914
10.1126/science.1166859
10.1080/13510002.2022.2043224
10.1007/s42994-023-00117-5
10.18097/pbmc20226805339
10.1111/jdv.14888
10.1007/s00018-022-04396-x
10.1038/s41587-024-02148-9
10.1038/ng.3859
10.3390/life15020171
10.1371/journal.pgen.1010927
10.1073/pnas.2422798122
10.1007/978-3-319-43624-1_10
10.1038/s41589-022-01041-3
10.1042/CS20180465
10.1093/nar/gku834
10.1016/j.molcel.2012.01.017
10.1098/rsob.210302
10.1073/pnas.0601109103
10.1038/nrg3230
10.1016/j.molcel.2018.06.015
10.1186/s13046-022-02319-z
10.1038/s41467-022-33277-x
10.1016/j.devcel.2018.03.012
10.1242/dev.132605
10.1038/s41588-020-0661-y
10.1038/nsmb.2735
10.1093/nar/gkl1052
10.1038/nature14192
10.1016/j.molcel.2016.05.032
10.1021/jacs.9b10376
10.1007/s10142-022-00918-9
10.1038/nplants.2016.169
10.1016/j.ccell.2023.07.005
10.1126/sciadv.aay3335
10.1016/j.jmb.2021.167097
10.3390/ijms19041174
10.1126/science.1229277
10.1038/cr.2013.22
10.3389/fmicb.2022.925868
10.1038/cr.2011.23
10.1073/pnas.0603563103
10.1101/2023.10.04.560925
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
7QP
7TK
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.3390/biology14050461
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic

Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2079-7737
ExternalDocumentID oai_doaj_org_article_379fbcd437944c16b4b44df2c68b76e2
PMC12108942
A843315971
40427651
10_3390_biology14050461
Genre Journal Article
Review
GrantInformation_xml – fundername: the National Key Research and Development Program of China
  grantid: 2023YFF1000800
– fundername: the Excellent Team Plan of Shanghai Academy of Agricultural Sciences
  grantid: (2022)014
– fundername: National Key Research and Development Program of China
  grantid: 2023YFF1000800
– fundername: Shanghai Academy of Agricultural Sciences
  grantid: (2022)014
GroupedDBID 2XV
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EBD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PMFND
7QP
7TK
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c511t-1e5e6c956e7b38af8ebc9858575a8e51d04e6cb07b37eb228e67ea6fb749552f3
IEDL.DBID M48
ISSN 2079-7737
IngestDate Wed Aug 27 01:27:05 EDT 2025
Thu Aug 21 18:37:23 EDT 2025
Fri Jul 11 17:12:48 EDT 2025
Fri Jul 18 09:41:50 EDT 2025
Thu Jun 19 01:37:57 EDT 2025
Tue Jun 17 03:40:57 EDT 2025
Mon Jun 02 02:22:49 EDT 2025
Tue Jul 01 05:00:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords DNA methylation
chromatin architecture
6mA
5mC
epigenetic regulation
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-1e5e6c956e7b38af8ebc9858575a8e51d04e6cb07b37eb228e67ea6fb749552f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-5574-1824
0000-0001-8223-7228
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biology14050461
PMID 40427651
PQID 3211860331
PQPubID 2032427
ParticipantIDs doaj_primary_oai_doaj_org_article_379fbcd437944c16b4b44df2c68b76e2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12108942
proquest_miscellaneous_3212779470
proquest_journals_3211860331
gale_infotracmisc_A843315971
gale_infotracacademiconefile_A843315971
pubmed_primary_40427651
crossref_primary_10_3390_biology14050461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-24
PublicationDateYYYYMMDD 2025-04-24
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-24
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biology (Basel, Switzerland)
PublicationTitleAlternate Biology (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_137
ref_93
ref_136
Guo (ref_67) 2014; 15
ref_92
Nasrullah (ref_110) 2022; 13
Sun (ref_71) 2015; 37
ref_131
ref_99
ref_130
ref_10
Pidugu (ref_34) 2016; 55
Xue (ref_66) 2016; 291
ref_133
ref_97
ref_132
Klocko (ref_118) 2019; 211
Stroud (ref_85) 2014; 21
Guo (ref_68) 2015; 161
ref_17
Kweon (ref_82) 2019; 74
Li (ref_88) 2018; 37
Mu (ref_134) 2022; 18
Wolffgramm (ref_12) 2021; 60
Liang (ref_100) 2018; 45
ref_126
ref_125
Kagiwada (ref_45) 2013; 32
Venkiteswaran (ref_53) 2015; 10
Lang (ref_95) 2017; 114
Maiti (ref_32) 2011; 286
ref_24
ref_120
ref_122
Bai (ref_27) 2025; 43
Liu (ref_96) 2015; 112
ref_124
ref_123
Chen (ref_139) 2024; 15
Zhao (ref_51) 2019; 120
Li (ref_26) 2007; 35
Lee (ref_90) 2014; 42
Wollenberg (ref_129) 2018; 32
Du (ref_87) 2023; 9
Haridas (ref_141) 2018; 1775
Tang (ref_146) 2019; 133
He (ref_25) 2011; 21
Freedman (ref_106) 1993; 135
Kan (ref_138) 2022; 38
Volokh (ref_16) 2016; 50
Ma (ref_62) 2009; 323
Smith (ref_5) 2025; 26
Dalton (ref_54) 2012; 4
Schmitz (ref_61) 2009; 33
Ariza (ref_91) 2006; 103
ref_76
ref_75
ref_74
Greer (ref_81) 2015; 161
Agius (ref_89) 2006; 103
Lyko (ref_11) 2018; 19
Hao (ref_77) 2020; 78
Kong (ref_52) 2019; 35
Ershov (ref_29) 2022; 68
Hajkova (ref_47) 2010; 329
Hackett (ref_42) 2013; 339
Li (ref_19) 2023; 30
Fu (ref_72) 2015; 161
Sundar (ref_144) 2022; 27
ref_86
Zhang (ref_79) 2015; 161
ref_84
ref_145
Zhang (ref_18) 2023; 381
Popp (ref_57) 2010; 463
Yamaguchi (ref_44) 2013; 23
Keller (ref_140) 2019; 17
Chen (ref_142) 2019; 447
ref_50
Sanz (ref_64) 2016; 63
Pidugu (ref_33) 2019; 141
Zhang (ref_135) 2024; 52
Zhang (ref_41) 2012; 8
Todokoro (ref_127) 2024; 5
ref_55
Arab (ref_65) 2019; 51
Greenberg (ref_23) 2019; 20
Xiao (ref_73) 2018; 71
Zhang (ref_58) 2018; 19
Yao (ref_80) 2018; 71
Li (ref_2) 2021; 187
Chen (ref_121) 2023; 4
ref_69
Greer (ref_83) 2016; 945
Chavez (ref_115) 2014; 111
Gong (ref_94) 2002; 111
Gentile (ref_15) 2023; 41
Murat (ref_103) 2013; 55
Hashimoto (ref_46) 2013; 425
Ecco (ref_28) 2017; 144
Mattei (ref_3) 2022; 38
Liang (ref_70) 2024; 26
Tam (ref_1) 2019; 20
ref_114
ref_116
ref_119
Williams (ref_40) 2012; 51
Johnson (ref_143) 2019; 51
Koh (ref_78) 2018; 46
ref_35
Boulias (ref_7) 2022; 23
He (ref_37) 2011; 333
Barreto (ref_60) 2007; 445
ref_111
ref_31
ref_30
Liu (ref_98) 2020; 62
Jovanska (ref_109) 2024; 52
Li (ref_59) 2021; 49
Shen (ref_36) 2013; 153
Jones (ref_9) 2012; 13
Ginno (ref_63) 2012; 45
Mondo (ref_112) 2017; 49
Xin (ref_113) 2019; 201
Seisenberger (ref_43) 2012; 48
Ren (ref_14) 2022; 22
Klose (ref_22) 2006; 31
ref_104
Nabel (ref_38) 2012; 8
ref_105
ref_108
Li (ref_13) 2018; 564
Bhutani (ref_56) 2010; 463
Wang (ref_20) 2020; 52
(ref_21) 2015; 517
ref_102
Klocko (ref_107) 2020; 216
ref_49
ref_48
ref_8
Bennett (ref_39) 2006; 128
Zhou (ref_101) 2018; 4
Zhang (ref_117) 2014; 136
ref_4
Tian (ref_128) 2025; 14
ref_6
References_xml – volume: 13
  start-page: 1666
  year: 2022
  ident: ref_110
  article-title: DNA methylation across the tree of life, from micro to macro-organism
  publication-title: Bioengineered
  doi: 10.1080/21655979.2021.2014387
– volume: 136
  start-page: 4801
  year: 2014
  ident: ref_117
  article-title: A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500979k
– volume: 111
  start-page: 803
  year: 2002
  ident: ref_94
  article-title: ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01133-9
– volume: 20
  start-page: 590
  year: 2019
  ident: ref_23
  article-title: The diverse roles of DNA methylation in mammalian development and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0159-6
– ident: ref_133
  doi: 10.20944/preprints202107.0525.v1
– volume: 291
  start-page: 731
  year: 2016
  ident: ref_66
  article-title: Uracil-DNA Glycosylase UNG Promotes TET-mediated DNA Demethylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.693861
– volume: 78
  start-page: 382
  year: 2020
  ident: ref_77
  article-title: N(6)-Deoxyadenosine Methylation in Mammalian Mitochondrial, D.N.A
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.018
– volume: 5
  start-page: 58
  year: 2024
  ident: ref_127
  article-title: CRISPR/Cas9 improves targeted knock-in efficiency in Aspergillus oryzae
  publication-title: Biotechnol. Notes
  doi: 10.1016/j.biotno.2024.03.002
– volume: 35
  start-page: 633
  year: 2019
  ident: ref_52
  article-title: Defining UHRF1 Domains that Support Maintenance of Human Colon Cancer DNA Methylation and Oncogenic Properties
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.03.003
– volume: 51
  start-page: 217
  year: 2019
  ident: ref_65
  article-title: GADD45A binds R-loops and recruits TET1 to CpG island promoters
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0306-6
– volume: 52
  start-page: 3886
  year: 2024
  ident: ref_135
  article-title: Molecular basis of an atypical dsDNA 5mC/6mA bifunctional dioxygenase CcTET from Coprinopsis cinerea in catalyzing dsDNA 5mC demethylation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkae066
– volume: 17
  start-page: 167
  year: 2019
  ident: ref_140
  article-title: Fungal secondary metabolism: Regulation, function and drug discovery
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0121-1
– ident: ref_49
  doi: 10.1038/s41467-023-44209-8
– volume: 30
  start-page: 575
  year: 2023
  ident: ref_19
  article-title: Chromosome Three-Dimensional Structure Reconstruction: An Iterative ShRec3D Algorithm
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2022.0179
– volume: 564
  start-page: 136
  year: 2018
  ident: ref_13
  article-title: Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1
  publication-title: Nature
  doi: 10.1038/s41586-018-0751-5
– volume: 38
  start-page: 182
  year: 2022
  ident: ref_138
  article-title: Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2021.06.014
– volume: 329
  start-page: 78
  year: 2010
  ident: ref_47
  article-title: Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway
  publication-title: Science
  doi: 10.1126/science.1187945
– ident: ref_17
  doi: 10.1186/s13046-021-02151-x
– volume: 51
  start-page: 6458
  year: 2012
  ident: ref_40
  article-title: A density functional theory study on the kinetics and thermodynamics of N-glycosidic bond cleavage in 5-substituted 2′-deoxycytidines
  publication-title: Biochemistry
  doi: 10.1021/bi300797q
– volume: 37
  start-page: 1155
  year: 2015
  ident: ref_71
  article-title: N6-methyladenine functions as a potential epigenetic mark in eukaryotes
  publication-title: Bioessays
  doi: 10.1002/bies.201500076
– volume: 26
  start-page: 7
  year: 2025
  ident: ref_5
  article-title: DNA methylation in mammalian development and disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-024-00760-8
– ident: ref_8
  doi: 10.1126/sciadv.adn5861
– volume: 161
  start-page: 879
  year: 2015
  ident: ref_72
  article-title: N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.010
– volume: 135
  start-page: 357
  year: 1993
  ident: ref_106
  article-title: De novo methylation of repeated sequences in Coprinus cinereus
  publication-title: Genetics
  doi: 10.1093/genetics/135.2.357
– ident: ref_124
  doi: 10.3390/jof7080659
– ident: ref_75
  doi: 10.1186/s12864-019-5754-6
– volume: 114
  start-page: e4511
  year: 2017
  ident: ref_95
  article-title: Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1705233114
– volume: 187
  start-page: 104
  year: 2021
  ident: ref_2
  article-title: Modern epigenetics methods in biological research
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.06.022
– volume: 62
  start-page: 148
  year: 2020
  ident: ref_98
  article-title: The mechanism and function of active DNA demethylation in plants
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12879
– volume: 120
  start-page: 4794
  year: 2019
  ident: ref_51
  article-title: Dppa3 in pluripotency maintenance of ES cells and early embryogenesis
  publication-title: J. Cell Biochem.
  doi: 10.1002/jcb.28063
– ident: ref_108
  doi: 10.3389/fpls.2016.01556
– ident: ref_131
  doi: 10.1002/bies.202000243
– ident: ref_136
  doi: 10.1016/j.jbc.2022.102462
– ident: ref_50
  doi: 10.3389/fcell.2022.882671
– volume: 211
  start-page: 563
  year: 2019
  ident: ref_118
  article-title: Nucleosome Positioning by an Evolutionarily Conserved Chromatin Remodeler Prevents Aberrant DNA Methylation in Neurospora
  publication-title: Genetics
  doi: 10.1534/genetics.118.301711
– ident: ref_119
  doi: 10.1038/s41467-024-51246-4
– volume: 37
  start-page: 77
  year: 2018
  ident: ref_88
  article-title: Active DNA demethylation: Mechanism and role in plant development
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-017-2215-z
– volume: 15
  start-page: 6335
  year: 2024
  ident: ref_139
  article-title: Association of methyl donor nutrients dietary intake and sleep disorders in the elderly revealed by the intestinal microbiome
  publication-title: Food Funct.
  doi: 10.1039/D4FO01303D
– volume: 10
  start-page: 671
  year: 2015
  ident: ref_53
  article-title: Local chromatin microenvironment determines DNMT activity: From DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase
  publication-title: Epigenetics
  doi: 10.1080/15592294.2015.1062204
– volume: 4
  start-page: 554
  year: 2018
  ident: ref_101
  article-title: Identification and analysis of adenine N(6)-methylation sites in the rice genome
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0214-x
– ident: ref_125
  doi: 10.1371/journal.pone.0133085
– volume: 51
  start-page: 11
  year: 2019
  ident: ref_143
  article-title: The role of DNA methylation and hydroxymethylation in immunosenescence
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2019.01.011
– volume: 381
  start-page: 313
  year: 2023
  ident: ref_18
  article-title: Hexasome-INO80 complex reveals structural basis of noncanonical nucleosome remodeling
  publication-title: Science
  doi: 10.1126/science.adf6287
– ident: ref_35
  doi: 10.1371/journal.pone.0015367
– volume: 19
  start-page: 489
  year: 2018
  ident: ref_58
  article-title: Dynamics and function of DNA methylation in plants
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0016-z
– volume: 46
  start-page: 11659
  year: 2018
  ident: ref_78
  article-title: Single-nucleotide-resolution sequencing of human N6-methyldeoxyadenosine reveals strand-asymmetric clusters associated with SSBP1 on the mitochondrial genome
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1104
– volume: 161
  start-page: 868
  year: 2015
  ident: ref_81
  article-title: DNAMethylation on N6-Adenine in, C. elegans
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.005
– volume: 33
  start-page: 344
  year: 2009
  ident: ref_61
  article-title: TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.01.015
– volume: 26
  start-page: 1458
  year: 2024
  ident: ref_70
  article-title: Distinct dynamics of parental 5-hydroxymethylcytosine during human preimplantation development regulate early lineage gene expression
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-024-01475-y
– volume: 112
  start-page: 10804
  year: 2015
  ident: ref_96
  article-title: A DEMETER-like DNA demethylase governs tomato fruit ripening
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1503362112
– volume: 425
  start-page: 971
  year: 2013
  ident: ref_46
  article-title: Selective excision of 5-carboxylcytosine by a thymine DNA glycosylase mutant
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2013.01.013
– volume: 9
  start-page: 271
  year: 2023
  ident: ref_87
  article-title: Molecular basis of the plant ROS1-mediated active DNA demethylation
  publication-title: Nat. Plants
  doi: 10.1038/s41477-022-01322-8
– ident: ref_92
  doi: 10.1371/journal.pgen.1004905
– ident: ref_24
  doi: 10.1038/ncomms10806
– volume: 55
  start-page: 6205
  year: 2016
  ident: ref_34
  article-title: Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.6b00982
– ident: ref_55
  doi: 10.1038/s41467-025-56928-1
– ident: ref_84
  doi: 10.3390/ijms26020763
– ident: ref_122
  doi: 10.3389/fpls.2018.00103
– volume: 20
  start-page: 467
  year: 2019
  ident: ref_1
  article-title: Benefits and limitations of genome-wide association studies
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0127-1
– ident: ref_126
  doi: 10.1016/j.micres.2023.127397
– volume: 19
  start-page: 81
  year: 2018
  ident: ref_11
  article-title: The DNA methyltransferase family: A versatile toolkit for epigenetic regulation
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2017.80
– volume: 49
  start-page: 5057
  year: 2021
  ident: ref_59
  article-title: Activation-induced deaminase is critical for the establishment of DNA methylation patterns prior to the germinal center reaction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab322
– ident: ref_120
  doi: 10.3390/microorganisms13030584
– volume: 445
  start-page: 671
  year: 2007
  ident: ref_60
  article-title: Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation
  publication-title: Nature
  doi: 10.1038/nature05515
– volume: 463
  start-page: 1101
  year: 2010
  ident: ref_57
  article-title: Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency
  publication-title: Nature
  doi: 10.1038/nature08829
– volume: 32
  start-page: 340
  year: 2013
  ident: ref_45
  article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.331
– volume: 60
  start-page: 13507
  year: 2021
  ident: ref_12
  article-title: Light-Activation of DNA-Methyltransferases
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202103945
– ident: ref_114
  doi: 10.1038/srep11087
– volume: 4
  start-page: 459
  year: 2012
  ident: ref_54
  article-title: DNA demethylation by TDG
  publication-title: Epigenomics
  doi: 10.2217/epi.12.36
– volume: 286
  start-page: 35334
  year: 2011
  ident: ref_32
  article-title: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C111.284620
– volume: 1775
  start-page: 171
  year: 2018
  ident: ref_141
  article-title: Fungal Genome Annotation
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7804-5_15
– ident: ref_102
  doi: 10.1038/s41467-023-36019-9
– volume: 153
  start-page: 692
  year: 2013
  ident: ref_36
  article-title: Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.002
– ident: ref_69
  doi: 10.1007/s10815-025-03415-7
– volume: 128
  start-page: 12510
  year: 2006
  ident: ref_39
  article-title: Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0634829
– ident: ref_6
  doi: 10.1016/j.micres.2020.126694
– volume: 23
  start-page: 411
  year: 2022
  ident: ref_7
  article-title: Means, mechanisms and consequences of adenine methylation in DNA
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-022-00456-x
– volume: 15
  start-page: 447
  year: 2014
  ident: ref_67
  article-title: Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.08.003
– volume: 52
  start-page: 9551
  year: 2024
  ident: ref_109
  article-title: DNA cytosine methyltransferases differentially regulate genome-wide hypermutation and interhomolog recombination in Trichoderma reesei meiosis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkae611
– volume: 161
  start-page: 1437
  year: 2015
  ident: ref_68
  article-title: The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.015
– ident: ref_99
  doi: 10.7554/eLife.81002
– ident: ref_130
  doi: 10.1038/s41467-024-50365-2
– volume: 48
  start-page: 849
  year: 2012
  ident: ref_43
  article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.11.001
– volume: 74
  start-page: 1138
  year: 2019
  ident: ref_82
  article-title: An Adversarial DNA N(6)-Methyladenine-Sensor Network Preserves Polycomb Silencing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.03.018
– volume: 38
  start-page: 676
  year: 2022
  ident: ref_3
  article-title: DNA methylation: A historical perspective
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2022.03.010
– ident: ref_86
  doi: 10.1146/annurev-arplant-083123-054357
– ident: ref_104
  doi: 10.3389/fmicb.2020.616922
– volume: 14
  start-page: 621
  year: 2025
  ident: ref_128
  article-title: CRISPR-Cas9 Cytidine-Base-Editor Mediated Continuous In Vivo Evolution in Aspergillus nidulans
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.4c00716
– volume: 216
  start-page: 671
  year: 2020
  ident: ref_107
  article-title: Selection and Characterization of Mutants Defective in DNA Methylation in Neurospora crassa
  publication-title: Genetics
  doi: 10.1534/genetics.120.303471
– ident: ref_111
  doi: 10.3389/fgene.2023.1085631
– volume: 333
  start-page: 1303
  year: 2011
  ident: ref_37
  article-title: TET-mediated formation of 5-carboxylcytosine its excision by TDGin mammalian DNA
  publication-title: Science
  doi: 10.1126/science.1210944
– volume: 50
  start-page: 922
  year: 2016
  ident: ref_16
  article-title: Structural studies of chromatin remodeling factors
  publication-title: Mol. Biol.
  doi: 10.1134/S0026893316060212
– volume: 447
  start-page: 48
  year: 2019
  ident: ref_142
  article-title: CRISPR-Cas9 for cancer therapy: Opportunities and challenges
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.01.017
– volume: 55
  start-page: 6
  year: 2013
  ident: ref_103
  article-title: Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2013.04.003
– volume: 161
  start-page: 893
  year: 2015
  ident: ref_79
  article-title: N6-methyladenine DNA modification in Drosophila
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.018
– volume: 31
  start-page: 89
  year: 2006
  ident: ref_22
  article-title: Genomic DNA methylation: The mark and its mediators
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2005.12.008
– volume: 71
  start-page: 848
  year: 2018
  ident: ref_80
  article-title: Active N(6)-Methyladenine Demethylation by DMAD Regulates Gene Expression by Coordinating with Polycomb Protein in Neurons
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.07.005
– ident: ref_105
  doi: 10.1371/journal.pgen.1009448
– ident: ref_137
  doi: 10.1172/JCI146985
– volume: 201
  start-page: 369
  year: 2019
  ident: ref_113
  article-title: Genome-wide analysis of DNA methylation in subcultured Cordyceps militaris
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-019-01621-3
– volume: 463
  start-page: 1042
  year: 2010
  ident: ref_56
  article-title: Reprogramming towards pluripotency requires AID-dependent DNA demethylation
  publication-title: Nature
  doi: 10.1038/nature08752
– volume: 8
  start-page: 751
  year: 2012
  ident: ref_38
  article-title: AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1042
– volume: 111
  start-page: E5149
  year: 2014
  ident: ref_115
  article-title: Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in Coprinopsis cinerea
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1419513111
– volume: 8
  start-page: 328
  year: 2012
  ident: ref_41
  article-title: Thymine DNAglycosylase specifically recognizes 5-carboxylcytosine-modified DNA
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.914
– volume: 323
  start-page: 1074
  year: 2009
  ident: ref_62
  article-title: Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis
  publication-title: Science
  doi: 10.1126/science.1166859
– volume: 27
  start-page: 53
  year: 2022
  ident: ref_144
  article-title: Psychostimulants influence oxidative stress and redox signatures: The role of DNA methylation
  publication-title: Redox Rep.
  doi: 10.1080/13510002.2022.2043224
– volume: 4
  start-page: 185
  year: 2023
  ident: ref_121
  article-title: DNA methylation-dependent epigenetic regulation of Verticillium dahliae virulence in plants
  publication-title: Abiotech
  doi: 10.1007/s42994-023-00117-5
– volume: 68
  start-page: 339
  year: 2022
  ident: ref_29
  article-title: Interactomics of CXXC proteins involved in epigenetic regulation of gene expression
  publication-title: Biomeditsinskaya Khimiya
  doi: 10.18097/pbmc20226805339
– volume: 32
  start-page: 850
  year: 2018
  ident: ref_129
  article-title: Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults children: Part II
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.14888
– ident: ref_30
  doi: 10.1007/s00018-022-04396-x
– volume: 43
  start-page: 85
  year: 2025
  ident: ref_27
  article-title: Simultaneous single-cell analysis of 5mC and 5hmC with SIMPLE-seq
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-024-02148-9
– volume: 49
  start-page: 964
  year: 2017
  ident: ref_112
  article-title: Widespread adenine N6-methylation of active genes in fungi
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3859
– ident: ref_10
  doi: 10.3390/life15020171
– ident: ref_123
  doi: 10.1371/journal.pgen.1010927
– ident: ref_93
  doi: 10.1073/pnas.2422798122
– volume: 945
  start-page: 213
  year: 2016
  ident: ref_83
  article-title: N6-Methyladenine: A Conserved and Dynamic DNA Mark
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-43624-1_10
– volume: 18
  start-page: 733
  year: 2022
  ident: ref_134
  article-title: A fungal dioxygenase CcTETserves as a eukaryotic 6mAdemethylase on duplex DNA
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-022-01041-3
– volume: 133
  start-page: 597
  year: 2019
  ident: ref_146
  article-title: Histone acetylation and DNA methylation in ischemia/reperfusion injury
  publication-title: Clin. Sci.
  doi: 10.1042/CS20180465
– volume: 42
  start-page: 11408
  year: 2014
  ident: ref_90
  article-title: AP endonucleases process 5-methylcytosine excision intermediates during active DNA demethylation in Arabidopsis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku834
– volume: 45
  start-page: 814
  year: 2012
  ident: ref_63
  article-title: R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.01.017
– ident: ref_116
  doi: 10.1098/rsob.210302
– volume: 103
  start-page: 6853
  year: 2006
  ident: ref_91
  article-title: DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0601109103
– volume: 13
  start-page: 484
  year: 2012
  ident: ref_9
  article-title: Functions of DNA methylation: Islands, start sites, gene bodies and beyond
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3230
– volume: 71
  start-page: 306
  year: 2018
  ident: ref_73
  article-title: N(6)-Methyladenine DNA Modification in the Human Genome
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.06.015
– ident: ref_4
  doi: 10.1186/s13046-022-02319-z
– ident: ref_74
  doi: 10.1038/s41467-022-33277-x
– volume: 45
  start-page: 406
  year: 2018
  ident: ref_100
  article-title: DNA N(6)-Adenine Methylation in Arabidopsis thaliana
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2018.03.012
– volume: 144
  start-page: 2719
  year: 2017
  ident: ref_28
  article-title: KRAB zinc finger proteins
  publication-title: Development
  doi: 10.1242/dev.132605
– volume: 52
  start-page: 828
  year: 2020
  ident: ref_20
  article-title: Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0661-y
– volume: 21
  start-page: 64
  year: 2014
  ident: ref_85
  article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2735
– volume: 35
  start-page: 390
  year: 2007
  ident: ref_26
  article-title: Association of DNMT3a and thymine DNA glycosylase links DNA methylation with base-excision repair
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl1052
– volume: 517
  start-page: 321
  year: 2015
  ident: ref_21
  article-title: Function and information content of DNA methylation
  publication-title: Nature
  doi: 10.1038/nature14192
– volume: 63
  start-page: 167
  year: 2016
  ident: ref_64
  article-title: Prevalent, Dynamic, and Conserved R-Loop Structures Associate with Specific Epigenomic Signatures in Mammals
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.05.032
– volume: 141
  start-page: 18851
  year: 2019
  ident: ref_33
  article-title: Excision of 5-Carboxylcytosine by Thymine DNA Glycosylase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10376
– volume: 22
  start-page: 1113
  year: 2022
  ident: ref_14
  article-title: Regulatory mechanism and biological function of UHRF1-DNMT1-mediated DNA methylation
  publication-title: Funct. Integr. Genom.
  doi: 10.1007/s10142-022-00918-9
– ident: ref_97
  doi: 10.1038/nplants.2016.169
– volume: 41
  start-page: 1516
  year: 2023
  ident: ref_15
  article-title: Mammalian SWI/SNF chromatin remodeling complexes promote tyrosine kinase inhibitor resistance in EGFR-mutant lung cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2023.07.005
– ident: ref_76
  doi: 10.1126/sciadv.aay3335
– ident: ref_31
  doi: 10.1016/j.jmb.2021.167097
– ident: ref_145
  doi: 10.3390/ijms19041174
– volume: 339
  start-page: 448
  year: 2013
  ident: ref_42
  article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine
  publication-title: Science
  doi: 10.1126/science.1229277
– volume: 23
  start-page: 329
  year: 2013
  ident: ref_44
  article-title: Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.22
– ident: ref_132
  doi: 10.3389/fmicb.2022.925868
– volume: 21
  start-page: 442
  year: 2011
  ident: ref_25
  article-title: Regulation and function of DNA methylation in plants and animals
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.23
– volume: 103
  start-page: 11796
  year: 2006
  ident: ref_89
  article-title: Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0603563103
– ident: ref_48
  doi: 10.1101/2023.10.04.560925
RelatedPersons Liu, Timothy
RelatedPersons_xml – fullname: Liu, Timothy
SSID ssj0000702636
Score 2.3316329
SecondaryResourceType review_article
Snippet DNA methylation, a cornerstone of epigenetic regulation, governs critical biological processes including transcriptional modulation, genomic imprinting, and...
DNA methylation regulates gene expression and genome stability. Challenges include tissue-specific spatiotemporal heterogeneity and poorly understood...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 461
SubjectTerms 5mC
6mA
B cells
Binding sites
chromatin architecture
Chromatin remodeling
Comparative analysis
CRISPR
Demethylation
Developmental stages
DNA
DNA methylation
Enzymes
Epigenetic inheritance
epigenetic regulation
Epigenetics
Evolutionary conservation
Gene expression
Genomes
Genomic imprinting
Genomics
Liu, Timothy
Methylation
N6-methyladenosine
Neurodegenerative diseases
Proteins
Review
RNA polymerase
Transcription factors
Tumorigenesis
Wildlife conservation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQUiUuVUtpuy0gV0Kil2izjr_S23YB0UpwQCBxszKO0-5hs6hZDpz5452Js0sCh156zYwV2zP2zJPtN4wdpZJIqwCSgHgjkUaJJBcgE1vmVRCWKLLoofDFpT6_kT9v1W2v1BfdCYv0wHHixpnJK_Al0eZJ6ScaJEhZVsJrC0aHdvfFmNcDU-0ebBBb0LkkcflkiOvHHacR4glFHOODMNSy9b_ck3tBaXhhsheBzt6w113qyKexy2_ZVqh32atYTPLhHXuc0Z-oHPCvcrngJ5dTfhHQDPGyGz-Jpeebb3z2RPiNGvTyd94sGr6suFrMxnox5VexQD01K-qSX9NhAv_Ru3vO5zU_vSMiT3oDydcUns0euzk7vZ6dJ12JhcRjprVKJkEF7REjBQOZLSobwOd0VGhUYYOalKlEOaQoNYjBhQ3ahEJXYBBYKVFl79l2vazDR8YFZFBOAAMeGgiTEIRGPpgKgIpeYdo5Yl_XM-7uIpOGQwRCxnHPjDNi38kiGzWiwG4_oGO4zjHcvxxjxI7Jno4WKhrNF917A-wtUV65qaXHYoin8Hf7A01cYH4oXnuE6xZ44zIEzlanqDJiXzZiakmX1uqwvG91hMHeGRz7h-hAmyFJqnGiFba2A9cajHkoqee_W_pvonyzuRSf_scsfWY7gioapzIRcp9tr_7chwNMs1Zw2K6ovzz7JiU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegExIviG8KAxkJCV6sJo6_wgvquk4DaRWaNmlvVuw4ow9NytI98Mw_zl3idg1IvOZs2c7d2Xf23e8I-ZAIBK1yjgXwN5jQkrOcO8FMmVeBG4TIwkThs4U6vRTfruRVvHBrY1jldk_sNuqy8XhHPsnAUzEqybL0y_onw6pR-LoaS2jcJwewBRszIgdH88X3890tCwg0V_g-iZg-Gfj3k4htBH6FRKzxwXHUofb_uzfvHU7DwMm9k-jkMXkUTUg67Xn-hNwL9VPyoC8q-esZ-T3DkbAs8HXZrOjxYkrPArCjD3qjx30J-vYznd0Bf0MLzABetquWNhWVq9lErab0vC9Uj92KuqQX-KhAv-7FoNNlTedrBPTEXEi6hfJsn5PLk_nF7JTFUgvMg8W1YWmQQXnwlYJ2mSkqE5zP8clQy8IEmZaJALpLgKrBF-cmKB0KVTkNDpbkVfaCjOqmDq8I5S5zZerg4HNCgDECLpIPunIOi1-B-Tkmn7Z_3K57RA0Lnggyx_7FnDE5Qo7smiEUdvehubm2UbNspvPK-RJxFYXwqXICxi0r7pVxWgU-Jh-RnxYVFpjmi5h3ALNF6Cs7NZg0Bn4VDHc4aAmK5ofkrUTYqOitvRPLMXm_I2NPDF6rQ3PbteEaZqdh7S97AdotSWCtEyWhtxmI1mDNQ0q9_NHBgCP0m8kFf_3_eb0hDznWLE4E4-KQjDY3t-EtGFIb9y5qyx-DSx6_
  priority: 102
  providerName: ProQuest
Title Cross-Kingdom DNA Methylation Dynamics: Comparative Mechanisms of 5mC/6mA Regulation and Their Implications in Epigenetic Disorders
URI https://www.ncbi.nlm.nih.gov/pubmed/40427651
https://www.proquest.com/docview/3211860331
https://www.proquest.com/docview/3212779470
https://pubmed.ncbi.nlm.nih.gov/PMC12108942
https://doaj.org/article/379fbcd437944c16b4b44df2c68b76e2
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT9swFLU20KS9TGzso8AqI03aXjJSx1-ZNE2lFDGkVhOiEm9W7Dis0ppAUyR45o_v3iQtzcYDr7Edx77X8T2J7zmEfAo5klZZG3jAGwFXggUxszzQaZx5ppEiCxOFR2N5MuGnF-LiQQ6omcDyUWiHelKT-Z-vt9d3P2DBf0fECZD9oKErAqggkD78OdmEbUmhnMGoifWr17ICuFFJBrJQxRBVRqqm-nnsHq1dqiLz__-VvbZntc9Trm1Qx1vkVRNZ0n7tCq_JM5-_IS9qrcm7bXI_wJ5QLfgyLWb0aNynIw9Wqs_C0aNamb78RgcPfOBQAxODp-WspEVGxWxwIGd9elbr12OzJE_pOf5roD_XjqbTaU6HV8jziSmSdMnwWb4lk-Ph-eAkaBQYAgeB2CLoeeGlAwjllY10kmlvXYx_EpVItBe9NORQbkMoVQDRmfZS-URmVgHuEiyL3pGNvMj9B0KZjWzas7AfWs4hRgHk5LzKrEVNLIhKO-TLcsbNVU20YQCgoHHMP8bpkEO0yKoaMmRXF4r5pWkWnIlUnFmXIt0i564nLYd-04w5qa2SnnXIZ7SnQc8Co7mkSUeAp0VGLNPXmEsGcAu622vVhPXn2sVLjzBL9zUR4GotQ6jSIfurYmyJZ9pyX9xUdZiCp1Mw9ve1A62GxFECRQporVuu1RpzuySf_q7YwZERTsec7Tx9QnfJS4ayxiEPGN8jG4v5jf8IsdbCdsnm4XD866xbfavoVivqL_7WKcg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8KA4wEgpeoiePYDhJCXdupZWuFpk7aW4gdp_ShSVk6oT3z__A3cpePrgGJt732nNrO3fl8se_3I-StyxG0SmvHQr7hcBkwJ2SaOyoJU8sUQmRhofB0JsZn_Mt5cL5Hfje1MHitslkTy4U6yQ1-I-_5kKko4fq-93n9w0HWKDxdbSg0KrM4tlc_IWUrPk2GoN93jB2N5oOxU7MKOAY2FxvHs4EVBtICK7Wv4lRZbUI8HZNBrGzgJS4HuXZBKiHtZMoKaWORagm5RMBSH_73FtnnvnBZh-wfjmZfT7dfdcCBmMDzUMQQ8v3Q7dVYSpDHBIht3gp_JUvAv7FgJxi2L2ruRL6j--RevWWl_crGHpA9mz0ktysSy6tH5NcAe0Ia4kWSr-hw1qdTC-qvLtnRYUV5X3ykg2ugcWiBFcfLYlXQPKXBatATqz49tYuaTYzGWULneIhBJzt33ukyo6M1Aohi7SVtoEOLx-TsRpTwhHSyPLPPCGXa14mnIdBqzmHzAymZsTLVGsm2YLvbJR-aNx6tKwSPCDIfVE70l3K65BA1sm2G0NvlD_nFIqo9OfJlmGqTII4j58YTmkO_ScqMUFoKy7rkPeozwgUClGbius4BRotQW1FfYZEa5HHQ3UGrJTi2aYsbi4jqhaWIrt2gS95sxfgkXpbLbH5ZtmESRidh7k8rA9pOiSO3igjgadUyrdac25Js-b2EHUeoORVy9vz_43pN7ozn05PoZDI7fkHuMuRLdrnD-AHpbC4u7UvYxG30q9pzKPl20876BzrEXAY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8KA4wEgpeoiePYDhJCXT-0MlZN0ybtLcSO0_WhSbd0Qn3mv-Kv4y4fXQMSb3vtObWdu7P9i-9-R8h7lyNpldaOBbzhcBkwJ2SaOyoJU8sUUmRhovDRVByc8W_nwfkO-d3kwmBYZbMmlgt1khv8Rt7zAako4fq-10vrsIjj4fjr8tLBClJ409qU06hM5NCufwJ8K75MhqDrD4yNR6eDA6euMOAYOGisHM8GVhiACFZqX8WpstqEeFMmg1jZwEtcDnLtglQCBGXKCmljkWoJuCJgqQ__e4fsSkRFHbK7P5oen2y-8IAzMYF3o8gn5Puh26t5lQDTBMhz3toKy4oB_-4LWxtjO2hzaxccPyQP6uMr7Vf29ojs2OwxuVsVtFw_Ib8G2BOWJJ4l-YIOp316ZMEUqoA7Olxn8WJuis90cEM6Di0w-3heLAqapzRYDHpi0acndlZXFqNxltBTvNCgk634dzrP6GiJZKKYh0kbGtHiKTm7FSU8I50sz-wLQpn2deJp2HQ153AQAnhmrEy1xsJbcPTtkk_NG4-WFZtHBCgIlRP9pZwu2UeNbJohDXf5Q341i2qvjnwZptokyOnIufGE5tBvkjIjlJbCsi75iPqMcLEApZm4znmA0SLtVtRXmLAGmA6622u1BCc3bXFjEVG9yBTRjUt0ybuNGJ_EwLnM5tdlGyZhdBLm_rwyoM2UONZZEQE8rVqm1ZpzW5LNL0oKcqSdUyFnL_8_rrfkHjhp9H0yPXxF7jMsnexyh_E90lldXdvXcJ5b6Te141Dy47Z99Q9OcWA7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Kingdom+DNA+Methylation+Dynamics%3A+Comparative+Mechanisms+of+5mC%2F6mA+Regulation+and+Their+Implications+in+Epigenetic+Disorders&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Yu&rft.au=Wang%2C+Ying&rft.au=Bao%2C+Dapeng&rft.au=Chen%2C+Hongyu&rft.date=2025-04-24&rft.issn=2079-7737&rft.eissn=2079-7737&rft.volume=14&rft.issue=5&rft.spage=461&rft_id=info:doi/10.3390%2Fbiology14050461&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biology14050461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon