Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points
Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring (“motion scrubbing”). In motion regression, various...
Saved in:
Published in | Human brain mapping Vol. 35; no. 5; pp. 1981 - 1996 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Blackwell Publishing Ltd
01.05.2014
Wiley-Liss John Wiley & Sons, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring (“motion scrubbing”). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal‐to‐noise ratio. Motion censoring decreased variance in parameter estimates within‐ and across‐subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. Hum Brain Mapp 35:1981–1996, 2014. © 2013 Wiley Periodicals, Inc. |
---|---|
AbstractList | Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring (“motion scrubbing”). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal‐to‐noise ratio. Motion censoring decreased variance in parameter estimates within‐ and across‐subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. Hum Brain Mapp 35:1981–1996, 2014. © 2013 Wiley Periodicals, Inc. Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring (“motion scrubbing”). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal‐to‐noise ratio. Motion censoring decreased variance in parameter estimates within‐ and across‐subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. Hum Brain Mapp 35:1981–1996, 2014 . © 2013 Wiley Periodicals, Inc . Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring ("motion scrubbing"). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. Hum Brain Mapp 35:1981-1996, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring ("motion scrubbing"). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring ("motion scrubbing"). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement.Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring ("motion scrubbing"). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. |
Author | Siegel, Joshua S. Power, Jonathan D. Church, Jessica A. Schlaggar, Bradley L. Dubis, Joseph W. Vogel, Alecia C. Petersen, Steven E. |
AuthorAffiliation | 1 Department of Neurology Washington University School of Medicine St. Louis Missouri 3 Department of Pediatrics Washington University School of Medicine St. Louis Missouri 5 Department of Psychology Washington University Saint Louis Missouri 6 Department of Neurosurgery Washington University School of Medicine St. Louis Missouri 7 Department of Biomedical Engineering Washington University Saint Louis Missouri 4 Department of Anatomy and Neurobiology Washington University School of Medicine St. Louis Missouri 2 Department of Radiology Washington University School of Medicine St. Louis Missouri |
AuthorAffiliation_xml | – name: 2 Department of Radiology Washington University School of Medicine St. Louis Missouri – name: 6 Department of Neurosurgery Washington University School of Medicine St. Louis Missouri – name: 7 Department of Biomedical Engineering Washington University Saint Louis Missouri – name: 1 Department of Neurology Washington University School of Medicine St. Louis Missouri – name: 5 Department of Psychology Washington University Saint Louis Missouri – name: 3 Department of Pediatrics Washington University School of Medicine St. Louis Missouri – name: 4 Department of Anatomy and Neurobiology Washington University School of Medicine St. Louis Missouri |
Author_xml | – sequence: 1 givenname: Joshua S. surname: Siegel fullname: Siegel, Joshua S. email: siegelj@wusm.wustl.edu organization: Department of Neurology, Washington University School of Medicine, Missouri, St. Louis – sequence: 2 givenname: Jonathan D. surname: Power fullname: Power, Jonathan D. organization: Department of Neurology, Washington University School of Medicine, Missouri, St. Louis – sequence: 3 givenname: Joseph W. surname: Dubis fullname: Dubis, Joseph W. organization: Department of Neurology, Washington University School of Medicine, Missouri, St. Louis – sequence: 4 givenname: Alecia C. surname: Vogel fullname: Vogel, Alecia C. organization: Department of Neurology, Washington University School of Medicine, Missouri, St. Louis – sequence: 5 givenname: Jessica A. surname: Church fullname: Church, Jessica A. organization: Department of Neurology, Washington University School of Medicine, Missouri, St. Louis – sequence: 6 givenname: Bradley L. surname: Schlaggar fullname: Schlaggar, Bradley L. organization: Department of Neurology, Washington University School of Medicine, St. Louis, Missouri – sequence: 7 givenname: Steven E. surname: Petersen fullname: Petersen, Steven E. organization: Department of Neurology, Washington University School of Medicine, St. Louis, Missouri |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28377217$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23861343$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk9v1DAQxSNURP_AgS-AIiEkOKS14zh2LkiwKlukUpAK4mg5zmTXJbEXO2m7355Jd7dABSdbnt97ep6Zw2TPeQdJ8pySY0pIfrKs--M8Z0Q8Sg4oqURGaMX2pnvJs6oQdD85jPGKEEo5oU-S_ZzJkrKCHSS3l4MebBys0V1q-1Xw19CDG2JqXdqOzgzWOyz1euEAqTRAxAdnAGm9sG6RaqyvI8QUxc1ooEnrdWrARR-m8tIullnvJ5-00YNOV96i_9Pkcau7CM-251Hy7cPp19lZdv55_nH27jwznFKRSRBSFlxrIaiAijeUQMkIqQujRUO5YVATUui2MKyVtCh0k9ekahmDEknOjpK3G9_VWPfQYK4h6E6tAsYPa-W1VX9XnF2qhb9WTFYcG4gGr7cGwf8cIQ6qt9FA12kHfoyKcsrLQuZljujLB-iVHwO2544qWJ5LIZF68Wei-yi7oSDwagvoiGNpA7bbxt-cZELkVCB3suFM8DEGaJWx0zT99BHbKUrUtB4K10PdrQcq3jxQ7Ez_xW7db2wH6_-D6uz9p50i2yhwn-D2XqHDD1UKJrj6fjFXcjb_UpYXUl2yX3nA2jg |
CitedBy_id | crossref_primary_10_1080_23273798_2020_1859569 crossref_primary_10_1093_chemse_bjaa085 crossref_primary_10_1093_scan_nsac039 crossref_primary_10_1016_j_bbi_2022_07_007 crossref_primary_10_7554_eLife_36395 crossref_primary_10_1038_s41598_022_05019_y crossref_primary_10_1089_neu_2021_0140 crossref_primary_10_1016_j_nicl_2020_102394 crossref_primary_10_1016_j_dcn_2024_101469 crossref_primary_10_3389_fpsyt_2022_1063238 crossref_primary_10_1016_j_jns_2025_123426 crossref_primary_10_1016_j_neuroimage_2016_01_063 crossref_primary_10_1176_appi_ajp_2020_20010011 crossref_primary_10_1016_j_nicl_2019_101731 crossref_primary_10_1016_j_neuropsychologia_2020_107492 crossref_primary_10_1016_j_janxdis_2020_102224 crossref_primary_10_1007_s00406_024_01797_w crossref_primary_10_1177_0956797620970548 crossref_primary_10_1016_j_neuron_2021_06_004 crossref_primary_10_1016_j_neuroimage_2020_117570 crossref_primary_10_1038_s41597_022_01226_4 crossref_primary_10_1155_2020_8014248 crossref_primary_10_7554_eLife_46080 crossref_primary_10_1007_s00221_021_06067_y crossref_primary_10_1177_0269881119895520 crossref_primary_10_1016_j_neuroimage_2023_120373 crossref_primary_10_1016_j_ijdevneu_2017_01_010 crossref_primary_10_1080_17470919_2018_1468358 crossref_primary_10_1002_hbm_23397 crossref_primary_10_1016_j_neuron_2014_08_050 crossref_primary_10_1016_j_nicl_2020_102245 crossref_primary_10_7554_eLife_36493 crossref_primary_10_1016_j_neuroimage_2020_117207 crossref_primary_10_3390_brainsci13081122 crossref_primary_10_1016_j_neuroimage_2015_05_015 crossref_primary_10_1177_02698811241286773 crossref_primary_10_1016_j_neuroimage_2015_06_050 crossref_primary_10_1016_j_neuroimage_2020_116594 crossref_primary_10_1016_j_neuroimage_2023_120489 crossref_primary_10_1093_ajcn_nqy344 crossref_primary_10_3389_fnins_2017_00586 crossref_primary_10_1002_hbm_25208 crossref_primary_10_1016_j_jaac_2018_06_015 crossref_primary_10_1523_JNEUROSCI_0704_20_2020 crossref_primary_10_1162_jocn_a_01153 crossref_primary_10_1162_jocn_a_01031 crossref_primary_10_1088_2057_1976_ac63f0 crossref_primary_10_3390_biology12020211 crossref_primary_10_1016_j_nicl_2021_102783 crossref_primary_10_1016_j_cortex_2022_05_020 crossref_primary_10_1016_j_nicl_2020_102242 crossref_primary_10_1016_j_dcn_2023_101274 crossref_primary_10_1016_j_jpsychires_2025_02_051 crossref_primary_10_3758_s13415_021_00873_1 crossref_primary_10_1016_j_cortex_2020_01_003 crossref_primary_10_1016_j_neuroimage_2016_08_059 crossref_primary_10_1016_j_neubiorev_2018_12_022 crossref_primary_10_3389_fnins_2017_00115 crossref_primary_10_1016_j_ijpsycho_2019_08_009 crossref_primary_10_1016_j_neuroimage_2017_01_016 crossref_primary_10_1016_j_neuroimage_2017_01_015 crossref_primary_10_1073_pnas_2204066119 crossref_primary_10_1089_brain_2017_0571 crossref_primary_10_1016_j_ynstr_2021_100321 crossref_primary_10_1016_j_nicl_2022_102988 crossref_primary_10_1186_s12888_020_03030_z crossref_primary_10_1111_adb_12614 crossref_primary_10_1162_jocn_a_01363 crossref_primary_10_1016_j_neuroimage_2021_117816 crossref_primary_10_1017_S0033291720003542 crossref_primary_10_1111_nyas_15291 crossref_primary_10_1523_JNEUROSCI_1951_22_2023 crossref_primary_10_1523_JNEUROSCI_2376_19_2020 crossref_primary_10_3389_fneur_2019_01403 crossref_primary_10_1093_schbul_sby037 crossref_primary_10_1016_j_ynirp_2022_100085 crossref_primary_10_1017_S0033291716000374 crossref_primary_10_3389_fnins_2023_1209398 crossref_primary_10_1002_dneu_22701 crossref_primary_10_1371_journal_pone_0106498 crossref_primary_10_1111_jon_12408 crossref_primary_10_7717_peerj_687 crossref_primary_10_1162_jocn_a_02102 crossref_primary_10_1002_hbm_23556 crossref_primary_10_1016_j_bandl_2023_105313 crossref_primary_10_1093_scan_nsad067 crossref_primary_10_1016_j_jaac_2016_01_007 crossref_primary_10_1016_j_neuroimage_2017_12_041 crossref_primary_10_1155_2016_2643491 crossref_primary_10_1002_hbm_25887 crossref_primary_10_1177_0956797620958004 crossref_primary_10_1016_j_biopsych_2020_03_022 crossref_primary_10_1152_jn_00693_2019 crossref_primary_10_1038_s41598_022_14221_x crossref_primary_10_1016_j_neuroimage_2017_01_021 crossref_primary_10_3389_fnimg_2022_859792 crossref_primary_10_1038_s41597_019_0113_7 crossref_primary_10_1007_s11682_016_9613_7 crossref_primary_10_1016_j_jad_2022_06_078 crossref_primary_10_1016_j_neuroimage_2020_117629 crossref_primary_10_1016_j_neuropharm_2017_12_041 crossref_primary_10_3389_fnhum_2018_00007 crossref_primary_10_1017_S0954579419001056 crossref_primary_10_1016_j_jpsychires_2023_03_004 crossref_primary_10_1111_desc_13238 crossref_primary_10_1016_j_biopsycho_2018_08_006 crossref_primary_10_1002_aur_1498 crossref_primary_10_1038_s41598_023_35932_9 crossref_primary_10_1523_JNEUROSCI_1533_21_2021 crossref_primary_10_1038_s41467_022_33517_0 crossref_primary_10_1001_jamapsychiatry_2024_4105 crossref_primary_10_1016_j_dcn_2022_101183 crossref_primary_10_1038_s41467_024_46508_0 crossref_primary_10_1038_s44184_022_00006_7 crossref_primary_10_1523_ENEURO_0115_19_2019 crossref_primary_10_1007_s10071_021_01475_7 crossref_primary_10_1016_j_jneumeth_2016_10_019 crossref_primary_10_3389_fnbeh_2017_00205 crossref_primary_10_3389_fnhum_2022_921347 crossref_primary_10_1016_j_biopsych_2023_06_017 crossref_primary_10_1093_cercor_bhab252 crossref_primary_10_1016_j_pnpbp_2020_110045 crossref_primary_10_1162_jocn_a_01331 crossref_primary_10_1162_jocn_a_01572 crossref_primary_10_1016_j_bpsc_2018_05_004 crossref_primary_10_1038_s41386_018_0087_8 crossref_primary_10_1017_S0954579422000840 crossref_primary_10_1002_hbm_22666 crossref_primary_10_1097_ALN_0000000000000731 crossref_primary_10_1093_cercor_bhac223 crossref_primary_10_1002_hbm_23514 crossref_primary_10_1016_j_neuroimage_2023_120099 crossref_primary_10_1016_j_neuroimage_2019_03_008 crossref_primary_10_1016_j_dcn_2022_101084 crossref_primary_10_3389_fpsyg_2018_01106 crossref_primary_10_1186_s40337_021_00402_y crossref_primary_10_1016_j_neuroimage_2019_116092 crossref_primary_10_1016_j_neuroimage_2019_116091 crossref_primary_10_1016_j_neuroimage_2019_116096 crossref_primary_10_1016_j_neuroimage_2019_116097 crossref_primary_10_1002_hbm_24996 crossref_primary_10_1016_j_biopsych_2020_01_012 crossref_primary_10_1044_2019_JSLHR_19_00154 crossref_primary_10_1038_s41467_022_35397_w crossref_primary_10_1093_cercor_bhab026 crossref_primary_10_1111_desc_12508 crossref_primary_10_1093_scan_nsz093 crossref_primary_10_1016_j_dcn_2021_100939 crossref_primary_10_1097_HTR_0000000000000947 crossref_primary_10_1093_cercor_bhw099 crossref_primary_10_1162_jocn_a_01438 crossref_primary_10_1016_j_bpsc_2019_11_007 crossref_primary_10_1038_s41537_019_0082_z crossref_primary_10_1088_1361_6560_abd418 crossref_primary_10_1016_j_neuroimage_2018_02_043 crossref_primary_10_3389_fnagi_2019_00300 crossref_primary_10_1089_brain_2016_0450 crossref_primary_10_1016_j_neuron_2019_10_006 crossref_primary_10_1016_j_nutres_2017_11_002 crossref_primary_10_1016_j_neuropsychologia_2015_07_020 crossref_primary_10_1016_j_pscychresns_2024_111891 crossref_primary_10_3389_fnsys_2020_00040 crossref_primary_10_1016_j_nicl_2017_12_001 crossref_primary_10_1089_brain_2018_0625 crossref_primary_10_1093_cercor_bhab446 crossref_primary_10_1111_ene_12907 crossref_primary_10_3389_fnins_2016_00515 crossref_primary_10_3390_ani12010108 crossref_primary_10_1093_cercor_bhy170 crossref_primary_10_1016_j_jaac_2015_06_014 crossref_primary_10_1162_netn_a_00111 crossref_primary_10_1371_journal_pone_0254338 crossref_primary_10_1017_S003329171600310X crossref_primary_10_1073_pnas_2021474118 crossref_primary_10_1016_j_dcn_2025_101539 crossref_primary_10_1016_j_neuroimage_2014_10_044 crossref_primary_10_1038_s42003_023_05499_2 crossref_primary_10_1093_cercor_bhz057 crossref_primary_10_1016_j_neuroimage_2017_08_025 crossref_primary_10_1002_dev_22167 crossref_primary_10_1093_cercor_bhaa010 crossref_primary_10_1016_j_neuron_2020_07_020 crossref_primary_10_3389_fnsys_2017_00029 crossref_primary_10_1016_j_ynirp_2022_100147 crossref_primary_10_1523_JNEUROSCI_0148_22_2022 crossref_primary_10_7554_eLife_25606 crossref_primary_10_1016_j_dcn_2020_100790 crossref_primary_10_1002_hbm_23985 crossref_primary_10_1186_s41235_020_00211_y crossref_primary_10_1002_hbm_24836 crossref_primary_10_3389_fnimg_2023_1070274 crossref_primary_10_3389_fpsyt_2020_00783 crossref_primary_10_1093_braincomms_fcae250 crossref_primary_10_1016_j_ijdevneu_2017_10_004 crossref_primary_10_1371_journal_pone_0191098 crossref_primary_10_1038_s41386_023_01528_0 crossref_primary_10_1016_j_neuroimage_2021_118745 crossref_primary_10_1016_j_neuroimage_2016_12_018 crossref_primary_10_1016_j_neubiorev_2023_105421 crossref_primary_10_1016_j_foodqual_2019_103836 crossref_primary_10_1038_s41467_022_30978_1 crossref_primary_10_1093_cercor_bhad144 crossref_primary_10_3389_fnins_2022_1017211 crossref_primary_10_1097_WNR_0000000000001742 crossref_primary_10_3389_fnins_2021_643740 crossref_primary_10_1093_cercor_bhu187 crossref_primary_10_3389_fnins_2016_00381 crossref_primary_10_52294_001c_123369 crossref_primary_10_1016_j_pediatrneurol_2020_08_004 crossref_primary_10_1016_j_biopsycho_2023_108645 crossref_primary_10_1016_j_dcn_2022_101100 crossref_primary_10_1111_ejn_16616 crossref_primary_10_1007_s00213_024_06541_9 crossref_primary_10_1162_jocn_a_01604 crossref_primary_10_3390_brainsci11111490 crossref_primary_10_1002_hbm_23800 crossref_primary_10_3389_fnins_2022_854387 crossref_primary_10_1364_BOE_10_005952 crossref_primary_10_1016_j_dcn_2020_100813 crossref_primary_10_1016_j_jneumeth_2016_12_014 crossref_primary_10_1142_S0129065724500527 crossref_primary_10_1016_j_nicl_2022_103226 crossref_primary_10_1002_hbm_23917 crossref_primary_10_1093_brain_awac226 crossref_primary_10_1007_s00234_020_02569_8 crossref_primary_10_1016_j_pscychresns_2024_111848 crossref_primary_10_1038_s41398_017_0068_4 crossref_primary_10_1111_jora_12583 crossref_primary_10_1177_21677026211016419 crossref_primary_10_1002_jnr_25005 crossref_primary_10_1016_j_neuroimage_2023_119946 crossref_primary_10_1016_j_nicl_2023_103535 crossref_primary_10_1016_j_dcn_2017_01_010 crossref_primary_10_1016_j_biopsycho_2023_108624 crossref_primary_10_1162_jocn_a_00970 crossref_primary_10_1016_j_dcn_2017_01_011 crossref_primary_10_1016_j_neuroimage_2021_118134 crossref_primary_10_1111_jcpp_12410 crossref_primary_10_1523_JNEUROSCI_0598_16_2016 crossref_primary_10_1016_j_neuroimage_2018_01_084 crossref_primary_10_1093_cercor_bhw253 crossref_primary_10_1016_j_jneumeth_2019_02_008 crossref_primary_10_1002_acn3_658 crossref_primary_10_1162_jocn_a_01830 crossref_primary_10_1016_j_dcn_2022_101139 crossref_primary_10_1016_j_neuroimage_2015_01_017 crossref_primary_10_1016_j_pscychresns_2022_111490 crossref_primary_10_1162_nol_a_00151 crossref_primary_10_1016_j_neuropsychologia_2024_109065 crossref_primary_10_3390_neurolint16050069 crossref_primary_10_1016_j_biopsycho_2021_108051 crossref_primary_10_1016_j_drugalcdep_2019_01_047 crossref_primary_10_1016_j_neuroimage_2017_05_031 crossref_primary_10_1017_S0954579424000531 crossref_primary_10_1080_01691864_2021_1886168 crossref_primary_10_1162_imag_a_00048 crossref_primary_10_1016_j_pscychresns_2023_111659 crossref_primary_10_1038_s41386_023_01708_y crossref_primary_10_3758_s13415_021_00937_2 crossref_primary_10_1016_j_bpsc_2019_08_009 crossref_primary_10_1038_s41398_020_01170_0 crossref_primary_10_1371_journal_pone_0188744 crossref_primary_10_1073_pnas_1809855116 crossref_primary_10_3389_fnbeh_2018_00073 crossref_primary_10_1016_j_jad_2018_09_065 crossref_primary_10_1016_j_pscychresns_2023_111660 crossref_primary_10_1016_j_tics_2021_05_008 crossref_primary_10_1002_hbm_26391 crossref_primary_10_1038_s41398_018_0100_3 crossref_primary_10_12688_f1000research_6209_1 crossref_primary_10_1073_pnas_1919111117 crossref_primary_10_1038_nn_3673 crossref_primary_10_20900_jpbs_20200012 crossref_primary_10_1073_pnas_1606671113 crossref_primary_10_1002_oby_21119 crossref_primary_10_1162_imag_a_00057 crossref_primary_10_1093_cercor_bhac387 crossref_primary_10_1016_j_neuroimage_2021_118480 crossref_primary_10_12688_f1000research_6209_2 crossref_primary_10_1523_JNEUROSCI_0857_21_2021 crossref_primary_10_1016_j_neuroimage_2022_118890 crossref_primary_10_1093_scan_nsy011 crossref_primary_10_1016_j_neuroimage_2018_07_023 crossref_primary_10_1002_hbm_26183 crossref_primary_10_1176_appi_ajp_2020_20050672 crossref_primary_10_1016_j_cortex_2021_02_032 crossref_primary_10_1002_oby_21109 crossref_primary_10_1016_j_dcn_2022_101167 crossref_primary_10_1016_j_jad_2025_01_033 crossref_primary_10_1093_scan_nsy013 crossref_primary_10_1093_cercor_bhab074 crossref_primary_10_1093_cercor_bhac281 crossref_primary_10_1016_j_neuroimage_2018_07_013 crossref_primary_10_1111_ejn_15587 crossref_primary_10_1016_j_neuroimage_2017_05_007 crossref_primary_10_1162_nol_a_00021 crossref_primary_10_1016_j_dcn_2022_101175 crossref_primary_10_1111_mbe_12362 crossref_primary_10_1016_j_parkreldis_2023_105444 crossref_primary_10_1016_j_biopsych_2019_12_013 crossref_primary_10_1016_j_biopsych_2020_07_016 crossref_primary_10_3389_fnhum_2015_00687 crossref_primary_10_1016_j_bpsc_2021_05_009 crossref_primary_10_1038_s41598_020_68821_6 crossref_primary_10_1016_j_neuroimage_2016_09_008 crossref_primary_10_1016_j_isci_2024_110490 crossref_primary_10_1016_j_dcn_2015_11_003 crossref_primary_10_1162_jocn_a_02094 crossref_primary_10_1111_ejn_13298 crossref_primary_10_1016_j_neuroimage_2020_117621 crossref_primary_10_3389_fnagi_2023_1078455 crossref_primary_10_1016_j_dcn_2024_101503 crossref_primary_10_1016_j_ijpsycho_2019_09_008 crossref_primary_10_1038_s41593_023_01358_9 crossref_primary_10_1080_17470919_2020_1726450 crossref_primary_10_1016_j_bpsc_2017_12_010 crossref_primary_10_1371_journal_pone_0159540 crossref_primary_10_1016_j_jaacop_2024_11_006 crossref_primary_10_1016_j_envint_2021_106516 crossref_primary_10_1177_13623613211065297 crossref_primary_10_1038_s41539_018_0029_6 crossref_primary_10_1007_s11682_021_00508_6 crossref_primary_10_1016_j_psychres_2020_112785 crossref_primary_10_1111_desc_13046 crossref_primary_10_3389_fnins_2021_749887 crossref_primary_10_1523_JNEUROSCI_3071_18_2019 crossref_primary_10_1016_j_neuroimage_2016_03_031 crossref_primary_10_1002_hbm_24075 crossref_primary_10_1089_brain_2021_0013 crossref_primary_10_3389_fnins_2022_889849 crossref_primary_10_3389_fpsyt_2017_00294 crossref_primary_10_1016_j_neuroimage_2018_10_024 crossref_primary_10_1093_texcom_tgaa085 crossref_primary_10_3389_fnhum_2020_00241 crossref_primary_10_1016_j_neuroimage_2020_116866 crossref_primary_10_1016_j_neurobiolaging_2025_02_005 crossref_primary_10_1016_j_cortex_2020_08_014 crossref_primary_10_1016_j_pscychresns_2018_05_009 crossref_primary_10_1038_s41598_023_48706_0 crossref_primary_10_1016_j_jaac_2019_01_021 crossref_primary_10_1093_ijnp_pyx045 crossref_primary_10_3389_fneur_2018_00572 crossref_primary_10_1002_hbm_25111 crossref_primary_10_1002_hbm_26684 crossref_primary_10_1016_j_pneurobio_2021_101997 crossref_primary_10_1002_cad_20292 crossref_primary_10_1016_j_neuroimage_2020_116728 crossref_primary_10_1016_j_cortex_2018_11_009 crossref_primary_10_1016_j_neuroimage_2020_116603 crossref_primary_10_1016_j_neuroimage_2022_119208 crossref_primary_10_1007_s00213_019_05250_y crossref_primary_10_1016_j_cortex_2024_11_025 crossref_primary_10_1016_j_neuroimage_2017_10_057 crossref_primary_10_1016_j_neuroimage_2017_04_069 crossref_primary_10_1016_j_biopsych_2022_09_031 crossref_primary_10_1016_j_dcn_2015_12_005 crossref_primary_10_3389_fnins_2022_951907 crossref_primary_10_1016_j_neuroimage_2016_02_053 crossref_primary_10_1038_ncomms13995 crossref_primary_10_1038_s41380_024_02860_7 crossref_primary_10_1093_scan_nsw016 crossref_primary_10_1016_j_dcn_2021_101009 crossref_primary_10_1016_j_dcn_2018_02_012 crossref_primary_10_1007_s40473_015_0056_z crossref_primary_10_1371_journal_pone_0269154 crossref_primary_10_1111_jcpp_13768 crossref_primary_10_1093_braincomms_fcaa237 crossref_primary_10_1016_j_humov_2018_03_018 crossref_primary_10_7717_peerj_834 crossref_primary_10_3389_fcogn_2024_1404909 crossref_primary_10_1016_j_dcn_2015_12_015 crossref_primary_10_1002_hbm_26669 crossref_primary_10_3389_fnins_2023_1076824 crossref_primary_10_1097_HTR_0000000000000482 crossref_primary_10_1002_hbm_25010 crossref_primary_10_1016_j_neuroimage_2023_119983 crossref_primary_10_3389_fnins_2019_00120 crossref_primary_10_1080_23268263_2019_1558992 crossref_primary_10_1016_j_nicl_2019_102119 crossref_primary_10_3233_JAD_180834 crossref_primary_10_1016_j_concog_2017_07_010 crossref_primary_10_3389_fnimg_2022_981947 crossref_primary_10_1038_tp_2016_289 crossref_primary_10_1016_j_bbi_2021_04_019 crossref_primary_10_1016_j_neures_2017_02_001 crossref_primary_10_1080_15374416_2016_1233502 crossref_primary_10_1016_j_neuroimage_2015_09_034 crossref_primary_10_1016_j_cub_2021_04_072 crossref_primary_10_1080_17588928_2018_1504762 crossref_primary_10_1038_s41586_024_07624_5 crossref_primary_10_1016_j_dcn_2021_101039 crossref_primary_10_1016_j_appet_2017_09_025 |
Cites_doi | 10.1016/j.mri.2007.03.009 10.1016/j.neuroimage.2004.07.039 10.1002/mrm.1910400108 10.1002/mrm.1910350312 10.1016/j.neuroimage.2008.05.019 10.1002/mrm.1910310307 10.1016/j.neuroimage.2005.02.021 10.1016/j.neuroimage.2005.05.058 10.1016/j.bandl.2007.01.003 10.1006/nimg.2000.0710 10.1002/hbm.20572 10.1002/(SICI)1097-0193(1999)7:1<38::AID-HBM4>3.0.CO;2-Q 10.1006/nimg.2000.0568 10.1002/hbm.460030306 10.1073/pnas.0907624106 10.1006/nimg.2001.1054 10.1093/cercor/bhh129 10.1016/j.neuroimage.2007.10.052 10.1016/j.acra.2006.05.010 10.1002/hbm.460030305 10.1016/j.neuroimage.2012.08.052 10.1016/j.neuroimage.2005.04.039 10.1002/jmri.1880070219 10.1002/(SICI)1097-0193(1999)7:2<106::AID-HBM4>3.0.CO;2-O 10.1101/lm.1845710 10.1002/hbm.20219 10.1126/science.1069464 10.1016/j.neuroimage.2011.07.044 10.1016/j.neuroimage.2012.09.043 10.1006/nimg.1999.0500 10.1016/j.neuroimage.2011.10.018 10.1016/j.compmedimag.2007.04.002 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.22307 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Censoring High Motion Data in fMRI |
EISSN | 1097-0193 |
EndPage | 1996 |
ExternalDocumentID | PMC3895106 3271184311 23861343 28377217 10_1002_hbm_22307 HBM22307 ark_67375_WNG_8CGP66N8_S |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: A McDonnell Foundation Collaborative Action award – fundername: The National Institutes of Health funderid: R21 NS61144; R01 NS26424; R01 ND057076; F30 MH940322 – fundername: NINDS NIH HHS grantid: R21 NS061144 – fundername: NICHD NIH HHS grantid: R01 HD057076 – fundername: NINDS NIH HHS grantid: R01 NS26424 – fundername: ONDIEH CDC HHS grantid: R01 ND057076 – fundername: NIMH NIH HHS grantid: F30 MH094032 – fundername: NINDS NIH HHS grantid: R01 NS046424 – fundername: NINDS NIH HHS grantid: R21 NS61144 – fundername: NIGMS NIH HHS grantid: T32 GM007200 – fundername: NIMH NIH HHS grantid: F30 MH940322 – fundername: The National Institutes of Health grantid: R21 NS61144; R01 NS26424; R01 ND057076; F30 MH940322 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5117-8e78845aa7717e95d10e6300b4ca7d15c3eb004af4c3f8144ad2b09f33e60e653 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:15:30 EDT 2025 Tue Aug 05 10:04:12 EDT 2025 Sat Jul 26 02:40:34 EDT 2025 Wed Feb 19 01:52:27 EST 2025 Wed Apr 02 07:15:07 EDT 2025 Tue Jul 01 04:26:01 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Wed Jan 22 16:47:45 EST 2025 Wed Oct 30 09:57:02 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Nervous system diseases Radiodiagnosis motion Noise head movement GLM Functional analysis Nuclear magnetic resonance imaging Linear model general linear model data quality fMRI Improvement task Body movement scrubbing Functional imaging noise |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5117-8e78845aa7717e95d10e6300b4ca7d15c3eb004af4c3f8144ad2b09f33e60e653 |
Notes | istex:34C8F2A802C744805F9F9C4292AB5A932EA4B7A6 The National Institutes of Health - No. R21 NS61144; No. R01 NS26424; No. R01 ND057076; No. F30 MH940322 A McDonnell Foundation Collaborative Action award ark:/67375/WNG-8CGP66N8-S ArticleID:HBM22307 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3895106 |
PMID | 23861343 |
PQID | 1514322878 |
PQPubID | 996345 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3895106 proquest_miscellaneous_1515648262 proquest_journals_1514322878 pubmed_primary_23861343 pascalfrancis_primary_28377217 crossref_citationtrail_10_1002_hbm_22307 crossref_primary_10_1002_hbm_22307 wiley_primary_10_1002_hbm_22307_HBM22307 istex_primary_ark_67375_WNG_8CGP66N8_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2014 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: May 2014 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: San Antonio – name: Hoboken |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley-Liss John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Liss – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | Brown TT, Lugar HM, Coalson RS, Miezin FM, Petersen SE, Schlaggar BL (2005): Developmental changes in human cerebral functional organization for word generation. Cereb Cortex 15:275-290. Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW (1995): Motion detection and correction in functional MR imaging. Hum Brain Mapp 3:224-235. Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002): Image distortion correction in fMRI: A quantitative evaluation. NeuroImage 16:217-240. Lancaster JL, Glass TG, Lankipalli BR, Downs H, Mayberg H, Fox PT (1995): A modality-independent approach to spatial normalization of tomographic images of the human brain. Hum Brain Mapp 3:209-223. Schlaggar BL, Brown TT, Lugar HM, Visscher KM, Miezin FM, Petersen SE (2002): Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296:1476-1479. Birn RM, Bandettini PA, Cox RW, Shaker R (1999): Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7:106-114. Kirwan CB, Shrager Y, Squire LR (2009): Medial temporal lobe activity can distinguish between old and new stimuli independently of overt behavioral choice. Proc Natl Acad Sci USA 106:14617-14621. Morgan VL, Dawant BM, Li Y, Pickens DR (2007): Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Comp Med Imaging Graph 31:436-446. Dold C, Zaitsev M, Speck O, Firle EA, Hennig J, Sakas G (2006): Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device. Acad Radiol 13:1093-1103. Gopinath K, Crosson B, McGregor K, Peck K, Chang Y-L, Moore A, Sherod M, Cavanagh C, Wabnitz A, Wierenga C, White K, Cheshkov S, Krishnamurthy V, Briggs RW (2009): Selective detrending method for reducing task-correlated motion artifact during speech in event-related FMRI. Hum Brain Mapp 30:1105-1119. Kennedy DP, Courchesne E (2008): The intrinsic functional organization of the brain is altered in autism. NeuroImage 39:1877-1885. Stark CEL, Okado Y, Loftus EF (2010): Imaging the reconstruction of true and false memories using sensory reactivation and the misinformation paradigms. Learn Mem 17:485-488. Jones TB, Bandettini PA, Birn RM (2008): Integration of motion correction and physiological noise regression in fMRI. NeuroImage 42:582-590. Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994): Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283-291. Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006): Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27:779-788. Field AS, Yen YF, Burdette JH, Elster AD (2000): False cerebral activation on BOLD functional MR images: Study of low-amplitude motion weakly correlated to stimulus. Am J Neuroradiol 21:1388-1396. Bullmore ET, Brammer MJ, Rabe-Hesketh S, Curtis VA, Morris RG, Williams SC, Sharma T, McGuire PK (1999): Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7:38-48. Wu DH, Lewin JS, Duerk JL (1997): Inadequacy of motion correction algorithms in functional MRI: Role of susceptibility-induced artifacts. J Magn Reson Imaging 7:365-370. Van Dijk KRA, Sabuncu MR, Buckner RL (2012): The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59:431-438. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996): Movement-related effects in fMRI time-series. Magn Reson Med 35:346-355. Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D (2007): Modelling large motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging 25:894-901. Ollinger JM, Shulman GL, Corbetta M (2001): Separating processes within a trial in event-related functional MRI. NeuroImage 13:210-217. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000): Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage 11:735-759. Bright MG, Murphy K (2013): Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. NeuroImage 64:526-537. Lund TE, Nørgaard MD, Rostrup E, Rowe JB, Paulson OB (2005): Motion or activity: Their role in intra- and inter-subject variation in fMRI. NeuroImage 26:960-964. Diedrichsen J, Shadmehr R (2005): Detecting and adjusting for artifacts in fMRI time series data. NeuroImage 27:624-634. Barch DM, Sabb FW, Carter CS, Braver TS, Noll DC, Cohen JD (1999): Overt verbal responding during fMRI scanning: Empirical investigations of problems and potential solutions. NeuroImage 10:642-657. Yetkin FZ, Haughton VM, Cox RW, Hyde J, Birn RM, Wong EC, Prost R (1996): Effect of motion outside the field of view on functional MR. Am J Neuroradiol 17:1005-1009. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59:2142-2154. Birn RM, Cox RW, Bandettini PA (2004): Experimental designs and processing strategies for fMRI studies involving overt verbal responses. NeuroImage 23:1046-1058. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013): An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64:240-256. Huang J, Francis AP, Carr TH (2008): Studying overt word reading and speech production with event-related fMRI: A method for detecting, assessing, and correcting articulation-induced signal changes and for measuring onset time and duration of articulation. Brain Lang 104:10-23. Birn RM, Bandettini PA, Cox RW, Jesmanowicz A, Shaker R (1998): Magnetic field changes in the human brain due to swallowing or speaking. Magn Reson Med 40:55-60. Oakes TR, Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ (2005): Comparison of fMRI motion correction software tools. NeuroImage 28:529-543. 2002; 16 1996; 17 2002; 296 2006; 13 2010; 17 2000; 21 2004; 23 2013; 64 2008; 39 2008; 104 2012; 59 2005; 26 2007; 31 1998; 40 1999; 7 2005; 27 1996; 35 2005; 28 1995; 3 1997; 7 2009; 30 2006; 27 2000; 11 1999; 10 2008; 42 2005; 15 2001; 13 2007; 25 1994; 31 2009; 106 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Yetkin FZ (e_1_2_7_35_1) 1996; 17 Field AS (e_1_2_7_11_1) 2000; 21 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_20_1 16099178 - Neuroimage. 2005 Nov 15;28(3):529-43 12029136 - Science. 2002 May 24;296(5572):1476-9 23006803 - Neuroimage. 2013 Jan 1;64:526-37 15297366 - Cereb Cortex. 2005 Mar;15(3):275-90 9090592 - J Magn Reson Imaging. 1997 Mar-Apr;7(2):365-70 9882089 - Hum Brain Mapp. 1999;7(1):38-48 16456818 - Hum Brain Mapp. 2006 Oct;27(10):779-88 17328946 - Brain Lang. 2008 Jan;104(1):10-23 20861170 - Learn Mem. 2010 Oct;17(10):485-8 11003269 - AJNR Am J Neuroradiol. 2000 Sep;21(8):1388-96 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8 19706549 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14617-21 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54 17574816 - Comput Med Imaging Graph. 2007 Sep;31(6):436-46 18083565 - Neuroimage. 2008 Feb 15;39(4):1877-85 10600410 - Neuroimage. 1999 Dec;10(6):642-57 18583155 - Neuroimage. 2008 Aug 15;42(2):582-90 15955506 - Neuroimage. 2005 Jul 1;26(3):960-4 22926292 - Neuroimage. 2013 Jan 1;64:240-56 8699946 - Magn Reson Med. 1996 Mar;35(3):346-55 15528105 - Neuroimage. 2004 Nov;23(3):1046-58 18465746 - Hum Brain Mapp. 2009 Apr;30(4):1105-19 8057799 - Magn Reson Med. 1994 Mar;31(3):283-91 16935721 - Acad Radiol. 2006 Sep;13(9):1093-103 17490845 - Magn Reson Imaging. 2007 Jul;25(6):894-901 10860799 - Neuroimage. 2000 Jun;11(6 Pt 1):735-59 11133323 - Neuroimage. 2001 Jan;13(1):210-7 8791907 - AJNR Am J Neuroradiol. 1996 Jun-Jul;17(6):1005-9 11969330 - Neuroimage. 2002 May;16(1):217-40 9660553 - Magn Reson Med. 1998 Jul;40(1):55-60 9950068 - Hum Brain Mapp. 1999;7(2):106-14 15975828 - Neuroimage. 2005 Sep;27(3):624-34 |
References_xml | – reference: Schlaggar BL, Brown TT, Lugar HM, Visscher KM, Miezin FM, Petersen SE (2002): Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296:1476-1479. – reference: Oakes TR, Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ (2005): Comparison of fMRI motion correction software tools. NeuroImage 28:529-543. – reference: Gopinath K, Crosson B, McGregor K, Peck K, Chang Y-L, Moore A, Sherod M, Cavanagh C, Wabnitz A, Wierenga C, White K, Cheshkov S, Krishnamurthy V, Briggs RW (2009): Selective detrending method for reducing task-correlated motion artifact during speech in event-related FMRI. Hum Brain Mapp 30:1105-1119. – reference: Field AS, Yen YF, Burdette JH, Elster AD (2000): False cerebral activation on BOLD functional MR images: Study of low-amplitude motion weakly correlated to stimulus. Am J Neuroradiol 21:1388-1396. – reference: Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW (1995): Motion detection and correction in functional MR imaging. Hum Brain Mapp 3:224-235. – reference: Birn RM, Bandettini PA, Cox RW, Shaker R (1999): Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7:106-114. – reference: Dold C, Zaitsev M, Speck O, Firle EA, Hennig J, Sakas G (2006): Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device. Acad Radiol 13:1093-1103. – reference: Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996): Movement-related effects in fMRI time-series. Magn Reson Med 35:346-355. – reference: Jones TB, Bandettini PA, Birn RM (2008): Integration of motion correction and physiological noise regression in fMRI. NeuroImage 42:582-590. – reference: Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59:2142-2154. – reference: Morgan VL, Dawant BM, Li Y, Pickens DR (2007): Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Comp Med Imaging Graph 31:436-446. – reference: Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D (2007): Modelling large motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging 25:894-901. – reference: Huang J, Francis AP, Carr TH (2008): Studying overt word reading and speech production with event-related fMRI: A method for detecting, assessing, and correcting articulation-induced signal changes and for measuring onset time and duration of articulation. Brain Lang 104:10-23. – reference: Birn RM, Cox RW, Bandettini PA (2004): Experimental designs and processing strategies for fMRI studies involving overt verbal responses. NeuroImage 23:1046-1058. – reference: Kirwan CB, Shrager Y, Squire LR (2009): Medial temporal lobe activity can distinguish between old and new stimuli independently of overt behavioral choice. Proc Natl Acad Sci USA 106:14617-14621. – reference: Yetkin FZ, Haughton VM, Cox RW, Hyde J, Birn RM, Wong EC, Prost R (1996): Effect of motion outside the field of view on functional MR. Am J Neuroradiol 17:1005-1009. – reference: Diedrichsen J, Shadmehr R (2005): Detecting and adjusting for artifacts in fMRI time series data. NeuroImage 27:624-634. – reference: Kennedy DP, Courchesne E (2008): The intrinsic functional organization of the brain is altered in autism. NeuroImage 39:1877-1885. – reference: Birn RM, Bandettini PA, Cox RW, Jesmanowicz A, Shaker R (1998): Magnetic field changes in the human brain due to swallowing or speaking. Magn Reson Med 40:55-60. – reference: Bright MG, Murphy K (2013): Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. NeuroImage 64:526-537. – reference: Lancaster JL, Glass TG, Lankipalli BR, Downs H, Mayberg H, Fox PT (1995): A modality-independent approach to spatial normalization of tomographic images of the human brain. Hum Brain Mapp 3:209-223. – reference: Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000): Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage 11:735-759. – reference: Wu DH, Lewin JS, Duerk JL (1997): Inadequacy of motion correction algorithms in functional MRI: Role of susceptibility-induced artifacts. J Magn Reson Imaging 7:365-370. – reference: Brown TT, Lugar HM, Coalson RS, Miezin FM, Petersen SE, Schlaggar BL (2005): Developmental changes in human cerebral functional organization for word generation. Cereb Cortex 15:275-290. – reference: Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002): Image distortion correction in fMRI: A quantitative evaluation. NeuroImage 16:217-240. – reference: Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013): An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64:240-256. – reference: Ollinger JM, Shulman GL, Corbetta M (2001): Separating processes within a trial in event-related functional MRI. NeuroImage 13:210-217. – reference: Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006): Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27:779-788. – reference: Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994): Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283-291. – reference: Lund TE, Nørgaard MD, Rostrup E, Rowe JB, Paulson OB (2005): Motion or activity: Their role in intra- and inter-subject variation in fMRI. NeuroImage 26:960-964. – reference: Van Dijk KRA, Sabuncu MR, Buckner RL (2012): The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59:431-438. – reference: Barch DM, Sabb FW, Carter CS, Braver TS, Noll DC, Cohen JD (1999): Overt verbal responding during fMRI scanning: Empirical investigations of problems and potential solutions. NeuroImage 10:642-657. – reference: Bullmore ET, Brammer MJ, Rabe-Hesketh S, Curtis VA, Morris RG, Williams SC, Sharma T, McGuire PK (1999): Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7:38-48. – reference: Stark CEL, Okado Y, Loftus EF (2010): Imaging the reconstruction of true and false memories using sensory reactivation and the misinformation paradigms. Learn Mem 17:485-488. – volume: 21 start-page: 1388 year: 2000 end-page: 1396 article-title: False cerebral activation on BOLD functional MR images: Study of low‐amplitude motion weakly correlated to stimulus publication-title: Am J Neuroradiol – volume: 26 start-page: 960 year: 2005 end-page: 964 article-title: Motion or activity: Their role in intra‐ and inter‐subject variation in fMRI publication-title: NeuroImage – volume: 7 start-page: 365 year: 1997 end-page: 370 article-title: Inadequacy of motion correction algorithms in functional MRI: Role of susceptibility‐induced artifacts publication-title: J Magn Reson Imaging – volume: 17 start-page: 485 year: 2010 end-page: 488 article-title: Imaging the reconstruction of true and false memories using sensory reactivation and the misinformation paradigms publication-title: Learn Mem – volume: 35 start-page: 346 year: 1996 end-page: 355 article-title: Movement‐related effects in fMRI time‐series publication-title: Magn Reson Med – volume: 28 start-page: 529 year: 2005 end-page: 543 article-title: Comparison of fMRI motion correction software tools publication-title: NeuroImage – volume: 64 start-page: 240 year: 2013 end-page: 256 article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting‐state functional connectivity data publication-title: NeuroImage – volume: 11 start-page: 735 year: 2000 end-page: 759 article-title: Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing publication-title: NeuroImage – volume: 10 start-page: 642 year: 1999 end-page: 657 article-title: Overt verbal responding during fMRI scanning: Empirical investigations of problems and potential solutions publication-title: NeuroImage – volume: 59 start-page: 431 year: 2012 end-page: 438 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: NeuroImage – volume: 59 start-page: 2142 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 40 start-page: 55 year: 1998 end-page: 60 article-title: Magnetic field changes in the human brain due to swallowing or speaking publication-title: Magn Reson Med – volume: 13 start-page: 1093 year: 2006 end-page: 1103 article-title: Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device publication-title: Acad Radiol – volume: 31 start-page: 436 year: 2007 end-page: 446 article-title: Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus‐correlated motion publication-title: Comp Med Imaging Graph – volume: 23 start-page: 1046 year: 2004 end-page: 1058 article-title: Experimental designs and processing strategies for fMRI studies involving overt verbal responses publication-title: NeuroImage – volume: 31 start-page: 283 year: 1994 end-page: 291 article-title: Artifacts due to stimulus correlated motion in functional imaging of the brain publication-title: Magn Reson Med – volume: 3 start-page: 209 year: 1995 end-page: 223 article-title: A modality‐independent approach to spatial normalization of tomographic images of the human brain publication-title: Hum Brain Mapp – volume: 7 start-page: 106 year: 1999 end-page: 114 article-title: Event‐related fMRI of tasks involving brief motion publication-title: Hum Brain Mapp – volume: 16 start-page: 217 year: 2002 end-page: 240 article-title: Image distortion correction in fMRI: A quantitative evaluation publication-title: NeuroImage – volume: 39 start-page: 1877 year: 2008 end-page: 1885 article-title: The intrinsic functional organization of the brain is altered in autism publication-title: NeuroImage – volume: 15 start-page: 275 year: 2005 end-page: 290 article-title: Developmental changes in human cerebral functional organization for word generation publication-title: Cereb Cortex – volume: 7 start-page: 38 year: 1999 end-page: 48 article-title: Methods for diagnosis and treatment of stimulus‐correlated motion in generic brain activation studies using fMRI publication-title: Hum Brain Mapp – volume: 42 start-page: 582 year: 2008 end-page: 590 article-title: Integration of motion correction and physiological noise regression in fMRI publication-title: NeuroImage – volume: 64 start-page: 526 year: 2013 end-page: 537 article-title: Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data publication-title: NeuroImage – volume: 104 start-page: 10 year: 2008 end-page: 23 article-title: Studying overt word reading and speech production with event‐related fMRI: A method for detecting, assessing, and correcting articulation‐induced signal changes and for measuring onset time and duration of articulation publication-title: Brain Lang – volume: 3 start-page: 224 year: 1995 end-page: 235 article-title: Motion detection and correction in functional MR imaging publication-title: Hum Brain Mapp – volume: 17 start-page: 1005 year: 1996 end-page: 1009 article-title: Effect of motion outside the field of view on functional MR publication-title: Am J Neuroradiol – volume: 27 start-page: 624 year: 2005 end-page: 634 article-title: Detecting and adjusting for artifacts in fMRI time series data publication-title: NeuroImage – volume: 13 start-page: 210 year: 2001 end-page: 217 article-title: Separating processes within a trial in event‐related functional MRI publication-title: NeuroImage – volume: 106 start-page: 14617 year: 2009 end-page: 14621 article-title: Medial temporal lobe activity can distinguish between old and new stimuli independently of overt behavioral choice publication-title: Proc Natl Acad Sci USA – volume: 296 start-page: 1476 year: 2002 end-page: 1479 article-title: Functional neuroanatomical differences between adults and school‐age children in the processing of single words publication-title: Science – volume: 30 start-page: 1105 year: 2009 end-page: 1119 article-title: Selective detrending method for reducing task‐correlated motion artifact during speech in event‐related FMRI publication-title: Hum Brain Mapp – volume: 27 start-page: 779 year: 2006 end-page: 788 article-title: Motion correction and the use of motion covariates in multiple‐subject fMRI analysis publication-title: Hum Brain Mapp – volume: 25 start-page: 894 year: 2007 end-page: 901 article-title: Modelling large motion events in fMRI studies of patients with epilepsy publication-title: Magn Reson Imaging – ident: e_1_2_7_23_1 doi: 10.1016/j.mri.2007.03.009 – ident: e_1_2_7_5_1 doi: 10.1016/j.neuroimage.2004.07.039 – ident: e_1_2_7_3_1 doi: 10.1002/mrm.1910400108 – ident: e_1_2_7_12_1 doi: 10.1002/mrm.1910350312 – ident: e_1_2_7_19_1 doi: 10.1016/j.neuroimage.2008.05.019 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.1910310307 – ident: e_1_2_7_24_1 doi: 10.1016/j.neuroimage.2005.02.021 – ident: e_1_2_7_27_1 doi: 10.1016/j.neuroimage.2005.05.058 – ident: e_1_2_7_15_1 doi: 10.1016/j.bandl.2007.01.003 – ident: e_1_2_7_28_1 doi: 10.1006/nimg.2000.0710 – ident: e_1_2_7_13_1 doi: 10.1002/hbm.20572 – ident: e_1_2_7_8_1 doi: 10.1002/(SICI)1097-0193(1999)7:1<38::AID-HBM4>3.0.CO;2-Q – ident: e_1_2_7_25_1 doi: 10.1006/nimg.2000.0568 – ident: e_1_2_7_17_1 doi: 10.1002/hbm.460030306 – ident: e_1_2_7_21_1 doi: 10.1073/pnas.0907624106 – ident: e_1_2_7_16_1 doi: 10.1006/nimg.2001.1054 – ident: e_1_2_7_7_1 doi: 10.1093/cercor/bhh129 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2007.10.052 – ident: e_1_2_7_10_1 doi: 10.1016/j.acra.2006.05.010 – ident: e_1_2_7_22_1 doi: 10.1002/hbm.460030305 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroimage.2012.08.052 – ident: e_1_2_7_9_1 doi: 10.1016/j.neuroimage.2005.04.039 – ident: e_1_2_7_34_1 doi: 10.1002/jmri.1880070219 – ident: e_1_2_7_4_1 doi: 10.1002/(SICI)1097-0193(1999)7:2<106::AID-HBM4>3.0.CO;2-O – ident: e_1_2_7_32_1 doi: 10.1101/lm.1845710 – volume: 17 start-page: 1005 year: 1996 ident: e_1_2_7_35_1 article-title: Effect of motion outside the field of view on functional MR publication-title: Am J Neuroradiol – ident: e_1_2_7_18_1 doi: 10.1002/hbm.20219 – ident: e_1_2_7_31_1 doi: 10.1126/science.1069464 – ident: e_1_2_7_33_1 doi: 10.1016/j.neuroimage.2011.07.044 – ident: e_1_2_7_6_1 doi: 10.1016/j.neuroimage.2012.09.043 – volume: 21 start-page: 1388 year: 2000 ident: e_1_2_7_11_1 article-title: False cerebral activation on BOLD functional MR images: Study of low‐amplitude motion weakly correlated to stimulus publication-title: Am J Neuroradiol – ident: e_1_2_7_2_1 doi: 10.1006/nimg.1999.0500 – ident: e_1_2_7_29_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_7_26_1 doi: 10.1016/j.compmedimag.2007.04.002 – reference: 20861170 - Learn Mem. 2010 Oct;17(10):485-8 – reference: 8699946 - Magn Reson Med. 1996 Mar;35(3):346-55 – reference: 11133323 - Neuroimage. 2001 Jan;13(1):210-7 – reference: 10860799 - Neuroimage. 2000 Jun;11(6 Pt 1):735-59 – reference: 16099178 - Neuroimage. 2005 Nov 15;28(3):529-43 – reference: 8791907 - AJNR Am J Neuroradiol. 1996 Jun-Jul;17(6):1005-9 – reference: 11969330 - Neuroimage. 2002 May;16(1):217-40 – reference: 9090592 - J Magn Reson Imaging. 1997 Mar-Apr;7(2):365-70 – reference: 9660553 - Magn Reson Med. 1998 Jul;40(1):55-60 – reference: 11003269 - AJNR Am J Neuroradiol. 2000 Sep;21(8):1388-96 – reference: 9950068 - Hum Brain Mapp. 1999;7(2):106-14 – reference: 17574816 - Comput Med Imaging Graph. 2007 Sep;31(6):436-46 – reference: 8057799 - Magn Reson Med. 1994 Mar;31(3):283-91 – reference: 19706549 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14617-21 – reference: 18083565 - Neuroimage. 2008 Feb 15;39(4):1877-85 – reference: 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54 – reference: 17490845 - Magn Reson Imaging. 2007 Jul;25(6):894-901 – reference: 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8 – reference: 23006803 - Neuroimage. 2013 Jan 1;64:526-37 – reference: 18465746 - Hum Brain Mapp. 2009 Apr;30(4):1105-19 – reference: 15955506 - Neuroimage. 2005 Jul 1;26(3):960-4 – reference: 22926292 - Neuroimage. 2013 Jan 1;64:240-56 – reference: 16935721 - Acad Radiol. 2006 Sep;13(9):1093-103 – reference: 15528105 - Neuroimage. 2004 Nov;23(3):1046-58 – reference: 15975828 - Neuroimage. 2005 Sep;27(3):624-34 – reference: 18583155 - Neuroimage. 2008 Aug 15;42(2):582-90 – reference: 9882089 - Hum Brain Mapp. 1999;7(1):38-48 – reference: 16456818 - Hum Brain Mapp. 2006 Oct;27(10):779-88 – reference: 15297366 - Cereb Cortex. 2005 Mar;15(3):275-90 – reference: 10600410 - Neuroimage. 1999 Dec;10(6):642-57 – reference: 12029136 - Science. 2002 May 24;296(5572):1476-9 – reference: 17328946 - Brain Lang. 2008 Jan;104(1):10-23 |
SSID | ssj0011501 |
Score | 2.591529 |
Snippet | Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1981 |
SubjectTerms | Adolescent Adult Algorithms Biological and medical sciences Brain - blood supply Brain - physiology Child Child Development - physiology Cohort Studies data quality Electrodiagnosis. Electric activity recording Female fMRI general linear model GLM head movement Head Movements - physiology Humans Image Processing, Computer-Assisted Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging Male Medical sciences Motion Nervous system noise Oxygen - blood Radiodiagnosis. Nmr imagery. Nmr spectrometry Regression Analysis scrubbing Sensory Thresholds - physiology task Young Adult |
Title | Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points |
URI | https://api.istex.fr/ark:/67375/WNG-8CGP66N8-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.22307 https://www.ncbi.nlm.nih.gov/pubmed/23861343 https://www.proquest.com/docview/1514322878 https://www.proquest.com/docview/1515648262 https://pubmed.ncbi.nlm.nih.gov/PMC3895106 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9KBfHFP63aaC2rSPEl1yS72ST4VIvtIdwharEPQthNNvaolzuaO7B98iP4Gf0kzuwmqacVxLeDzObIZHbmN5PZ3wA8F2HIk8ykPjdJ4Is0iH3FpfFLDBUq0hKNjM4Oj8ZyeCzenMQna_CyOwvj-CH6ghvtDOuvaYMr3exdkYae6ukgojZm9L_Uq0WA6F1PHUVAxyZbGGL9DD1wxyoURHv9ypVYdIPU-pV6I1WD6qncXIvrgOef_ZO_4lobmA7vwKfukVw_ytlgudCD4vI3tsf_fOa7cLsFrGzfWdg9WDP1Bmzu15isTy_YLrMtpLY2vwE3R-2X-k24JBRrSaBx8cRWLmwhsmGTmlEwdTVINlWfazpHyTDtnxH5h0FpOzmJKcuXYho2t6y0pmT6gqEyGtszyIho-ce3724MEaNOVzafTfAf7sPx4esPB0O_nfPgFwj3MEgazMNFrFSCuaXJ4jIMDDGBaVGopAzjgtOAI6EqUfAqxQxQlZEOsopzI1Ey5g9gvZ7VZgtYUMpKmDDVhngBC0znVBYXFYI-rYWWxoMX3RvPi5YEnWZxfMkdfXOUo4pzq2IPnvWic8f8cZ3QrjWbXkKdn1GrXBLnH8dHeXpw9FbKcZq_92Bnxa76BcQ-hFk43mm7M7S8dSNNHhKcjTCpTT142l9GB0BfdVRtZksrE0uBWWLkwUNnl1c35ynCNcE9SFYsthcgcvHVK_Xk1JKMI5BFdy1RYdYg_66CfPhqZH88-nfRx3ALgadwjaPbsL44X5onCO4Wesfu4p_kYE1N |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VrQRc-Gn5MZSyIKi4OPXP-icHDqWlTWkTIWjV3pZde91GbZwoTgTpiUfgQXgVXoInYWbtuASKxKUHbpE8tqPZndlv1t9-A_Ccu64fNXVs-zpybB47gS39UNspLhXSUyFOMjo73O6ErQP-9ig4moNv07MwpT5EveFGkWHyNQU4bUivXaiGnqhewyMec0Wp3NWTT1iwFa92NnF0X3je1pv9jZZd9RSwE4QWmJA11nw8kDLCOkY3g9R1NKlOKZ7IKHWDxKdmOlxmPPGzGKsNmXrKaWa-r0O0pB4RmPAXqIM4KfVvvq_FqghamfIOF3W7iTl_qmPkeGv1X51Z_RZoID8TG1MWOCBZ2UnjMqj7J2PzVyRtlsKtW_B96sSSAXPaGI9UIzn_TV_yf_HybbhZYXK2XgbRHZjT-SIsredy1O9N2CozLFnz-WERrrUrMsISnBNQNzrXeHPXbM6YvdaCdXNGeKHcZmU9eZzTUVE21FT3YJShtWkOxaSRhNEFGxjhXZ0yNWHo_cLQIhlpSf_48rXstMSIzMsG_S6-4S4cXIlD7sF83s_1A2BOGmZcu7HSJH2YYMUqm0GSIa5ViqtQW_ByOsVEUum8U7uRM1EqVHsCh1SYIbXgWW06KMVNLjNaNfO0tpDDU2IDRoE47GyLeGP7XRh2YvHBgpWZiVzfQAJLEZa-FixPZ7aoMmUhXELsHtbtsQVP68uY4-jDlcx1f2xsgpBjIexZcL8MhIuH-zEiUu5bEM2ESG1A-umzV_LuidFRR6yOK1KIDjMR8HcXiNbrtvnx8N9Nn8D11n57T-ztdHYfwQ3E2bzkyS7D_Gg41o8Ry47UikkhDD5edTT9BGQ2qc0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VrVRx4dHyMJSyIKi4OPVj_TpwKA1pSklUARW9mV17TaMSJ4oTQXriJ_A_-Cv8Cn4JM-tHCRSJSw_cInlsR7M7s9-sv_0G4DG3bTeIVGi6KrBMHlqeKVxfmSkuFcKRPk4yOjvc6_vdI_7y2Dtegm_1WZhSH6LZcKPI0PmaAnycZtvnoqEncthyiMZcMSoP1PwT1mvFs_02Du4Tx-m8eLvbNauWAmaCyALzscKSj3tCBFjGqMhLbUuR6JTkiQhS20tc6qXDRcYTNwux2BCpI60oc13loyW1iMB8v8J9K6I-Ee3XjVYVIStd3eGabkaY8msZI8vZbv7qwuK3QuP4mciYosDxyMpGGhch3T8Jm78Cab0Sdq7B99qHJQHmtDWbylZy9pu85H_i5OtwtULkbKcMoRuwpPI1WN_JxXQ0nLMtpjmy-uPDGqz2KirCOpwRTNcq13jzQG_N6J3Wgg1yRmih3GRlQ_Ehp4OibKKo6sEYQ2vdGooJLQijCjbWsrsqZXLO0PmFJkUyUpL-8eVr2WeJEZWXjUcDfMNNOLoUh9yC5XyUqzvArNTPuLJDqUj4MMF6VURekiGqlZJLXxnwtJ5hcVKpvFOzkY9xqU_txDiksR5SAx41puNS2uQioy09TRsLMTklLmDgxe_6e3G4u3fo-_0wfmPA5sI8bm4geaUAC18DNuqJHVd5sohtwusOVu2hAQ-by5jh6LOVyNVopm08n2MZ7Bhwu4yD84e7IeJR7hoQLERIY0Dq6YtX8sGJVlFHpI7rkY8O0wHwdxfE3ec9_ePuv5s-gNXDdid-td8_uAdXEGTzkiS7AcvTyUzdRyA7lZs6gTB4f9nB9BO7-6h8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+improvements+in+functional+magnetic+resonance+imaging+analyses+produced+by+censoring+high-motion+data+points&rft.jtitle=Human+brain+mapping&rft.au=Siegel%2C+Joshua+S&rft.au=Power%2C+Jonathan+D&rft.au=Dubis%2C+Joseph+W&rft.au=Vogel%2C+Alecia+C&rft.date=2014-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=35&rft.issue=5&rft.spage=1981&rft_id=info:doi/10.1002%2Fhbm.22307&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3271184311 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |