Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points

Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring (“motion scrubbing”). In motion regression, various...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 35; no. 5; pp. 1981 - 1996
Main Authors Siegel, Joshua S., Power, Jonathan D., Dubis, Joseph W., Vogel, Alecia C., Church, Jessica A., Schlaggar, Bradley L., Petersen, Steven E.
Format Journal Article
LanguageEnglish
Published New York, NY Blackwell Publishing Ltd 01.05.2014
Wiley-Liss
John Wiley & Sons, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring (“motion scrubbing”). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal‐to‐noise ratio. Motion censoring decreased variance in parameter estimates within‐ and across‐subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. Hum Brain Mapp 35:1981–1996, 2014. © 2013 Wiley Periodicals, Inc.
AbstractList Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring (“motion scrubbing”). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal‐to‐noise ratio. Motion censoring decreased variance in parameter estimates within‐ and across‐subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. Hum Brain Mapp 35:1981–1996, 2014. © 2013 Wiley Periodicals, Inc.
Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring (“motion scrubbing”). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal‐to‐noise ratio. Motion censoring decreased variance in parameter estimates within‐ and across‐subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. Hum Brain Mapp 35:1981–1996, 2014 . © 2013 Wiley Periodicals, Inc .
Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring ("motion scrubbing"). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. Hum Brain Mapp 35:1981-1996, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring ("motion scrubbing"). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement.
Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring ("motion scrubbing"). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement.Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring ("motion scrubbing"). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement.
Author Siegel, Joshua S.
Power, Jonathan D.
Church, Jessica A.
Schlaggar, Bradley L.
Dubis, Joseph W.
Vogel, Alecia C.
Petersen, Steven E.
AuthorAffiliation 1 Department of Neurology Washington University School of Medicine St. Louis Missouri
3 Department of Pediatrics Washington University School of Medicine St. Louis Missouri
5 Department of Psychology Washington University Saint Louis Missouri
6 Department of Neurosurgery Washington University School of Medicine St. Louis Missouri
7 Department of Biomedical Engineering Washington University Saint Louis Missouri
4 Department of Anatomy and Neurobiology Washington University School of Medicine St. Louis Missouri
2 Department of Radiology Washington University School of Medicine St. Louis Missouri
AuthorAffiliation_xml – name: 2 Department of Radiology Washington University School of Medicine St. Louis Missouri
– name: 6 Department of Neurosurgery Washington University School of Medicine St. Louis Missouri
– name: 7 Department of Biomedical Engineering Washington University Saint Louis Missouri
– name: 1 Department of Neurology Washington University School of Medicine St. Louis Missouri
– name: 5 Department of Psychology Washington University Saint Louis Missouri
– name: 3 Department of Pediatrics Washington University School of Medicine St. Louis Missouri
– name: 4 Department of Anatomy and Neurobiology Washington University School of Medicine St. Louis Missouri
Author_xml – sequence: 1
  givenname: Joshua S.
  surname: Siegel
  fullname: Siegel, Joshua S.
  email: siegelj@wusm.wustl.edu
  organization: Department of Neurology, Washington University School of Medicine, Missouri, St. Louis
– sequence: 2
  givenname: Jonathan D.
  surname: Power
  fullname: Power, Jonathan D.
  organization: Department of Neurology, Washington University School of Medicine, Missouri, St. Louis
– sequence: 3
  givenname: Joseph W.
  surname: Dubis
  fullname: Dubis, Joseph W.
  organization: Department of Neurology, Washington University School of Medicine, Missouri, St. Louis
– sequence: 4
  givenname: Alecia C.
  surname: Vogel
  fullname: Vogel, Alecia C.
  organization: Department of Neurology, Washington University School of Medicine, Missouri, St. Louis
– sequence: 5
  givenname: Jessica A.
  surname: Church
  fullname: Church, Jessica A.
  organization: Department of Neurology, Washington University School of Medicine, Missouri, St. Louis
– sequence: 6
  givenname: Bradley L.
  surname: Schlaggar
  fullname: Schlaggar, Bradley L.
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
– sequence: 7
  givenname: Steven E.
  surname: Petersen
  fullname: Petersen, Steven E.
  organization: Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28377217$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23861343$$D View this record in MEDLINE/PubMed
BookMark eNp1kk9v1DAQxSNURP_AgS-AIiEkOKS14zh2LkiwKlukUpAK4mg5zmTXJbEXO2m7355Jd7dABSdbnt97ep6Zw2TPeQdJ8pySY0pIfrKs--M8Z0Q8Sg4oqURGaMX2pnvJs6oQdD85jPGKEEo5oU-S_ZzJkrKCHSS3l4MebBys0V1q-1Xw19CDG2JqXdqOzgzWOyz1euEAqTRAxAdnAGm9sG6RaqyvI8QUxc1ooEnrdWrARR-m8tIullnvJ5-00YNOV96i_9Pkcau7CM-251Hy7cPp19lZdv55_nH27jwznFKRSRBSFlxrIaiAijeUQMkIqQujRUO5YVATUui2MKyVtCh0k9ekahmDEknOjpK3G9_VWPfQYK4h6E6tAsYPa-W1VX9XnF2qhb9WTFYcG4gGr7cGwf8cIQ6qt9FA12kHfoyKcsrLQuZljujLB-iVHwO2544qWJ5LIZF68Wei-yi7oSDwagvoiGNpA7bbxt-cZELkVCB3suFM8DEGaJWx0zT99BHbKUrUtB4K10PdrQcq3jxQ7Ez_xW7db2wH6_-D6uz9p50i2yhwn-D2XqHDD1UKJrj6fjFXcjb_UpYXUl2yX3nA2jg
CitedBy_id crossref_primary_10_1080_23273798_2020_1859569
crossref_primary_10_1093_chemse_bjaa085
crossref_primary_10_1093_scan_nsac039
crossref_primary_10_1016_j_bbi_2022_07_007
crossref_primary_10_7554_eLife_36395
crossref_primary_10_1038_s41598_022_05019_y
crossref_primary_10_1089_neu_2021_0140
crossref_primary_10_1016_j_nicl_2020_102394
crossref_primary_10_1016_j_dcn_2024_101469
crossref_primary_10_3389_fpsyt_2022_1063238
crossref_primary_10_1016_j_jns_2025_123426
crossref_primary_10_1016_j_neuroimage_2016_01_063
crossref_primary_10_1176_appi_ajp_2020_20010011
crossref_primary_10_1016_j_nicl_2019_101731
crossref_primary_10_1016_j_neuropsychologia_2020_107492
crossref_primary_10_1016_j_janxdis_2020_102224
crossref_primary_10_1007_s00406_024_01797_w
crossref_primary_10_1177_0956797620970548
crossref_primary_10_1016_j_neuron_2021_06_004
crossref_primary_10_1016_j_neuroimage_2020_117570
crossref_primary_10_1038_s41597_022_01226_4
crossref_primary_10_1155_2020_8014248
crossref_primary_10_7554_eLife_46080
crossref_primary_10_1007_s00221_021_06067_y
crossref_primary_10_1177_0269881119895520
crossref_primary_10_1016_j_neuroimage_2023_120373
crossref_primary_10_1016_j_ijdevneu_2017_01_010
crossref_primary_10_1080_17470919_2018_1468358
crossref_primary_10_1002_hbm_23397
crossref_primary_10_1016_j_neuron_2014_08_050
crossref_primary_10_1016_j_nicl_2020_102245
crossref_primary_10_7554_eLife_36493
crossref_primary_10_1016_j_neuroimage_2020_117207
crossref_primary_10_3390_brainsci13081122
crossref_primary_10_1016_j_neuroimage_2015_05_015
crossref_primary_10_1177_02698811241286773
crossref_primary_10_1016_j_neuroimage_2015_06_050
crossref_primary_10_1016_j_neuroimage_2020_116594
crossref_primary_10_1016_j_neuroimage_2023_120489
crossref_primary_10_1093_ajcn_nqy344
crossref_primary_10_3389_fnins_2017_00586
crossref_primary_10_1002_hbm_25208
crossref_primary_10_1016_j_jaac_2018_06_015
crossref_primary_10_1523_JNEUROSCI_0704_20_2020
crossref_primary_10_1162_jocn_a_01153
crossref_primary_10_1162_jocn_a_01031
crossref_primary_10_1088_2057_1976_ac63f0
crossref_primary_10_3390_biology12020211
crossref_primary_10_1016_j_nicl_2021_102783
crossref_primary_10_1016_j_cortex_2022_05_020
crossref_primary_10_1016_j_nicl_2020_102242
crossref_primary_10_1016_j_dcn_2023_101274
crossref_primary_10_1016_j_jpsychires_2025_02_051
crossref_primary_10_3758_s13415_021_00873_1
crossref_primary_10_1016_j_cortex_2020_01_003
crossref_primary_10_1016_j_neuroimage_2016_08_059
crossref_primary_10_1016_j_neubiorev_2018_12_022
crossref_primary_10_3389_fnins_2017_00115
crossref_primary_10_1016_j_ijpsycho_2019_08_009
crossref_primary_10_1016_j_neuroimage_2017_01_016
crossref_primary_10_1016_j_neuroimage_2017_01_015
crossref_primary_10_1073_pnas_2204066119
crossref_primary_10_1089_brain_2017_0571
crossref_primary_10_1016_j_ynstr_2021_100321
crossref_primary_10_1016_j_nicl_2022_102988
crossref_primary_10_1186_s12888_020_03030_z
crossref_primary_10_1111_adb_12614
crossref_primary_10_1162_jocn_a_01363
crossref_primary_10_1016_j_neuroimage_2021_117816
crossref_primary_10_1017_S0033291720003542
crossref_primary_10_1111_nyas_15291
crossref_primary_10_1523_JNEUROSCI_1951_22_2023
crossref_primary_10_1523_JNEUROSCI_2376_19_2020
crossref_primary_10_3389_fneur_2019_01403
crossref_primary_10_1093_schbul_sby037
crossref_primary_10_1016_j_ynirp_2022_100085
crossref_primary_10_1017_S0033291716000374
crossref_primary_10_3389_fnins_2023_1209398
crossref_primary_10_1002_dneu_22701
crossref_primary_10_1371_journal_pone_0106498
crossref_primary_10_1111_jon_12408
crossref_primary_10_7717_peerj_687
crossref_primary_10_1162_jocn_a_02102
crossref_primary_10_1002_hbm_23556
crossref_primary_10_1016_j_bandl_2023_105313
crossref_primary_10_1093_scan_nsad067
crossref_primary_10_1016_j_jaac_2016_01_007
crossref_primary_10_1016_j_neuroimage_2017_12_041
crossref_primary_10_1155_2016_2643491
crossref_primary_10_1002_hbm_25887
crossref_primary_10_1177_0956797620958004
crossref_primary_10_1016_j_biopsych_2020_03_022
crossref_primary_10_1152_jn_00693_2019
crossref_primary_10_1038_s41598_022_14221_x
crossref_primary_10_1016_j_neuroimage_2017_01_021
crossref_primary_10_3389_fnimg_2022_859792
crossref_primary_10_1038_s41597_019_0113_7
crossref_primary_10_1007_s11682_016_9613_7
crossref_primary_10_1016_j_jad_2022_06_078
crossref_primary_10_1016_j_neuroimage_2020_117629
crossref_primary_10_1016_j_neuropharm_2017_12_041
crossref_primary_10_3389_fnhum_2018_00007
crossref_primary_10_1017_S0954579419001056
crossref_primary_10_1016_j_jpsychires_2023_03_004
crossref_primary_10_1111_desc_13238
crossref_primary_10_1016_j_biopsycho_2018_08_006
crossref_primary_10_1002_aur_1498
crossref_primary_10_1038_s41598_023_35932_9
crossref_primary_10_1523_JNEUROSCI_1533_21_2021
crossref_primary_10_1038_s41467_022_33517_0
crossref_primary_10_1001_jamapsychiatry_2024_4105
crossref_primary_10_1016_j_dcn_2022_101183
crossref_primary_10_1038_s41467_024_46508_0
crossref_primary_10_1038_s44184_022_00006_7
crossref_primary_10_1523_ENEURO_0115_19_2019
crossref_primary_10_1007_s10071_021_01475_7
crossref_primary_10_1016_j_jneumeth_2016_10_019
crossref_primary_10_3389_fnbeh_2017_00205
crossref_primary_10_3389_fnhum_2022_921347
crossref_primary_10_1016_j_biopsych_2023_06_017
crossref_primary_10_1093_cercor_bhab252
crossref_primary_10_1016_j_pnpbp_2020_110045
crossref_primary_10_1162_jocn_a_01331
crossref_primary_10_1162_jocn_a_01572
crossref_primary_10_1016_j_bpsc_2018_05_004
crossref_primary_10_1038_s41386_018_0087_8
crossref_primary_10_1017_S0954579422000840
crossref_primary_10_1002_hbm_22666
crossref_primary_10_1097_ALN_0000000000000731
crossref_primary_10_1093_cercor_bhac223
crossref_primary_10_1002_hbm_23514
crossref_primary_10_1016_j_neuroimage_2023_120099
crossref_primary_10_1016_j_neuroimage_2019_03_008
crossref_primary_10_1016_j_dcn_2022_101084
crossref_primary_10_3389_fpsyg_2018_01106
crossref_primary_10_1186_s40337_021_00402_y
crossref_primary_10_1016_j_neuroimage_2019_116092
crossref_primary_10_1016_j_neuroimage_2019_116091
crossref_primary_10_1016_j_neuroimage_2019_116096
crossref_primary_10_1016_j_neuroimage_2019_116097
crossref_primary_10_1002_hbm_24996
crossref_primary_10_1016_j_biopsych_2020_01_012
crossref_primary_10_1044_2019_JSLHR_19_00154
crossref_primary_10_1038_s41467_022_35397_w
crossref_primary_10_1093_cercor_bhab026
crossref_primary_10_1111_desc_12508
crossref_primary_10_1093_scan_nsz093
crossref_primary_10_1016_j_dcn_2021_100939
crossref_primary_10_1097_HTR_0000000000000947
crossref_primary_10_1093_cercor_bhw099
crossref_primary_10_1162_jocn_a_01438
crossref_primary_10_1016_j_bpsc_2019_11_007
crossref_primary_10_1038_s41537_019_0082_z
crossref_primary_10_1088_1361_6560_abd418
crossref_primary_10_1016_j_neuroimage_2018_02_043
crossref_primary_10_3389_fnagi_2019_00300
crossref_primary_10_1089_brain_2016_0450
crossref_primary_10_1016_j_neuron_2019_10_006
crossref_primary_10_1016_j_nutres_2017_11_002
crossref_primary_10_1016_j_neuropsychologia_2015_07_020
crossref_primary_10_1016_j_pscychresns_2024_111891
crossref_primary_10_3389_fnsys_2020_00040
crossref_primary_10_1016_j_nicl_2017_12_001
crossref_primary_10_1089_brain_2018_0625
crossref_primary_10_1093_cercor_bhab446
crossref_primary_10_1111_ene_12907
crossref_primary_10_3389_fnins_2016_00515
crossref_primary_10_3390_ani12010108
crossref_primary_10_1093_cercor_bhy170
crossref_primary_10_1016_j_jaac_2015_06_014
crossref_primary_10_1162_netn_a_00111
crossref_primary_10_1371_journal_pone_0254338
crossref_primary_10_1017_S003329171600310X
crossref_primary_10_1073_pnas_2021474118
crossref_primary_10_1016_j_dcn_2025_101539
crossref_primary_10_1016_j_neuroimage_2014_10_044
crossref_primary_10_1038_s42003_023_05499_2
crossref_primary_10_1093_cercor_bhz057
crossref_primary_10_1016_j_neuroimage_2017_08_025
crossref_primary_10_1002_dev_22167
crossref_primary_10_1093_cercor_bhaa010
crossref_primary_10_1016_j_neuron_2020_07_020
crossref_primary_10_3389_fnsys_2017_00029
crossref_primary_10_1016_j_ynirp_2022_100147
crossref_primary_10_1523_JNEUROSCI_0148_22_2022
crossref_primary_10_7554_eLife_25606
crossref_primary_10_1016_j_dcn_2020_100790
crossref_primary_10_1002_hbm_23985
crossref_primary_10_1186_s41235_020_00211_y
crossref_primary_10_1002_hbm_24836
crossref_primary_10_3389_fnimg_2023_1070274
crossref_primary_10_3389_fpsyt_2020_00783
crossref_primary_10_1093_braincomms_fcae250
crossref_primary_10_1016_j_ijdevneu_2017_10_004
crossref_primary_10_1371_journal_pone_0191098
crossref_primary_10_1038_s41386_023_01528_0
crossref_primary_10_1016_j_neuroimage_2021_118745
crossref_primary_10_1016_j_neuroimage_2016_12_018
crossref_primary_10_1016_j_neubiorev_2023_105421
crossref_primary_10_1016_j_foodqual_2019_103836
crossref_primary_10_1038_s41467_022_30978_1
crossref_primary_10_1093_cercor_bhad144
crossref_primary_10_3389_fnins_2022_1017211
crossref_primary_10_1097_WNR_0000000000001742
crossref_primary_10_3389_fnins_2021_643740
crossref_primary_10_1093_cercor_bhu187
crossref_primary_10_3389_fnins_2016_00381
crossref_primary_10_52294_001c_123369
crossref_primary_10_1016_j_pediatrneurol_2020_08_004
crossref_primary_10_1016_j_biopsycho_2023_108645
crossref_primary_10_1016_j_dcn_2022_101100
crossref_primary_10_1111_ejn_16616
crossref_primary_10_1007_s00213_024_06541_9
crossref_primary_10_1162_jocn_a_01604
crossref_primary_10_3390_brainsci11111490
crossref_primary_10_1002_hbm_23800
crossref_primary_10_3389_fnins_2022_854387
crossref_primary_10_1364_BOE_10_005952
crossref_primary_10_1016_j_dcn_2020_100813
crossref_primary_10_1016_j_jneumeth_2016_12_014
crossref_primary_10_1142_S0129065724500527
crossref_primary_10_1016_j_nicl_2022_103226
crossref_primary_10_1002_hbm_23917
crossref_primary_10_1093_brain_awac226
crossref_primary_10_1007_s00234_020_02569_8
crossref_primary_10_1016_j_pscychresns_2024_111848
crossref_primary_10_1038_s41398_017_0068_4
crossref_primary_10_1111_jora_12583
crossref_primary_10_1177_21677026211016419
crossref_primary_10_1002_jnr_25005
crossref_primary_10_1016_j_neuroimage_2023_119946
crossref_primary_10_1016_j_nicl_2023_103535
crossref_primary_10_1016_j_dcn_2017_01_010
crossref_primary_10_1016_j_biopsycho_2023_108624
crossref_primary_10_1162_jocn_a_00970
crossref_primary_10_1016_j_dcn_2017_01_011
crossref_primary_10_1016_j_neuroimage_2021_118134
crossref_primary_10_1111_jcpp_12410
crossref_primary_10_1523_JNEUROSCI_0598_16_2016
crossref_primary_10_1016_j_neuroimage_2018_01_084
crossref_primary_10_1093_cercor_bhw253
crossref_primary_10_1016_j_jneumeth_2019_02_008
crossref_primary_10_1002_acn3_658
crossref_primary_10_1162_jocn_a_01830
crossref_primary_10_1016_j_dcn_2022_101139
crossref_primary_10_1016_j_neuroimage_2015_01_017
crossref_primary_10_1016_j_pscychresns_2022_111490
crossref_primary_10_1162_nol_a_00151
crossref_primary_10_1016_j_neuropsychologia_2024_109065
crossref_primary_10_3390_neurolint16050069
crossref_primary_10_1016_j_biopsycho_2021_108051
crossref_primary_10_1016_j_drugalcdep_2019_01_047
crossref_primary_10_1016_j_neuroimage_2017_05_031
crossref_primary_10_1017_S0954579424000531
crossref_primary_10_1080_01691864_2021_1886168
crossref_primary_10_1162_imag_a_00048
crossref_primary_10_1016_j_pscychresns_2023_111659
crossref_primary_10_1038_s41386_023_01708_y
crossref_primary_10_3758_s13415_021_00937_2
crossref_primary_10_1016_j_bpsc_2019_08_009
crossref_primary_10_1038_s41398_020_01170_0
crossref_primary_10_1371_journal_pone_0188744
crossref_primary_10_1073_pnas_1809855116
crossref_primary_10_3389_fnbeh_2018_00073
crossref_primary_10_1016_j_jad_2018_09_065
crossref_primary_10_1016_j_pscychresns_2023_111660
crossref_primary_10_1016_j_tics_2021_05_008
crossref_primary_10_1002_hbm_26391
crossref_primary_10_1038_s41398_018_0100_3
crossref_primary_10_12688_f1000research_6209_1
crossref_primary_10_1073_pnas_1919111117
crossref_primary_10_1038_nn_3673
crossref_primary_10_20900_jpbs_20200012
crossref_primary_10_1073_pnas_1606671113
crossref_primary_10_1002_oby_21119
crossref_primary_10_1162_imag_a_00057
crossref_primary_10_1093_cercor_bhac387
crossref_primary_10_1016_j_neuroimage_2021_118480
crossref_primary_10_12688_f1000research_6209_2
crossref_primary_10_1523_JNEUROSCI_0857_21_2021
crossref_primary_10_1016_j_neuroimage_2022_118890
crossref_primary_10_1093_scan_nsy011
crossref_primary_10_1016_j_neuroimage_2018_07_023
crossref_primary_10_1002_hbm_26183
crossref_primary_10_1176_appi_ajp_2020_20050672
crossref_primary_10_1016_j_cortex_2021_02_032
crossref_primary_10_1002_oby_21109
crossref_primary_10_1016_j_dcn_2022_101167
crossref_primary_10_1016_j_jad_2025_01_033
crossref_primary_10_1093_scan_nsy013
crossref_primary_10_1093_cercor_bhab074
crossref_primary_10_1093_cercor_bhac281
crossref_primary_10_1016_j_neuroimage_2018_07_013
crossref_primary_10_1111_ejn_15587
crossref_primary_10_1016_j_neuroimage_2017_05_007
crossref_primary_10_1162_nol_a_00021
crossref_primary_10_1016_j_dcn_2022_101175
crossref_primary_10_1111_mbe_12362
crossref_primary_10_1016_j_parkreldis_2023_105444
crossref_primary_10_1016_j_biopsych_2019_12_013
crossref_primary_10_1016_j_biopsych_2020_07_016
crossref_primary_10_3389_fnhum_2015_00687
crossref_primary_10_1016_j_bpsc_2021_05_009
crossref_primary_10_1038_s41598_020_68821_6
crossref_primary_10_1016_j_neuroimage_2016_09_008
crossref_primary_10_1016_j_isci_2024_110490
crossref_primary_10_1016_j_dcn_2015_11_003
crossref_primary_10_1162_jocn_a_02094
crossref_primary_10_1111_ejn_13298
crossref_primary_10_1016_j_neuroimage_2020_117621
crossref_primary_10_3389_fnagi_2023_1078455
crossref_primary_10_1016_j_dcn_2024_101503
crossref_primary_10_1016_j_ijpsycho_2019_09_008
crossref_primary_10_1038_s41593_023_01358_9
crossref_primary_10_1080_17470919_2020_1726450
crossref_primary_10_1016_j_bpsc_2017_12_010
crossref_primary_10_1371_journal_pone_0159540
crossref_primary_10_1016_j_jaacop_2024_11_006
crossref_primary_10_1016_j_envint_2021_106516
crossref_primary_10_1177_13623613211065297
crossref_primary_10_1038_s41539_018_0029_6
crossref_primary_10_1007_s11682_021_00508_6
crossref_primary_10_1016_j_psychres_2020_112785
crossref_primary_10_1111_desc_13046
crossref_primary_10_3389_fnins_2021_749887
crossref_primary_10_1523_JNEUROSCI_3071_18_2019
crossref_primary_10_1016_j_neuroimage_2016_03_031
crossref_primary_10_1002_hbm_24075
crossref_primary_10_1089_brain_2021_0013
crossref_primary_10_3389_fnins_2022_889849
crossref_primary_10_3389_fpsyt_2017_00294
crossref_primary_10_1016_j_neuroimage_2018_10_024
crossref_primary_10_1093_texcom_tgaa085
crossref_primary_10_3389_fnhum_2020_00241
crossref_primary_10_1016_j_neuroimage_2020_116866
crossref_primary_10_1016_j_neurobiolaging_2025_02_005
crossref_primary_10_1016_j_cortex_2020_08_014
crossref_primary_10_1016_j_pscychresns_2018_05_009
crossref_primary_10_1038_s41598_023_48706_0
crossref_primary_10_1016_j_jaac_2019_01_021
crossref_primary_10_1093_ijnp_pyx045
crossref_primary_10_3389_fneur_2018_00572
crossref_primary_10_1002_hbm_25111
crossref_primary_10_1002_hbm_26684
crossref_primary_10_1016_j_pneurobio_2021_101997
crossref_primary_10_1002_cad_20292
crossref_primary_10_1016_j_neuroimage_2020_116728
crossref_primary_10_1016_j_cortex_2018_11_009
crossref_primary_10_1016_j_neuroimage_2020_116603
crossref_primary_10_1016_j_neuroimage_2022_119208
crossref_primary_10_1007_s00213_019_05250_y
crossref_primary_10_1016_j_cortex_2024_11_025
crossref_primary_10_1016_j_neuroimage_2017_10_057
crossref_primary_10_1016_j_neuroimage_2017_04_069
crossref_primary_10_1016_j_biopsych_2022_09_031
crossref_primary_10_1016_j_dcn_2015_12_005
crossref_primary_10_3389_fnins_2022_951907
crossref_primary_10_1016_j_neuroimage_2016_02_053
crossref_primary_10_1038_ncomms13995
crossref_primary_10_1038_s41380_024_02860_7
crossref_primary_10_1093_scan_nsw016
crossref_primary_10_1016_j_dcn_2021_101009
crossref_primary_10_1016_j_dcn_2018_02_012
crossref_primary_10_1007_s40473_015_0056_z
crossref_primary_10_1371_journal_pone_0269154
crossref_primary_10_1111_jcpp_13768
crossref_primary_10_1093_braincomms_fcaa237
crossref_primary_10_1016_j_humov_2018_03_018
crossref_primary_10_7717_peerj_834
crossref_primary_10_3389_fcogn_2024_1404909
crossref_primary_10_1016_j_dcn_2015_12_015
crossref_primary_10_1002_hbm_26669
crossref_primary_10_3389_fnins_2023_1076824
crossref_primary_10_1097_HTR_0000000000000482
crossref_primary_10_1002_hbm_25010
crossref_primary_10_1016_j_neuroimage_2023_119983
crossref_primary_10_3389_fnins_2019_00120
crossref_primary_10_1080_23268263_2019_1558992
crossref_primary_10_1016_j_nicl_2019_102119
crossref_primary_10_3233_JAD_180834
crossref_primary_10_1016_j_concog_2017_07_010
crossref_primary_10_3389_fnimg_2022_981947
crossref_primary_10_1038_tp_2016_289
crossref_primary_10_1016_j_bbi_2021_04_019
crossref_primary_10_1016_j_neures_2017_02_001
crossref_primary_10_1080_15374416_2016_1233502
crossref_primary_10_1016_j_neuroimage_2015_09_034
crossref_primary_10_1016_j_cub_2021_04_072
crossref_primary_10_1080_17588928_2018_1504762
crossref_primary_10_1038_s41586_024_07624_5
crossref_primary_10_1016_j_dcn_2021_101039
crossref_primary_10_1016_j_appet_2017_09_025
Cites_doi 10.1016/j.mri.2007.03.009
10.1016/j.neuroimage.2004.07.039
10.1002/mrm.1910400108
10.1002/mrm.1910350312
10.1016/j.neuroimage.2008.05.019
10.1002/mrm.1910310307
10.1016/j.neuroimage.2005.02.021
10.1016/j.neuroimage.2005.05.058
10.1016/j.bandl.2007.01.003
10.1006/nimg.2000.0710
10.1002/hbm.20572
10.1002/(SICI)1097-0193(1999)7:1<38::AID-HBM4>3.0.CO;2-Q
10.1006/nimg.2000.0568
10.1002/hbm.460030306
10.1073/pnas.0907624106
10.1006/nimg.2001.1054
10.1093/cercor/bhh129
10.1016/j.neuroimage.2007.10.052
10.1016/j.acra.2006.05.010
10.1002/hbm.460030305
10.1016/j.neuroimage.2012.08.052
10.1016/j.neuroimage.2005.04.039
10.1002/jmri.1880070219
10.1002/(SICI)1097-0193(1999)7:2<106::AID-HBM4>3.0.CO;2-O
10.1101/lm.1845710
10.1002/hbm.20219
10.1126/science.1069464
10.1016/j.neuroimage.2011.07.044
10.1016/j.neuroimage.2012.09.043
10.1006/nimg.1999.0500
10.1016/j.neuroimage.2011.10.018
10.1016/j.compmedimag.2007.04.002
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.22307
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
Technology Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Censoring High Motion Data in fMRI
EISSN 1097-0193
EndPage 1996
ExternalDocumentID PMC3895106
3271184311
23861343
28377217
10_1002_hbm_22307
HBM22307
ark_67375_WNG_8CGP66N8_S
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: A McDonnell Foundation Collaborative Action award
– fundername: The National Institutes of Health
  funderid: R21 NS61144; R01 NS26424; R01 ND057076; F30 MH940322
– fundername: NINDS NIH HHS
  grantid: R21 NS061144
– fundername: NICHD NIH HHS
  grantid: R01 HD057076
– fundername: NINDS NIH HHS
  grantid: R01 NS26424
– fundername: ONDIEH CDC HHS
  grantid: R01 ND057076
– fundername: NIMH NIH HHS
  grantid: F30 MH094032
– fundername: NINDS NIH HHS
  grantid: R01 NS046424
– fundername: NINDS NIH HHS
  grantid: R21 NS61144
– fundername: NIGMS NIH HHS
  grantid: T32 GM007200
– fundername: NIMH NIH HHS
  grantid: F30 MH940322
– fundername: The National Institutes of Health
  grantid: R21 NS61144; R01 NS26424; R01 ND057076; F30 MH940322
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5117-8e78845aa7717e95d10e6300b4ca7d15c3eb004af4c3f8144ad2b09f33e60e653
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:15:30 EDT 2025
Tue Aug 05 10:04:12 EDT 2025
Sat Jul 26 02:40:34 EDT 2025
Wed Feb 19 01:52:27 EST 2025
Wed Apr 02 07:15:07 EDT 2025
Tue Jul 01 04:26:01 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Jan 22 16:47:45 EST 2025
Wed Oct 30 09:57:02 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Nervous system diseases
Radiodiagnosis
motion
Noise
head movement
GLM
Functional analysis
Nuclear magnetic resonance imaging
Linear model
general linear model
data quality
fMRI
Improvement
task
Body movement
scrubbing
Functional imaging
noise
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5117-8e78845aa7717e95d10e6300b4ca7d15c3eb004af4c3f8144ad2b09f33e60e653
Notes istex:34C8F2A802C744805F9F9C4292AB5A932EA4B7A6
The National Institutes of Health - No. R21 NS61144; No. R01 NS26424; No. R01 ND057076; No. F30 MH940322
A McDonnell Foundation Collaborative Action award
ark:/67375/WNG-8CGP66N8-S
ArticleID:HBM22307
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3895106
PMID 23861343
PQID 1514322878
PQPubID 996345
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3895106
proquest_miscellaneous_1515648262
proquest_journals_1514322878
pubmed_primary_23861343
pascalfrancis_primary_28377217
crossref_citationtrail_10_1002_hbm_22307
crossref_primary_10_1002_hbm_22307
wiley_primary_10_1002_hbm_22307_HBM22307
istex_primary_ark_67375_WNG_8CGP66N8_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley-Liss
John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Liss
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References Brown TT, Lugar HM, Coalson RS, Miezin FM, Petersen SE, Schlaggar BL (2005): Developmental changes in human cerebral functional organization for word generation. Cereb Cortex 15:275-290.
Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW (1995): Motion detection and correction in functional MR imaging. Hum Brain Mapp 3:224-235.
Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002): Image distortion correction in fMRI: A quantitative evaluation. NeuroImage 16:217-240.
Lancaster JL, Glass TG, Lankipalli BR, Downs H, Mayberg H, Fox PT (1995): A modality-independent approach to spatial normalization of tomographic images of the human brain. Hum Brain Mapp 3:209-223.
Schlaggar BL, Brown TT, Lugar HM, Visscher KM, Miezin FM, Petersen SE (2002): Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296:1476-1479.
Birn RM, Bandettini PA, Cox RW, Shaker R (1999): Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7:106-114.
Kirwan CB, Shrager Y, Squire LR (2009): Medial temporal lobe activity can distinguish between old and new stimuli independently of overt behavioral choice. Proc Natl Acad Sci USA 106:14617-14621.
Morgan VL, Dawant BM, Li Y, Pickens DR (2007): Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Comp Med Imaging Graph 31:436-446.
Dold C, Zaitsev M, Speck O, Firle EA, Hennig J, Sakas G (2006): Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device. Acad Radiol 13:1093-1103.
Gopinath K, Crosson B, McGregor K, Peck K, Chang Y-L, Moore A, Sherod M, Cavanagh C, Wabnitz A, Wierenga C, White K, Cheshkov S, Krishnamurthy V, Briggs RW (2009): Selective detrending method for reducing task-correlated motion artifact during speech in event-related FMRI. Hum Brain Mapp 30:1105-1119.
Kennedy DP, Courchesne E (2008): The intrinsic functional organization of the brain is altered in autism. NeuroImage 39:1877-1885.
Stark CEL, Okado Y, Loftus EF (2010): Imaging the reconstruction of true and false memories using sensory reactivation and the misinformation paradigms. Learn Mem 17:485-488.
Jones TB, Bandettini PA, Birn RM (2008): Integration of motion correction and physiological noise regression in fMRI. NeuroImage 42:582-590.
Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994): Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283-291.
Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006): Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27:779-788.
Field AS, Yen YF, Burdette JH, Elster AD (2000): False cerebral activation on BOLD functional MR images: Study of low-amplitude motion weakly correlated to stimulus. Am J Neuroradiol 21:1388-1396.
Bullmore ET, Brammer MJ, Rabe-Hesketh S, Curtis VA, Morris RG, Williams SC, Sharma T, McGuire PK (1999): Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7:38-48.
Wu DH, Lewin JS, Duerk JL (1997): Inadequacy of motion correction algorithms in functional MRI: Role of susceptibility-induced artifacts. J Magn Reson Imaging 7:365-370.
Van Dijk KRA, Sabuncu MR, Buckner RL (2012): The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59:431-438.
Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996): Movement-related effects in fMRI time-series. Magn Reson Med 35:346-355.
Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D (2007): Modelling large motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging 25:894-901.
Ollinger JM, Shulman GL, Corbetta M (2001): Separating processes within a trial in event-related functional MRI. NeuroImage 13:210-217.
Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000): Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage 11:735-759.
Bright MG, Murphy K (2013): Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. NeuroImage 64:526-537.
Lund TE, Nørgaard MD, Rostrup E, Rowe JB, Paulson OB (2005): Motion or activity: Their role in intra- and inter-subject variation in fMRI. NeuroImage 26:960-964.
Diedrichsen J, Shadmehr R (2005): Detecting and adjusting for artifacts in fMRI time series data. NeuroImage 27:624-634.
Barch DM, Sabb FW, Carter CS, Braver TS, Noll DC, Cohen JD (1999): Overt verbal responding during fMRI scanning: Empirical investigations of problems and potential solutions. NeuroImage 10:642-657.
Yetkin FZ, Haughton VM, Cox RW, Hyde J, Birn RM, Wong EC, Prost R (1996): Effect of motion outside the field of view on functional MR. Am J Neuroradiol 17:1005-1009.
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59:2142-2154.
Birn RM, Cox RW, Bandettini PA (2004): Experimental designs and processing strategies for fMRI studies involving overt verbal responses. NeuroImage 23:1046-1058.
Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013): An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64:240-256.
Huang J, Francis AP, Carr TH (2008): Studying overt word reading and speech production with event-related fMRI: A method for detecting, assessing, and correcting articulation-induced signal changes and for measuring onset time and duration of articulation. Brain Lang 104:10-23.
Birn RM, Bandettini PA, Cox RW, Jesmanowicz A, Shaker R (1998): Magnetic field changes in the human brain due to swallowing or speaking. Magn Reson Med 40:55-60.
Oakes TR, Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ (2005): Comparison of fMRI motion correction software tools. NeuroImage 28:529-543.
2002; 16
1996; 17
2002; 296
2006; 13
2010; 17
2000; 21
2004; 23
2013; 64
2008; 39
2008; 104
2012; 59
2005; 26
2007; 31
1998; 40
1999; 7
2005; 27
1996; 35
2005; 28
1995; 3
1997; 7
2009; 30
2006; 27
2000; 11
1999; 10
2008; 42
2005; 15
2001; 13
2007; 25
1994; 31
2009; 106
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Yetkin FZ (e_1_2_7_35_1) 1996; 17
Field AS (e_1_2_7_11_1) 2000; 21
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
16099178 - Neuroimage. 2005 Nov 15;28(3):529-43
12029136 - Science. 2002 May 24;296(5572):1476-9
23006803 - Neuroimage. 2013 Jan 1;64:526-37
15297366 - Cereb Cortex. 2005 Mar;15(3):275-90
9090592 - J Magn Reson Imaging. 1997 Mar-Apr;7(2):365-70
9882089 - Hum Brain Mapp. 1999;7(1):38-48
16456818 - Hum Brain Mapp. 2006 Oct;27(10):779-88
17328946 - Brain Lang. 2008 Jan;104(1):10-23
20861170 - Learn Mem. 2010 Oct;17(10):485-8
11003269 - AJNR Am J Neuroradiol. 2000 Sep;21(8):1388-96
21810475 - Neuroimage. 2012 Jan 2;59(1):431-8
19706549 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14617-21
22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54
17574816 - Comput Med Imaging Graph. 2007 Sep;31(6):436-46
18083565 - Neuroimage. 2008 Feb 15;39(4):1877-85
10600410 - Neuroimage. 1999 Dec;10(6):642-57
18583155 - Neuroimage. 2008 Aug 15;42(2):582-90
15955506 - Neuroimage. 2005 Jul 1;26(3):960-4
22926292 - Neuroimage. 2013 Jan 1;64:240-56
8699946 - Magn Reson Med. 1996 Mar;35(3):346-55
15528105 - Neuroimage. 2004 Nov;23(3):1046-58
18465746 - Hum Brain Mapp. 2009 Apr;30(4):1105-19
8057799 - Magn Reson Med. 1994 Mar;31(3):283-91
16935721 - Acad Radiol. 2006 Sep;13(9):1093-103
17490845 - Magn Reson Imaging. 2007 Jul;25(6):894-901
10860799 - Neuroimage. 2000 Jun;11(6 Pt 1):735-59
11133323 - Neuroimage. 2001 Jan;13(1):210-7
8791907 - AJNR Am J Neuroradiol. 1996 Jun-Jul;17(6):1005-9
11969330 - Neuroimage. 2002 May;16(1):217-40
9660553 - Magn Reson Med. 1998 Jul;40(1):55-60
9950068 - Hum Brain Mapp. 1999;7(2):106-14
15975828 - Neuroimage. 2005 Sep;27(3):624-34
References_xml – reference: Schlaggar BL, Brown TT, Lugar HM, Visscher KM, Miezin FM, Petersen SE (2002): Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296:1476-1479.
– reference: Oakes TR, Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ (2005): Comparison of fMRI motion correction software tools. NeuroImage 28:529-543.
– reference: Gopinath K, Crosson B, McGregor K, Peck K, Chang Y-L, Moore A, Sherod M, Cavanagh C, Wabnitz A, Wierenga C, White K, Cheshkov S, Krishnamurthy V, Briggs RW (2009): Selective detrending method for reducing task-correlated motion artifact during speech in event-related FMRI. Hum Brain Mapp 30:1105-1119.
– reference: Field AS, Yen YF, Burdette JH, Elster AD (2000): False cerebral activation on BOLD functional MR images: Study of low-amplitude motion weakly correlated to stimulus. Am J Neuroradiol 21:1388-1396.
– reference: Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW (1995): Motion detection and correction in functional MR imaging. Hum Brain Mapp 3:224-235.
– reference: Birn RM, Bandettini PA, Cox RW, Shaker R (1999): Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7:106-114.
– reference: Dold C, Zaitsev M, Speck O, Firle EA, Hennig J, Sakas G (2006): Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device. Acad Radiol 13:1093-1103.
– reference: Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996): Movement-related effects in fMRI time-series. Magn Reson Med 35:346-355.
– reference: Jones TB, Bandettini PA, Birn RM (2008): Integration of motion correction and physiological noise regression in fMRI. NeuroImage 42:582-590.
– reference: Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59:2142-2154.
– reference: Morgan VL, Dawant BM, Li Y, Pickens DR (2007): Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Comp Med Imaging Graph 31:436-446.
– reference: Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D (2007): Modelling large motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging 25:894-901.
– reference: Huang J, Francis AP, Carr TH (2008): Studying overt word reading and speech production with event-related fMRI: A method for detecting, assessing, and correcting articulation-induced signal changes and for measuring onset time and duration of articulation. Brain Lang 104:10-23.
– reference: Birn RM, Cox RW, Bandettini PA (2004): Experimental designs and processing strategies for fMRI studies involving overt verbal responses. NeuroImage 23:1046-1058.
– reference: Kirwan CB, Shrager Y, Squire LR (2009): Medial temporal lobe activity can distinguish between old and new stimuli independently of overt behavioral choice. Proc Natl Acad Sci USA 106:14617-14621.
– reference: Yetkin FZ, Haughton VM, Cox RW, Hyde J, Birn RM, Wong EC, Prost R (1996): Effect of motion outside the field of view on functional MR. Am J Neuroradiol 17:1005-1009.
– reference: Diedrichsen J, Shadmehr R (2005): Detecting and adjusting for artifacts in fMRI time series data. NeuroImage 27:624-634.
– reference: Kennedy DP, Courchesne E (2008): The intrinsic functional organization of the brain is altered in autism. NeuroImage 39:1877-1885.
– reference: Birn RM, Bandettini PA, Cox RW, Jesmanowicz A, Shaker R (1998): Magnetic field changes in the human brain due to swallowing or speaking. Magn Reson Med 40:55-60.
– reference: Bright MG, Murphy K (2013): Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. NeuroImage 64:526-537.
– reference: Lancaster JL, Glass TG, Lankipalli BR, Downs H, Mayberg H, Fox PT (1995): A modality-independent approach to spatial normalization of tomographic images of the human brain. Hum Brain Mapp 3:209-223.
– reference: Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000): Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage 11:735-759.
– reference: Wu DH, Lewin JS, Duerk JL (1997): Inadequacy of motion correction algorithms in functional MRI: Role of susceptibility-induced artifacts. J Magn Reson Imaging 7:365-370.
– reference: Brown TT, Lugar HM, Coalson RS, Miezin FM, Petersen SE, Schlaggar BL (2005): Developmental changes in human cerebral functional organization for word generation. Cereb Cortex 15:275-290.
– reference: Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002): Image distortion correction in fMRI: A quantitative evaluation. NeuroImage 16:217-240.
– reference: Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013): An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64:240-256.
– reference: Ollinger JM, Shulman GL, Corbetta M (2001): Separating processes within a trial in event-related functional MRI. NeuroImage 13:210-217.
– reference: Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006): Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27:779-788.
– reference: Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994): Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283-291.
– reference: Lund TE, Nørgaard MD, Rostrup E, Rowe JB, Paulson OB (2005): Motion or activity: Their role in intra- and inter-subject variation in fMRI. NeuroImage 26:960-964.
– reference: Van Dijk KRA, Sabuncu MR, Buckner RL (2012): The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59:431-438.
– reference: Barch DM, Sabb FW, Carter CS, Braver TS, Noll DC, Cohen JD (1999): Overt verbal responding during fMRI scanning: Empirical investigations of problems and potential solutions. NeuroImage 10:642-657.
– reference: Bullmore ET, Brammer MJ, Rabe-Hesketh S, Curtis VA, Morris RG, Williams SC, Sharma T, McGuire PK (1999): Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7:38-48.
– reference: Stark CEL, Okado Y, Loftus EF (2010): Imaging the reconstruction of true and false memories using sensory reactivation and the misinformation paradigms. Learn Mem 17:485-488.
– volume: 21
  start-page: 1388
  year: 2000
  end-page: 1396
  article-title: False cerebral activation on BOLD functional MR images: Study of low‐amplitude motion weakly correlated to stimulus
  publication-title: Am J Neuroradiol
– volume: 26
  start-page: 960
  year: 2005
  end-page: 964
  article-title: Motion or activity: Their role in intra‐ and inter‐subject variation in fMRI
  publication-title: NeuroImage
– volume: 7
  start-page: 365
  year: 1997
  end-page: 370
  article-title: Inadequacy of motion correction algorithms in functional MRI: Role of susceptibility‐induced artifacts
  publication-title: J Magn Reson Imaging
– volume: 17
  start-page: 485
  year: 2010
  end-page: 488
  article-title: Imaging the reconstruction of true and false memories using sensory reactivation and the misinformation paradigms
  publication-title: Learn Mem
– volume: 35
  start-page: 346
  year: 1996
  end-page: 355
  article-title: Movement‐related effects in fMRI time‐series
  publication-title: Magn Reson Med
– volume: 28
  start-page: 529
  year: 2005
  end-page: 543
  article-title: Comparison of fMRI motion correction software tools
  publication-title: NeuroImage
– volume: 64
  start-page: 240
  year: 2013
  end-page: 256
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting‐state functional connectivity data
  publication-title: NeuroImage
– volume: 11
  start-page: 735
  year: 2000
  end-page: 759
  article-title: Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing
  publication-title: NeuroImage
– volume: 10
  start-page: 642
  year: 1999
  end-page: 657
  article-title: Overt verbal responding during fMRI scanning: Empirical investigations of problems and potential solutions
  publication-title: NeuroImage
– volume: 59
  start-page: 431
  year: 2012
  end-page: 438
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: NeuroImage
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 40
  start-page: 55
  year: 1998
  end-page: 60
  article-title: Magnetic field changes in the human brain due to swallowing or speaking
  publication-title: Magn Reson Med
– volume: 13
  start-page: 1093
  year: 2006
  end-page: 1103
  article-title: Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device
  publication-title: Acad Radiol
– volume: 31
  start-page: 436
  year: 2007
  end-page: 446
  article-title: Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus‐correlated motion
  publication-title: Comp Med Imaging Graph
– volume: 23
  start-page: 1046
  year: 2004
  end-page: 1058
  article-title: Experimental designs and processing strategies for fMRI studies involving overt verbal responses
  publication-title: NeuroImage
– volume: 31
  start-page: 283
  year: 1994
  end-page: 291
  article-title: Artifacts due to stimulus correlated motion in functional imaging of the brain
  publication-title: Magn Reson Med
– volume: 3
  start-page: 209
  year: 1995
  end-page: 223
  article-title: A modality‐independent approach to spatial normalization of tomographic images of the human brain
  publication-title: Hum Brain Mapp
– volume: 7
  start-page: 106
  year: 1999
  end-page: 114
  article-title: Event‐related fMRI of tasks involving brief motion
  publication-title: Hum Brain Mapp
– volume: 16
  start-page: 217
  year: 2002
  end-page: 240
  article-title: Image distortion correction in fMRI: A quantitative evaluation
  publication-title: NeuroImage
– volume: 39
  start-page: 1877
  year: 2008
  end-page: 1885
  article-title: The intrinsic functional organization of the brain is altered in autism
  publication-title: NeuroImage
– volume: 15
  start-page: 275
  year: 2005
  end-page: 290
  article-title: Developmental changes in human cerebral functional organization for word generation
  publication-title: Cereb Cortex
– volume: 7
  start-page: 38
  year: 1999
  end-page: 48
  article-title: Methods for diagnosis and treatment of stimulus‐correlated motion in generic brain activation studies using fMRI
  publication-title: Hum Brain Mapp
– volume: 42
  start-page: 582
  year: 2008
  end-page: 590
  article-title: Integration of motion correction and physiological noise regression in fMRI
  publication-title: NeuroImage
– volume: 64
  start-page: 526
  year: 2013
  end-page: 537
  article-title: Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data
  publication-title: NeuroImage
– volume: 104
  start-page: 10
  year: 2008
  end-page: 23
  article-title: Studying overt word reading and speech production with event‐related fMRI: A method for detecting, assessing, and correcting articulation‐induced signal changes and for measuring onset time and duration of articulation
  publication-title: Brain Lang
– volume: 3
  start-page: 224
  year: 1995
  end-page: 235
  article-title: Motion detection and correction in functional MR imaging
  publication-title: Hum Brain Mapp
– volume: 17
  start-page: 1005
  year: 1996
  end-page: 1009
  article-title: Effect of motion outside the field of view on functional MR
  publication-title: Am J Neuroradiol
– volume: 27
  start-page: 624
  year: 2005
  end-page: 634
  article-title: Detecting and adjusting for artifacts in fMRI time series data
  publication-title: NeuroImage
– volume: 13
  start-page: 210
  year: 2001
  end-page: 217
  article-title: Separating processes within a trial in event‐related functional MRI
  publication-title: NeuroImage
– volume: 106
  start-page: 14617
  year: 2009
  end-page: 14621
  article-title: Medial temporal lobe activity can distinguish between old and new stimuli independently of overt behavioral choice
  publication-title: Proc Natl Acad Sci USA
– volume: 296
  start-page: 1476
  year: 2002
  end-page: 1479
  article-title: Functional neuroanatomical differences between adults and school‐age children in the processing of single words
  publication-title: Science
– volume: 30
  start-page: 1105
  year: 2009
  end-page: 1119
  article-title: Selective detrending method for reducing task‐correlated motion artifact during speech in event‐related FMRI
  publication-title: Hum Brain Mapp
– volume: 27
  start-page: 779
  year: 2006
  end-page: 788
  article-title: Motion correction and the use of motion covariates in multiple‐subject fMRI analysis
  publication-title: Hum Brain Mapp
– volume: 25
  start-page: 894
  year: 2007
  end-page: 901
  article-title: Modelling large motion events in fMRI studies of patients with epilepsy
  publication-title: Magn Reson Imaging
– ident: e_1_2_7_23_1
  doi: 10.1016/j.mri.2007.03.009
– ident: e_1_2_7_5_1
  doi: 10.1016/j.neuroimage.2004.07.039
– ident: e_1_2_7_3_1
  doi: 10.1002/mrm.1910400108
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.1910350312
– ident: e_1_2_7_19_1
  doi: 10.1016/j.neuroimage.2008.05.019
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.1910310307
– ident: e_1_2_7_24_1
  doi: 10.1016/j.neuroimage.2005.02.021
– ident: e_1_2_7_27_1
  doi: 10.1016/j.neuroimage.2005.05.058
– ident: e_1_2_7_15_1
  doi: 10.1016/j.bandl.2007.01.003
– ident: e_1_2_7_28_1
  doi: 10.1006/nimg.2000.0710
– ident: e_1_2_7_13_1
  doi: 10.1002/hbm.20572
– ident: e_1_2_7_8_1
  doi: 10.1002/(SICI)1097-0193(1999)7:1<38::AID-HBM4>3.0.CO;2-Q
– ident: e_1_2_7_25_1
  doi: 10.1006/nimg.2000.0568
– ident: e_1_2_7_17_1
  doi: 10.1002/hbm.460030306
– ident: e_1_2_7_21_1
  doi: 10.1073/pnas.0907624106
– ident: e_1_2_7_16_1
  doi: 10.1006/nimg.2001.1054
– ident: e_1_2_7_7_1
  doi: 10.1093/cercor/bhh129
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2007.10.052
– ident: e_1_2_7_10_1
  doi: 10.1016/j.acra.2006.05.010
– ident: e_1_2_7_22_1
  doi: 10.1002/hbm.460030305
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2012.08.052
– ident: e_1_2_7_9_1
  doi: 10.1016/j.neuroimage.2005.04.039
– ident: e_1_2_7_34_1
  doi: 10.1002/jmri.1880070219
– ident: e_1_2_7_4_1
  doi: 10.1002/(SICI)1097-0193(1999)7:2<106::AID-HBM4>3.0.CO;2-O
– ident: e_1_2_7_32_1
  doi: 10.1101/lm.1845710
– volume: 17
  start-page: 1005
  year: 1996
  ident: e_1_2_7_35_1
  article-title: Effect of motion outside the field of view on functional MR
  publication-title: Am J Neuroradiol
– ident: e_1_2_7_18_1
  doi: 10.1002/hbm.20219
– ident: e_1_2_7_31_1
  doi: 10.1126/science.1069464
– ident: e_1_2_7_33_1
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neuroimage.2012.09.043
– volume: 21
  start-page: 1388
  year: 2000
  ident: e_1_2_7_11_1
  article-title: False cerebral activation on BOLD functional MR images: Study of low‐amplitude motion weakly correlated to stimulus
  publication-title: Am J Neuroradiol
– ident: e_1_2_7_2_1
  doi: 10.1006/nimg.1999.0500
– ident: e_1_2_7_29_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_7_26_1
  doi: 10.1016/j.compmedimag.2007.04.002
– reference: 20861170 - Learn Mem. 2010 Oct;17(10):485-8
– reference: 8699946 - Magn Reson Med. 1996 Mar;35(3):346-55
– reference: 11133323 - Neuroimage. 2001 Jan;13(1):210-7
– reference: 10860799 - Neuroimage. 2000 Jun;11(6 Pt 1):735-59
– reference: 16099178 - Neuroimage. 2005 Nov 15;28(3):529-43
– reference: 8791907 - AJNR Am J Neuroradiol. 1996 Jun-Jul;17(6):1005-9
– reference: 11969330 - Neuroimage. 2002 May;16(1):217-40
– reference: 9090592 - J Magn Reson Imaging. 1997 Mar-Apr;7(2):365-70
– reference: 9660553 - Magn Reson Med. 1998 Jul;40(1):55-60
– reference: 11003269 - AJNR Am J Neuroradiol. 2000 Sep;21(8):1388-96
– reference: 9950068 - Hum Brain Mapp. 1999;7(2):106-14
– reference: 17574816 - Comput Med Imaging Graph. 2007 Sep;31(6):436-46
– reference: 8057799 - Magn Reson Med. 1994 Mar;31(3):283-91
– reference: 19706549 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14617-21
– reference: 18083565 - Neuroimage. 2008 Feb 15;39(4):1877-85
– reference: 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54
– reference: 17490845 - Magn Reson Imaging. 2007 Jul;25(6):894-901
– reference: 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8
– reference: 23006803 - Neuroimage. 2013 Jan 1;64:526-37
– reference: 18465746 - Hum Brain Mapp. 2009 Apr;30(4):1105-19
– reference: 15955506 - Neuroimage. 2005 Jul 1;26(3):960-4
– reference: 22926292 - Neuroimage. 2013 Jan 1;64:240-56
– reference: 16935721 - Acad Radiol. 2006 Sep;13(9):1093-103
– reference: 15528105 - Neuroimage. 2004 Nov;23(3):1046-58
– reference: 15975828 - Neuroimage. 2005 Sep;27(3):624-34
– reference: 18583155 - Neuroimage. 2008 Aug 15;42(2):582-90
– reference: 9882089 - Hum Brain Mapp. 1999;7(1):38-48
– reference: 16456818 - Hum Brain Mapp. 2006 Oct;27(10):779-88
– reference: 15297366 - Cereb Cortex. 2005 Mar;15(3):275-90
– reference: 10600410 - Neuroimage. 1999 Dec;10(6):642-57
– reference: 12029136 - Science. 2002 May 24;296(5572):1476-9
– reference: 17328946 - Brain Lang. 2008 Jan;104(1):10-23
SSID ssj0011501
Score 2.591529
Snippet Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1981
SubjectTerms Adolescent
Adult
Algorithms
Biological and medical sciences
Brain - blood supply
Brain - physiology
Child
Child Development - physiology
Cohort Studies
data quality
Electrodiagnosis. Electric activity recording
Female
fMRI
general linear model
GLM
head movement
Head Movements - physiology
Humans
Image Processing, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging
Male
Medical sciences
Motion
Nervous system
noise
Oxygen - blood
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Regression Analysis
scrubbing
Sensory Thresholds - physiology
task
Young Adult
Title Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points
URI https://api.istex.fr/ark:/67375/WNG-8CGP66N8-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.22307
https://www.ncbi.nlm.nih.gov/pubmed/23861343
https://www.proquest.com/docview/1514322878
https://www.proquest.com/docview/1515648262
https://pubmed.ncbi.nlm.nih.gov/PMC3895106
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9KBfHFP63aaC2rSPEl1yS72ST4VIvtIdwharEPQthNNvaolzuaO7B98iP4Gf0kzuwmqacVxLeDzObIZHbmN5PZ3wA8F2HIk8ykPjdJ4Is0iH3FpfFLDBUq0hKNjM4Oj8ZyeCzenMQna_CyOwvj-CH6ghvtDOuvaYMr3exdkYae6ukgojZm9L_Uq0WA6F1PHUVAxyZbGGL9DD1wxyoURHv9ypVYdIPU-pV6I1WD6qncXIvrgOef_ZO_4lobmA7vwKfukVw_ytlgudCD4vI3tsf_fOa7cLsFrGzfWdg9WDP1Bmzu15isTy_YLrMtpLY2vwE3R-2X-k24JBRrSaBx8cRWLmwhsmGTmlEwdTVINlWfazpHyTDtnxH5h0FpOzmJKcuXYho2t6y0pmT6gqEyGtszyIho-ce3724MEaNOVzafTfAf7sPx4esPB0O_nfPgFwj3MEgazMNFrFSCuaXJ4jIMDDGBaVGopAzjgtOAI6EqUfAqxQxQlZEOsopzI1Ey5g9gvZ7VZgtYUMpKmDDVhngBC0znVBYXFYI-rYWWxoMX3RvPi5YEnWZxfMkdfXOUo4pzq2IPnvWic8f8cZ3QrjWbXkKdn1GrXBLnH8dHeXpw9FbKcZq_92Bnxa76BcQ-hFk43mm7M7S8dSNNHhKcjTCpTT142l9GB0BfdVRtZksrE0uBWWLkwUNnl1c35ynCNcE9SFYsthcgcvHVK_Xk1JKMI5BFdy1RYdYg_66CfPhqZH88-nfRx3ALgadwjaPbsL44X5onCO4Wesfu4p_kYE1N
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VrQRc-Gn5MZSyIKi4OPXP-icHDqWlTWkTIWjV3pZde91GbZwoTgTpiUfgQXgVXoInYWbtuASKxKUHbpE8tqPZndlv1t9-A_Ccu64fNXVs-zpybB47gS39UNspLhXSUyFOMjo73O6ErQP-9ig4moNv07MwpT5EveFGkWHyNQU4bUivXaiGnqhewyMec0Wp3NWTT1iwFa92NnF0X3je1pv9jZZd9RSwE4QWmJA11nw8kDLCOkY3g9R1NKlOKZ7IKHWDxKdmOlxmPPGzGKsNmXrKaWa-r0O0pB4RmPAXqIM4KfVvvq_FqghamfIOF3W7iTl_qmPkeGv1X51Z_RZoID8TG1MWOCBZ2UnjMqj7J2PzVyRtlsKtW_B96sSSAXPaGI9UIzn_TV_yf_HybbhZYXK2XgbRHZjT-SIsredy1O9N2CozLFnz-WERrrUrMsISnBNQNzrXeHPXbM6YvdaCdXNGeKHcZmU9eZzTUVE21FT3YJShtWkOxaSRhNEFGxjhXZ0yNWHo_cLQIhlpSf_48rXstMSIzMsG_S6-4S4cXIlD7sF83s_1A2BOGmZcu7HSJH2YYMUqm0GSIa5ViqtQW_ByOsVEUum8U7uRM1EqVHsCh1SYIbXgWW06KMVNLjNaNfO0tpDDU2IDRoE47GyLeGP7XRh2YvHBgpWZiVzfQAJLEZa-FixPZ7aoMmUhXELsHtbtsQVP68uY4-jDlcx1f2xsgpBjIexZcL8MhIuH-zEiUu5bEM2ESG1A-umzV_LuidFRR6yOK1KIDjMR8HcXiNbrtvnx8N9Nn8D11n57T-ztdHYfwQ3E2bzkyS7D_Gg41o8Ry47UikkhDD5edTT9BGQ2qc0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VrVRx4dHyMJSyIKi4OPVj_TpwKA1pSklUARW9mV17TaMSJ4oTQXriJ_A_-Cv8Cn4JM-tHCRSJSw_cInlsR7M7s9-sv_0G4DG3bTeIVGi6KrBMHlqeKVxfmSkuFcKRPk4yOjvc6_vdI_7y2Dtegm_1WZhSH6LZcKPI0PmaAnycZtvnoqEncthyiMZcMSoP1PwT1mvFs_02Du4Tx-m8eLvbNauWAmaCyALzscKSj3tCBFjGqMhLbUuR6JTkiQhS20tc6qXDRcYTNwux2BCpI60oc13loyW1iMB8v8J9K6I-Ee3XjVYVIStd3eGabkaY8msZI8vZbv7qwuK3QuP4mciYosDxyMpGGhch3T8Jm78Cab0Sdq7B99qHJQHmtDWbylZy9pu85H_i5OtwtULkbKcMoRuwpPI1WN_JxXQ0nLMtpjmy-uPDGqz2KirCOpwRTNcq13jzQG_N6J3Wgg1yRmih3GRlQ_Ehp4OibKKo6sEYQ2vdGooJLQijCjbWsrsqZXLO0PmFJkUyUpL-8eVr2WeJEZWXjUcDfMNNOLoUh9yC5XyUqzvArNTPuLJDqUj4MMF6VURekiGqlZJLXxnwtJ5hcVKpvFOzkY9xqU_txDiksR5SAx41puNS2uQioy09TRsLMTklLmDgxe_6e3G4u3fo-_0wfmPA5sI8bm4geaUAC18DNuqJHVd5sohtwusOVu2hAQ-by5jh6LOVyNVopm08n2MZ7Bhwu4yD84e7IeJR7hoQLERIY0Dq6YtX8sGJVlFHpI7rkY8O0wHwdxfE3ec9_ePuv5s-gNXDdid-td8_uAdXEGTzkiS7AcvTyUzdRyA7lZs6gTB4f9nB9BO7-6h8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+improvements+in+functional+magnetic+resonance+imaging+analyses+produced+by+censoring+high-motion+data+points&rft.jtitle=Human+brain+mapping&rft.au=Siegel%2C+Joshua+S&rft.au=Power%2C+Jonathan+D&rft.au=Dubis%2C+Joseph+W&rft.au=Vogel%2C+Alecia+C&rft.date=2014-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=35&rft.issue=5&rft.spage=1981&rft_id=info:doi/10.1002%2Fhbm.22307&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3271184311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon