The Warburg effect as a therapeutic target for bladder cancers and intratumoral heterogeneity in associated molecular targets
Bladder cancer is the 10th most common cancer worldwide. For muscle‐invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non–muscle‐invasive bladder cancer (NMIBC), tumor recurrence is common. There is an u...
Saved in:
Published in | Cancer science Vol. 112; no. 9; pp. 3822 - 3834 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
John Wiley & Sons, Inc
01.09.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bladder cancer is the 10th most common cancer worldwide. For muscle‐invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non–muscle‐invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial‐mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH‐A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH‐B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH‐A is expressed in normal urothelial cells, LDH‐A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected—identifying LDH‐A as a cancer‐selective therapeutic target for bladder cancers. LDH‐A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling.
This work identifies aerobic glycolysis (the Warburg effect) as a general feature of both non–muscle‐invasive and muscle‐invasive bladder cancers. We further show that the glycolytic enzyme lactate dehydrogenase A is a cancer‐selective therapeutic target for bladder cancers, but that there is intratumoral heterogeneity in expression of metabolic targets. This raises the possibility of intratumoral metabolic coupling that could be therapeutically targeted. |
---|---|
AbstractList | Bladder cancer is the 10th most common cancer worldwide. For muscle‐invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non–muscle‐invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial‐mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH‐A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH‐B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH‐A is expressed in normal urothelial cells, LDH‐A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected—identifying LDH‐A as a cancer‐selective therapeutic target for bladder cancers. LDH‐A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling.
This work identifies aerobic glycolysis (the Warburg effect) as a general feature of both non–muscle‐invasive and muscle‐invasive bladder cancers. We further show that the glycolytic enzyme lactate dehydrogenase A is a cancer‐selective therapeutic target for bladder cancers, but that there is intratumoral heterogeneity in expression of metabolic targets. This raises the possibility of intratumoral metabolic coupling that could be therapeutically targeted. Bladder cancer is the 10th most common cancer worldwide. For muscle-invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non-muscle-invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial-mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH-A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH-B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH-A is expressed in normal urothelial cells, LDH-A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected-identifying LDH-A as a cancer-selective therapeutic target for bladder cancers. LDH-A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling.Bladder cancer is the 10th most common cancer worldwide. For muscle-invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non-muscle-invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial-mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH-A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH-B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH-A is expressed in normal urothelial cells, LDH-A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected-identifying LDH-A as a cancer-selective therapeutic target for bladder cancers. LDH-A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling. Bladder cancer is the 10th most common cancer worldwide. For muscle-invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non-muscle-invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial-mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH-A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH-B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH-A is expressed in normal urothelial cells, LDH-A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected-identifying LDH-A as a cancer-selective therapeutic target for bladder cancers. LDH-A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling. |
Audience | Academic |
Author | Phillips, Roger M. Hurst, Carolyn D. Burns, Julie E. Allison, Simon J. Knowles, Margaret A. |
AuthorAffiliation | 2 School of Applied Sciences University of Huddersfield Huddersfield UK 1 Leeds Institute of Medical Research St. James’ University Hospital University of Leeds Leeds UK |
AuthorAffiliation_xml | – name: 2 School of Applied Sciences University of Huddersfield Huddersfield UK – name: 1 Leeds Institute of Medical Research St. James’ University Hospital University of Leeds Leeds UK |
Author_xml | – sequence: 1 givenname: Julie E. surname: Burns fullname: Burns, Julie E. organization: University of Leeds – sequence: 2 givenname: Carolyn D. surname: Hurst fullname: Hurst, Carolyn D. organization: University of Leeds – sequence: 3 givenname: Margaret A. surname: Knowles fullname: Knowles, Margaret A. organization: University of Leeds – sequence: 4 givenname: Roger M. surname: Phillips fullname: Phillips, Roger M. organization: University of Huddersfield – sequence: 5 givenname: Simon J. orcidid: 0000-0002-5766-2377 surname: Allison fullname: Allison, Simon J. email: s.allison@hud.ac.uk organization: University of Huddersfield |
BookMark | eNp1kk9vFCEYxiemxv7Rg9-AxIsedgsDAzMXk83GqkkTD9Z4JO8yL7M0M8MKTM0e_O5lumtMmwoHCPye5-Ulz3lxMvoRi-Ito0uWx6WBuGQVFepFcca4aBaKUnnysFeLhvLytDiP8ZZSLkUjXhWnXLCa1bQ6K_7cbJH8hLCZQkfQWjSJQCRA0hYD7HBKzpAEocNErA9k00PbYiAGRoMhg2NL3JgCpGnwAXqyxYTBdziiS_t8ld2iNw4StmTwPZqph3B0jK-Llxb6iG-O60Xx4-rTzfrL4vrb56_r1fXCVIypRcll0zaywRKE3FQb2ihmgPEaK1nLEkypWsZbNJVVUlhKS0strw3jXGVdyS-Kjwff3bQZsDU4v7jXu-AGCHvtwenHN6Pb6s7f6VrQRpR1Nnh_NAj-14Qx6cFFg30PI_op6rISUtKS07nWuyforZ_CmNvLlFSNqimr_1Ed9KjdaH2ua2ZTvVKMKlErJjO1fIbKs8XBmRwC6_L5I8HlQWCCjzGg1cYlSM7PbbleM6rnxOicGP2QmKz48ETx91eeY4_uv3PZ_f9BvV59PyjuAZ-Q0LE |
CitedBy_id | crossref_primary_10_3390_cancers15030982 crossref_primary_10_1007_s00262_023_03376_9 crossref_primary_10_1016_j_fsi_2022_09_008 crossref_primary_10_1186_s13046_025_03325_7 crossref_primary_10_1021_acs_jproteome_3c00361 crossref_primary_10_1002_chem_202302803 crossref_primary_10_62347_XEBR7848 crossref_primary_10_1186_s12885_023_11090_z crossref_primary_10_1186_s12894_024_01580_y crossref_primary_10_3389_fonc_2022_964571 crossref_primary_10_3389_fimmu_2022_955476 crossref_primary_10_1016_j_mbs_2023_109044 crossref_primary_10_3390_cancers16071418 crossref_primary_10_3389_fphar_2023_1215296 crossref_primary_10_1186_s13059_023_03026_4 crossref_primary_10_1016_j_cbi_2025_111418 crossref_primary_10_3389_fimmu_2023_1226057 crossref_primary_10_1002_jcp_31491 crossref_primary_10_1002_mco2_455 crossref_primary_10_1007_s11684_024_1057_7 crossref_primary_10_18632_aging_205242 crossref_primary_10_3389_fonc_2021_796839 crossref_primary_10_3389_fchem_2022_1013670 crossref_primary_10_3390_ijms24097741 |
Cites_doi | 10.3389/fonc.2019.00417 10.1038/sj.onc.1209513 10.4161/cc.6.21.4866 10.1016/j.trecan.2016.06.002 10.1016/j.ccr.2013.06.014 10.1158/0008-5472.CAN-06-1501 10.1098/rsob.130130 10.2217/fon-2016-0042 10.1016/j.gde.2008.02.003 10.1126/science.1126863 10.1101/gad.12.2.163 10.1093/jnci/djx071 10.1002/1097-0134(20010501)43:2<175::AID-PROT1029>3.0.CO;2-# 10.1126/sciadv.1600200 10.1016/j.tcb.2017.11.006 10.3322/caac.21492 10.4161/cc.9.17.12731 10.1038/s41467-019-13485-8 10.1073/pnas.0709747104 10.1038/mtna.2013.68 10.1126/science.1160809 10.1186/s12935-014-0129-1 10.1172/JCI69741 10.1038/nrc2817 10.1038/sj.bjc.6604554 10.1126/scitranslmed.aar2718 10.1042/BST20190033 10.1016/j.cell.2011.02.013 10.1038/nrd4145 10.1016/j.ccell.2017.08.005 10.1016/j.ccr.2006.10.020 10.1038/oncsis.2014.16 10.1038/nature25171 10.1186/s12864-015-1450-3 10.1371/journal.pone.0038972 10.1016/j.cmet.2015.12.006 10.1177/1758835919890285 10.1016/j.cell.2016.12.039 10.1038/nrurol.2015.231 10.1126/science.1138367 10.1186/1475-2867-13-89 10.1016/S0968-0004(98)01344-9 10.3233/BLC-200373 10.1128/MCB.06120-11 10.1016/j.eururo.2012.08.010 10.1038/bjc.2013.104 10.1155/2012/429213 10.1073/pnas.0914433107 10.1016/j.eururo.2016.05.041 10.1038/nrc2715 10.1016/j.cell.2017.09.007 10.1016/j.chembiol.2017.08.028 10.1016/j.ccr.2006.04.023 10.1038/srep45465 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. COPYRIGHT 2021 John Wiley & Sons, Inc. 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. |
DBID | 24P AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/cas.15047 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | BURNS et al |
EISSN | 1349-7006 |
EndPage | 3834 |
ExternalDocumentID | PMC8409428 A710748716 10_1111_cas_15047 CAS15047 |
Genre | article |
GrantInformation_xml | – fundername: Yorkshire Cancer Research pump priming grant funderid: BPP028 – fundername: University of Huddersfield – fundername: ; – fundername: Yorkshire Cancer Research pump priming grant grantid: BPP028 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 36B 3O- 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABEML ACCFJ ACCMX ACSCC ACXQS ADBBV ADKYN ADPDF ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFEBI AFFNX AFKRA AFPKN AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 DU5 E3Z EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ HCIFZ HF~ HOLLA HYE HZI HZ~ IAO IHR IPNFZ ITC IX1 J0M K.9 K48 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P MK4 N04 N05 N9A O9- OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY PROAC Q11 ROL RPM RX1 SJN SUPJJ SV3 TEORI UB1 W8V WIN WOW WQJ WRC WXI X7M XG1 ZXP ~IA ~WT 7X7 88E 8FI 8FJ AAFWJ AAYXX ABUWG CITATION FYUFA HMCUK M1P PHGZM PHGZT PSQYO UKHRP PMFND 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c5117-2369d969e2a46b5b0971ca138e56862ac27d13dec5f764f002f0f38c1337d9623 |
IEDL.DBID | 7X7 |
ISSN | 1347-9032 1349-7006 |
IngestDate | Thu Aug 21 17:56:16 EDT 2025 Fri Jul 11 03:06:52 EDT 2025 Wed Aug 13 04:46:07 EDT 2025 Tue Jun 17 21:55:38 EDT 2025 Tue Jun 10 20:25:56 EDT 2025 Tue Jul 01 01:31:12 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Wed Jan 22 16:27:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution-NonCommercial-NoDerivs This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5117-2369d969e2a46b5b0971ca138e56862ac27d13dec5f764f002f0f38c1337d9623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5766-2377 |
OpenAccessLink | https://www.proquest.com/docview/2567978018?pq-origsite=%requestingapplication% |
PMID | 34181805 |
PQID | 2567978018 |
PQPubID | 4378882 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8409428 proquest_miscellaneous_2546602302 proquest_journals_2567978018 gale_infotracmisc_A710748716 gale_infotracacademiconefile_A710748716 crossref_citationtrail_10_1111_cas_15047 crossref_primary_10_1111_cas_15047 wiley_primary_10_1111_cas_15047_CAS15047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo – name: Hoboken |
PublicationTitle | Cancer science |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2007; 104 2010; 10 2017; 7 2013; 3 2012; 2012 2010; 107 2019; 11 2013; 24 2019; 10 2013; 63 2013; 123 2001; 43 2020; 6 2017; 71 2014; 3 2014; 2 2013; 13 2013; 12 2006; 66 2017; 32 2006; 25 2020; 48 2007; 6 2014; 14 2008; 118 2000; 60 1975; 189 2017; 168 1998; 12 2009; 324 2010; 9 2015; 12 2019; 9 2018; 28 2015; 16 2013; 108 2008; 18 2017; 24 2006; 9 1999; 24 2011; 31 2017; 171 2008; 99 2007; 11 2016; 12 2006; 312 2018; 68 2017; 109 2016; 2 2018; 553 2009; 9 2012; 7 2018; 10 2011; 144 2016; 23 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Semenza GL (e_1_2_8_58_1) 2008; 118 Sarkar S (e_1_2_8_27_1) 2000; 60 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Sonveaux P (e_1_2_8_57_1) 2008; 118 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 144 start-page: 646 year: 2011 end-page: 674 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 12 start-page: 2243 year: 2016 end-page: 2263 article-title: A place for precision medicine in bladder cancer: targeting the FGFRs publication-title: Future Oncol – volume: 553 start-page: 222 year: 2018 end-page: 227 article-title: A metabolic function of FGFR3‐TACC3 gene fusions in cancer publication-title: Nature – volume: 25 start-page: 5037 year: 2006 end-page: 5045 article-title: Expression of hTERT immortalises normal human urothelial cells without inactivation of the p16/Rb pathway publication-title: Oncogene – volume: 312 start-page: 1650 year: 2006 end-page: 1653 article-title: p53 regulates mitochondrial respiration publication-title: Science – volume: 6 start-page: 403 year: 2020 end-page: 423 article-title: FGFR3—a central player in bladder cancer pathogenesis? publication-title: Bladder Cancer – volume: 108 start-page: 1368 year: 2013 end-page: 1377 article-title: Putative tumour suppressor gene necdin is hypermethylated and mutated in human cancer publication-title: Br J Cancer – volume: 324 start-page: 1029 year: 2009 end-page: 1033 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science – volume: 123 start-page: 3685 year: 2013 end-page: 3692 article-title: Targeting lactate metabolism for cancer therapeutics publication-title: J Clin Invest – volume: 2012 start-page: 429213 year: 2012 article-title: A decade of FGF receptor research in bladder cancer: past, present, and future challenges publication-title: Adv Urol – volume: 63 start-page: 58 year: 2013 end-page: 66 article-title: ICUD‐EAU International Consultation on Bladder Cancer 2012: chemotherapy for urothelial carcinoma‐neoadjuvant and adjuvant settings publication-title: Eur Urol – volume: 18 start-page: 54 year: 2008 end-page: 61 article-title: Brick by brick: metabolism and tumor cell growth publication-title: Curr Opin Genet Dev – volume: 118 start-page: 3930 year: 2008 end-page: 3942 article-title: Targeting lactate‐fueled respiration selectively kills hypoxic tumor cells in mice publication-title: J Clin Invest – volume: 13 start-page: 89 year: 2013 article-title: Acidic extracellular microenvironment and cancer publication-title: Cancer Cell Int – volume: 6 start-page: 2669 year: 2007 end-page: 2677 article-title: SIRT3 is pro‐apoptotic and participates in distinct basal apoptotic pathways publication-title: Cell Cycle – volume: 2 start-page: 365 year: 2016 end-page: 377 article-title: Oncogene‐directed alterations in cancer cell metabolism publication-title: Trends Cancer – volume: 11 start-page: 1758835919890285 year: 2019 article-title: Targeted therapies for advanced bladder cancer: new strategies with FGFR inhibitors publication-title: Ther Adv Med Oncol – volume: 24 start-page: 1161 year: 2017 end-page: 1180 article-title: Targeting metabolism for cancer therapy publication-title: Cell Chem Biol – volume: 48 start-page: 733 year: 2020 end-page: 744 article-title: Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co‐substrate and an anti‐cancer and anti‐ageing therapeutic target publication-title: Biochem Soc Trans – volume: 60 start-page: 3862 year: 2000 end-page: 3871 article-title: Different combinations of genetic/epigenetic alterations inactivate the p53 and pRb pathways in invasive human bladder cancers publication-title: Cancer Res – volume: 99 start-page: 989 year: 2008 end-page: 994 article-title: Dichloroacetate (DCA) as a potential metabolic‐targeting therapy for cancer publication-title: Br J Cancer – volume: 43 start-page: 175 year: 2001 end-page: 185 article-title: Structural basis for altered activity of M‐ and H‐isozyme forms of human lactate dehydrogenase publication-title: Proteins – volume: 189 start-page: 102 year: 1975 end-page: 114 article-title: Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation publication-title: Science – volume: 68 start-page: 394 year: 2018 end-page: 424 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin – volume: 104 start-page: 19345 year: 2007 end-page: 19350 article-title: Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 5566 year: 2019 article-title: Aurora‐A mediated phosphorylation of LDHB promotes glycolysis and tumor progression by relieving the substrate‐inhibition effect publication-title: Nat Commun – volume: 109 start-page: djx071 year: 2017 article-title: Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer publication-title: J Natl Cancer Inst – volume: 9 start-page: 3506 year: 2010 end-page: 3514 article-title: Ketones and lactate "fuel" tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism publication-title: Cell Cycle – volume: 9 start-page: 417 year: 2019 article-title: Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics publication-title: Front Oncol – volume: 2 year: 2014 article-title: RNA interference by single‐ and double‐stranded siRNA With a DNA extension containing a 3' nuclease‐resistant mini‐hairpin structure publication-title: Mol Ther Nucleic Acids – volume: 3 year: 2014 article-title: Identification of LDH‐A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)‐dependent and (ii) p53‐independent pathways publication-title: Oncogenesis – volume: 24 start-page: 213 year: 2013 end-page: 228 article-title: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer publication-title: Cancer Cell – volume: 11 start-page: 37 year: 2007 end-page: 51 article-title: A mitochondria‐K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth publication-title: Cancer Cell – volume: 23 start-page: 27 year: 2016 end-page: 47 article-title: The emerging hallmarks of cancer metabolism publication-title: Cell Metab – volume: 9 start-page: 691 year: 2009 end-page: 700 article-title: p53 and metabolism publication-title: Nat Rev Cancer – volume: 28 start-page: 201 year: 2018 end-page: 212 article-title: Exploiting metabolic vulnerabilities of cancer with precision and accuracy publication-title: Trends Cell Biol – volume: 10 start-page: eaar2718 year: 2018 article-title: KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice publication-title: Sci Transl Med – volume: 32 start-page: 701 year: 2017 end-page: 715.e7 article-title: Genomic subtypes of non‐invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency publication-title: Cancer Cell – volume: 12 start-page: 681 year: 2015 end-page: 694 article-title: Targeted therapies in bladder cancer: an overview of in vivo research publication-title: Nat Rev Urol – volume: 24 start-page: 68 year: 1999 end-page: 72 article-title: Oncogenic alterations of metabolism publication-title: Trends Biochem Sci – volume: 31 start-page: 4938 year: 2011 end-page: 4950 article-title: Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells publication-title: Mol Cell Biol – volume: 171 start-page: 540 year: 2017 end-page: 556 article-title: Comprehensive molecular characterization of muscle‐invasive bladder cancer publication-title: Cell – volume: 12 start-page: 163 year: 1998 end-page: 174 article-title: Overcoming cellular senescence in human cancer pathogenesis publication-title: Genes Dev – volume: 9 start-page: 425 year: 2006 end-page: 434 article-title: Attenuation of LDH‐A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance publication-title: Cancer Cell – volume: 10 start-page: 267 year: 2010 end-page: 277 article-title: Targeting metabolic transformation for cancer therapy publication-title: Nat Rev Cancer – volume: 7 year: 2012 article-title: FGFR1‐induced epithelial to mesenchymal transition through MAPK/PLCgamma/COX‐2‐mediated mechanisms publication-title: PLoS One – volume: 66 start-page: 8927 year: 2006 end-page: 8930 article-title: Cancer's molecular sweet tooth and the Warburg effect publication-title: Cancer Res – volume: 118 start-page: 3835 year: 2008 end-page: 3837 article-title: Tumor metabolism: cancer cells give and take lactate publication-title: J Clin Invest – volume: 3 start-page: 130130 year: 2013 article-title: Active regulator of SIRT1 is required for cancer cell survival but not for SIRT1 activity publication-title: Open Biol – volume: 16 start-page: 403 year: 2015 article-title: The UBC‐40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies publication-title: BMC Genom – volume: 14 start-page: 129 year: 2014 article-title: Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model publication-title: Cancer Cell Int – volume: 107 start-page: 2037 year: 2010 end-page: 2042 article-title: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression publication-title: Proc Natl Acad Sci USA – volume: 71 start-page: 447 year: 2017 end-page: 461 article-title: EAU guidelines on non‐muscle‐invasive urothelial carcinoma of the bladder: update 2016 publication-title: Eur Urol – volume: 2 year: 2016 article-title: Fundamentals of cancer metabolism publication-title: Sci Adv – volume: 12 start-page: 829 year: 2013 end-page: 846 article-title: Metabolic targets for cancer therapy publication-title: Nat Rev Drug Discov – volume: 168 start-page: 657 year: 2017 end-page: 669 article-title: Understanding the intersections between metabolism and cancer biology publication-title: Cell – volume: 7 start-page: 45465 year: 2017 article-title: Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation publication-title: Sci Rep – ident: e_1_2_8_9_1 doi: 10.3389/fonc.2019.00417 – ident: e_1_2_8_31_1 doi: 10.1038/sj.onc.1209513 – volume: 118 start-page: 3930 year: 2008 ident: e_1_2_8_57_1 article-title: Targeting lactate‐fueled respiration selectively kills hypoxic tumor cells in mice publication-title: J Clin Invest – ident: e_1_2_8_37_1 doi: 10.4161/cc.6.21.4866 – ident: e_1_2_8_18_1 doi: 10.1016/j.trecan.2016.06.002 – ident: e_1_2_8_22_1 doi: 10.1016/j.ccr.2013.06.014 – ident: e_1_2_8_39_1 doi: 10.1158/0008-5472.CAN-06-1501 – ident: e_1_2_8_35_1 doi: 10.1098/rsob.130130 – ident: e_1_2_8_43_1 doi: 10.2217/fon-2016-0042 – ident: e_1_2_8_44_1 doi: 10.1016/j.gde.2008.02.003 – ident: e_1_2_8_45_1 doi: 10.1126/science.1126863 – ident: e_1_2_8_28_1 doi: 10.1101/gad.12.2.163 – ident: e_1_2_8_50_1 doi: 10.1093/jnci/djx071 – ident: e_1_2_8_48_1 doi: 10.1002/1097-0134(20010501)43:2<175::AID-PROT1029>3.0.CO;2-# – ident: e_1_2_8_11_1 doi: 10.1126/sciadv.1600200 – ident: e_1_2_8_19_1 doi: 10.1016/j.tcb.2017.11.006 – ident: e_1_2_8_2_1 doi: 10.3322/caac.21492 – ident: e_1_2_8_53_1 doi: 10.4161/cc.9.17.12731 – ident: e_1_2_8_49_1 doi: 10.1038/s41467-019-13485-8 – ident: e_1_2_8_41_1 doi: 10.1073/pnas.0709747104 – ident: e_1_2_8_34_1 doi: 10.1038/mtna.2013.68 – ident: e_1_2_8_40_1 doi: 10.1126/science.1160809 – ident: e_1_2_8_52_1 doi: 10.1186/s12935-014-0129-1 – ident: e_1_2_8_54_1 doi: 10.1172/JCI69741 – ident: e_1_2_8_10_1 doi: 10.1038/nrc2817 – ident: e_1_2_8_25_1 doi: 10.1038/sj.bjc.6604554 – ident: e_1_2_8_33_1 doi: 10.1126/scitranslmed.aar2718 – ident: e_1_2_8_14_1 doi: 10.1042/BST20190033 – ident: e_1_2_8_7_1 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_2_8_13_1 doi: 10.1038/nrd4145 – ident: e_1_2_8_38_1 doi: 10.1016/j.ccell.2017.08.005 – ident: e_1_2_8_24_1 doi: 10.1016/j.ccr.2006.10.020 – ident: e_1_2_8_23_1 doi: 10.1038/oncsis.2014.16 – volume: 118 start-page: 3835 year: 2008 ident: e_1_2_8_58_1 article-title: Tumor metabolism: cancer cells give and take lactate publication-title: J Clin Invest – ident: e_1_2_8_56_1 doi: 10.1038/nature25171 – ident: e_1_2_8_30_1 doi: 10.1186/s12864-015-1450-3 – ident: e_1_2_8_32_1 doi: 10.1371/journal.pone.0038972 – ident: e_1_2_8_8_1 doi: 10.1016/j.cmet.2015.12.006 – ident: e_1_2_8_5_1 doi: 10.1177/1758835919890285 – ident: e_1_2_8_15_1 doi: 10.1016/j.cell.2016.12.039 – ident: e_1_2_8_6_1 doi: 10.1038/nrurol.2015.231 – ident: e_1_2_8_47_1 doi: 10.1126/science.1138367 – ident: e_1_2_8_51_1 doi: 10.1186/1475-2867-13-89 – ident: e_1_2_8_16_1 doi: 10.1016/S0968-0004(98)01344-9 – ident: e_1_2_8_55_1 doi: 10.3233/BLC-200373 – ident: e_1_2_8_36_1 doi: 10.1128/MCB.06120-11 – ident: e_1_2_8_3_1 doi: 10.1016/j.eururo.2012.08.010 – volume: 60 start-page: 3862 year: 2000 ident: e_1_2_8_27_1 article-title: Different combinations of genetic/epigenetic alterations inactivate the p53 and pRb pathways in invasive human bladder cancers publication-title: Cancer Res – ident: e_1_2_8_29_1 doi: 10.1038/bjc.2013.104 – ident: e_1_2_8_42_1 doi: 10.1155/2012/429213 – ident: e_1_2_8_21_1 doi: 10.1073/pnas.0914433107 – ident: e_1_2_8_4_1 doi: 10.1016/j.eururo.2016.05.041 – ident: e_1_2_8_17_1 doi: 10.1038/nrc2715 – ident: e_1_2_8_26_1 doi: 10.1016/j.cell.2017.09.007 – ident: e_1_2_8_12_1 doi: 10.1016/j.chembiol.2017.08.028 – ident: e_1_2_8_20_1 doi: 10.1016/j.ccr.2006.04.023 – ident: e_1_2_8_46_1 doi: 10.1038/srep45465 |
SSID | ssj0036494 |
Score | 2.470157 |
Snippet | Bladder cancer is the 10th most common cancer worldwide. For muscle‐invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and... Bladder cancer is the 10th most common cancer worldwide. For muscle-invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and... |
SourceID | pubmedcentral proquest gale crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3822 |
SubjectTerms | Analysis Apoptosis Bladder cancer Cancer Cancer therapies Cell death Chemotherapy Dehydrogenases Enzymes epithelial‐mesenchymal transition Experiments FDA approval Gene expression Genomes Glucose Glucose metabolism Glycolysis Growth factors Health aspects intratumoral heterogeneity Invasiveness Kinases L-Lactate dehydrogenase lactate dehydrogenase A Lactic acid Mesenchyme Metabolism Mutation non–muscle‐invasive and muscle‐invasive bladder cancers Original Patients Phosphorylation Proteins Pyruvic acid Radiation therapy RNA-mediated interference Therapeutic applications Therapeutic targets Tumor cell lines Urothelial cancer Warburg effect |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC7Eg3hJ4ouMUelIQC8jbk9P9w45LYuLBPSgET0IQ78mijor-7gI_vdU9TzY0QRCbsN0ddM9U1VTtfvVVwDfesoVx4VOY2MyEwvn0zizUsYudYXhUlvRp9rhs3N5eiV-3KQ3S_C9qYWp-CHaH9zIMoK_JgPXZrpg5NQSDKMZQZXkhNWigOiipY5KpMiqhrZCxdlxwmtWIULxtDM736K3Hvk9SnIxeg2fn9FHuG02XqFOHo7mM3NkX95wOv7nyT7BhzosZYNKj9ZgyZfrsHJW__G-Aa-oTuxa0yv4xSoMCNNTptlC_RarUOUMw2BmHsmjTZglpZqgYOnYPR1wNn8iTgB2RzCcMWqvxzQAh3C1Sk-8Y09Ny956xekmXI1Ofg5P47pzQ2wxgFMxT2TmMpl5roU0qSGiKqt7Sd-nVJGiLVeulzhv00JJUaBXRoVJ-hYTZoXzeLIFy-W49J-BcaMkhS2Y1mHmlikt8QampVx5p1NTRHDYvMPc1rTm1F3jMW_SG3yceXicEey3os8Vl8efhA5IEXKyb1zH6rpMAXdDTFn5QBGEldLMCHY6kmiXtjvcqFJe-4VpjgGmIs6nXj-Cr-0wzSSsW-nHc5IRUlJqyCNQHRVsd02c4N2R8v4ucIOHfJ3j6odBw_5-znw4uAwX2_8u-gVWOUF6AsRuB5Znk7nfxZhsZvaC8f0GGNg0cw priority: 102 providerName: Wiley-Blackwell |
Title | The Warburg effect as a therapeutic target for bladder cancers and intratumoral heterogeneity in associated molecular targets |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.15047 https://www.proquest.com/docview/2567978018 https://www.proquest.com/docview/2546602302 https://pubmed.ncbi.nlm.nih.gov/PMC8409428 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xkKpeqpa2alq6MggJLlZZx7E3p2qLQAgJhCioe4v8CiBBlu7j2P_eGcfZ7vZ1iaJ4YjmZ8XjG_mYGYK-vfX1Ym4JbW1oufSh46ZTivvC1Fco4OaDY4fMLdXojz0bFKG24TROsstOJUVH7saM98k-4NGvKltMffH76zqlqFJ2uphIa67BJqctIqvVo4XDlSpZtUVupeXmYi5RZiJA8VFAMbSGqqrK0Hv2ulf9ESi5bsHEJOnkJL5LtyIYts1_BWmi24Nl5Oh1_DT-Q5-ybof90y1qgBjNTZthSkBVrod8MbVVmH0jtTJgjzk-QsPHsnkYwmz9S4D67I6zMGEUsoK2OTdhby8zg2WNXVzf1OH0DNyfH10enPJVX4A6tLM1FrkpfqjIII5UtLGWTcqafD0JBYSPGCe37uQ-uqLWSNapO5Go-cOjVanxP5G9hoxk34R0wYbUi2wJ9L3SvSm0UPkDfUejgTWHrDA66n1y5lHucSmA8VJ0PgvyoIj8y2F2QPrUJN_5GtE-cqmgSYj_OpFgCHA2ls6qGmnCm5AtmsL1CiZPHrTZ3vK7S5J1Wv0Qtg51FM71JgLQmjOdEI5Ui_01koFdkZDFqSty92tLc38UE3tGpFtj7QZSmf39ndTT8Gm_e_3-cH-C5IKxNxL5tw8ZsMg8f0Via2R6sC3nZi_OiB5tfji8ur3px44GuV-InzkgY7Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRQIuFU9hWmBBIHpZkazt3fhQoahQpbTphVbktuzLtFLrlDyEOPCX-I2dWdsh4XXrLcqOV2vP7Ox89sw3AC-7yped0uTc2sLyzIecF05K7nNfWiGNy3pUOzw8koOT7MMoH63Bz7YWhtIqW58YHbUfO3pH_gaPZkVsOd3e28uvnLpG0dfVtoVGbRYH4fs3hGzTnf13qN9XQuy9P94d8KarAHcYXCguUln4QhZBmEza3BKJkjPdtBdyqpYwTijfTX1wealkVqLHwJtJew7BnMLriOgAXf4NPHg7BPbUaAHwUpkVdRPdTPGik4qGyYgyh6iBGcZe1MVl6fz7_RT4MzNzOWKOR97eHdhoYlXWr43rLqyF6h7cHDZf4-_DD7Qx9smQXr6wOjGEmSkzbKmoi9Wp5gxjY2bPyc1NmCNLm6Bg5dkZrWA2vyCiAHZKuTljNOmA2ACHcLbaeIJnF20f32bG6QM4uZYH_xDWq3EVHgETVkmKZRDrIZwrlJH4B2JVoYI3uS0T2G4fsnYN1zm13DjXLeZBfeiojwReLEQva4KPvwm9Jk1p2vQ4jzNN7QKuhuizdF9RXithzwS2ViRxs7rV4VbXunEWU_3LtBN4vhimKykBrgrjOclkUhJeFAmoFRtZrJqIwldHqrPTSBgeQbzA2bejNf37PvVu_2P88fj_63wGtwbHw0N9uH90sAm3BeX5xLy7LVifTebhCQZqM_s07g4Gn697O14BsmxPSw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW6nigniKQAGDQPRitesk9uaA0NJ21VK6qoCK3oxfoZXabNmHEAf-GL-OmcRZdnndelutJ5aTGY_nS76ZAXjWVb7cKk3OrS0sz3zIeeGk5D73pRXSuKxHucOHQ7l3nL05yU9W4EebC0O0ytYn1o7ajxy9I9_Eo1lRtZxub7OMtIijncGryy-cOkjRl9a2nUZjIgfh21eEb5OX-zuo6-dCDHY_bO_x2GGAOww0FBepLHwhiyBMJm1uqaCSM920F3LKnDBOKN9NfXB5qWRWovfAG0t7DoGdwuuo6AG6_1VFqKgDq693h0fv2nMglVnRtNTNFC-2UhHrGhGPiNqZYSRGPV0WTsPfz4Q_eZqL8XN9AA5uwPUYubJ-Y2o3YSVUt2DtMH6bvw3f0eLYR0Na-swamggzE2bYQooXa4jnDCNlZs_J6Y2ZI7sbo2Dl2RmtYDq7oLIB7JSYOiM08IBIAYdwtsaUgmcXbVffOOPkDhxfyaO_C51qVIV7wIRVkiIbRH4I7gplJP6ByFWo4E1uywQ22oesXax8Tg04znWLgFAfutZHAk_nopdNuY-_Cb0gTWlyATiPMzGTAVdDxbR0XxHLlZBoAutLkrh13fJwq2sdXcdE_zL0BJ7Mh-lKosNVYTQjmUxKQo8iAbVkI_NVU9nw5ZHq7LQuH15DeoGzb9TW9O_71Nv99_WP-_9f52NYw62o3-4PDx7ANUGkn5qEtw6d6XgWHmLUNrWP4vZg8Omqd-RPIRdU5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Warburg+effect+as+a+therapeutic+target+for+bladder+cancers+and+intratumoral+heterogeneity+in+associated+molecular+targets&rft.jtitle=Cancer+science&rft.au=Burns%2C+Julie+E&rft.au=Hurst%2C+Carolyn+D&rft.au=Knowles%2C+Margaret+A&rft.au=Phillips%2C+Roger+M&rft.date=2021-09-01&rft.issn=1349-7006&rft.eissn=1349-7006&rft.volume=112&rft.issue=9&rft.spage=3822&rft_id=info:doi/10.1111%2Fcas.15047&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon |