The Warburg effect as a therapeutic target for bladder cancers and intratumoral heterogeneity in associated molecular targets

Bladder cancer is the 10th most common cancer worldwide. For muscle‐invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non–muscle‐invasive bladder cancer (NMIBC), tumor recurrence is common. There is an u...

Full description

Saved in:
Bibliographic Details
Published inCancer science Vol. 112; no. 9; pp. 3822 - 3834
Main Authors Burns, Julie E., Hurst, Carolyn D., Knowles, Margaret A., Phillips, Roger M., Allison, Simon J.
Format Journal Article
LanguageEnglish
Published Tokyo John Wiley & Sons, Inc 01.09.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bladder cancer is the 10th most common cancer worldwide. For muscle‐invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non–muscle‐invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial‐mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH‐A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH‐B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH‐A is expressed in normal urothelial cells, LDH‐A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected—identifying LDH‐A as a cancer‐selective therapeutic target for bladder cancers. LDH‐A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling. This work identifies aerobic glycolysis (the Warburg effect) as a general feature of both non–muscle‐invasive and muscle‐invasive bladder cancers. We further show that the glycolytic enzyme lactate dehydrogenase A is a cancer‐selective therapeutic target for bladder cancers, but that there is intratumoral heterogeneity in expression of metabolic targets. This raises the possibility of intratumoral metabolic coupling that could be therapeutically targeted.
AbstractList Bladder cancer is the 10th most common cancer worldwide. For muscle‐invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non–muscle‐invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial‐mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH‐A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH‐B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH‐A is expressed in normal urothelial cells, LDH‐A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected—identifying LDH‐A as a cancer‐selective therapeutic target for bladder cancers. LDH‐A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling. This work identifies aerobic glycolysis (the Warburg effect) as a general feature of both non–muscle‐invasive and muscle‐invasive bladder cancers. We further show that the glycolytic enzyme lactate dehydrogenase A is a cancer‐selective therapeutic target for bladder cancers, but that there is intratumoral heterogeneity in expression of metabolic targets. This raises the possibility of intratumoral metabolic coupling that could be therapeutically targeted.
Bladder cancer is the 10th most common cancer worldwide. For muscle-invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non-muscle-invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial-mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH-A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH-B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH-A is expressed in normal urothelial cells, LDH-A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected-identifying LDH-A as a cancer-selective therapeutic target for bladder cancers. LDH-A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling.Bladder cancer is the 10th most common cancer worldwide. For muscle-invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non-muscle-invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial-mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH-A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH-B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH-A is expressed in normal urothelial cells, LDH-A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected-identifying LDH-A as a cancer-selective therapeutic target for bladder cancers. LDH-A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling.
Bladder cancer is the 10th most common cancer worldwide. For muscle-invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non-muscle-invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial-mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH-A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH-B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH-A is expressed in normal urothelial cells, LDH-A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected-identifying LDH-A as a cancer-selective therapeutic target for bladder cancers. LDH-A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling.
Audience Academic
Author Phillips, Roger M.
Hurst, Carolyn D.
Burns, Julie E.
Allison, Simon J.
Knowles, Margaret A.
AuthorAffiliation 2 School of Applied Sciences University of Huddersfield Huddersfield UK
1 Leeds Institute of Medical Research St. James’ University Hospital University of Leeds Leeds UK
AuthorAffiliation_xml – name: 2 School of Applied Sciences University of Huddersfield Huddersfield UK
– name: 1 Leeds Institute of Medical Research St. James’ University Hospital University of Leeds Leeds UK
Author_xml – sequence: 1
  givenname: Julie E.
  surname: Burns
  fullname: Burns, Julie E.
  organization: University of Leeds
– sequence: 2
  givenname: Carolyn D.
  surname: Hurst
  fullname: Hurst, Carolyn D.
  organization: University of Leeds
– sequence: 3
  givenname: Margaret A.
  surname: Knowles
  fullname: Knowles, Margaret A.
  organization: University of Leeds
– sequence: 4
  givenname: Roger M.
  surname: Phillips
  fullname: Phillips, Roger M.
  organization: University of Huddersfield
– sequence: 5
  givenname: Simon J.
  orcidid: 0000-0002-5766-2377
  surname: Allison
  fullname: Allison, Simon J.
  email: s.allison@hud.ac.uk
  organization: University of Huddersfield
BookMark eNp1kk9vFCEYxiemxv7Rg9-AxIsedgsDAzMXk83GqkkTD9Z4JO8yL7M0M8MKTM0e_O5lumtMmwoHCPye5-Ulz3lxMvoRi-Ito0uWx6WBuGQVFepFcca4aBaKUnnysFeLhvLytDiP8ZZSLkUjXhWnXLCa1bQ6K_7cbJH8hLCZQkfQWjSJQCRA0hYD7HBKzpAEocNErA9k00PbYiAGRoMhg2NL3JgCpGnwAXqyxYTBdziiS_t8ld2iNw4StmTwPZqph3B0jK-Llxb6iG-O60Xx4-rTzfrL4vrb56_r1fXCVIypRcll0zaywRKE3FQb2ihmgPEaK1nLEkypWsZbNJVVUlhKS0strw3jXGVdyS-Kjwff3bQZsDU4v7jXu-AGCHvtwenHN6Pb6s7f6VrQRpR1Nnh_NAj-14Qx6cFFg30PI_op6rISUtKS07nWuyforZ_CmNvLlFSNqimr_1Ed9KjdaH2ua2ZTvVKMKlErJjO1fIbKs8XBmRwC6_L5I8HlQWCCjzGg1cYlSM7PbbleM6rnxOicGP2QmKz48ETx91eeY4_uv3PZ_f9BvV59PyjuAZ-Q0LE
CitedBy_id crossref_primary_10_3390_cancers15030982
crossref_primary_10_1007_s00262_023_03376_9
crossref_primary_10_1016_j_fsi_2022_09_008
crossref_primary_10_1186_s13046_025_03325_7
crossref_primary_10_1021_acs_jproteome_3c00361
crossref_primary_10_1002_chem_202302803
crossref_primary_10_62347_XEBR7848
crossref_primary_10_1186_s12885_023_11090_z
crossref_primary_10_1186_s12894_024_01580_y
crossref_primary_10_3389_fonc_2022_964571
crossref_primary_10_3389_fimmu_2022_955476
crossref_primary_10_1016_j_mbs_2023_109044
crossref_primary_10_3390_cancers16071418
crossref_primary_10_3389_fphar_2023_1215296
crossref_primary_10_1186_s13059_023_03026_4
crossref_primary_10_1016_j_cbi_2025_111418
crossref_primary_10_3389_fimmu_2023_1226057
crossref_primary_10_1002_jcp_31491
crossref_primary_10_1002_mco2_455
crossref_primary_10_1007_s11684_024_1057_7
crossref_primary_10_18632_aging_205242
crossref_primary_10_3389_fonc_2021_796839
crossref_primary_10_3389_fchem_2022_1013670
crossref_primary_10_3390_ijms24097741
Cites_doi 10.3389/fonc.2019.00417
10.1038/sj.onc.1209513
10.4161/cc.6.21.4866
10.1016/j.trecan.2016.06.002
10.1016/j.ccr.2013.06.014
10.1158/0008-5472.CAN-06-1501
10.1098/rsob.130130
10.2217/fon-2016-0042
10.1016/j.gde.2008.02.003
10.1126/science.1126863
10.1101/gad.12.2.163
10.1093/jnci/djx071
10.1002/1097-0134(20010501)43:2<175::AID-PROT1029>3.0.CO;2-#
10.1126/sciadv.1600200
10.1016/j.tcb.2017.11.006
10.3322/caac.21492
10.4161/cc.9.17.12731
10.1038/s41467-019-13485-8
10.1073/pnas.0709747104
10.1038/mtna.2013.68
10.1126/science.1160809
10.1186/s12935-014-0129-1
10.1172/JCI69741
10.1038/nrc2817
10.1038/sj.bjc.6604554
10.1126/scitranslmed.aar2718
10.1042/BST20190033
10.1016/j.cell.2011.02.013
10.1038/nrd4145
10.1016/j.ccell.2017.08.005
10.1016/j.ccr.2006.10.020
10.1038/oncsis.2014.16
10.1038/nature25171
10.1186/s12864-015-1450-3
10.1371/journal.pone.0038972
10.1016/j.cmet.2015.12.006
10.1177/1758835919890285
10.1016/j.cell.2016.12.039
10.1038/nrurol.2015.231
10.1126/science.1138367
10.1186/1475-2867-13-89
10.1016/S0968-0004(98)01344-9
10.3233/BLC-200373
10.1128/MCB.06120-11
10.1016/j.eururo.2012.08.010
10.1038/bjc.2013.104
10.1155/2012/429213
10.1073/pnas.0914433107
10.1016/j.eururo.2016.05.041
10.1038/nrc2715
10.1016/j.cell.2017.09.007
10.1016/j.chembiol.2017.08.028
10.1016/j.ccr.2006.04.023
10.1038/srep45465
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
COPYRIGHT 2021 John Wiley & Sons, Inc.
2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
DBID 24P
AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1111/cas.15047
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate BURNS et al
EISSN 1349-7006
EndPage 3834
ExternalDocumentID PMC8409428
A710748716
10_1111_cas_15047
CAS15047
Genre article
GrantInformation_xml – fundername: Yorkshire Cancer Research pump priming grant
  funderid: BPP028
– fundername: University of Huddersfield
– fundername: ;
– fundername: Yorkshire Cancer Research pump priming grant
  grantid: BPP028
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29B
2WC
31~
36B
3O-
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABEML
ACCFJ
ACCMX
ACSCC
ACXQS
ADBBV
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFEBI
AFFNX
AFKRA
AFPKN
AFZJQ
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
DU5
E3Z
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
HCIFZ
HF~
HOLLA
HYE
HZI
HZ~
IAO
IHR
IPNFZ
ITC
IX1
J0M
K.9
K48
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
MK4
N04
N05
N9A
O9-
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
PROAC
Q11
ROL
RPM
RX1
SJN
SUPJJ
SV3
TEORI
UB1
W8V
WIN
WOW
WQJ
WRC
WXI
X7M
XG1
ZXP
~IA
~WT
7X7
88E
8FI
8FJ
AAFWJ
AAYXX
ABUWG
CITATION
FYUFA
HMCUK
M1P
PHGZM
PHGZT
PSQYO
UKHRP
PMFND
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c5117-2369d969e2a46b5b0971ca138e56862ac27d13dec5f764f002f0f38c1337d9623
IEDL.DBID 7X7
ISSN 1347-9032
1349-7006
IngestDate Thu Aug 21 17:56:16 EDT 2025
Fri Jul 11 03:06:52 EDT 2025
Wed Aug 13 04:46:07 EDT 2025
Tue Jun 17 21:55:38 EDT 2025
Tue Jun 10 20:25:56 EDT 2025
Tue Jul 01 01:31:12 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Wed Jan 22 16:27:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution-NonCommercial-NoDerivs
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5117-2369d969e2a46b5b0971ca138e56862ac27d13dec5f764f002f0f38c1337d9623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5766-2377
OpenAccessLink https://www.proquest.com/docview/2567978018?pq-origsite=%requestingapplication%
PMID 34181805
PQID 2567978018
PQPubID 4378882
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8409428
proquest_miscellaneous_2546602302
proquest_journals_2567978018
gale_infotracmisc_A710748716
gale_infotracacademiconefile_A710748716
crossref_citationtrail_10_1111_cas_15047
crossref_primary_10_1111_cas_15047
wiley_primary_10_1111_cas_15047_CAS15047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
– name: Hoboken
PublicationTitle Cancer science
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2007; 104
2010; 10
2017; 7
2013; 3
2012; 2012
2010; 107
2019; 11
2013; 24
2019; 10
2013; 63
2013; 123
2001; 43
2020; 6
2017; 71
2014; 3
2014; 2
2013; 13
2013; 12
2006; 66
2017; 32
2006; 25
2020; 48
2007; 6
2014; 14
2008; 118
2000; 60
1975; 189
2017; 168
1998; 12
2009; 324
2010; 9
2015; 12
2019; 9
2018; 28
2015; 16
2013; 108
2008; 18
2017; 24
2006; 9
1999; 24
2011; 31
2017; 171
2008; 99
2007; 11
2016; 12
2006; 312
2018; 68
2017; 109
2016; 2
2018; 553
2009; 9
2012; 7
2018; 10
2011; 144
2016; 23
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Semenza GL (e_1_2_8_58_1) 2008; 118
Sarkar S (e_1_2_8_27_1) 2000; 60
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Sonveaux P (e_1_2_8_57_1) 2008; 118
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 12
  start-page: 2243
  year: 2016
  end-page: 2263
  article-title: A place for precision medicine in bladder cancer: targeting the FGFRs
  publication-title: Future Oncol
– volume: 553
  start-page: 222
  year: 2018
  end-page: 227
  article-title: A metabolic function of FGFR3‐TACC3 gene fusions in cancer
  publication-title: Nature
– volume: 25
  start-page: 5037
  year: 2006
  end-page: 5045
  article-title: Expression of hTERT immortalises normal human urothelial cells without inactivation of the p16/Rb pathway
  publication-title: Oncogene
– volume: 312
  start-page: 1650
  year: 2006
  end-page: 1653
  article-title: p53 regulates mitochondrial respiration
  publication-title: Science
– volume: 6
  start-page: 403
  year: 2020
  end-page: 423
  article-title: FGFR3—a central player in bladder cancer pathogenesis?
  publication-title: Bladder Cancer
– volume: 108
  start-page: 1368
  year: 2013
  end-page: 1377
  article-title: Putative tumour suppressor gene necdin is hypermethylated and mutated in human cancer
  publication-title: Br J Cancer
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 123
  start-page: 3685
  year: 2013
  end-page: 3692
  article-title: Targeting lactate metabolism for cancer therapeutics
  publication-title: J Clin Invest
– volume: 2012
  start-page: 429213
  year: 2012
  article-title: A decade of FGF receptor research in bladder cancer: past, present, and future challenges
  publication-title: Adv Urol
– volume: 63
  start-page: 58
  year: 2013
  end-page: 66
  article-title: ICUD‐EAU International Consultation on Bladder Cancer 2012: chemotherapy for urothelial carcinoma‐neoadjuvant and adjuvant settings
  publication-title: Eur Urol
– volume: 18
  start-page: 54
  year: 2008
  end-page: 61
  article-title: Brick by brick: metabolism and tumor cell growth
  publication-title: Curr Opin Genet Dev
– volume: 118
  start-page: 3930
  year: 2008
  end-page: 3942
  article-title: Targeting lactate‐fueled respiration selectively kills hypoxic tumor cells in mice
  publication-title: J Clin Invest
– volume: 13
  start-page: 89
  year: 2013
  article-title: Acidic extracellular microenvironment and cancer
  publication-title: Cancer Cell Int
– volume: 6
  start-page: 2669
  year: 2007
  end-page: 2677
  article-title: SIRT3 is pro‐apoptotic and participates in distinct basal apoptotic pathways
  publication-title: Cell Cycle
– volume: 2
  start-page: 365
  year: 2016
  end-page: 377
  article-title: Oncogene‐directed alterations in cancer cell metabolism
  publication-title: Trends Cancer
– volume: 11
  start-page: 1758835919890285
  year: 2019
  article-title: Targeted therapies for advanced bladder cancer: new strategies with FGFR inhibitors
  publication-title: Ther Adv Med Oncol
– volume: 24
  start-page: 1161
  year: 2017
  end-page: 1180
  article-title: Targeting metabolism for cancer therapy
  publication-title: Cell Chem Biol
– volume: 48
  start-page: 733
  year: 2020
  end-page: 744
  article-title: Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co‐substrate and an anti‐cancer and anti‐ageing therapeutic target
  publication-title: Biochem Soc Trans
– volume: 60
  start-page: 3862
  year: 2000
  end-page: 3871
  article-title: Different combinations of genetic/epigenetic alterations inactivate the p53 and pRb pathways in invasive human bladder cancers
  publication-title: Cancer Res
– volume: 99
  start-page: 989
  year: 2008
  end-page: 994
  article-title: Dichloroacetate (DCA) as a potential metabolic‐targeting therapy for cancer
  publication-title: Br J Cancer
– volume: 43
  start-page: 175
  year: 2001
  end-page: 185
  article-title: Structural basis for altered activity of M‐ and H‐isozyme forms of human lactate dehydrogenase
  publication-title: Proteins
– volume: 189
  start-page: 102
  year: 1975
  end-page: 114
  article-title: Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation
  publication-title: Science
– volume: 68
  start-page: 394
  year: 2018
  end-page: 424
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
– volume: 104
  start-page: 19345
  year: 2007
  end-page: 19350
  article-title: Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 5566
  year: 2019
  article-title: Aurora‐A mediated phosphorylation of LDHB promotes glycolysis and tumor progression by relieving the substrate‐inhibition effect
  publication-title: Nat Commun
– volume: 109
  start-page: djx071
  year: 2017
  article-title: Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer
  publication-title: J Natl Cancer Inst
– volume: 9
  start-page: 3506
  year: 2010
  end-page: 3514
  article-title: Ketones and lactate "fuel" tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism
  publication-title: Cell Cycle
– volume: 9
  start-page: 417
  year: 2019
  article-title: Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics
  publication-title: Front Oncol
– volume: 2
  year: 2014
  article-title: RNA interference by single‐ and double‐stranded siRNA With a DNA extension containing a 3' nuclease‐resistant mini‐hairpin structure
  publication-title: Mol Ther Nucleic Acids
– volume: 3
  year: 2014
  article-title: Identification of LDH‐A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)‐dependent and (ii) p53‐independent pathways
  publication-title: Oncogenesis
– volume: 24
  start-page: 213
  year: 2013
  end-page: 228
  article-title: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
  publication-title: Cancer Cell
– volume: 11
  start-page: 37
  year: 2007
  end-page: 51
  article-title: A mitochondria‐K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth
  publication-title: Cancer Cell
– volume: 23
  start-page: 27
  year: 2016
  end-page: 47
  article-title: The emerging hallmarks of cancer metabolism
  publication-title: Cell Metab
– volume: 9
  start-page: 691
  year: 2009
  end-page: 700
  article-title: p53 and metabolism
  publication-title: Nat Rev Cancer
– volume: 28
  start-page: 201
  year: 2018
  end-page: 212
  article-title: Exploiting metabolic vulnerabilities of cancer with precision and accuracy
  publication-title: Trends Cell Biol
– volume: 10
  start-page: eaar2718
  year: 2018
  article-title: KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice
  publication-title: Sci Transl Med
– volume: 32
  start-page: 701
  year: 2017
  end-page: 715.e7
  article-title: Genomic subtypes of non‐invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency
  publication-title: Cancer Cell
– volume: 12
  start-page: 681
  year: 2015
  end-page: 694
  article-title: Targeted therapies in bladder cancer: an overview of in vivo research
  publication-title: Nat Rev Urol
– volume: 24
  start-page: 68
  year: 1999
  end-page: 72
  article-title: Oncogenic alterations of metabolism
  publication-title: Trends Biochem Sci
– volume: 31
  start-page: 4938
  year: 2011
  end-page: 4950
  article-title: Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells
  publication-title: Mol Cell Biol
– volume: 171
  start-page: 540
  year: 2017
  end-page: 556
  article-title: Comprehensive molecular characterization of muscle‐invasive bladder cancer
  publication-title: Cell
– volume: 12
  start-page: 163
  year: 1998
  end-page: 174
  article-title: Overcoming cellular senescence in human cancer pathogenesis
  publication-title: Genes Dev
– volume: 9
  start-page: 425
  year: 2006
  end-page: 434
  article-title: Attenuation of LDH‐A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance
  publication-title: Cancer Cell
– volume: 10
  start-page: 267
  year: 2010
  end-page: 277
  article-title: Targeting metabolic transformation for cancer therapy
  publication-title: Nat Rev Cancer
– volume: 7
  year: 2012
  article-title: FGFR1‐induced epithelial to mesenchymal transition through MAPK/PLCgamma/COX‐2‐mediated mechanisms
  publication-title: PLoS One
– volume: 66
  start-page: 8927
  year: 2006
  end-page: 8930
  article-title: Cancer's molecular sweet tooth and the Warburg effect
  publication-title: Cancer Res
– volume: 118
  start-page: 3835
  year: 2008
  end-page: 3837
  article-title: Tumor metabolism: cancer cells give and take lactate
  publication-title: J Clin Invest
– volume: 3
  start-page: 130130
  year: 2013
  article-title: Active regulator of SIRT1 is required for cancer cell survival but not for SIRT1 activity
  publication-title: Open Biol
– volume: 16
  start-page: 403
  year: 2015
  article-title: The UBC‐40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies
  publication-title: BMC Genom
– volume: 14
  start-page: 129
  year: 2014
  article-title: Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model
  publication-title: Cancer Cell Int
– volume: 107
  start-page: 2037
  year: 2010
  end-page: 2042
  article-title: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression
  publication-title: Proc Natl Acad Sci USA
– volume: 71
  start-page: 447
  year: 2017
  end-page: 461
  article-title: EAU guidelines on non‐muscle‐invasive urothelial carcinoma of the bladder: update 2016
  publication-title: Eur Urol
– volume: 2
  year: 2016
  article-title: Fundamentals of cancer metabolism
  publication-title: Sci Adv
– volume: 12
  start-page: 829
  year: 2013
  end-page: 846
  article-title: Metabolic targets for cancer therapy
  publication-title: Nat Rev Drug Discov
– volume: 168
  start-page: 657
  year: 2017
  end-page: 669
  article-title: Understanding the intersections between metabolism and cancer biology
  publication-title: Cell
– volume: 7
  start-page: 45465
  year: 2017
  article-title: Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation
  publication-title: Sci Rep
– ident: e_1_2_8_9_1
  doi: 10.3389/fonc.2019.00417
– ident: e_1_2_8_31_1
  doi: 10.1038/sj.onc.1209513
– volume: 118
  start-page: 3930
  year: 2008
  ident: e_1_2_8_57_1
  article-title: Targeting lactate‐fueled respiration selectively kills hypoxic tumor cells in mice
  publication-title: J Clin Invest
– ident: e_1_2_8_37_1
  doi: 10.4161/cc.6.21.4866
– ident: e_1_2_8_18_1
  doi: 10.1016/j.trecan.2016.06.002
– ident: e_1_2_8_22_1
  doi: 10.1016/j.ccr.2013.06.014
– ident: e_1_2_8_39_1
  doi: 10.1158/0008-5472.CAN-06-1501
– ident: e_1_2_8_35_1
  doi: 10.1098/rsob.130130
– ident: e_1_2_8_43_1
  doi: 10.2217/fon-2016-0042
– ident: e_1_2_8_44_1
  doi: 10.1016/j.gde.2008.02.003
– ident: e_1_2_8_45_1
  doi: 10.1126/science.1126863
– ident: e_1_2_8_28_1
  doi: 10.1101/gad.12.2.163
– ident: e_1_2_8_50_1
  doi: 10.1093/jnci/djx071
– ident: e_1_2_8_48_1
  doi: 10.1002/1097-0134(20010501)43:2<175::AID-PROT1029>3.0.CO;2-#
– ident: e_1_2_8_11_1
  doi: 10.1126/sciadv.1600200
– ident: e_1_2_8_19_1
  doi: 10.1016/j.tcb.2017.11.006
– ident: e_1_2_8_2_1
  doi: 10.3322/caac.21492
– ident: e_1_2_8_53_1
  doi: 10.4161/cc.9.17.12731
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-019-13485-8
– ident: e_1_2_8_41_1
  doi: 10.1073/pnas.0709747104
– ident: e_1_2_8_34_1
  doi: 10.1038/mtna.2013.68
– ident: e_1_2_8_40_1
  doi: 10.1126/science.1160809
– ident: e_1_2_8_52_1
  doi: 10.1186/s12935-014-0129-1
– ident: e_1_2_8_54_1
  doi: 10.1172/JCI69741
– ident: e_1_2_8_10_1
  doi: 10.1038/nrc2817
– ident: e_1_2_8_25_1
  doi: 10.1038/sj.bjc.6604554
– ident: e_1_2_8_33_1
  doi: 10.1126/scitranslmed.aar2718
– ident: e_1_2_8_14_1
  doi: 10.1042/BST20190033
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_2_8_13_1
  doi: 10.1038/nrd4145
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ccell.2017.08.005
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ccr.2006.10.020
– ident: e_1_2_8_23_1
  doi: 10.1038/oncsis.2014.16
– volume: 118
  start-page: 3835
  year: 2008
  ident: e_1_2_8_58_1
  article-title: Tumor metabolism: cancer cells give and take lactate
  publication-title: J Clin Invest
– ident: e_1_2_8_56_1
  doi: 10.1038/nature25171
– ident: e_1_2_8_30_1
  doi: 10.1186/s12864-015-1450-3
– ident: e_1_2_8_32_1
  doi: 10.1371/journal.pone.0038972
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cmet.2015.12.006
– ident: e_1_2_8_5_1
  doi: 10.1177/1758835919890285
– ident: e_1_2_8_15_1
  doi: 10.1016/j.cell.2016.12.039
– ident: e_1_2_8_6_1
  doi: 10.1038/nrurol.2015.231
– ident: e_1_2_8_47_1
  doi: 10.1126/science.1138367
– ident: e_1_2_8_51_1
  doi: 10.1186/1475-2867-13-89
– ident: e_1_2_8_16_1
  doi: 10.1016/S0968-0004(98)01344-9
– ident: e_1_2_8_55_1
  doi: 10.3233/BLC-200373
– ident: e_1_2_8_36_1
  doi: 10.1128/MCB.06120-11
– ident: e_1_2_8_3_1
  doi: 10.1016/j.eururo.2012.08.010
– volume: 60
  start-page: 3862
  year: 2000
  ident: e_1_2_8_27_1
  article-title: Different combinations of genetic/epigenetic alterations inactivate the p53 and pRb pathways in invasive human bladder cancers
  publication-title: Cancer Res
– ident: e_1_2_8_29_1
  doi: 10.1038/bjc.2013.104
– ident: e_1_2_8_42_1
  doi: 10.1155/2012/429213
– ident: e_1_2_8_21_1
  doi: 10.1073/pnas.0914433107
– ident: e_1_2_8_4_1
  doi: 10.1016/j.eururo.2016.05.041
– ident: e_1_2_8_17_1
  doi: 10.1038/nrc2715
– ident: e_1_2_8_26_1
  doi: 10.1016/j.cell.2017.09.007
– ident: e_1_2_8_12_1
  doi: 10.1016/j.chembiol.2017.08.028
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ccr.2006.04.023
– ident: e_1_2_8_46_1
  doi: 10.1038/srep45465
SSID ssj0036494
Score 2.470157
Snippet Bladder cancer is the 10th most common cancer worldwide. For muscle‐invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and...
Bladder cancer is the 10th most common cancer worldwide. For muscle-invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and...
SourceID pubmedcentral
proquest
gale
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3822
SubjectTerms Analysis
Apoptosis
Bladder cancer
Cancer
Cancer therapies
Cell death
Chemotherapy
Dehydrogenases
Enzymes
epithelial‐mesenchymal transition
Experiments
FDA approval
Gene expression
Genomes
Glucose
Glucose metabolism
Glycolysis
Growth factors
Health aspects
intratumoral heterogeneity
Invasiveness
Kinases
L-Lactate dehydrogenase
lactate dehydrogenase A
Lactic acid
Mesenchyme
Metabolism
Mutation
non–muscle‐invasive and muscle‐invasive bladder cancers
Original
Patients
Phosphorylation
Proteins
Pyruvic acid
Radiation therapy
RNA-mediated interference
Therapeutic applications
Therapeutic targets
Tumor cell lines
Urothelial cancer
Warburg effect
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC7Eg3hJ4ouMUelIQC8jbk9P9w45LYuLBPSgET0IQ78mijor-7gI_vdU9TzY0QRCbsN0ddM9U1VTtfvVVwDfesoVx4VOY2MyEwvn0zizUsYudYXhUlvRp9rhs3N5eiV-3KQ3S_C9qYWp-CHaH9zIMoK_JgPXZrpg5NQSDKMZQZXkhNWigOiipY5KpMiqhrZCxdlxwmtWIULxtDM736K3Hvk9SnIxeg2fn9FHuG02XqFOHo7mM3NkX95wOv7nyT7BhzosZYNKj9ZgyZfrsHJW__G-Aa-oTuxa0yv4xSoMCNNTptlC_RarUOUMw2BmHsmjTZglpZqgYOnYPR1wNn8iTgB2RzCcMWqvxzQAh3C1Sk-8Y09Ny956xekmXI1Ofg5P47pzQ2wxgFMxT2TmMpl5roU0qSGiKqt7Sd-nVJGiLVeulzhv00JJUaBXRoVJ-hYTZoXzeLIFy-W49J-BcaMkhS2Y1mHmlikt8QampVx5p1NTRHDYvMPc1rTm1F3jMW_SG3yceXicEey3os8Vl8efhA5IEXKyb1zH6rpMAXdDTFn5QBGEldLMCHY6kmiXtjvcqFJe-4VpjgGmIs6nXj-Cr-0wzSSsW-nHc5IRUlJqyCNQHRVsd02c4N2R8v4ucIOHfJ3j6odBw_5-znw4uAwX2_8u-gVWOUF6AsRuB5Znk7nfxZhsZvaC8f0GGNg0cw
  priority: 102
  providerName: Wiley-Blackwell
Title The Warburg effect as a therapeutic target for bladder cancers and intratumoral heterogeneity in associated molecular targets
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.15047
https://www.proquest.com/docview/2567978018
https://www.proquest.com/docview/2546602302
https://pubmed.ncbi.nlm.nih.gov/PMC8409428
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xkKpeqpa2alq6MggJLlZZx7E3p2qLQAgJhCioe4v8CiBBlu7j2P_eGcfZ7vZ1iaJ4YjmZ8XjG_mYGYK-vfX1Ym4JbW1oufSh46ZTivvC1Fco4OaDY4fMLdXojz0bFKG24TROsstOJUVH7saM98k-4NGvKltMffH76zqlqFJ2uphIa67BJqctIqvVo4XDlSpZtUVupeXmYi5RZiJA8VFAMbSGqqrK0Hv2ulf9ESi5bsHEJOnkJL5LtyIYts1_BWmi24Nl5Oh1_DT-Q5-ybof90y1qgBjNTZthSkBVrod8MbVVmH0jtTJgjzk-QsPHsnkYwmz9S4D67I6zMGEUsoK2OTdhby8zg2WNXVzf1OH0DNyfH10enPJVX4A6tLM1FrkpfqjIII5UtLGWTcqafD0JBYSPGCe37uQ-uqLWSNapO5Go-cOjVanxP5G9hoxk34R0wYbUi2wJ9L3SvSm0UPkDfUejgTWHrDA66n1y5lHucSmA8VJ0PgvyoIj8y2F2QPrUJN_5GtE-cqmgSYj_OpFgCHA2ls6qGmnCm5AtmsL1CiZPHrTZ3vK7S5J1Wv0Qtg51FM71JgLQmjOdEI5Ui_01koFdkZDFqSty92tLc38UE3tGpFtj7QZSmf39ndTT8Gm_e_3-cH-C5IKxNxL5tw8ZsMg8f0Via2R6sC3nZi_OiB5tfji8ur3px44GuV-InzkgY7Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRQIuFU9hWmBBIHpZkazt3fhQoahQpbTphVbktuzLtFLrlDyEOPCX-I2dWdsh4XXrLcqOV2vP7Ox89sw3AC-7yped0uTc2sLyzIecF05K7nNfWiGNy3pUOzw8koOT7MMoH63Bz7YWhtIqW58YHbUfO3pH_gaPZkVsOd3e28uvnLpG0dfVtoVGbRYH4fs3hGzTnf13qN9XQuy9P94d8KarAHcYXCguUln4QhZBmEza3BKJkjPdtBdyqpYwTijfTX1wealkVqLHwJtJew7BnMLriOgAXf4NPHg7BPbUaAHwUpkVdRPdTPGik4qGyYgyh6iBGcZe1MVl6fz7_RT4MzNzOWKOR97eHdhoYlXWr43rLqyF6h7cHDZf4-_DD7Qx9smQXr6wOjGEmSkzbKmoi9Wp5gxjY2bPyc1NmCNLm6Bg5dkZrWA2vyCiAHZKuTljNOmA2ACHcLbaeIJnF20f32bG6QM4uZYH_xDWq3EVHgETVkmKZRDrIZwrlJH4B2JVoYI3uS0T2G4fsnYN1zm13DjXLeZBfeiojwReLEQva4KPvwm9Jk1p2vQ4jzNN7QKuhuizdF9RXithzwS2ViRxs7rV4VbXunEWU_3LtBN4vhimKykBrgrjOclkUhJeFAmoFRtZrJqIwldHqrPTSBgeQbzA2bejNf37PvVu_2P88fj_63wGtwbHw0N9uH90sAm3BeX5xLy7LVifTebhCQZqM_s07g4Gn697O14BsmxPSw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW6nigniKQAGDQPRitesk9uaA0NJ21VK6qoCK3oxfoZXabNmHEAf-GL-OmcRZdnndelutJ5aTGY_nS76ZAXjWVb7cKk3OrS0sz3zIeeGk5D73pRXSuKxHucOHQ7l3nL05yU9W4EebC0O0ytYn1o7ajxy9I9_Eo1lRtZxub7OMtIijncGryy-cOkjRl9a2nUZjIgfh21eEb5OX-zuo6-dCDHY_bO_x2GGAOww0FBepLHwhiyBMJm1uqaCSM920F3LKnDBOKN9NfXB5qWRWovfAG0t7DoGdwuuo6AG6_1VFqKgDq693h0fv2nMglVnRtNTNFC-2UhHrGhGPiNqZYSRGPV0WTsPfz4Q_eZqL8XN9AA5uwPUYubJ-Y2o3YSVUt2DtMH6bvw3f0eLYR0Na-swamggzE2bYQooXa4jnDCNlZs_J6Y2ZI7sbo2Dl2RmtYDq7oLIB7JSYOiM08IBIAYdwtsaUgmcXbVffOOPkDhxfyaO_C51qVIV7wIRVkiIbRH4I7gplJP6ByFWo4E1uywQ22oesXax8Tg04znWLgFAfutZHAk_nopdNuY-_Cb0gTWlyATiPMzGTAVdDxbR0XxHLlZBoAutLkrh13fJwq2sdXcdE_zL0BJ7Mh-lKosNVYTQjmUxKQo8iAbVkI_NVU9nw5ZHq7LQuH15DeoGzb9TW9O_71Nv99_WP-_9f52NYw62o3-4PDx7ANUGkn5qEtw6d6XgWHmLUNrWP4vZg8Omqd-RPIRdU5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Warburg+effect+as+a+therapeutic+target+for+bladder+cancers+and+intratumoral+heterogeneity+in+associated+molecular+targets&rft.jtitle=Cancer+science&rft.au=Burns%2C+Julie+E&rft.au=Hurst%2C+Carolyn+D&rft.au=Knowles%2C+Margaret+A&rft.au=Phillips%2C+Roger+M&rft.date=2021-09-01&rft.issn=1349-7006&rft.eissn=1349-7006&rft.volume=112&rft.issue=9&rft.spage=3822&rft_id=info:doi/10.1111%2Fcas.15047&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon