Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae?
Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O₂]) levels. In controlled‐laboratory experiments we explored the interactive effects of pH, [O₂], and semidiurnal pH fluctuations on the survivorship, development, and size o...
Saved in:
Published in | Global change biology Vol. 20; no. 3; pp. 754 - 764 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Science
01.03.2014
Blackwell Publishing Ltd Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O₂]) levels. In controlled‐laboratory experiments we explored the interactive effects of pH, [O₂], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O₂], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O₂] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O₂] reflective of their environment (80–260 μmol kg⁻¹). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses. |
---|---|
AbstractList | Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of
pH
and oxygen ([O
2
]) levels. In controlled‐laboratory experiments we explored the interactive effects of
pH
, [O
2
], and semidiurnal
pH
fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels,
Mytilus californianus
and
M. galloprovincialis
. Survivorship of larvae was unaffected by low
pH
, low [O
2
], or semidiurnal fluctuations for both mytilid species. Low
pH
(<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low
pH
was absent when incorporating semidiurnal fluctuations in both species. Also at low
pH
, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low
pH
for
M. galloprovincialis
but not for
M. californianus
. Low [O
2
] in combination with low
pH
had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O
2
] reflective of their environment (80–260
μ
mol kg
−1
). The role of
pH
variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses. Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O₂]) levels. In controlled‐laboratory experiments we explored the interactive effects of pH, [O₂], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O₂], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O₂] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O₂] reflective of their environment (80–260 μmol kg⁻¹). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses. Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2]) levels. In controlled-laboratory experiments we explored the interactive effects of pH, [O2], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O2], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O2] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O2] reflective of their environment (80-260 µmol kg-1). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses. [PUBLICATION ABSTRACT] Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O sub(2)]) levels. In controlled-laboratory experiments we explored the interactive effects of pH, [O sub(2)], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O sub(2)], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O sub(2)] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O sub(2)] reflective of their environment (80-260 mu mol kg super(-1)). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses. Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2 ]) levels. In controlled-laboratory experiments we explored the interactive effects of pH, [O2 ], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O2 ], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O2 ] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O2 ] reflective of their environment (80-260 μmol kg(-1) ). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses.Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2 ]) levels. In controlled-laboratory experiments we explored the interactive effects of pH, [O2 ], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O2 ], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O2 ] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O2 ] reflective of their environment (80-260 μmol kg(-1) ). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses. Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2]) levels. In controlled‐laboratory experiments we explored the interactive effects of pH, [O2], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O2], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O2] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O2] reflective of their environment (80–260 μmol kg−1). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses. Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2 ]) levels. In controlled-laboratory experiments we explored the interactive effects of pH, [O2 ], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O2 ], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O2 ] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O2 ] reflective of their environment (80-260 μmol kg(-1) ). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses. |
Author | Navarro, Michael O. Levin, Lisa A. Frieder, Christina A. Gonzalez, Jennifer P. Bockmon, Emily E. |
Author_xml | – sequence: 1 fullname: Frieder, Christina A – sequence: 2 fullname: Gonzalez, Jennifer P – sequence: 3 fullname: Bockmon, Emily E – sequence: 4 fullname: Navarro, Michael O – sequence: 5 fullname: Levin, Lisa A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28203899$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24343909$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0ltrFDEUAOBBKvaiD_4BDYigD9PmNsnmqbiL3SpFES0FX0Imc2ZJzUzWZKbt_nuz3W2FgpdALg_fOeRwzn6x04ceiuI5wYckr6OFrQ8J5ZPqUbFHmKjK_BY763fFS4IJ2y32U7rEGDOKxZNil3LGmcJqr7iYmR5dmehM7QEtT5HpG-TDNQo3qwX0qAsNRDMAChayNNY1rnXWDC70KIyDDR0k1IaIujEl8MibeGXg-GnxuDU-wbPtfVCcn7z_Njstzz7PP8zenZW2IiR_lLYUuIRa1kIxSUlTtxgEx7UVrcBtI_PJGBWqblStOAfRAOG2Vo20NpdxULzZ5F3G8HOENOjOJQvemx7CmDQRglWMiYn8N60wlvkX_D-yckUlZZxUmb56QC_DGPtc81oRpXIPWFYvtmqsO2j0MrrOxJW-a0QGr7fAJGt8G01vXfrtJhSziVq7txtnY0gpQntPCNbrYdB5GPTtMGR79MBaN9x2bojG-b9FXDsPqz-n1vPZ9C6i3ES4NMDNfYSJP7SQTFb64tNcfz-ZqumXGdMfs3-58a0J2ixirvH8K8WE47yl4pT9Ar2m2iI |
CitedBy_id | crossref_primary_10_3389_fmars_2020_567228 crossref_primary_10_1038_srep09638 crossref_primary_10_1126_science_aac4722 crossref_primary_10_1017_cft_2023_9 crossref_primary_10_1002_lom3_10077 crossref_primary_10_3389_fmars_2019_00062 crossref_primary_10_1038_s41598_019_53930_8 crossref_primary_10_1016_j_marchem_2017_02_004 crossref_primary_10_1016_j_scitotenv_2023_167465 crossref_primary_10_1016_j_marenvres_2019_02_011 crossref_primary_10_1016_j_marpolbul_2019_06_011 crossref_primary_10_1093_conphys_coaa008 crossref_primary_10_3389_fmars_2024_1253702 crossref_primary_10_1111_gcb_14879 crossref_primary_10_1038_s41598_017_02777_y crossref_primary_10_1890_14_0802_1 crossref_primary_10_1002_lno_10264 crossref_primary_10_1021_es501936p crossref_primary_10_1016_j_chemosphere_2016_06_095 crossref_primary_10_1016_j_scitotenv_2022_159576 crossref_primary_10_1093_icb_icaa072 crossref_primary_10_1371_journal_pone_0100353 crossref_primary_10_1111_gcb_17584 crossref_primary_10_1126_sciadv_1501938 crossref_primary_10_1002_ecs2_3015 crossref_primary_10_1007_s10811_023_03163_0 crossref_primary_10_5194_bg_17_3943_2020 crossref_primary_10_1002_lom3_10055 crossref_primary_10_3354_meps12921 crossref_primary_10_5194_bg_12_4209_2015 crossref_primary_10_1016_j_envres_2025_121143 crossref_primary_10_1080_00318884_2019_1628576 crossref_primary_10_1016_j_scitotenv_2020_141370 crossref_primary_10_1111_gcb_16165 crossref_primary_10_2983_035_037_0313 crossref_primary_10_1098_rspb_2016_1506 crossref_primary_10_1016_j_marenvres_2022_105704 crossref_primary_10_1016_j_ecss_2016_08_043 crossref_primary_10_3389_fmars_2018_00458 crossref_primary_10_1007_s00338_017_1590_9 crossref_primary_10_1016_j_marenvres_2020_105224 crossref_primary_10_3389_fmars_2021_602601 crossref_primary_10_3389_fmars_2022_909017 crossref_primary_10_1007_s12237_020_00720_5 crossref_primary_10_1111_gcb_13287 crossref_primary_10_1093_conphys_coab077 crossref_primary_10_1016_j_jhazmat_2023_130857 crossref_primary_10_5194_bg_15_3267_2018 crossref_primary_10_5194_bg_15_3717_2018 crossref_primary_10_1002_lom3_10318 crossref_primary_10_1038_s41598_020_59483_5 crossref_primary_10_1146_annurev_marine_121916_063619 crossref_primary_10_1016_j_scitotenv_2024_173383 crossref_primary_10_1002_lno_11303 crossref_primary_10_1111_mec_16124 crossref_primary_10_1029_2024JC021197 crossref_primary_10_1525_elementa_312 crossref_primary_10_1016_j_jhazmat_2024_136405 crossref_primary_10_1002_lno_10608 crossref_primary_10_1093_icesjms_fsac195 crossref_primary_10_1525_elementa_306 crossref_primary_10_1029_2023JC019892 crossref_primary_10_1021_es500514j crossref_primary_10_1016_j_marpolbul_2023_114700 crossref_primary_10_1038_s41598_017_10378_y crossref_primary_10_5194_bg_13_6247_2016 crossref_primary_10_3354_meps14144 crossref_primary_10_1073_pnas_1803546115 crossref_primary_10_1016_j_csr_2017_11_002 crossref_primary_10_3354_meps12298 crossref_primary_10_1093_icesjms_fsy097 crossref_primary_10_1002_lno_11669 crossref_primary_10_1007_s00227_014_2453_3 crossref_primary_10_1016_j_seares_2015_04_006 crossref_primary_10_1098_rspb_2017_1642 crossref_primary_10_1098_rspb_2018_2381 crossref_primary_10_1111_gcb_14868 crossref_primary_10_1016_j_ecolmodel_2024_110816 crossref_primary_10_1111_1365_2435_13067 crossref_primary_10_2983_035_034_0222 crossref_primary_10_1002_lno_12371 crossref_primary_10_1007_s00227_019_3633_y crossref_primary_10_1093_biosci_biv162 crossref_primary_10_1098_rsbl_2015_0976 crossref_primary_10_1093_icesjms_fsv171 crossref_primary_10_5194_bg_12_5853_2015 crossref_primary_10_1093_conphys_coz102 crossref_primary_10_3389_fmars_2021_647087 crossref_primary_10_5194_bg_12_4895_2015 crossref_primary_10_1111_gcb_16125 crossref_primary_10_1111_gcb_12833 crossref_primary_10_1002_lom3_10306 crossref_primary_10_1016_j_scitotenv_2024_174065 crossref_primary_10_1002_lom3_10389 crossref_primary_10_1016_j_scitotenv_2020_139084 crossref_primary_10_1007_s40641_019_00129_8 crossref_primary_10_1016_j_jembe_2023_151872 crossref_primary_10_1111_oik_01544 crossref_primary_10_1093_conphys_coz077 crossref_primary_10_1071_MF14154 crossref_primary_10_1038_s41598_020_71169_6 crossref_primary_10_1007_s00227_018_3311_5 crossref_primary_10_1146_annurev_marine_010419_010658 |
Cites_doi | 10.1029/2008GL034185 10.5194/bg-10-5967-2013 10.1371/journal.pone.0028983 10.1016/0967-0637(93)90048-8 10.1073/pnas.0810079105 10.1016/j.pocean.2007.08.007 10.3354/ab00109 10.3354/meps10123 10.1016/0022-0981(95)00190-5 10.1242/jeb.055939 10.5194/bg-10-2241-2013 10.3354/meps070223 10.1039/9781847550842 10.1371/journal.pone.0061065 10.1093/humupd/7.3.265 10.1007/BF00555190 10.1038/ngeo1297 10.1073/pnas.0803833105 10.1016/0198-0149(87)90021-5 10.3354/meps08043 10.1002/jez.b.21342 10.3354/meps177269 10.1126/science.1155676 10.1371/journal.pone.0023010 10.1111/j.1471-8286.2004.00837.x 10.5194/bg-10-193-2013 10.1016/j.dsr.2010.01.005 10.1126/science.1156401 10.1890/0012-9658(2001)082[1597:OSAPIV]2.0.CO;2 10.1038/ngeo1916 10.1029/2004JC002561 10.1016/j.jembe.2008.04.008 10.1146/annurev.marine.010908.163855 10.5194/bg-9-2509-2012 10.3354/meps10130 10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1 10.1016/j.cub.2010.09.057 10.3354/meps07802 10.4319/lo.1973.18.6.0897 10.2307/1541843 10.1007/BF00386804 10.1098/rspb.2011.2545 10.5194/bg-9-3917-2012 10.1016/j.csr.2012.06.009 10.1002/grl.50449 10.1093/oso/9780195117028.001.0001 10.1890/12-0567.1 10.1016/j.ydbio.2005.01.019 10.5194/bg-7-3879-2010 10.1016/j.marenvres.2011.10.004 10.1126/science.1149016 10.1080/07055900.2012.753028 |
ContentType | Journal Article |
Copyright | 2013 John Wiley & Sons Ltd 2015 INIST-CNRS 2013 John Wiley & Sons Ltd. Copyright © 2014 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2013 John Wiley & Sons Ltd – notice: 2015 INIST-CNRS – notice: 2013 John Wiley & Sons Ltd. – notice: Copyright © 2014 John Wiley & Sons Ltd |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7TN 7U6 H95 SOI 7S9 L.6 |
DOI | 10.1111/gcb.12485 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Environment Abstracts Oceanic Abstracts Sustainability Science Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Oceanic Abstracts Sustainability Science Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences Chemistry |
EISSN | 1365-2486 |
EndPage | 764 |
ExternalDocumentID | 3192454891 24343909 28203899 10_1111_gcb_12485 GCB12485 ark_67375_WNG_ZFB9BQC3_J US201400147942 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NSF‐OCE funderid: 0927445; 1041062 – fundername: NOAA funderid: NA10OAR4170060; NA08OAR4170669 – fundername: California Sea Grant College Program funderid: R/CC‐02EPD; R/CC‐04; R/OPCENV‐09 – fundername: PHS HHS grantid: NA08OAR4170669 – fundername: PHS HHS grantid: NA10OAR4170060 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AEUQT AFPWT BSCLL ESX WRC WUP AAYXX AEYWJ AGQPQ AGYGG CITATION IQODW AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7TN 7U6 H95 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c5115-22f2e47eb7b693721dbf0e640bc6f60fd7f6033269bd9b944e6de14cb9d7cc243 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:29:27 EDT 2025 Fri Jul 11 02:52:04 EDT 2025 Fri Jul 11 11:22:34 EDT 2025 Fri Jul 25 10:58:46 EDT 2025 Mon Jul 21 06:07:34 EDT 2025 Wed Apr 02 07:27:38 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 Tue Jul 01 03:52:51 EDT 2025 Wed Jan 22 16:30:17 EST 2025 Wed Oct 30 09:54:57 EDT 2024 Thu Apr 03 09:46:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Fluctuations Oxygen Variable multistressor Acidification mussel Larva Plankton Bivalvia coastal variability pH planktonic larvae Ocean Invertebrata Mollusca semidiurnal pH fluctuations |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2013 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5115-22f2e47eb7b693721dbf0e640bc6f60fd7f6033269bd9b944e6de14cb9d7cc243 |
Notes | http://dx.doi.org/10.1111/gcb.12485 NOAA - No. NA10OAR4170060; No. NA08OAR4170669 istex:F2896505DB23C4CF91887263407ACF4070262F31 ArticleID:GCB12485 California Sea Grant College Program - No. R/CC-02EPD; No. R/CC-04; No. R/OPCENV-09 NSF-OCE - No. 0927445; No. 1041062 Data S1. Adult spawning and larval culturing. ark:/67375/WNG-ZFB9BQC3-J ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24343909 |
PQID | 1491993543 |
PQPubID | 30327 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1663533687 proquest_miscellaneous_1500769344 proquest_miscellaneous_1492723415 proquest_journals_1491993543 pubmed_primary_24343909 pascalfrancis_primary_28203899 crossref_primary_10_1111_gcb_12485 crossref_citationtrail_10_1111_gcb_12485 wiley_primary_10_1111_gcb_12485_GCB12485 istex_primary_ark_67375_WNG_ZFB9BQC3_J fao_agris_US201400147942 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2014 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: March 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2014 |
Publisher | Blackwell Science Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Lucas JS, Costlow JD (1979) Effects of various temperature cycles on the larval development of the gastropod mollusc Crepidula fornicata. Marine Biology, 51, 111-117. Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquatic Biology, 4, 225-233. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science, 321, 926-929. Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Research, 40, 2115-2129. Dupont S, Lundve B, Thorndyke M (2010) Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. Journal of Experimental Zoology, 314, 382-389. Pörtner HO, Langenbuch M (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. Journal of Geophysical Research, 110, C09S10. Crawford WR, Peña MA (2013) Declining oxygen on the British Columbia continental shelf. Atmosphere-Ocean, 51, 88-103. Waldbusser GG, Brunner EL, Haley BA, Hales B, Langdon CJ, Prahl FG (2013) A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophysical Research Letters, 40, 2171-2176. Rilov G, Dudas SE, Menge BA, Grantham BA, Lubchenco J, Schiel DR (2008) The surf zone: a semi-permeable barrier to onshore recruitment of invertebrate larvae? Journal of Experimental Marine Biology and Ecology, 361, 59-74. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research, 34, 1733-1743. Eerkes-Medrano D, Menge BA, Sislak C, Langdon CJ (2013) Contrasting effects of hypoxic conditions on survivorship of planktonic larvae of rocky intertidal invertebrates. Marine Ecology Progress Series, 478, 139-151. Dufault AM, Cumbo VR, Fan T-Y, Edmunds PJ (2012) Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proceedings of the Royal Society B, 279, 2951-2958. Moran AL, Emlet RB (2001) Offspring size and performance in variable environments: field studies on a marine snail. Ecology, 82, 1597-1612. Sastry AN (1979) Metabolic adaptation of Cancer irroratus developmental stages to cyclic temperatures. Marine Biology, 51, 243-250. Hofmann GE, Smith JE, Johnson KS et al. (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE, 6, e28983. Shanks AL, Shearman RK (2009) Paradigm lost? Cross-shelf distributions of intertidal invertebrate larvae are unaffected by upwelling or downwelling. Marine Ecology Progress Series, 385, 189-204. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RN (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18, 897-907. Hayakaze E, Tanabe K (1999) Early larval shell development in mytilid bivalve Mytilus galloprovincialis. Venus, 58, 119-127. Carson HS, López-Duarte PC, Rasmussen L, Wang D, Levin LA (2010) Reproductive timing alters population connectivity in marine metapopulations. Current Biology, 20, 1926-1931. Orlando EF, Guillette LJ (2001) A re-examination of variaiton associated with environmentally stressed organisms. Human Reproduction Update, 7, 265-272. Cai W-J, Hu X, Huang W-J et al. (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 4, 766-770. Stramma L, Schmidtko S, Levin LA, Johnson GC (2010) Ocean oxygen minima expansions and their biological impacts. Deep-Sea Research, 57.4, 587-595. Gobler CJ, Talmage SC (2013) Short- and long-term consequences of larval stage exposure to constantly and ephemerally elevated carbon dioxide for marine bivalve populations. Biogeosciences, 10, 2241-2253. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive "acidified" water onto the continental shelf. Science, 320, 1490-1492. Gaylord B, Hill TM, Sanford E et al. (2011) Functional impacts of ocean acidification in an ecologically critical foundation species. Journal of Experimental Biology, 214, 2586-2594. Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Marine Ecology Progress Series, 177, 269-297. Hochachka PW, Somero GN (2002) Biochemical Adaptation: mechanism and Process in Physiological Evolution. Oxford University Press, New York. Hauri C, Gruber N, Vogt M et al. (2013) Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences, 10, 193-216. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series, 373, 275-284. Dickson AG, Sabine CL, Christian JR (2007) Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3, Sidney, British Columbia. Thomsen J, Gutowska MA, Saphörster J et al. (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7, 3879-3891. White MM, McCorkle DC, Mullineaux LS, Cohen AL (2013) Early exposure of bay scallops (Argopecten irradians) to high CO2 causes a decrease in larval shell growth. PLoS ONE, 8, e61065. Byrne M (2012) Global change ecotoxicology: Identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches. Marine Environmental Research, 76, 3-15. Bates NR, Best MHP, Neely K, Garley R, Dickson AG, Johnson RJ (2012) Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences, 9, 2509-2522. Bockmon EE, Frieder CA, Navarro MO, White-Kershek LA, Dickson AG (2013) Technical note: controlled experimental aquarium system for multi-stressor investigation of carbonate chemistry, oxygen saturation, and temperature. Biogeosciences, 10, 5967-5975. Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annual Review of Marine Science, 2, 199-229. Frieder CA, Nam SH, Martz TR, Levin LA (2012) High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences, 9, 3917-3930. Van Heuven SD, Pierrot JWB, Lewis RE, Wallace DWR (2011) MATLAB Program Developed for CO2 System Calculations, ORNL/CDIAC-105b. Oak Ridge, Tennessee, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. Chan F, Barth JA, Lubchenco J, Kirincich A, Weeks H, Peterson WT, Menge BA (2008) Emergence of anoxia in the California current large marine ecosystem. Science, 319, 920. Pörtner HO (2012) Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Marine Ecology Progress Series, 470, 273-290. Shanks AL, Brink L (2005) Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Marine Ecology Progress Series, 302, 1-12. Gosselin LA, Chia F-S (1996) Prey selection by inexperienced predators: do early juvenile snails maximize net energy gains on their first attack? Journal of Experimental Marine Biology and Ecology, 199, 45-58. Capone DG, Hutchins DA (2013) Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nature Geoscience, 6, 711-717. Bograd SJ, Castro CG, Di Lorenzo E, Palacios DM, Bailey H, Gilly W, Chavez FP (2008) Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophysical Research Letters, 35, L12607. Widdows J, Newell RIE, Mann R (1989) Effects of hypoxia and anoxia on survival, energy metabolism, and feeding of oyster larvae (Crassostrea virginica, Gmelin). Biological Bulletin, 177, 154-166. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences, 105, 15452-15457. Wang W, Widdows J (1991) Physiological responses of mussel larvae Mytilus edulis to environmental hypoxia and anoxia. Marine Ecology Progress Series, 70, 223-236. Hettinger A, Sanford E, Hill TM et al. (2012) Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology, 93, 2758-2768. Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences, 105, 18848-18853. Wilt FH (2005) Development biology meets material science: morphogenesis of biomineralized structures. Developmental Biology, 280, 15-25. Booth JAT, McPhee-Shaw EE, Chua P et al. (2012) Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Continental Shelf Research, 45, 108-115. Gazeau F, Gattuso J-P, Greaves M, Elderfield H, Peene J, Heip CHR, Middelburg JJ (2011) Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas). PLoS ONE, 6, e23010. Whitney FA, Freeland HJ, Robert M (2007) Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Progress in Oceanography, 75, 179-199. 1987; 34 1976 1973; 18 2008; 35 2008; 105 1971 2008; 4 2007; 75 2013; 8 2013; 6 2010; 20 2013; 10 2010; 314 2013; 51 2013; 478 2005; 302 2008; 319 1999; 58 2010; 57.4 1999; 177 2010; 2 2010; 7 2011; 214 1993; 40 2005; 110 2011 2013; 40 1989; 177 2007 1995 2002 2011; 4 2008; 321 2008; 320 2011; 6 2012; 76 2008; 361 1979; 51 2012; 93 2012; 470 2001; 82 2005; 280 2001; 7 2009; 385 1991; 70 1996; 199 2013 2012; 279 2012; 45 2008; 373 2012; 9 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_19_1 Costlow JDJ (e_1_2_6_12_1) 1971 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Gabbott PA (e_1_2_6_24_1) 1976 Hayakaze E (e_1_2_6_30_1) 1999; 58 Hochachka PW (e_1_2_6_32_1) 2002 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 Dickson AG (e_1_2_6_15_1) 1995 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Hauri C, Gruber N, Vogt M et al. (2013) Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences, 10, 193-216. – reference: Sastry AN (1979) Metabolic adaptation of Cancer irroratus developmental stages to cyclic temperatures. Marine Biology, 51, 243-250. – reference: Thomsen J, Gutowska MA, Saphörster J et al. (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7, 3879-3891. – reference: Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research, 34, 1733-1743. – reference: Hochachka PW, Somero GN (2002) Biochemical Adaptation: mechanism and Process in Physiological Evolution. Oxford University Press, New York. – reference: Lucas JS, Costlow JD (1979) Effects of various temperature cycles on the larval development of the gastropod mollusc Crepidula fornicata. Marine Biology, 51, 111-117. – reference: Byrne M (2012) Global change ecotoxicology: Identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches. Marine Environmental Research, 76, 3-15. – reference: Capone DG, Hutchins DA (2013) Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nature Geoscience, 6, 711-717. – reference: Gazeau F, Gattuso J-P, Greaves M, Elderfield H, Peene J, Heip CHR, Middelburg JJ (2011) Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas). PLoS ONE, 6, e23010. – reference: Chan F, Barth JA, Lubchenco J, Kirincich A, Weeks H, Peterson WT, Menge BA (2008) Emergence of anoxia in the California current large marine ecosystem. Science, 319, 920. – reference: Hayakaze E, Tanabe K (1999) Early larval shell development in mytilid bivalve Mytilus galloprovincialis. Venus, 58, 119-127. – reference: Bates NR, Best MHP, Neely K, Garley R, Dickson AG, Johnson RJ (2012) Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences, 9, 2509-2522. – reference: Shanks AL, Brink L (2005) Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Marine Ecology Progress Series, 302, 1-12. – reference: Gobler CJ, Talmage SC (2013) Short- and long-term consequences of larval stage exposure to constantly and ephemerally elevated carbon dioxide for marine bivalve populations. Biogeosciences, 10, 2241-2253. – reference: Waldbusser GG, Brunner EL, Haley BA, Hales B, Langdon CJ, Prahl FG (2013) A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophysical Research Letters, 40, 2171-2176. – reference: Moran AL, Emlet RB (2001) Offspring size and performance in variable environments: field studies on a marine snail. Ecology, 82, 1597-1612. – reference: Dupont S, Lundve B, Thorndyke M (2010) Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. Journal of Experimental Zoology, 314, 382-389. – reference: Dufault AM, Cumbo VR, Fan T-Y, Edmunds PJ (2012) Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proceedings of the Royal Society B, 279, 2951-2958. – reference: Hettinger A, Sanford E, Hill TM et al. (2012) Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology, 93, 2758-2768. – reference: Cai W-J, Hu X, Huang W-J et al. (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 4, 766-770. – reference: Hofmann GE, Smith JE, Johnson KS et al. (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE, 6, e28983. – reference: Orlando EF, Guillette LJ (2001) A re-examination of variaiton associated with environmentally stressed organisms. Human Reproduction Update, 7, 265-272. – reference: Shanks AL, Shearman RK (2009) Paradigm lost? Cross-shelf distributions of intertidal invertebrate larvae are unaffected by upwelling or downwelling. Marine Ecology Progress Series, 385, 189-204. – reference: Wang W, Widdows J (1991) Physiological responses of mussel larvae Mytilus edulis to environmental hypoxia and anoxia. Marine Ecology Progress Series, 70, 223-236. – reference: Dickson AG, Sabine CL, Christian JR (2007) Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3, Sidney, British Columbia. – reference: Pörtner HO (2012) Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Marine Ecology Progress Series, 470, 273-290. – reference: Van Heuven SD, Pierrot JWB, Lewis RE, Wallace DWR (2011) MATLAB Program Developed for CO2 System Calculations, ORNL/CDIAC-105b. Oak Ridge, Tennessee, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. – reference: Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences, 105, 15452-15457. – reference: Gaylord B, Hill TM, Sanford E et al. (2011) Functional impacts of ocean acidification in an ecologically critical foundation species. Journal of Experimental Biology, 214, 2586-2594. – reference: Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive "acidified" water onto the continental shelf. Science, 320, 1490-1492. – reference: Widdows J, Newell RIE, Mann R (1989) Effects of hypoxia and anoxia on survival, energy metabolism, and feeding of oyster larvae (Crassostrea virginica, Gmelin). Biological Bulletin, 177, 154-166. – reference: Bockmon EE, Frieder CA, Navarro MO, White-Kershek LA, Dickson AG (2013) Technical note: controlled experimental aquarium system for multi-stressor investigation of carbonate chemistry, oxygen saturation, and temperature. Biogeosciences, 10, 5967-5975. – reference: Eerkes-Medrano D, Menge BA, Sislak C, Langdon CJ (2013) Contrasting effects of hypoxic conditions on survivorship of planktonic larvae of rocky intertidal invertebrates. Marine Ecology Progress Series, 478, 139-151. – reference: Rilov G, Dudas SE, Menge BA, Grantham BA, Lubchenco J, Schiel DR (2008) The surf zone: a semi-permeable barrier to onshore recruitment of invertebrate larvae? Journal of Experimental Marine Biology and Ecology, 361, 59-74. – reference: Gosselin LA, Chia F-S (1996) Prey selection by inexperienced predators: do early juvenile snails maximize net energy gains on their first attack? Journal of Experimental Marine Biology and Ecology, 199, 45-58. – reference: White MM, McCorkle DC, Mullineaux LS, Cohen AL (2013) Early exposure of bay scallops (Argopecten irradians) to high CO2 causes a decrease in larval shell growth. PLoS ONE, 8, e61065. – reference: Wilt FH (2005) Development biology meets material science: morphogenesis of biomineralized structures. Developmental Biology, 280, 15-25. – reference: Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences, 105, 18848-18853. – reference: Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annual Review of Marine Science, 2, 199-229. – reference: Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Marine Ecology Progress Series, 177, 269-297. – reference: Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RN (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18, 897-907. – reference: Booth JAT, McPhee-Shaw EE, Chua P et al. (2012) Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Continental Shelf Research, 45, 108-115. – reference: Whitney FA, Freeland HJ, Robert M (2007) Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Progress in Oceanography, 75, 179-199. – reference: Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series, 373, 275-284. – reference: Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquatic Biology, 4, 225-233. – reference: Carson HS, López-Duarte PC, Rasmussen L, Wang D, Levin LA (2010) Reproductive timing alters population connectivity in marine metapopulations. Current Biology, 20, 1926-1931. – reference: Crawford WR, Peña MA (2013) Declining oxygen on the British Columbia continental shelf. Atmosphere-Ocean, 51, 88-103. – reference: Bograd SJ, Castro CG, Di Lorenzo E, Palacios DM, Bailey H, Gilly W, Chavez FP (2008) Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophysical Research Letters, 35, L12607. – reference: Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Research, 40, 2115-2129. – reference: Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science, 321, 926-929. – reference: Frieder CA, Nam SH, Martz TR, Levin LA (2012) High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences, 9, 3917-3930. – reference: Pörtner HO, Langenbuch M (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. Journal of Geophysical Research, 110, C09S10. – reference: Stramma L, Schmidtko S, Levin LA, Johnson GC (2010) Ocean oxygen minima expansions and their biological impacts. Deep-Sea Research, 57.4, 587-595. – year: 2011 – volume: 40 start-page: 2115 year: 1993 end-page: 2129 article-title: Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m‐cresol purple and at‐sea results publication-title: Deep‐Sea Research – volume: 51 start-page: 243 year: 1979 end-page: 250 article-title: Metabolic adaptation of developmental stages to cyclic temperatures publication-title: Marine Biology – volume: 177 start-page: 154 year: 1989 end-page: 166 article-title: Effects of hypoxia and anoxia on survival, energy metabolism, and feeding of oyster larvae ( , Gmelin) publication-title: Biological Bulletin – volume: 93 start-page: 2758 year: 2012 end-page: 2768 article-title: Persistent carry‐over effects of planktonic exposure to ocean acidification in the Olympia oyster publication-title: Ecology – volume: 45 start-page: 108 year: 2012 end-page: 115 article-title: Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast publication-title: Continental Shelf Research – volume: 105 start-page: 18848 year: 2008 end-page: 18853 article-title: Dynamic patterns and ecological impacts of declining ocean pH in a high‐resolution multi‐year dataset publication-title: Proceedings of the National Academy of Sciences – volume: 4 start-page: 766 year: 2011 end-page: 770 article-title: Acidification of subsurface coastal waters enhanced by eutrophication publication-title: Nature Geoscience – volume: 7 start-page: 3879 year: 2010 end-page: 3891 article-title: Calcifying invertebrates succeed in a naturally CO ‐rich coastal habitat but are threatened by high levels of future acidification publication-title: Biogeosciences – volume: 279 start-page: 2951 year: 2012 end-page: 2958 article-title: Effects of diurnally oscillating pCO on the calcification and survival of coral recruits publication-title: Proceedings of the Royal Society B – volume: 214 start-page: 2586 year: 2011 end-page: 2594 article-title: Functional impacts of ocean acidification in an ecologically critical foundation species publication-title: Journal of Experimental Biology – start-page: 293 year: 1976 end-page: 355 – volume: 319 start-page: 920 year: 2008 article-title: Emergence of anoxia in the California current large marine ecosystem publication-title: Science – volume: 110 start-page: C09S10 year: 2005 article-title: Synergistic effects of temperature extremes, hypoxia, and increases in CO on marine animals: from Earth history to global change publication-title: Journal of Geophysical Research – volume: 51 start-page: 88 year: 2013 end-page: 103 article-title: Declining oxygen on the British Columbia continental shelf publication-title: Atmosphere‐Ocean – volume: 6 start-page: e23010 year: 2011 article-title: Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster ( ) publication-title: PLoS ONE – volume: 8 start-page: e61065 year: 2013 article-title: Early exposure of bay scallops ( ) to high CO causes a decrease in larval shell growth publication-title: PLoS ONE – volume: 314 start-page: 382 year: 2010 end-page: 389 article-title: Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star publication-title: Journal of Experimental Zoology – volume: 10 start-page: 2241 year: 2013 end-page: 2253 article-title: Short‐ and long‐term consequences of larval stage exposure to constantly and ephemerally elevated carbon dioxide for marine bivalve populations publication-title: Biogeosciences – volume: 35 start-page: L12607 year: 2008 article-title: Oxygen declines and the shoaling of the hypoxic boundary in the California Current publication-title: Geophysical Research Letters – volume: 6 start-page: e28983 year: 2011 article-title: High‐frequency dynamics of ocean pH: a multi‐ecosystem comparison publication-title: PLoS ONE – volume: 478 start-page: 139 year: 2013 end-page: 151 article-title: Contrasting effects of hypoxic conditions on survivorship of planktonic larvae of rocky intertidal invertebrates publication-title: Marine Ecology Progress Series – volume: 7 start-page: 265 year: 2001 end-page: 272 article-title: A re‐examination of variaiton associated with environmentally stressed organisms publication-title: Human Reproduction Update – volume: 82 start-page: 1597 year: 2001 end-page: 1612 article-title: Offspring size and performance in variable environments: field studies on a marine snail publication-title: Ecology – volume: 58 start-page: 119 year: 1999 end-page: 127 article-title: Early larval shell development in mytilid bivalve publication-title: Venus – volume: 76 start-page: 3 year: 2012 end-page: 15 article-title: Global change ecotoxicology: Identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches publication-title: Marine Environmental Research – volume: 40 start-page: 2171 year: 2013 end-page: 2176 article-title: A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity publication-title: Geophysical Research Letters – volume: 320 start-page: 1490 year: 2008 end-page: 1492 article-title: Evidence for upwelling of corrosive “acidified” water onto the continental shelf publication-title: Science – volume: 321 start-page: 926 year: 2008 end-page: 929 article-title: Spreading dead zones and consequences for marine ecosystems publication-title: Science – volume: 57.4 start-page: 587 year: 2010 end-page: 595 article-title: Ocean oxygen minima expansions and their biological impacts publication-title: Deep‐Sea Research – year: 2007 – volume: 4 start-page: 225 year: 2008 end-page: 233 article-title: Effects of elevated pCO on early development in the mussel publication-title: Aquatic Biology – volume: 18 start-page: 897 year: 1973 end-page: 907 article-title: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure publication-title: Limnology and Oceanography – volume: 2 start-page: 199 year: 2010 end-page: 229 article-title: Ocean deoxygenation in a warming world publication-title: Annual Review of Marine Science – volume: 9 start-page: 2509 year: 2012 end-page: 2522 article-title: Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean publication-title: Biogeosciences – volume: 51 start-page: 111 year: 1979 end-page: 117 article-title: Effects of various temperature cycles on the larval development of the gastropod mollusc publication-title: Marine Biology – volume: 177 start-page: 269 year: 1999 end-page: 297 article-title: On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles publication-title: Marine Ecology Progress Series – volume: 302 start-page: 1 year: 2005 end-page: 12 article-title: Upwelling, downwelling, and cross‐shelf transport of bivalve larvae: test of a hypothesis publication-title: Marine Ecology Progress Series – volume: 10 start-page: 5967 year: 2013 end-page: 5975 article-title: Technical note: controlled experimental aquarium system for multi‐stressor investigation of carbonate chemistry, oxygen saturation, and temperature publication-title: Biogeosciences – volume: 20 start-page: 1926 year: 2010 end-page: 1931 article-title: Reproductive timing alters population connectivity in marine metapopulations publication-title: Current Biology – volume: 75 start-page: 179 year: 2007 end-page: 199 article-title: Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific publication-title: Progress in Oceanography – volume: 280 start-page: 15 year: 2005 end-page: 25 article-title: Development biology meets material science: morphogenesis of biomineralized structures publication-title: Developmental Biology – volume: 385 start-page: 189 year: 2009 end-page: 204 article-title: Paradigm lost? Cross‐shelf distributions of intertidal invertebrate larvae are unaffected by upwelling or downwelling publication-title: Marine Ecology Progress Series – volume: 70 start-page: 223 year: 1991 end-page: 236 article-title: Physiological responses of mussel larvae to environmental hypoxia and anoxia publication-title: Marine Ecology Progress Series – year: 2002 – year: 1995 – volume: 9 start-page: 3917 year: 2012 end-page: 3930 article-title: High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest publication-title: Biogeosciences – volume: 361 start-page: 59 year: 2008 end-page: 74 article-title: The surf zone: a semi‐permeable barrier to onshore recruitment of invertebrate larvae? publication-title: Journal of Experimental Marine Biology and Ecology – volume: 373 start-page: 275 year: 2008 end-page: 284 article-title: Effects of CO ‐driven ocean acidification on the early developmental stages of invertebrates publication-title: Marine Ecology Progress Series – volume: 34 start-page: 1733 year: 1987 end-page: 1743 article-title: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media publication-title: Deep‐Sea Research – volume: 470 start-page: 273 year: 2012 end-page: 290 article-title: Integrating climate‐related stressor effects on marine organisms: unifying principles linking molecule to ecosystem‐level changes publication-title: Marine Ecology Progress Series – volume: 6 start-page: 711 year: 2013 end-page: 717 article-title: Microbial biogeochemistry of coastal upwelling regimes in a changing ocean publication-title: Nature Geoscience – start-page: 211 year: 1971 end-page: 220 – volume: 199 start-page: 45 year: 1996 end-page: 58 article-title: Prey selection by inexperienced predators: do early juvenile snails maximize net energy gains on their first attack? publication-title: Journal of Experimental Marine Biology and Ecology – volume: 10 start-page: 193 year: 2013 end-page: 216 article-title: Spatiotemporal variability and long‐term trends of ocean acidification in the California Current System publication-title: Biogeosciences – volume: 105 start-page: 15452 year: 2008 end-page: 15457 article-title: Thresholds of hypoxia for marine biodiversity publication-title: Proceedings of the National Academy of Sciences – year: 2013 – ident: e_1_2_6_4_1 doi: 10.1029/2008GL034185 – ident: e_1_2_6_3_1 doi: 10.5194/bg-10-5967-2013 – ident: e_1_2_6_33_1 doi: 10.1371/journal.pone.0028983 – ident: e_1_2_6_11_1 doi: 10.1016/0967-0637(93)90048-8 – ident: e_1_2_6_58_1 doi: 10.1073/pnas.0810079105 – ident: e_1_2_6_55_1 doi: 10.1016/j.pocean.2007.08.007 – ident: e_1_2_6_36_1 doi: 10.3354/ab00109 – ident: e_1_2_6_42_1 doi: 10.3354/meps10123 – ident: e_1_2_6_22_1 – ident: e_1_2_6_28_1 doi: 10.1016/0022-0981(95)00190-5 – start-page: 293 volume-title: Marine Mussels: Their Ecology and Physiology year: 1976 ident: e_1_2_6_24_1 – ident: e_1_2_6_25_1 doi: 10.1242/jeb.055939 – ident: e_1_2_6_27_1 doi: 10.5194/bg-10-2241-2013 – ident: e_1_2_6_53_1 doi: 10.3354/meps070223 – ident: e_1_2_6_17_1 doi: 10.1039/9781847550842 – ident: e_1_2_6_54_1 doi: 10.1371/journal.pone.0061065 – ident: e_1_2_6_40_1 doi: 10.1093/humupd/7.3.265 – ident: e_1_2_6_37_1 doi: 10.1007/BF00555190 – volume: 58 start-page: 119 year: 1999 ident: e_1_2_6_30_1 article-title: Early larval shell development in mytilid bivalve Mytilus galloprovincialis publication-title: Venus – ident: e_1_2_6_7_1 doi: 10.1038/ngeo1297 – ident: e_1_2_6_51_1 doi: 10.1073/pnas.0803833105 – ident: e_1_2_6_16_1 doi: 10.1016/0198-0149(87)90021-5 – ident: e_1_2_6_47_1 doi: 10.3354/meps08043 – ident: e_1_2_6_19_1 doi: 10.1002/jez.b.21342 – ident: e_1_2_6_41_1 doi: 10.3354/meps177269 – ident: e_1_2_6_21_1 doi: 10.1126/science.1155676 – ident: e_1_2_6_26_1 doi: 10.1371/journal.pone.0023010 – ident: e_1_2_6_46_1 doi: 10.1111/j.1471-8286.2004.00837.x – ident: e_1_2_6_29_1 doi: 10.5194/bg-10-193-2013 – ident: e_1_2_6_48_1 doi: 10.1016/j.dsr.2010.01.005 – start-page: 211 volume-title: Fourth European Marine Biology Symposium year: 1971 ident: e_1_2_6_12_1 – ident: e_1_2_6_14_1 doi: 10.1126/science.1156401 – ident: e_1_2_6_39_1 doi: 10.1890/0012-9658(2001)082[1597:OSAPIV]2.0.CO;2 – ident: e_1_2_6_8_1 doi: 10.1038/ngeo1916 – ident: e_1_2_6_43_1 doi: 10.1029/2004JC002561 – ident: e_1_2_6_44_1 doi: 10.1016/j.jembe.2008.04.008 – ident: e_1_2_6_34_1 doi: 10.1146/annurev.marine.010908.163855 – ident: e_1_2_6_2_1 doi: 10.5194/bg-9-2509-2012 – ident: e_1_2_6_20_1 doi: 10.3354/meps10130 – ident: e_1_2_6_50_1 doi: 10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1 – ident: e_1_2_6_9_1 doi: 10.1016/j.cub.2010.09.057 – ident: e_1_2_6_35_1 doi: 10.3354/meps07802 – ident: e_1_2_6_38_1 doi: 10.4319/lo.1973.18.6.0897 – ident: e_1_2_6_56_1 doi: 10.2307/1541843 – ident: e_1_2_6_45_1 doi: 10.1007/BF00386804 – ident: e_1_2_6_18_1 doi: 10.1098/rspb.2011.2545 – ident: e_1_2_6_23_1 doi: 10.5194/bg-9-3917-2012 – ident: e_1_2_6_5_1 doi: 10.1016/j.csr.2012.06.009 – ident: e_1_2_6_52_1 doi: 10.1002/grl.50449 – volume-title: Biochemical Adaptation: mechanism and Process in Physiological Evolution year: 2002 ident: e_1_2_6_32_1 doi: 10.1093/oso/9780195117028.001.0001 – ident: e_1_2_6_31_1 doi: 10.1890/12-0567.1 – ident: e_1_2_6_57_1 doi: 10.1016/j.ydbio.2005.01.019 – ident: e_1_2_6_49_1 doi: 10.5194/bg-7-3879-2010 – ident: e_1_2_6_6_1 doi: 10.1016/j.marenvres.2011.10.004 – volume-title: WOCE Operations Manual, Part 3.1.3 Operations and Methods year: 1995 ident: e_1_2_6_15_1 – ident: e_1_2_6_10_1 doi: 10.1126/science.1149016 – ident: e_1_2_6_13_1 doi: 10.1080/07055900.2012.753028 |
SSID | ssj0003206 |
Score | 2.4518495 |
Snippet | Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O₂]) levels. In... Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2]) levels. In... Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O 2 ]) levels. In... Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2 ]) levels. In... Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O sub(2)]) levels. In... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 754 |
SubjectTerms | Acidification Animal and plant ecology Animal, plant and microbial ecology Animals Biological and medical sciences chemistry climate Climate change coastal variability Diurnal variations Fluctuations Fundamental and applied biological sciences. Psychology General aspects growth & development Hydrogen-Ion Concentration Invertebrates Larva Larva - growth & development Larva - metabolism Larvae Larval development Marine Marine biology metabolism Mollusca Mollusks multistressor mussel mussels Mytilus Mytilus - growth & development Mytilus - metabolism Mytilus californianus Ocean acidification Oceans Oceans and Seas oxygen Oxygen - metabolism planktonic larvae Seawater Seawater - chemistry semidiurnal pH fluctuations survival rate variance |
Title | Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae? |
URI | https://api.istex.fr/ark:/67375/WNG-ZFB9BQC3-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12485 https://www.ncbi.nlm.nih.gov/pubmed/24343909 https://www.proquest.com/docview/1491993543 https://www.proquest.com/docview/1492723415 https://www.proquest.com/docview/1500769344 https://www.proquest.com/docview/1663533687 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddYbCXdcvW1VtXtDFKXxxsSbYj9jCW0DQUWthHaBkDI9lSKfXsEif7-ut3JzvOMroy9pDg4BNI59Ppd_Hd7wh5pXhgDQBxX8CVL0IT-NImWJyjRaRYrrTj2T45jSdTcXwenW-Q18tamIYfovvDDXeG89e4wZWuf9vkF5nuh0jIBf4Xc7UQEL1fUUdx5vpqhjwS4GpC3rIKYRZPN3LtLLpjVQUIFZX7HTMkVQ1Ksk13i5vg5zqadcfReIt8Xi6kyUK56i_mup_9_IPj8T9X-oDcb2EqfdvY1UOyYcoeuds0rvzRI9uHq_o4EGsdRN0j3gmA8GrmxOg-HRWXgIjdr0fkbKRK-hVic6zWotcTqsqcFtU3CksAM6bYlAeJKygcqSCpsssc85ic6dBqMYdpm5oCyKZfFnVtClpgXyPz5jGZjg8_jiZ-29fBzwDeRT5jlhmRGJ3oGNARC3NtAxOLQGexjQObJ_DNAVdKnUsthTBxbkKRaZknWcYE3yabZVWaHUIhGoP4Phpk3IbCcqOjPLYQMcmB0VIPjEcOlk84zVrSc-y9UaTL4AeUmzrleuRlJ3rdMH3cJLQDZpKqC_DA6fQDw_gUPuDUmEf2ne10g9XsCrPmkig9Oz1KP42HcvhuxNNjj-ytGVc3AKJfR3fokd2ltaWtR6khRJOYaxkJ7pEX3W3wBfiCR5WmWjgZljDAJdEtMhG-fJVciFtkEIZyHg8SjzxprH01SSxFlgFM8sDZ7N91lR6Nhu7i6b-LPiP3UKdNkt8u2ZzPFuY5oL653nPb-xcB4k5s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED5tQwi-8DIYC4xhEJr2JVUSO0ktISFa1pWxVgJWbZqEojhxpmklmZqWt1_PnZOmFI0J8aFVop4l-3o-P5fcPQfwMuZOphGI2wKvbOFqx5ZZSMU5Svixl8bK8GwPhkF_JA5O_JMVeDWvhan4IZoHbrQzjL-mDU4PpH_b5WeJarnEyLUKN6ijNzHnv_24II_inums6XJfoLNxec0rRHk8zdCl02g1iwvEqKTe75QjGZeopqzqb3EVAF3Gs-ZA6t2Fz_OlVHkoF63ZVLWSn3-wPP7vWu_BnRqpsjeVad2HFZ2vw82qd-WPddjYW5TIoVjtI8p1sAaIw4uJEWM7rDs-R1Bs7h7AcTfO2VcMz6lgi132WZynbFx8Y7gGtGRGfXmIu4LhqYqScXKeUiqTsR5WzKY4b10yxNnsy6ws9ZiNqbWRfv0QRr29o27frls72AkiPN_2vMzTItQqVAECJM9NVeboQDgqCbLAydIQvzlCS6lSqaQQOki1KxIl0zBJPME3YC0vcr0JDAMyDPH9dsIzV2RcKz8NMgyaZFsrqdragt35XxwlNe85td8YR_P4B5UbGeVa8KIRvazIPq4S2kQ7ieIzdMLR6JNHISp-0K95FuwY42kGx5MLSpwL_eh4uB-d9jqy86HLowMLtpesqxmAAbBhPLRga25uUe1USozSJKVb-oJb8Lz5Gd0BveOJc13MjIwXeghN_GtkfHr_KrkQ18gQEuU8aIcWPKrMfTFJqkaWDk5y1xjt33UV7Xc75uLxv4s-g1v9o8FhdPhu-P4J3Cb9Vjl_W7A2ncz0UwSBU7Vt9vovySBSiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQyBe-BiMBcYwCE17SZXYTlKLB0S7dWWwio9VmxBSFCf2NK0kVdPy9ddzdtKUojEhHlqlylmyL-fz75q73wE8T5inFQJxl-OVy33luUJHpjhH8iChWSItz_bRIOwP-eFpcLoCL-a1MBU_RPOHm9kZ1l-bDT7O9G-b_CyVLd8Qcq3CNR56wvRt2Puw4I5i1DbW9FnA0df4rKYVMmk8zdClw2hVJwVCVKPd7yZFMilRS7pqb3EZ_lyGs_Y86t2Gz_OVVGkoF63ZVLbSn3-QPP7nUu_ArRqnkleVYd2FFZWvw_Wqc-WPddjYXxTIoVjtIcp1cI4QhRcTK0Z2SHd0jpDY_roHJ90kJ18xODflWmTcJ0mekVHxjeAS0I6J6cpjmCsInqkomaTnmUlksrZDitkUp61KgiibfJmVpRqRkWlspF7eh2Fv_7jbd-vGDm6K-C5wKdVU8UjJSIYIj6ifSe2pkHsyDXXo6SzCb4bAUshMSMG5CjPl81SKLEpTytkGrOVFrjaBYDiGAX7QTpn2uWZKBlmoMWQSbSWFbCsHdudPOE5r1nPTfGMUz6MfVG5slevAs0Z0XFF9XCa0iWYSJ2foguPhR2oCVPygV6MO7FjbaQYnkwuTNhcF8cngIP7U64jO-y6LDx3YXjKuZgCGv5bv0IGtubXFtUspMUYTJtky4MyBp81tdAbmDU-Sq2JmZWhEEZgEV8gE5u2rYJxfIWNwKGNhO3LgQWXti0maWmTh4SR3rc3-XVfxQbdjLx7-u-gTuPFurxe_fT148whuGvVWCX9bsDadzNRjRIBTuW13-i-I0lE3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+variable+pH+and+low+oxygen+moderate+ocean+acidification+outcomes+for+mussel+larvae%3F&rft.jtitle=Global+change+biology&rft.au=Frieder%2C+Christina+A.&rft.au=Gonzalez%2C+Jennifer+P.&rft.au=Bockmon%2C+Emily+E.&rft.au=Navarro%2C+Michael+O.&rft.date=2014-03-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=20&rft.issue=3&rft.spage=754&rft.epage=764&rft_id=info:doi/10.1111%2Fgcb.12485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gcb_12485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |