Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties

Simulation of blood flow using image‐based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject‐specific geometric...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in biomedical engineering Vol. 27; no. 7; pp. 1000 - 1016
Main Authors Xiong, Guanglei, Figueroa, C. Alberto, Xiao, Nan, Taylor, Charles A.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.07.2011
Wiley
Subjects
Online AccessGet full text
ISSN2040-7939
2040-7947
2040-7947
DOI10.1002/cnm.1404

Cover

Loading…
Abstract Simulation of blood flow using image‐based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject‐specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid–structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject‐specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline‐based and surface‐based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject‐specific vascular models with thoracic and cerebral aneurysms. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList Simulation of blood flow using image‐based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject‐specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid–structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject‐specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline‐based and surface‐based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject‐specific vascular models with thoracic and cerebral aneurysms. Copyright © 2010 John Wiley & Sons, Ltd.
Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject-specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid-structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject-specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline-based and surface-based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject-specific vascular models with thoracic and cerebral aneurysms.
Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject-specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid-structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject-specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline-based and surface-based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject-specific vascular models with thoracic and cerebral aneurysms.Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject-specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid-structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject-specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline-based and surface-based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject-specific vascular models with thoracic and cerebral aneurysms.
Author Figueroa, C. Alberto
Xiao, Nan
Xiong, Guanglei
Taylor, Charles A.
AuthorAffiliation 1 Biomedical Informatics Program, Stanford University, Stanford, CA 94305, U.S.A
3 Departments of Bioengineering and Surgery, Stanford University, Stanford, CA 94305, U.S.A
2 Department of Bioengineering, Stanford University, Stanford, CA 94305, U.S.A
AuthorAffiliation_xml – name: 1 Biomedical Informatics Program, Stanford University, Stanford, CA 94305, U.S.A
– name: 3 Departments of Bioengineering and Surgery, Stanford University, Stanford, CA 94305, U.S.A
– name: 2 Department of Bioengineering, Stanford University, Stanford, CA 94305, U.S.A
Author_xml – sequence: 1
  givenname: Guanglei
  surname: Xiong
  fullname: Xiong, Guanglei
  organization: Biomedical Informatics Program, Stanford University, Stanford, CA 94305, U.S.A
– sequence: 2
  givenname: C. Alberto
  surname: Figueroa
  fullname: Figueroa, C. Alberto
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, U.S.A
– sequence: 3
  givenname: Nan
  surname: Xiao
  fullname: Xiao, Nan
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, U.S.A
– sequence: 4
  givenname: Charles A.
  surname: Taylor
  fullname: Taylor, Charles A.
  email: taylorca@stanford.edu
  organization: Departments of Bioengineering and Surgery, Stanford University, Stanford, CA 94305, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24306655$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21765984$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1vFCEUhiemxtbaxF9guDHxZlYYYBhuTMxGW5Na43fiDWHYMyuVgSnM7Lr_Xtaua2s0cgGH8Jz3vOSc-8WBDx6K4iHBM4Jx9dT4fkYYZneKowozXArJxME-pvKwOEnpEudVSSkFvVccVkTUXDbsqBjf235yerTBo9Ch1oWwQJ0La2Q9WkAXYq9bB2gFKYFLaErWL1Ga2kswY5kGMLazBi0h9DDGDdJ-gdKQ9bRzG7TScbPl1_mGhhgGiKOF9KC422mX4GR3HhcfX774MD8rz9-cvpo_Py8NJ4SVrOWy7QTHptIcGiqh7TDnWPKuIsAbCdu4Yq0meaMLSYwmwlBhGiNbLelx8exad5jaHhYG_Bi1U0O0fTamgrbq9ou3X9UyrBQlVNCmygJPdgIxXE2QRtXbZMA57SFMSZGGciZq1vD_o7UgFc8kyeijm7b2fn51JQOPd4BORrsuam9s-s0xiuua36hpYkgpQrdHCFbb2VB5NtR2NjI6-wM1dvzZ9vxx6_6WUF4nrK2DzT-F1fzi9W3ephG-73kdv6laUMHV54tTheXZO_mp_qLe0h_a9NqI
CitedBy_id crossref_primary_10_1007_s10237_012_0418_3
crossref_primary_10_1002_cnm_2581
crossref_primary_10_1016_j_cpet_2012_10_003
crossref_primary_10_1108_09615531211271907
crossref_primary_10_1002_cnm_3794
crossref_primary_10_1016_j_radi_2020_11_018
crossref_primary_10_1093_ejcts_ezy312
crossref_primary_10_32604_cmes_2024_056289
crossref_primary_10_1002_cnm_2523
crossref_primary_10_1007_s10237_011_0289_z
crossref_primary_10_3390_biomedinformatics2010002
crossref_primary_10_3390_s20164484
crossref_primary_10_1063_1_4825031
crossref_primary_10_1016_j_jtcvs_2016_09_040
crossref_primary_10_1063_5_0161809
crossref_primary_10_1007_s10439_023_03350_7
crossref_primary_10_1016_j_bspc_2019_101817
crossref_primary_10_1039_C4IB00296B
crossref_primary_10_1142_S0129183113501076
crossref_primary_10_1115_1_4029909
crossref_primary_10_5402_2013_602707
crossref_primary_10_1039_D0SM00333F
crossref_primary_10_1002_cnm_2595
crossref_primary_10_1007_s10237_012_0383_x
crossref_primary_10_1002_cnm_2533
crossref_primary_10_1002_cnm_2598
crossref_primary_10_1002_cnm_1485
crossref_primary_10_1002_cnm_2552
crossref_primary_10_1016_j_bspc_2016_09_025
crossref_primary_10_3389_fbioe_2023_1103905
crossref_primary_10_1007_s00542_018_4159_9
crossref_primary_10_1007_s10237_012_0450_3
crossref_primary_10_1080_21681163_2022_2040054
crossref_primary_10_1098_rsif_2023_0656
crossref_primary_10_1115_1_4005228
crossref_primary_10_1115_1_4037857
crossref_primary_10_1002_adhm_202201830
crossref_primary_10_1093_bmb_ldw049
crossref_primary_10_3390_diagnostics11040685
crossref_primary_10_1016_j_medengphy_2012_08_009
crossref_primary_10_1063_5_0109400
crossref_primary_10_1007_s00380_019_01494_y
crossref_primary_10_1016_j_compmedimag_2016_06_003
crossref_primary_10_1016_j_jbiomech_2018_09_013
crossref_primary_10_1016_j_media_2021_102186
crossref_primary_10_1142_S0219519417500415
Cites_doi 10.1146/annurev.bioeng.10.061807.160439
10.1109/51.805142
10.1016/j.gmod.2005.01.004
10.1007/BF02058357
10.1146/annurev.fluid.36.050802.121944
10.1145/1276377.1276448
10.1007/s10439-008-9590-0
10.3109/10929089909148176
10.1016/0021-9150(81)90027-7
10.1146/annurev.bioeng.10.061807.160521
10.1002/nme.205
10.1016/j.cma.2009.02.012
10.1016/j.compstruc.2004.03.083
10.1016/j.neuroimage.2006.01.015
10.1016/S0741-5214(98)70210-1
10.1109/TMI.2003.815056
10.1109/TMI.2007.905081
10.1016/j.cma.2005.05.050
10.1016/S0021-9290(01)00018-5
10.1016/S1076-6332(03)80562-7
10.1016/S0045-7825(98)80008-X
10.1109/TVCG.2007.1002
10.1109/TMI.2003.812261
10.1007/s00466-006-0084-3
10.1016/S0169-2607(98)00008-X
10.1023/A:1007979827043
10.1016/S0895-6111(02)00020-4
10.1007/s11517-008-0420-1
10.1007/s10439-009-9669-2
10.1016/j.cma.2005.11.011
10.1016/S0045-7825(01)00302-4
10.1016/j.jvs.2006.08.026
10.1109/42.974935
10.1016/j.cma.2005.04.014
10.1016/j.cma.2008.09.013
10.1161/01.RES.53.4.502
10.1007/s10439-005-8772-2
10.1016/j.cma.2007.02.009
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright © 2010 John Wiley & Sons, Ltd. 2010
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 John Wiley & Sons, Ltd. 2010
DBID BSCLL
AAYXX
CITATION
IQODW
NPM
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
DOI 10.1002/cnm.1404
DatabaseName Istex
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Civil Engineering Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 2040-7947
EndPage 1016
ExternalDocumentID PMC3137382
21765984
24306655
10_1002_cnm_1404
CNM1404
ark_67375_WNG_09HR9V6Z_Q
Genre article
Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: P50 HL083800
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
1OB
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
IQODW
NPM
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c5114-4b59bf750c2a5e839ebf055095f21e589e509524ba124b3d91ca17c37c8c9ba93
IEDL.DBID DR2
ISSN 2040-7939
2040-7947
IngestDate Thu Aug 21 14:04:09 EDT 2025
Fri Jul 11 01:40:25 EDT 2025
Fri Jul 11 01:29:51 EDT 2025
Sat May 31 02:05:11 EDT 2025
Mon Jul 21 09:15:31 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Sun Aug 24 03:22:15 EDT 2025
Wed Jan 22 17:01:16 EST 2025
Wed Oct 30 09:51:49 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Computational fluid dynamics
Segmentation
Aneurysm
Fluid-structure interactions
wall mechanical properties
Mechanical properties
Cardiovascular disease
Tissues
Epidemiology
deformable walls
Geometrical model
image-based modeling
subject-specific geometry
Blood flow
Vibrations
vascular model construction
Blood circulation
Wall flow
blood flow simulation
Medical imagery
Modelling
Circulatory system
Man
Planning
Language English
License http://doi.wiley.com/10.1002/tdm_license_1
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5114-4b59bf750c2a5e839ebf055095f21e589e509524ba124b3d91ca17c37c8c9ba93
Notes ArticleID:CNM1404
ark:/67375/WNG-09HR9V6Z-Q
istex:E22D26D14B3E47D9A4A2C8CFBD602D527CB2471D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
taylorca@stanford.edu
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3137382
PMID 21765984
PQID 1671254851
PQPubID 23500
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3137382
proquest_miscellaneous_1835476485
proquest_miscellaneous_1671254851
pubmed_primary_21765984
pascalfrancis_primary_24306655
crossref_primary_10_1002_cnm_1404
crossref_citationtrail_10_1002_cnm_1404
wiley_primary_10_1002_cnm_1404_CNM1404
istex_primary_ark_67375_WNG_09HR9V6Z_Q
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
– name: England
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int. J. Numer. Meth. Biomed. Engng
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Antiga L, Ene-Iordache B, Caverni L, Cornalba GP, Remuzzi A. Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography. Computerized Medical Imaging and Graphics 2002; 26(4):227-235.
Kim Y, Lim S, Raman SV, Simonetti OP, Friedman A. Blood flow in a compliant vessel by the immersed boundary method. Annals of Biomedical Engineering 2009; 37(5):927-942.
Antiga L, Ene-Iordache B, Remuzzi A. Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Transactions on Medical Imaging 2003; 22(5):674-684.
Nichols WW, O'Rourke MF, McDonald DA. McDonald's Blood Flow in Arteries: Theoretic, Experimental, and Clinical Principles (5th edn). Hodder Arnold: London, 2005.
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31(3):1116-1128.
Gerbeau JF, Vidrascu M, Frey P. Fluid-structure interaction in blood flows on geometries based on medical imaging. Computers and Structures 2005; 83(2-3):155-165.
Boissonnat JD, Oudot S. Provably good sampling and meshing of surfaces. Graphical Models 2005; 67(5):405-451.
Bazilevs Y, Calo VM, Zhang Y, Hughes TJR. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Computational Mechanics 2006; 38(4-5):310-322.
Figueroa CA, Baek S, Taylor CA, Humphrey JD. A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Computer Methods in Applied Mechanics and Engineering 2009; 198(45-46):3583-3602.
Wang KC, Dutton RW, Taylor CA. Improving geometric model construction for blood flow modeling. IEEE Engineering in Medicine and Biology Magazine 1999; 18(6):33-39.
Formaggia L, Gerbeau JF, Nobile F, Quarteroni A. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics and Engineering 2001; 191(6-7):561-582.
Cebral JR, Yim PJ, Lohner R, Soto O, Choyke PL. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Academic Radiology 2002; 9(11):1286-1299.
Taylor CA, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK. Predictive medicine: computational techniques in therapeutic decision-making. Computer Aided Surgery 1999; 4(5):231-247.
Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195(29-32):3776-3796.
Taylor CA, Draney MT. Experimental and computational methods in cardiovascular fluid mechanics. Annual Review of Fluid Mechanics 2004; 36(1):197-231.
Zhang YJ, BazilevS Y, GoswaMi S, Bajaj CL, Hughes TJR. Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering 2007; 196(29-30):2943-2959.
Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195(41-43):5685-5706.
Friedman MH, Hutchins GM, Bargeron CB, Deters OJ, Mark FF. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 1981; 39(3):425-436.
Labelle F, Shewchuk JR. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics 2007; 26(3). Article No. 57. Available from: http://portal.acm.org/citation.cfm?id=1276448.
Long Q, Xu XY, Collins MW, Bourne M, Griffith TM. Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation. Computer Methods and Programs in Biomedicine 1998; 56(3):249-259.
Cebral JR, Lohner R, Choyke PL, Yim PJ. Merging of intersecting triangulations for finite element modeling. Journal of Biomechanics 2001; 34(6):815-819.
Taylor CA, Figueroa CA. Patient-specific modeling of cardiovascular mechanics. Annual Review of Biomedical Engineering 2009; 11(1):109-134.
Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman D. An image-based modeling framework for patient-specific computational hemodynamics. Medical and Biological Engineering and Computing 2008; 46(11):1097-1112.
Bekkers EJ, Taylor CA. Multiscale vascular surface model generation from medical imaging data using hierarchical features. IEEE Transactions on Medical Imaging 2008; 27(3):331-341.
Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision 1997; 22(1):61-79.
Taylor CA, Hughes TJR, Zarins CK. Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering 1998; 158(1-2):155-196.
Yim PJ, Vasbinder GBC, Ho VB, Choyke PL. Isosurfaces as deformable models for magnetic resonance angiography. IEEE Transactions on Medical Imaging 2003; 22(7):875-881.
Sethian JA. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edn). Cambridge University Press: Cambridge, U.K., New York, 1999.
Steinman DA, Taylor CA. Flow imaging sand computing: large artery hemodynamics. Annals of Biomedical Engineering 2005; 33(12):1704-1709.
Kim HJ, Figueroa CA, Hughes TJR, Jansen KE, Taylor CA. Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Computer Methods in Applied Mechanics and Engineering 2009; 198(45-46):3551-3566.
Yim PJ, Cebral JJ, Mullick R, Marcos HB, Choyke PL. Vessel surface reconstruction with a tubular deformable model. IEEE Transactions on Medical Imaging 2001; 20(12):1411-1421.
Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Computer Methods in Applied Mechanics and Engineering 2006; 195(13-16):1885-1895.
Cornea ND, Silver D, Min P. Curve-skeleton properties, applications, and algorithms. IEEE Transactions on Visualization and Computer Graphics 2007; 13(3):530-548.
Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis quantitative correlation of plaque localization with flow velocity profiles and wall shear-stress. Circulation Research 1983; 53(4):502-514.
Humphrey JD, Taylor CA. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annual Review of Biomedical Engineering 2008; 10(1):221-246.
Yeung JJ, Kim HJ, Abbruzzese TA, Vignon-Clementel IE, Draney-Blomme MT, Yeung KK, Perkash I, Herfkens RJ, Taylor CA, Dalman RL. Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury. Journal of Vascular Surgery 2006; 44(6):1254-1265.
Cebral JR, Lohner R. From medical images to anatomically accurate finite element grids. International Journal for Numerical Methods in Engineering 2001; 51(8):985-1008.
Steiger HJ, Aaslid R, Keller S, Reulen HJ. Strength, elasticity and viscoelastic properties of cerebral aneurysms. Heart Vessels 1989 5(1):41-46.
Choi G, Cheng CP, Wilson NM, Taylor CA. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Annals of Biomedical Engineering 2009; 37(1):14-33.
Milner JS, Moore JA, Rutt BK, Steinman DA. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Journal of Vascular Surgery 1998; 28(1):143-156.
1989; 5
1998; 28
2006; 31
2002; 9
1997; 22
2006; 38
1983; 53
2009; 198
2006; 195
2008; 10
1999; 4
2005
1998; 158
2003
2005; 83
2007; 13
2005; 67
2001; 20
1999
2009; 11
2002; 26
2001; 191
2001
2006; 44
1999; 18
2004; 36
2008; 27
2007; 196
1987
2008; 46
1981; 39
2001; 34
2005; 33
1998; 56
2001; 51
2009; 37
2003; 22
2007; 26
Bazilevs (10.1002/cnm.1404-BIB28|cit28) 2006; 38
Yushkevich (10.1002/cnm.1404-BIB35|cit35) 2006; 31
Kim (10.1002/cnm.1404-BIB43|cit43) 2009; 198
Taylor (10.1002/cnm.1404-BIB6|cit6) 1998; 158
Formaggia (10.1002/cnm.1404-BIB26|cit26) 2001; 191
Antiga (10.1002/cnm.1404-BIB21|cit21) 2003; 22
Steiger (10.1002/cnm.1404-BIB44|cit44) 1989; 5
Friedman (10.1002/cnm.1404-BIB1|cit1) 1981; 39
Cebral (10.1002/cnm.1404-BIB14|cit14) 2001; 51
Torii (10.1002/cnm.1404-BIB30|cit30) 2006; 195
Yeung (10.1002/cnm.1404-BIB3|cit3) 2006; 44
Cebral (10.1002/cnm.1404-BIB8|cit8) 2002; 9
Yim (10.1002/cnm.1404-BIB17|cit17) 2003; 22
Caselles (10.1002/cnm.1404-BIB34|cit34) 1997; 22
Boissonnat (10.1002/cnm.1404-BIB38|cit38) 2005; 67
Sethian (10.1002/cnm.1404-BIB19|cit19) 1999
Figueroa (10.1002/cnm.1404-BIB33|cit33) 2009; 198
Long (10.1002/cnm.1404-BIB12|cit12) 1998; 56
Gerbeau (10.1002/cnm.1404-BIB27|cit27) 2005; 83
Figueroa (10.1002/cnm.1404-BIB31|cit31) 2006; 195
Wang (10.1002/cnm.1404-BIB13|cit13) 1999; 18
Zhang (10.1002/cnm.1404-BIB25|cit25) 2007; 196
Bekkers (10.1002/cnm.1404-BIB22|cit22) 2008; 27
10.1002/cnm.1404-BIB24|cit24
Taylor (10.1002/cnm.1404-BIB5|cit5) 2004; 36
Yim (10.1002/cnm.1404-BIB16|cit16) 2001; 20
Antiga (10.1002/cnm.1404-BIB15|cit15) 2002; 26
Antiga (10.1002/cnm.1404-BIB23|cit23) 2008; 46
Choi (10.1002/cnm.1404-BIB40|cit40) 2009; 37
Nichols (10.1002/cnm.1404-BIB32|cit32) 2005
Taylor (10.1002/cnm.1404-BIB11|cit11) 2009; 11
Kim (10.1002/cnm.1404-BIB29|cit29) 2009; 37
Zarins (10.1002/cnm.1404-BIB2|cit2) 1983; 53
Milner (10.1002/cnm.1404-BIB7|cit7) 1998; 28
10.1002/cnm.1404-BIB39|cit39
Cornea (10.1002/cnm.1404-BIB41|cit41) 2007; 13
Humphrey (10.1002/cnm.1404-BIB4|cit4) 2008; 10
Cebral (10.1002/cnm.1404-BIB18|cit18) 2001; 34
Labelle (10.1002/cnm.1404-BIB36|cit36) 2007; 26
10.1002/cnm.1404-BIB20|cit20
10.1002/cnm.1404-BIB37|cit37
Taylor (10.1002/cnm.1404-BIB9|cit9) 1999; 4
Steinman (10.1002/cnm.1404-BIB10|cit10) 2005; 33
Vignon-Clementel (10.1002/cnm.1404-BIB42|cit42) 2006; 195
References_xml – reference: Zhang YJ, BazilevS Y, GoswaMi S, Bajaj CL, Hughes TJR. Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering 2007; 196(29-30):2943-2959.
– reference: Milner JS, Moore JA, Rutt BK, Steinman DA. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Journal of Vascular Surgery 1998; 28(1):143-156.
– reference: Taylor CA, Figueroa CA. Patient-specific modeling of cardiovascular mechanics. Annual Review of Biomedical Engineering 2009; 11(1):109-134.
– reference: Kim HJ, Figueroa CA, Hughes TJR, Jansen KE, Taylor CA. Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Computer Methods in Applied Mechanics and Engineering 2009; 198(45-46):3551-3566.
– reference: Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman D. An image-based modeling framework for patient-specific computational hemodynamics. Medical and Biological Engineering and Computing 2008; 46(11):1097-1112.
– reference: Yeung JJ, Kim HJ, Abbruzzese TA, Vignon-Clementel IE, Draney-Blomme MT, Yeung KK, Perkash I, Herfkens RJ, Taylor CA, Dalman RL. Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury. Journal of Vascular Surgery 2006; 44(6):1254-1265.
– reference: Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision 1997; 22(1):61-79.
– reference: Friedman MH, Hutchins GM, Bargeron CB, Deters OJ, Mark FF. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 1981; 39(3):425-436.
– reference: Antiga L, Ene-Iordache B, Caverni L, Cornalba GP, Remuzzi A. Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography. Computerized Medical Imaging and Graphics 2002; 26(4):227-235.
– reference: Bazilevs Y, Calo VM, Zhang Y, Hughes TJR. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Computational Mechanics 2006; 38(4-5):310-322.
– reference: Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31(3):1116-1128.
– reference: Taylor CA, Draney MT. Experimental and computational methods in cardiovascular fluid mechanics. Annual Review of Fluid Mechanics 2004; 36(1):197-231.
– reference: Yim PJ, Cebral JJ, Mullick R, Marcos HB, Choyke PL. Vessel surface reconstruction with a tubular deformable model. IEEE Transactions on Medical Imaging 2001; 20(12):1411-1421.
– reference: Figueroa CA, Baek S, Taylor CA, Humphrey JD. A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Computer Methods in Applied Mechanics and Engineering 2009; 198(45-46):3583-3602.
– reference: Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Computer Methods in Applied Mechanics and Engineering 2006; 195(13-16):1885-1895.
– reference: Steiger HJ, Aaslid R, Keller S, Reulen HJ. Strength, elasticity and viscoelastic properties of cerebral aneurysms. Heart Vessels 1989 5(1):41-46.
– reference: Taylor CA, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK. Predictive medicine: computational techniques in therapeutic decision-making. Computer Aided Surgery 1999; 4(5):231-247.
– reference: Formaggia L, Gerbeau JF, Nobile F, Quarteroni A. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics and Engineering 2001; 191(6-7):561-582.
– reference: Taylor CA, Hughes TJR, Zarins CK. Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering 1998; 158(1-2):155-196.
– reference: Antiga L, Ene-Iordache B, Remuzzi A. Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Transactions on Medical Imaging 2003; 22(5):674-684.
– reference: Cornea ND, Silver D, Min P. Curve-skeleton properties, applications, and algorithms. IEEE Transactions on Visualization and Computer Graphics 2007; 13(3):530-548.
– reference: Bekkers EJ, Taylor CA. Multiscale vascular surface model generation from medical imaging data using hierarchical features. IEEE Transactions on Medical Imaging 2008; 27(3):331-341.
– reference: Cebral JR, Yim PJ, Lohner R, Soto O, Choyke PL. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Academic Radiology 2002; 9(11):1286-1299.
– reference: Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis quantitative correlation of plaque localization with flow velocity profiles and wall shear-stress. Circulation Research 1983; 53(4):502-514.
– reference: Humphrey JD, Taylor CA. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annual Review of Biomedical Engineering 2008; 10(1):221-246.
– reference: Steinman DA, Taylor CA. Flow imaging sand computing: large artery hemodynamics. Annals of Biomedical Engineering 2005; 33(12):1704-1709.
– reference: Cebral JR, Lohner R. From medical images to anatomically accurate finite element grids. International Journal for Numerical Methods in Engineering 2001; 51(8):985-1008.
– reference: Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195(29-32):3776-3796.
– reference: Wang KC, Dutton RW, Taylor CA. Improving geometric model construction for blood flow modeling. IEEE Engineering in Medicine and Biology Magazine 1999; 18(6):33-39.
– reference: Gerbeau JF, Vidrascu M, Frey P. Fluid-structure interaction in blood flows on geometries based on medical imaging. Computers and Structures 2005; 83(2-3):155-165.
– reference: Cebral JR, Lohner R, Choyke PL, Yim PJ. Merging of intersecting triangulations for finite element modeling. Journal of Biomechanics 2001; 34(6):815-819.
– reference: Boissonnat JD, Oudot S. Provably good sampling and meshing of surfaces. Graphical Models 2005; 67(5):405-451.
– reference: Sethian JA. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edn). Cambridge University Press: Cambridge, U.K., New York, 1999.
– reference: Choi G, Cheng CP, Wilson NM, Taylor CA. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Annals of Biomedical Engineering 2009; 37(1):14-33.
– reference: Kim Y, Lim S, Raman SV, Simonetti OP, Friedman A. Blood flow in a compliant vessel by the immersed boundary method. Annals of Biomedical Engineering 2009; 37(5):927-942.
– reference: Yim PJ, Vasbinder GBC, Ho VB, Choyke PL. Isosurfaces as deformable models for magnetic resonance angiography. IEEE Transactions on Medical Imaging 2003; 22(7):875-881.
– reference: Nichols WW, O'Rourke MF, McDonald DA. McDonald's Blood Flow in Arteries: Theoretic, Experimental, and Clinical Principles (5th edn). Hodder Arnold: London, 2005.
– reference: Long Q, Xu XY, Collins MW, Bourne M, Griffith TM. Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation. Computer Methods and Programs in Biomedicine 1998; 56(3):249-259.
– reference: Labelle F, Shewchuk JR. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics 2007; 26(3). Article No. 57. Available from: http://portal.acm.org/citation.cfm?id=1276448.
– reference: Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195(41-43):5685-5706.
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  end-page: 1128
  article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 158
  start-page: 155
  issue: 1–2
  year: 1998
  end-page: 196
  article-title: Finite element modeling of blood flow in arteries
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 56
  start-page: 249
  issue: 3
  year: 1998
  end-page: 259
  article-title: Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 11
  start-page: 109
  issue: 1
  year: 2009
  end-page: 134
  article-title: Patient‐specific modeling of cardiovascular mechanics
  publication-title: Annual Review of Biomedical Engineering
– volume: 26
  start-page: 227
  issue: 4
  year: 2002
  end-page: 235
  article-title: Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography
  publication-title: Computerized Medical Imaging and Graphics
– volume: 39
  start-page: 425
  issue: 3
  year: 1981
  end-page: 436
  article-title: Correlation between intimal thickness and fluid shear in human arteries
  publication-title: Atherosclerosis
– volume: 195
  start-page: 5685
  issue: 41–43
  year: 2006
  end-page: 5706
  article-title: A coupled momentum method for modeling blood flow in three‐dimensional deformable arteries
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2005
– volume: 18
  start-page: 33
  issue: 6
  year: 1999
  end-page: 39
  article-title: Improving geometric model construction for blood flow modeling
  publication-title: IEEE Engineering in Medicine and Biology Magazine
– volume: 36
  start-page: 197
  issue: 1
  year: 2004
  end-page: 231
  article-title: Experimental and computational methods in cardiovascular fluid mechanics
  publication-title: Annual Review of Fluid Mechanics
– volume: 44
  start-page: 1254
  issue: 6
  year: 2006
  end-page: 1265
  article-title: Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury
  publication-title: Journal of Vascular Surgery
– volume: 27
  start-page: 331
  issue: 3
  year: 2008
  end-page: 341
  article-title: Multiscale vascular surface model generation from medical imaging data using hierarchical features
  publication-title: IEEE Transactions on Medical Imaging
– year: 1987
– year: 2001
– volume: 22
  start-page: 875
  issue: 7
  year: 2003
  end-page: 881
  article-title: Isosurfaces as deformable models for magnetic resonance angiography
  publication-title: IEEE Transactions on Medical Imaging
– volume: 195
  start-page: 3776
  issue: 29–32
  year: 2006
  end-page: 3796
  article-title: Outflow boundary conditions for three‐dimensional finite element modeling of blood flow and pressure in arteries
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 191
  year: 2003
  end-page: 198
– volume: 26
  issue: 3
  year: 2007
  article-title: Isosurface stuffing: fast tetrahedral meshes with good dihedral angles
  publication-title: ACM Transactions on Graphics
– volume: 46
  start-page: 1097
  issue: 11
  year: 2008
  end-page: 1112
  article-title: An image‐based modeling framework for patient‐specific computational hemodynamics
  publication-title: Medical and Biological Engineering and Computing
– volume: 83
  start-page: 155
  issue: 2–3
  year: 2005
  end-page: 165
  article-title: Fluid–structure interaction in blood flows on geometries based on medical imaging
  publication-title: Computers and Structures
– volume: 37
  start-page: 927
  issue: 5
  year: 2009
  end-page: 942
  article-title: Blood flow in a compliant vessel by the immersed boundary method
  publication-title: Annals of Biomedical Engineering
– volume: 5
  start-page: 41
  issue: 1
  year: 1989
  end-page: 46
  article-title: Strength, elasticity and viscoelastic properties of cerebral aneurysms
  publication-title: Heart Vessels
– volume: 22
  start-page: 674
  issue: 5
  year: 2003
  end-page: 684
  article-title: Computational geometry for patient‐specific reconstruction and meshing of blood vessels from MR and CT angiography
  publication-title: IEEE Transactions on Medical Imaging
– volume: 20
  start-page: 1411
  issue: 12
  year: 2001
  end-page: 1421
  article-title: Vessel surface reconstruction with a tubular deformable model
  publication-title: IEEE Transactions on Medical Imaging
– volume: 38
  start-page: 310
  issue: 4–5
  year: 2006
  end-page: 322
  article-title: Isogeometric fluid–structure interaction analysis with applications to arterial blood flow
  publication-title: Computational Mechanics
– volume: 4
  start-page: 231
  issue: 5
  year: 1999
  end-page: 247
  article-title: Predictive medicine: computational techniques in therapeutic decision‐making
  publication-title: Computer Aided Surgery
– volume: 9
  start-page: 1286
  issue: 11
  year: 2002
  end-page: 1299
  article-title: Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging
  publication-title: Academic Radiology
– volume: 37
  start-page: 14
  issue: 1
  year: 2009
  end-page: 33
  article-title: Methods for quantifying three‐dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts
  publication-title: Annals of Biomedical Engineering
– volume: 191
  start-page: 561
  issue: 6–7
  year: 2001
  end-page: 582
  article-title: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 198
  start-page: 3583
  issue: 45–46
  year: 2009
  end-page: 3602
  article-title: A computational framework for fluid–solid‐growth modeling in cardiovascular simulations
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 28
  start-page: 143
  issue: 1
  year: 1998
  end-page: 156
  article-title: Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects
  publication-title: Journal of Vascular Surgery
– volume: 34
  start-page: 815
  issue: 6
  year: 2001
  end-page: 819
  article-title: Merging of intersecting triangulations for finite element modeling
  publication-title: Journal of Biomechanics
– volume: 10
  start-page: 221
  issue: 1
  year: 2008
  end-page: 246
  article-title: Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models
  publication-title: Annual Review of Biomedical Engineering
– volume: 33
  start-page: 1704
  issue: 12
  year: 2005
  end-page: 1709
  article-title: Flow imaging sand computing: large artery hemodynamics
  publication-title: Annals of Biomedical Engineering
– volume: 196
  start-page: 2943
  issue: 29–30
  year: 2007
  end-page: 2959
  article-title: Patient‐specific vascular NURBS modeling for isogeometric analysis of blood flow
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 13
  start-page: 530
  issue: 3
  year: 2007
  end-page: 548
  article-title: Curve‐skeleton properties, applications, and algorithms
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 51
  start-page: 985
  issue: 8
  year: 2001
  end-page: 1008
  article-title: From medical images to anatomically accurate finite element grids
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 198
  start-page: 3551
  issue: 45–46
  year: 2009
  end-page: 3566
  article-title: Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three‐dimensional finite element simulations of blood flow
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 22
  start-page: 61
  issue: 1
  year: 1997
  end-page: 79
  article-title: Geodesic active contours
  publication-title: International Journal of Computer Vision
– volume: 67
  start-page: 405
  issue: 5
  year: 2005
  end-page: 451
  article-title: Provably good sampling and meshing of surfaces
  publication-title: Graphical Models
– volume: 53
  start-page: 502
  issue: 4
  year: 1983
  end-page: 514
  article-title: Carotid bifurcation atherosclerosis quantitative correlation of plaque localization with flow velocity profiles and wall shear‐stress
  publication-title: Circulation Research
– year: 1999
– volume: 195
  start-page: 1885
  issue: 13–16
  year: 2006
  end-page: 1895
  article-title: Computer modeling of cardiovascular fluid–structure interactions with the deforming‐spatial‐domain/stabilized space–time formulation
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 10
  start-page: 221
  issue: 1
  year: 2008
  ident: 10.1002/cnm.1404-BIB4|cit4
  article-title: Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models
  publication-title: Annual Review of Biomedical Engineering
  doi: 10.1146/annurev.bioeng.10.061807.160439
– volume: 18
  start-page: 33
  issue: 6
  year: 1999
  ident: 10.1002/cnm.1404-BIB13|cit13
  article-title: Improving geometric model construction for blood flow modeling
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/51.805142
– volume: 67
  start-page: 405
  issue: 5
  year: 2005
  ident: 10.1002/cnm.1404-BIB38|cit38
  article-title: Provably good sampling and meshing of surfaces
  publication-title: Graphical Models
  doi: 10.1016/j.gmod.2005.01.004
– ident: 10.1002/cnm.1404-BIB20|cit20
– volume: 5
  start-page: 41
  issue: 1
  year: 1989
  ident: 10.1002/cnm.1404-BIB44|cit44
  article-title: Strength, elasticity and viscoelastic properties of cerebral aneurysms
  publication-title: Heart Vessels
  doi: 10.1007/BF02058357
– volume: 36
  start-page: 197
  issue: 1
  year: 2004
  ident: 10.1002/cnm.1404-BIB5|cit5
  article-title: Experimental and computational methods in cardiovascular fluid mechanics
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fluid.36.050802.121944
– volume: 26
  issue: 3
  year: 2007
  ident: 10.1002/cnm.1404-BIB36|cit36
  article-title: Isosurface stuffing: fast tetrahedral meshes with good dihedral angles
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/1276377.1276448
– ident: 10.1002/cnm.1404-BIB37|cit37
– volume: 37
  start-page: 14
  issue: 1
  year: 2009
  ident: 10.1002/cnm.1404-BIB40|cit40
  article-title: Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-008-9590-0
– volume: 4
  start-page: 231
  issue: 5
  year: 1999
  ident: 10.1002/cnm.1404-BIB9|cit9
  article-title: Predictive medicine: computational techniques in therapeutic decision-making
  publication-title: Computer Aided Surgery
  doi: 10.3109/10929089909148176
– volume: 39
  start-page: 425
  issue: 3
  year: 1981
  ident: 10.1002/cnm.1404-BIB1|cit1
  article-title: Correlation between intimal thickness and fluid shear in human arteries
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(81)90027-7
– volume: 11
  start-page: 109
  issue: 1
  year: 2009
  ident: 10.1002/cnm.1404-BIB11|cit11
  article-title: Patient-specific modeling of cardiovascular mechanics
  publication-title: Annual Review of Biomedical Engineering
  doi: 10.1146/annurev.bioeng.10.061807.160521
– volume: 51
  start-page: 985
  issue: 8
  year: 2001
  ident: 10.1002/cnm.1404-BIB14|cit14
  article-title: From medical images to anatomically accurate finite element grids
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.205
– ident: 10.1002/cnm.1404-BIB24|cit24
– volume: 198
  start-page: 3551
  issue: 45-46
  year: 2009
  ident: 10.1002/cnm.1404-BIB43|cit43
  article-title: Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2009.02.012
– volume-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
  year: 1999
  ident: 10.1002/cnm.1404-BIB19|cit19
– volume: 83
  start-page: 155
  issue: 2-3
  year: 2005
  ident: 10.1002/cnm.1404-BIB27|cit27
  article-title: Fluid-structure interaction in blood flows on geometries based on medical imaging
  publication-title: Computers and Structures
  doi: 10.1016/j.compstruc.2004.03.083
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 10.1002/cnm.1404-BIB35|cit35
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 28
  start-page: 143
  issue: 1
  year: 1998
  ident: 10.1002/cnm.1404-BIB7|cit7
  article-title: Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects
  publication-title: Journal of Vascular Surgery
  doi: 10.1016/S0741-5214(98)70210-1
– volume: 22
  start-page: 875
  issue: 7
  year: 2003
  ident: 10.1002/cnm.1404-BIB17|cit17
  article-title: Isosurfaces as deformable models for magnetic resonance angiography
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2003.815056
– volume: 27
  start-page: 331
  issue: 3
  year: 2008
  ident: 10.1002/cnm.1404-BIB22|cit22
  article-title: Multiscale vascular surface model generation from medical imaging data using hierarchical features
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2007.905081
– volume: 195
  start-page: 1885
  issue: 13-16
  year: 2006
  ident: 10.1002/cnm.1404-BIB30|cit30
  article-title: Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2005.05.050
– volume: 34
  start-page: 815
  issue: 6
  year: 2001
  ident: 10.1002/cnm.1404-BIB18|cit18
  article-title: Merging of intersecting triangulations for finite element modeling
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(01)00018-5
– volume: 9
  start-page: 1286
  issue: 11
  year: 2002
  ident: 10.1002/cnm.1404-BIB8|cit8
  article-title: Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging
  publication-title: Academic Radiology
  doi: 10.1016/S1076-6332(03)80562-7
– volume: 158
  start-page: 155
  issue: 1-2
  year: 1998
  ident: 10.1002/cnm.1404-BIB6|cit6
  article-title: Finite element modeling of blood flow in arteries
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(98)80008-X
– volume: 13
  start-page: 530
  issue: 3
  year: 2007
  ident: 10.1002/cnm.1404-BIB41|cit41
  article-title: Curve-skeleton properties, applications, and algorithms
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2007.1002
– volume: 22
  start-page: 674
  issue: 5
  year: 2003
  ident: 10.1002/cnm.1404-BIB21|cit21
  article-title: Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2003.812261
– volume: 38
  start-page: 310
  issue: 4-5
  year: 2006
  ident: 10.1002/cnm.1404-BIB28|cit28
  article-title: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow
  publication-title: Computational Mechanics
  doi: 10.1007/s00466-006-0084-3
– volume: 56
  start-page: 249
  issue: 3
  year: 1998
  ident: 10.1002/cnm.1404-BIB12|cit12
  article-title: Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/S0169-2607(98)00008-X
– volume: 22
  start-page: 61
  issue: 1
  year: 1997
  ident: 10.1002/cnm.1404-BIB34|cit34
  article-title: Geodesic active contours
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1007979827043
– volume: 26
  start-page: 227
  issue: 4
  year: 2002
  ident: 10.1002/cnm.1404-BIB15|cit15
  article-title: Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/S0895-6111(02)00020-4
– volume: 46
  start-page: 1097
  issue: 11
  year: 2008
  ident: 10.1002/cnm.1404-BIB23|cit23
  article-title: An image-based modeling framework for patient-specific computational hemodynamics
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/s11517-008-0420-1
– ident: 10.1002/cnm.1404-BIB39|cit39
– volume: 37
  start-page: 927
  issue: 5
  year: 2009
  ident: 10.1002/cnm.1404-BIB29|cit29
  article-title: Blood flow in a compliant vessel by the immersed boundary method
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-009-9669-2
– volume: 195
  start-page: 5685
  issue: 41-43
  year: 2006
  ident: 10.1002/cnm.1404-BIB31|cit31
  article-title: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2005.11.011
– volume: 191
  start-page: 561
  issue: 6-7
  year: 2001
  ident: 10.1002/cnm.1404-BIB26|cit26
  article-title: On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(01)00302-4
– volume: 44
  start-page: 1254
  issue: 6
  year: 2006
  ident: 10.1002/cnm.1404-BIB3|cit3
  article-title: Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury
  publication-title: Journal of Vascular Surgery
  doi: 10.1016/j.jvs.2006.08.026
– volume: 20
  start-page: 1411
  issue: 12
  year: 2001
  ident: 10.1002/cnm.1404-BIB16|cit16
  article-title: Vessel surface reconstruction with a tubular deformable model
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.974935
– volume: 195
  start-page: 3776
  issue: 29-32
  year: 2006
  ident: 10.1002/cnm.1404-BIB42|cit42
  article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2005.04.014
– volume: 198
  start-page: 3583
  issue: 45-46
  year: 2009
  ident: 10.1002/cnm.1404-BIB33|cit33
  article-title: A computational framework for fluid-solid-growth modeling in cardiovascular simulations
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2008.09.013
– volume: 53
  start-page: 502
  issue: 4
  year: 1983
  ident: 10.1002/cnm.1404-BIB2|cit2
  article-title: Carotid bifurcation atherosclerosis quantitative correlation of plaque localization with flow velocity profiles and wall shear-stress
  publication-title: Circulation Research
  doi: 10.1161/01.RES.53.4.502
– volume-title: McDonald's Blood Flow in Arteries: Theoretic, Experimental, and Clinical Principles
  year: 2005
  ident: 10.1002/cnm.1404-BIB32|cit32
– volume: 33
  start-page: 1704
  issue: 12
  year: 2005
  ident: 10.1002/cnm.1404-BIB10|cit10
  article-title: Flow imaging sand computing: large artery hemodynamics
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-005-8772-2
– volume: 196
  start-page: 2943
  issue: 29-30
  year: 2007
  ident: 10.1002/cnm.1404-BIB25|cit25
  article-title: Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2007.02.009
SSID ssj0000299973
Score 2.1625352
Snippet Simulation of blood flow using image‐based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant...
Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1000
SubjectTerms Biological and medical sciences
Blood and lymphatic vessels
Blood flow
blood flow simulation
Cardiology. Vascular system
Computational methods in fluid dynamics
Computer simulation
deformable walls
Diseases
Exact sciences and technology
Fluid dynamics
Fluid-structure interaction
Fundamental and applied biological sciences. Psychology
Fundamental areas of phenomenology (including applications)
Hemodynamics. Rheology
image-based modeling
Mathematical models
Medical sciences
Numerical analysis
Physics
Segmentation
Solid mechanics
Structural and continuum mechanics
subject-specific geometry
Three dimensional
vascular model construction
Vertebrates: cardiovascular system
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
wall mechanical properties
Title Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties
URI https://api.istex.fr/ark:/67375/WNG-09HR9V6Z-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1404
https://www.ncbi.nlm.nih.gov/pubmed/21765984
https://www.proquest.com/docview/1671254851
https://www.proquest.com/docview/1835476485
https://pubmed.ncbi.nlm.nih.gov/PMC3137382
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQe-FCKc_lsTISKqdsEydO4mNbWFZIXYlCoYJDZDtOu2o2qTa725YTP4HfyC9hxnmUhYIQpyTKWEkmM_aX8ZfPhDzXyvc0DBSOSCHJg5QZJ469wBGZ9Jnx3LQm0eyPw9Fh8OaIHzWsSvwXptaH6ApumBm2v8YEl6ravhIN1cV0gNow0P0iVQvx0AHryisudLPCzi8zy5kTvmilZ1223bZdGYzW0a8XSI6UFfgnqxe2uA55_k6g_BnY2pFpuEE-t89UE1JOB4u5Gugvv8g9_t9D3ya3GsBKd-oI2yQ3THGHbDTglTZdQ3WXLN9Nps1SYLTMqCXE0ywvz-mkoKmx2Fjlhi5RrDyvKBLuj2m1UFgI-v71G_7yibQlemzKqZnPLqksUloh4Vvm-SVdwk1ji3M4omc4hTBDLdh75HD46v3eyGkWdXA0YLvACRQXKgOcopnkBuCZUZkLn0mCZ8wzPBYG91mgJCAP5afC09KLtB_pWAslhX-frBVlYR4SqnToZlr6aYCKQjwVKuKe0VlqlK-MYT3yon27iW4Uz3HhjTyptZpZAu5M0J098qyzPKtVPq6x2bIB0hnI2Smy4iKefBy_TlwxOhAfwk_J2x7pr0RQ14AFPk50cbhaG1IJJDPO0MjClIsq8cIIAGcAKPgvNliqi0Iw6pEHdRheXcGLQi5iuNdoJUA7AxQTXz1TTE6sqLjvocYV-GzLxt8f3ZDsjfdx--hfDR-Tm3UdHinOT8jafLYwTwHIzVWfrO_svtwd9m3q_gDINUqr
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXG9gAvjG86YBgJjad0sRMnsXhCE6PAWomxwTQhWbbjbNXSdGrajvHET-A38kvwdT5GYSDEU1vlWklu77VPrk_OReipVgHRdqHweGqTPEyp8ZKEhB7PZEAN8dOKRNMfRL398M0BO1hCz5t3YSp9iLbgBpnh5mtIcChIb16ohupi1AVxmCtoBRp6u-epXdoWWHw70XK3w0wda44HvBGf9elmM3hhOVoBz34GeqQsrYeyqrXFZdjzdwrlz9DWrU3bq-hTc1cVJeWkO5uqrv7yi-Djf972DXS9xqz4RRVkN9GSKW6h1Rq_4np2KG-j-fvhqO4GhscZdpx4nOXjMzwscGocPFa5wXPQK89LDJz7I1zOFNSCvn_9Bm99AnMJH5nxyEwn51gWKS6B8y3z_BzP7VXDiDP7C5_CLsIE5GDvoP3tl3tbPa_u6-BpC-9CL1SMq8xCFU0lMxahGZX59kmJs4wSwxJu4DsNlbTgQwUpJ1qSWAexTjRXkgd30XIxLsx9hJWO_EzLIA1BVIilXMWMGJ2lRgXKGNpBz5q_V-ha9Bx6b-SikmumwrpTgDs76ElreVoJfVxis-EipDWQkxMgxsVMfBy8Ej7v7fIP0aF410HrCyHUDqBhAHtdzJ6tiSlh8xk2aWRhxrNSkCi2mDO0QPgvNlCtiyNr1EH3qji8OAOJI8YTe63xQoS2BqAnvnikGB47XfGAgMyV9dmGC8A_ukFsDfrwufavho_R1d5ef0fsvB68fYCuVWV5YDw_RMvTycw8srhuqtZd_v4AxfhNVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgkxAvG3fKZRgJjad0iS9J_Ig2SrmsgsFgggfLdpytWppUTdsxnvgJ_EZ-CT5JmlEYCPGURDlWkpNz7C_HXz4j9MhoGhg3UHgicUnOEmK9OA6YJ1JFiQ38pCbR7A7C_j57ccAPGlYl_AtT60O0BTfIjKq_hgQfJ-nWmWioyUdd0Ia5iFZZ6McQ0Tt7pK2v-K6fFdUEM6lIc4KKhfasT7YWjZdGo1Vw7GdgR6rSOSitV7Y4D3r-zqD8GdlWQ1NvHX1aPFTNSDnuzqa6a778ovf4f099Ba01iBU_qUPsKrpg82tovUGvuOkbyuto_nY4atYCw0WKK0Y8TrPiBA9znNgKHOvM4jmolWclBsb9IS5nGipB379-g38-gbeED20xstPJKVZ5gktgfKssO8Vzd9PQ4sQd4THMIUxADPYG2u89fbfd95pVHTzjwB3zmOZCpw6oGKK4dfjM6tR330mCpySwPBYW9gnTykEPTRMRGBVEhkYmNkIrQW-ilbzI7W2EtQn91CiaMJAU4onQEQ-sSROrqbaWdNDjxduVppE8h5U3MlmLNRPp3CnBnR30sLUc1zIf59hsVgHSGqjJMdDiIi4_DJ5JX_T3xPvwo3zTQRtLEdQ2IIzCTBd3V1uElHTZDFM0KrfFrJRBGDnEyRwM_osN1Oqi0Bl10K06DM-uEEQhF7G712gpQFsDUBNfPpMPjypVcRqAyJXz2WYVf390g9we7ML2zr8aPkCXXu_05Kvng5d30eW6Jg9053toZTqZ2fsO1E31RpW9PwDYz0wM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+blood+flow+in+deformable+vessels+using+subject-specific+geometry+and+spatially+varying+wall+properties&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Xiong%2C+Guanglei&rft.au=Figueroa%2C+C.+Alberto&rft.au=Xiao%2C+Nan&rft.au=Taylor%2C+Charles+A.&rft.date=2011-07-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=27&rft.issue=7&rft.spage=1000&rft.epage=1016&rft_id=info:doi/10.1002%2Fcnm.1404&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_09HR9V6Z_Q
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon