Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties
Simulation of blood flow using image‐based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject‐specific geometric...
Saved in:
Published in | International journal for numerical methods in biomedical engineering Vol. 27; no. 7; pp. 1000 - 1016 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.07.2011
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2040-7939 2040-7947 2040-7947 |
DOI | 10.1002/cnm.1404 |
Cover
Loading…
Abstract | Simulation of blood flow using image‐based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject‐specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid–structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject‐specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline‐based and surface‐based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject‐specific vascular models with thoracic and cerebral aneurysms. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Simulation of blood flow using image‐based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject‐specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid–structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject‐specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline‐based and surface‐based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject‐specific vascular models with thoracic and cerebral aneurysms. Copyright © 2010 John Wiley & Sons, Ltd. Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject-specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid-structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject-specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline-based and surface-based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject-specific vascular models with thoracic and cerebral aneurysms. Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject-specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid-structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject-specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline-based and surface-based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject-specific vascular models with thoracic and cerebral aneurysms.Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject-specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid-structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject-specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline-based and surface-based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject-specific vascular models with thoracic and cerebral aneurysms. |
Author | Figueroa, C. Alberto Xiao, Nan Xiong, Guanglei Taylor, Charles A. |
AuthorAffiliation | 1 Biomedical Informatics Program, Stanford University, Stanford, CA 94305, U.S.A 3 Departments of Bioengineering and Surgery, Stanford University, Stanford, CA 94305, U.S.A 2 Department of Bioengineering, Stanford University, Stanford, CA 94305, U.S.A |
AuthorAffiliation_xml | – name: 1 Biomedical Informatics Program, Stanford University, Stanford, CA 94305, U.S.A – name: 3 Departments of Bioengineering and Surgery, Stanford University, Stanford, CA 94305, U.S.A – name: 2 Department of Bioengineering, Stanford University, Stanford, CA 94305, U.S.A |
Author_xml | – sequence: 1 givenname: Guanglei surname: Xiong fullname: Xiong, Guanglei organization: Biomedical Informatics Program, Stanford University, Stanford, CA 94305, U.S.A – sequence: 2 givenname: C. Alberto surname: Figueroa fullname: Figueroa, C. Alberto organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, U.S.A – sequence: 3 givenname: Nan surname: Xiao fullname: Xiao, Nan organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, U.S.A – sequence: 4 givenname: Charles A. surname: Taylor fullname: Taylor, Charles A. email: taylorca@stanford.edu organization: Departments of Bioengineering and Surgery, Stanford University, Stanford, CA 94305, U.S.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24306655$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21765984$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1vFCEUhiemxtbaxF9guDHxZlYYYBhuTMxGW5Na43fiDWHYMyuVgSnM7Lr_Xtaua2s0cgGH8Jz3vOSc-8WBDx6K4iHBM4Jx9dT4fkYYZneKowozXArJxME-pvKwOEnpEudVSSkFvVccVkTUXDbsqBjf235yerTBo9Ch1oWwQJ0La2Q9WkAXYq9bB2gFKYFLaErWL1Ga2kswY5kGMLazBi0h9DDGDdJ-gdKQ9bRzG7TScbPl1_mGhhgGiKOF9KC422mX4GR3HhcfX774MD8rz9-cvpo_Py8NJ4SVrOWy7QTHptIcGiqh7TDnWPKuIsAbCdu4Yq0meaMLSYwmwlBhGiNbLelx8exad5jaHhYG_Bi1U0O0fTamgrbq9ou3X9UyrBQlVNCmygJPdgIxXE2QRtXbZMA57SFMSZGGciZq1vD_o7UgFc8kyeijm7b2fn51JQOPd4BORrsuam9s-s0xiuua36hpYkgpQrdHCFbb2VB5NtR2NjI6-wM1dvzZ9vxx6_6WUF4nrK2DzT-F1fzi9W3ephG-73kdv6laUMHV54tTheXZO_mp_qLe0h_a9NqI |
CitedBy_id | crossref_primary_10_1007_s10237_012_0418_3 crossref_primary_10_1002_cnm_2581 crossref_primary_10_1016_j_cpet_2012_10_003 crossref_primary_10_1108_09615531211271907 crossref_primary_10_1002_cnm_3794 crossref_primary_10_1016_j_radi_2020_11_018 crossref_primary_10_1093_ejcts_ezy312 crossref_primary_10_32604_cmes_2024_056289 crossref_primary_10_1002_cnm_2523 crossref_primary_10_1007_s10237_011_0289_z crossref_primary_10_3390_biomedinformatics2010002 crossref_primary_10_3390_s20164484 crossref_primary_10_1063_1_4825031 crossref_primary_10_1016_j_jtcvs_2016_09_040 crossref_primary_10_1063_5_0161809 crossref_primary_10_1007_s10439_023_03350_7 crossref_primary_10_1016_j_bspc_2019_101817 crossref_primary_10_1039_C4IB00296B crossref_primary_10_1142_S0129183113501076 crossref_primary_10_1115_1_4029909 crossref_primary_10_5402_2013_602707 crossref_primary_10_1039_D0SM00333F crossref_primary_10_1002_cnm_2595 crossref_primary_10_1007_s10237_012_0383_x crossref_primary_10_1002_cnm_2533 crossref_primary_10_1002_cnm_2598 crossref_primary_10_1002_cnm_1485 crossref_primary_10_1002_cnm_2552 crossref_primary_10_1016_j_bspc_2016_09_025 crossref_primary_10_3389_fbioe_2023_1103905 crossref_primary_10_1007_s00542_018_4159_9 crossref_primary_10_1007_s10237_012_0450_3 crossref_primary_10_1080_21681163_2022_2040054 crossref_primary_10_1098_rsif_2023_0656 crossref_primary_10_1115_1_4005228 crossref_primary_10_1115_1_4037857 crossref_primary_10_1002_adhm_202201830 crossref_primary_10_1093_bmb_ldw049 crossref_primary_10_3390_diagnostics11040685 crossref_primary_10_1016_j_medengphy_2012_08_009 crossref_primary_10_1063_5_0109400 crossref_primary_10_1007_s00380_019_01494_y crossref_primary_10_1016_j_compmedimag_2016_06_003 crossref_primary_10_1016_j_jbiomech_2018_09_013 crossref_primary_10_1016_j_media_2021_102186 crossref_primary_10_1142_S0219519417500415 |
Cites_doi | 10.1146/annurev.bioeng.10.061807.160439 10.1109/51.805142 10.1016/j.gmod.2005.01.004 10.1007/BF02058357 10.1146/annurev.fluid.36.050802.121944 10.1145/1276377.1276448 10.1007/s10439-008-9590-0 10.3109/10929089909148176 10.1016/0021-9150(81)90027-7 10.1146/annurev.bioeng.10.061807.160521 10.1002/nme.205 10.1016/j.cma.2009.02.012 10.1016/j.compstruc.2004.03.083 10.1016/j.neuroimage.2006.01.015 10.1016/S0741-5214(98)70210-1 10.1109/TMI.2003.815056 10.1109/TMI.2007.905081 10.1016/j.cma.2005.05.050 10.1016/S0021-9290(01)00018-5 10.1016/S1076-6332(03)80562-7 10.1016/S0045-7825(98)80008-X 10.1109/TVCG.2007.1002 10.1109/TMI.2003.812261 10.1007/s00466-006-0084-3 10.1016/S0169-2607(98)00008-X 10.1023/A:1007979827043 10.1016/S0895-6111(02)00020-4 10.1007/s11517-008-0420-1 10.1007/s10439-009-9669-2 10.1016/j.cma.2005.11.011 10.1016/S0045-7825(01)00302-4 10.1016/j.jvs.2006.08.026 10.1109/42.974935 10.1016/j.cma.2005.04.014 10.1016/j.cma.2008.09.013 10.1161/01.RES.53.4.502 10.1007/s10439-005-8772-2 10.1016/j.cma.2007.02.009 |
ContentType | Journal Article |
Copyright | Copyright © 2010 John Wiley & Sons, Ltd. 2015 INIST-CNRS Copyright © 2010 John Wiley & Sons, Ltd. 2010 |
Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS – notice: Copyright © 2010 John Wiley & Sons, Ltd. 2010 |
DBID | BSCLL AAYXX CITATION IQODW NPM 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 5PM |
DOI | 10.1002/cnm.1404 |
DatabaseName | Istex CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Civil Engineering Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 2040-7947 |
EndPage | 1016 |
ExternalDocumentID | PMC3137382 21765984 24306655 10_1002_cnm_1404 CNM1404 ark_67375_WNG_09HR9V6Z_Q |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: P50 HL083800 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WRC WXSBR WYISQ XG1 XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ 1OB AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION IQODW NPM 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c5114-4b59bf750c2a5e839ebf055095f21e589e509524ba124b3d91ca17c37c8c9ba93 |
IEDL.DBID | DR2 |
ISSN | 2040-7939 2040-7947 |
IngestDate | Thu Aug 21 14:04:09 EDT 2025 Fri Jul 11 01:40:25 EDT 2025 Fri Jul 11 01:29:51 EDT 2025 Sat May 31 02:05:11 EDT 2025 Mon Jul 21 09:15:31 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Sun Aug 24 03:22:15 EDT 2025 Wed Jan 22 17:01:16 EST 2025 Wed Oct 30 09:51:49 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Computational fluid dynamics Segmentation Aneurysm Fluid-structure interactions wall mechanical properties Mechanical properties Cardiovascular disease Tissues Epidemiology deformable walls Geometrical model image-based modeling subject-specific geometry Blood flow Vibrations vascular model construction Blood circulation Wall flow blood flow simulation Medical imagery Modelling Circulatory system Man Planning |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5114-4b59bf750c2a5e839ebf055095f21e589e509524ba124b3d91ca17c37c8c9ba93 |
Notes | ArticleID:CNM1404 ark:/67375/WNG-09HR9V6Z-Q istex:E22D26D14B3E47D9A4A2C8CFBD602D527CB2471D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 taylorca@stanford.edu |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3137382 |
PMID | 21765984 |
PQID | 1671254851 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3137382 proquest_miscellaneous_1835476485 proquest_miscellaneous_1671254851 pubmed_primary_21765984 pascalfrancis_primary_24306655 crossref_primary_10_1002_cnm_1404 crossref_citationtrail_10_1002_cnm_1404 wiley_primary_10_1002_cnm_1404_CNM1404 istex_primary_ark_67375_WNG_09HR9V6Z_Q |
PublicationCentury | 2000 |
PublicationDate | July 2011 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester – name: England |
PublicationTitle | International journal for numerical methods in biomedical engineering |
PublicationTitleAlternate | Int. J. Numer. Meth. Biomed. Engng |
PublicationYear | 2011 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Antiga L, Ene-Iordache B, Caverni L, Cornalba GP, Remuzzi A. Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography. Computerized Medical Imaging and Graphics 2002; 26(4):227-235. Kim Y, Lim S, Raman SV, Simonetti OP, Friedman A. Blood flow in a compliant vessel by the immersed boundary method. Annals of Biomedical Engineering 2009; 37(5):927-942. Antiga L, Ene-Iordache B, Remuzzi A. Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Transactions on Medical Imaging 2003; 22(5):674-684. Nichols WW, O'Rourke MF, McDonald DA. McDonald's Blood Flow in Arteries: Theoretic, Experimental, and Clinical Principles (5th edn). Hodder Arnold: London, 2005. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31(3):1116-1128. Gerbeau JF, Vidrascu M, Frey P. Fluid-structure interaction in blood flows on geometries based on medical imaging. Computers and Structures 2005; 83(2-3):155-165. Boissonnat JD, Oudot S. Provably good sampling and meshing of surfaces. Graphical Models 2005; 67(5):405-451. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Computational Mechanics 2006; 38(4-5):310-322. Figueroa CA, Baek S, Taylor CA, Humphrey JD. A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Computer Methods in Applied Mechanics and Engineering 2009; 198(45-46):3583-3602. Wang KC, Dutton RW, Taylor CA. Improving geometric model construction for blood flow modeling. IEEE Engineering in Medicine and Biology Magazine 1999; 18(6):33-39. Formaggia L, Gerbeau JF, Nobile F, Quarteroni A. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics and Engineering 2001; 191(6-7):561-582. Cebral JR, Yim PJ, Lohner R, Soto O, Choyke PL. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Academic Radiology 2002; 9(11):1286-1299. Taylor CA, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK. Predictive medicine: computational techniques in therapeutic decision-making. Computer Aided Surgery 1999; 4(5):231-247. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195(29-32):3776-3796. Taylor CA, Draney MT. Experimental and computational methods in cardiovascular fluid mechanics. Annual Review of Fluid Mechanics 2004; 36(1):197-231. Zhang YJ, BazilevS Y, GoswaMi S, Bajaj CL, Hughes TJR. Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering 2007; 196(29-30):2943-2959. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195(41-43):5685-5706. Friedman MH, Hutchins GM, Bargeron CB, Deters OJ, Mark FF. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 1981; 39(3):425-436. Labelle F, Shewchuk JR. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics 2007; 26(3). Article No. 57. Available from: http://portal.acm.org/citation.cfm?id=1276448. Long Q, Xu XY, Collins MW, Bourne M, Griffith TM. Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation. Computer Methods and Programs in Biomedicine 1998; 56(3):249-259. Cebral JR, Lohner R, Choyke PL, Yim PJ. Merging of intersecting triangulations for finite element modeling. Journal of Biomechanics 2001; 34(6):815-819. Taylor CA, Figueroa CA. Patient-specific modeling of cardiovascular mechanics. Annual Review of Biomedical Engineering 2009; 11(1):109-134. Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman D. An image-based modeling framework for patient-specific computational hemodynamics. Medical and Biological Engineering and Computing 2008; 46(11):1097-1112. Bekkers EJ, Taylor CA. Multiscale vascular surface model generation from medical imaging data using hierarchical features. IEEE Transactions on Medical Imaging 2008; 27(3):331-341. Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision 1997; 22(1):61-79. Taylor CA, Hughes TJR, Zarins CK. Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering 1998; 158(1-2):155-196. Yim PJ, Vasbinder GBC, Ho VB, Choyke PL. Isosurfaces as deformable models for magnetic resonance angiography. IEEE Transactions on Medical Imaging 2003; 22(7):875-881. Sethian JA. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edn). Cambridge University Press: Cambridge, U.K., New York, 1999. Steinman DA, Taylor CA. Flow imaging sand computing: large artery hemodynamics. Annals of Biomedical Engineering 2005; 33(12):1704-1709. Kim HJ, Figueroa CA, Hughes TJR, Jansen KE, Taylor CA. Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Computer Methods in Applied Mechanics and Engineering 2009; 198(45-46):3551-3566. Yim PJ, Cebral JJ, Mullick R, Marcos HB, Choyke PL. Vessel surface reconstruction with a tubular deformable model. IEEE Transactions on Medical Imaging 2001; 20(12):1411-1421. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Computer Methods in Applied Mechanics and Engineering 2006; 195(13-16):1885-1895. Cornea ND, Silver D, Min P. Curve-skeleton properties, applications, and algorithms. IEEE Transactions on Visualization and Computer Graphics 2007; 13(3):530-548. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis quantitative correlation of plaque localization with flow velocity profiles and wall shear-stress. Circulation Research 1983; 53(4):502-514. Humphrey JD, Taylor CA. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annual Review of Biomedical Engineering 2008; 10(1):221-246. Yeung JJ, Kim HJ, Abbruzzese TA, Vignon-Clementel IE, Draney-Blomme MT, Yeung KK, Perkash I, Herfkens RJ, Taylor CA, Dalman RL. Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury. Journal of Vascular Surgery 2006; 44(6):1254-1265. Cebral JR, Lohner R. From medical images to anatomically accurate finite element grids. International Journal for Numerical Methods in Engineering 2001; 51(8):985-1008. Steiger HJ, Aaslid R, Keller S, Reulen HJ. Strength, elasticity and viscoelastic properties of cerebral aneurysms. Heart Vessels 1989 5(1):41-46. Choi G, Cheng CP, Wilson NM, Taylor CA. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Annals of Biomedical Engineering 2009; 37(1):14-33. Milner JS, Moore JA, Rutt BK, Steinman DA. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Journal of Vascular Surgery 1998; 28(1):143-156. 1989; 5 1998; 28 2006; 31 2002; 9 1997; 22 2006; 38 1983; 53 2009; 198 2006; 195 2008; 10 1999; 4 2005 1998; 158 2003 2005; 83 2007; 13 2005; 67 2001; 20 1999 2009; 11 2002; 26 2001; 191 2001 2006; 44 1999; 18 2004; 36 2008; 27 2007; 196 1987 2008; 46 1981; 39 2001; 34 2005; 33 1998; 56 2001; 51 2009; 37 2003; 22 2007; 26 Bazilevs (10.1002/cnm.1404-BIB28|cit28) 2006; 38 Yushkevich (10.1002/cnm.1404-BIB35|cit35) 2006; 31 Kim (10.1002/cnm.1404-BIB43|cit43) 2009; 198 Taylor (10.1002/cnm.1404-BIB6|cit6) 1998; 158 Formaggia (10.1002/cnm.1404-BIB26|cit26) 2001; 191 Antiga (10.1002/cnm.1404-BIB21|cit21) 2003; 22 Steiger (10.1002/cnm.1404-BIB44|cit44) 1989; 5 Friedman (10.1002/cnm.1404-BIB1|cit1) 1981; 39 Cebral (10.1002/cnm.1404-BIB14|cit14) 2001; 51 Torii (10.1002/cnm.1404-BIB30|cit30) 2006; 195 Yeung (10.1002/cnm.1404-BIB3|cit3) 2006; 44 Cebral (10.1002/cnm.1404-BIB8|cit8) 2002; 9 Yim (10.1002/cnm.1404-BIB17|cit17) 2003; 22 Caselles (10.1002/cnm.1404-BIB34|cit34) 1997; 22 Boissonnat (10.1002/cnm.1404-BIB38|cit38) 2005; 67 Sethian (10.1002/cnm.1404-BIB19|cit19) 1999 Figueroa (10.1002/cnm.1404-BIB33|cit33) 2009; 198 Long (10.1002/cnm.1404-BIB12|cit12) 1998; 56 Gerbeau (10.1002/cnm.1404-BIB27|cit27) 2005; 83 Figueroa (10.1002/cnm.1404-BIB31|cit31) 2006; 195 Wang (10.1002/cnm.1404-BIB13|cit13) 1999; 18 Zhang (10.1002/cnm.1404-BIB25|cit25) 2007; 196 Bekkers (10.1002/cnm.1404-BIB22|cit22) 2008; 27 10.1002/cnm.1404-BIB24|cit24 Taylor (10.1002/cnm.1404-BIB5|cit5) 2004; 36 Yim (10.1002/cnm.1404-BIB16|cit16) 2001; 20 Antiga (10.1002/cnm.1404-BIB15|cit15) 2002; 26 Antiga (10.1002/cnm.1404-BIB23|cit23) 2008; 46 Choi (10.1002/cnm.1404-BIB40|cit40) 2009; 37 Nichols (10.1002/cnm.1404-BIB32|cit32) 2005 Taylor (10.1002/cnm.1404-BIB11|cit11) 2009; 11 Kim (10.1002/cnm.1404-BIB29|cit29) 2009; 37 Zarins (10.1002/cnm.1404-BIB2|cit2) 1983; 53 Milner (10.1002/cnm.1404-BIB7|cit7) 1998; 28 10.1002/cnm.1404-BIB39|cit39 Cornea (10.1002/cnm.1404-BIB41|cit41) 2007; 13 Humphrey (10.1002/cnm.1404-BIB4|cit4) 2008; 10 Cebral (10.1002/cnm.1404-BIB18|cit18) 2001; 34 Labelle (10.1002/cnm.1404-BIB36|cit36) 2007; 26 10.1002/cnm.1404-BIB20|cit20 10.1002/cnm.1404-BIB37|cit37 Taylor (10.1002/cnm.1404-BIB9|cit9) 1999; 4 Steinman (10.1002/cnm.1404-BIB10|cit10) 2005; 33 Vignon-Clementel (10.1002/cnm.1404-BIB42|cit42) 2006; 195 |
References_xml | – reference: Zhang YJ, BazilevS Y, GoswaMi S, Bajaj CL, Hughes TJR. Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering 2007; 196(29-30):2943-2959. – reference: Milner JS, Moore JA, Rutt BK, Steinman DA. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Journal of Vascular Surgery 1998; 28(1):143-156. – reference: Taylor CA, Figueroa CA. Patient-specific modeling of cardiovascular mechanics. Annual Review of Biomedical Engineering 2009; 11(1):109-134. – reference: Kim HJ, Figueroa CA, Hughes TJR, Jansen KE, Taylor CA. Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Computer Methods in Applied Mechanics and Engineering 2009; 198(45-46):3551-3566. – reference: Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman D. An image-based modeling framework for patient-specific computational hemodynamics. Medical and Biological Engineering and Computing 2008; 46(11):1097-1112. – reference: Yeung JJ, Kim HJ, Abbruzzese TA, Vignon-Clementel IE, Draney-Blomme MT, Yeung KK, Perkash I, Herfkens RJ, Taylor CA, Dalman RL. Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury. Journal of Vascular Surgery 2006; 44(6):1254-1265. – reference: Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision 1997; 22(1):61-79. – reference: Friedman MH, Hutchins GM, Bargeron CB, Deters OJ, Mark FF. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 1981; 39(3):425-436. – reference: Antiga L, Ene-Iordache B, Caverni L, Cornalba GP, Remuzzi A. Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography. Computerized Medical Imaging and Graphics 2002; 26(4):227-235. – reference: Bazilevs Y, Calo VM, Zhang Y, Hughes TJR. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Computational Mechanics 2006; 38(4-5):310-322. – reference: Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31(3):1116-1128. – reference: Taylor CA, Draney MT. Experimental and computational methods in cardiovascular fluid mechanics. Annual Review of Fluid Mechanics 2004; 36(1):197-231. – reference: Yim PJ, Cebral JJ, Mullick R, Marcos HB, Choyke PL. Vessel surface reconstruction with a tubular deformable model. IEEE Transactions on Medical Imaging 2001; 20(12):1411-1421. – reference: Figueroa CA, Baek S, Taylor CA, Humphrey JD. A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Computer Methods in Applied Mechanics and Engineering 2009; 198(45-46):3583-3602. – reference: Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Computer Methods in Applied Mechanics and Engineering 2006; 195(13-16):1885-1895. – reference: Steiger HJ, Aaslid R, Keller S, Reulen HJ. Strength, elasticity and viscoelastic properties of cerebral aneurysms. Heart Vessels 1989 5(1):41-46. – reference: Taylor CA, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK. Predictive medicine: computational techniques in therapeutic decision-making. Computer Aided Surgery 1999; 4(5):231-247. – reference: Formaggia L, Gerbeau JF, Nobile F, Quarteroni A. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics and Engineering 2001; 191(6-7):561-582. – reference: Taylor CA, Hughes TJR, Zarins CK. Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering 1998; 158(1-2):155-196. – reference: Antiga L, Ene-Iordache B, Remuzzi A. Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Transactions on Medical Imaging 2003; 22(5):674-684. – reference: Cornea ND, Silver D, Min P. Curve-skeleton properties, applications, and algorithms. IEEE Transactions on Visualization and Computer Graphics 2007; 13(3):530-548. – reference: Bekkers EJ, Taylor CA. Multiscale vascular surface model generation from medical imaging data using hierarchical features. IEEE Transactions on Medical Imaging 2008; 27(3):331-341. – reference: Cebral JR, Yim PJ, Lohner R, Soto O, Choyke PL. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Academic Radiology 2002; 9(11):1286-1299. – reference: Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis quantitative correlation of plaque localization with flow velocity profiles and wall shear-stress. Circulation Research 1983; 53(4):502-514. – reference: Humphrey JD, Taylor CA. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annual Review of Biomedical Engineering 2008; 10(1):221-246. – reference: Steinman DA, Taylor CA. Flow imaging sand computing: large artery hemodynamics. Annals of Biomedical Engineering 2005; 33(12):1704-1709. – reference: Cebral JR, Lohner R. From medical images to anatomically accurate finite element grids. International Journal for Numerical Methods in Engineering 2001; 51(8):985-1008. – reference: Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195(29-32):3776-3796. – reference: Wang KC, Dutton RW, Taylor CA. Improving geometric model construction for blood flow modeling. IEEE Engineering in Medicine and Biology Magazine 1999; 18(6):33-39. – reference: Gerbeau JF, Vidrascu M, Frey P. Fluid-structure interaction in blood flows on geometries based on medical imaging. Computers and Structures 2005; 83(2-3):155-165. – reference: Cebral JR, Lohner R, Choyke PL, Yim PJ. Merging of intersecting triangulations for finite element modeling. Journal of Biomechanics 2001; 34(6):815-819. – reference: Boissonnat JD, Oudot S. Provably good sampling and meshing of surfaces. Graphical Models 2005; 67(5):405-451. – reference: Sethian JA. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edn). Cambridge University Press: Cambridge, U.K., New York, 1999. – reference: Choi G, Cheng CP, Wilson NM, Taylor CA. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Annals of Biomedical Engineering 2009; 37(1):14-33. – reference: Kim Y, Lim S, Raman SV, Simonetti OP, Friedman A. Blood flow in a compliant vessel by the immersed boundary method. Annals of Biomedical Engineering 2009; 37(5):927-942. – reference: Yim PJ, Vasbinder GBC, Ho VB, Choyke PL. Isosurfaces as deformable models for magnetic resonance angiography. IEEE Transactions on Medical Imaging 2003; 22(7):875-881. – reference: Nichols WW, O'Rourke MF, McDonald DA. McDonald's Blood Flow in Arteries: Theoretic, Experimental, and Clinical Principles (5th edn). Hodder Arnold: London, 2005. – reference: Long Q, Xu XY, Collins MW, Bourne M, Griffith TM. Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation. Computer Methods and Programs in Biomedicine 1998; 56(3):249-259. – reference: Labelle F, Shewchuk JR. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics 2007; 26(3). Article No. 57. Available from: http://portal.acm.org/citation.cfm?id=1276448. – reference: Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering 2006; 195(41-43):5685-5706. – volume: 31 start-page: 1116 issue: 3 year: 2006 end-page: 1128 article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – volume: 158 start-page: 155 issue: 1–2 year: 1998 end-page: 196 article-title: Finite element modeling of blood flow in arteries publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 56 start-page: 249 issue: 3 year: 1998 end-page: 259 article-title: Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation publication-title: Computer Methods and Programs in Biomedicine – volume: 11 start-page: 109 issue: 1 year: 2009 end-page: 134 article-title: Patient‐specific modeling of cardiovascular mechanics publication-title: Annual Review of Biomedical Engineering – volume: 26 start-page: 227 issue: 4 year: 2002 end-page: 235 article-title: Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography publication-title: Computerized Medical Imaging and Graphics – volume: 39 start-page: 425 issue: 3 year: 1981 end-page: 436 article-title: Correlation between intimal thickness and fluid shear in human arteries publication-title: Atherosclerosis – volume: 195 start-page: 5685 issue: 41–43 year: 2006 end-page: 5706 article-title: A coupled momentum method for modeling blood flow in three‐dimensional deformable arteries publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2005 – volume: 18 start-page: 33 issue: 6 year: 1999 end-page: 39 article-title: Improving geometric model construction for blood flow modeling publication-title: IEEE Engineering in Medicine and Biology Magazine – volume: 36 start-page: 197 issue: 1 year: 2004 end-page: 231 article-title: Experimental and computational methods in cardiovascular fluid mechanics publication-title: Annual Review of Fluid Mechanics – volume: 44 start-page: 1254 issue: 6 year: 2006 end-page: 1265 article-title: Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury publication-title: Journal of Vascular Surgery – volume: 27 start-page: 331 issue: 3 year: 2008 end-page: 341 article-title: Multiscale vascular surface model generation from medical imaging data using hierarchical features publication-title: IEEE Transactions on Medical Imaging – year: 1987 – year: 2001 – volume: 22 start-page: 875 issue: 7 year: 2003 end-page: 881 article-title: Isosurfaces as deformable models for magnetic resonance angiography publication-title: IEEE Transactions on Medical Imaging – volume: 195 start-page: 3776 issue: 29–32 year: 2006 end-page: 3796 article-title: Outflow boundary conditions for three‐dimensional finite element modeling of blood flow and pressure in arteries publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 191 year: 2003 end-page: 198 – volume: 26 issue: 3 year: 2007 article-title: Isosurface stuffing: fast tetrahedral meshes with good dihedral angles publication-title: ACM Transactions on Graphics – volume: 46 start-page: 1097 issue: 11 year: 2008 end-page: 1112 article-title: An image‐based modeling framework for patient‐specific computational hemodynamics publication-title: Medical and Biological Engineering and Computing – volume: 83 start-page: 155 issue: 2–3 year: 2005 end-page: 165 article-title: Fluid–structure interaction in blood flows on geometries based on medical imaging publication-title: Computers and Structures – volume: 37 start-page: 927 issue: 5 year: 2009 end-page: 942 article-title: Blood flow in a compliant vessel by the immersed boundary method publication-title: Annals of Biomedical Engineering – volume: 5 start-page: 41 issue: 1 year: 1989 end-page: 46 article-title: Strength, elasticity and viscoelastic properties of cerebral aneurysms publication-title: Heart Vessels – volume: 22 start-page: 674 issue: 5 year: 2003 end-page: 684 article-title: Computational geometry for patient‐specific reconstruction and meshing of blood vessels from MR and CT angiography publication-title: IEEE Transactions on Medical Imaging – volume: 20 start-page: 1411 issue: 12 year: 2001 end-page: 1421 article-title: Vessel surface reconstruction with a tubular deformable model publication-title: IEEE Transactions on Medical Imaging – volume: 38 start-page: 310 issue: 4–5 year: 2006 end-page: 322 article-title: Isogeometric fluid–structure interaction analysis with applications to arterial blood flow publication-title: Computational Mechanics – volume: 4 start-page: 231 issue: 5 year: 1999 end-page: 247 article-title: Predictive medicine: computational techniques in therapeutic decision‐making publication-title: Computer Aided Surgery – volume: 9 start-page: 1286 issue: 11 year: 2002 end-page: 1299 article-title: Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging publication-title: Academic Radiology – volume: 37 start-page: 14 issue: 1 year: 2009 end-page: 33 article-title: Methods for quantifying three‐dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts publication-title: Annals of Biomedical Engineering – volume: 191 start-page: 561 issue: 6–7 year: 2001 end-page: 582 article-title: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 198 start-page: 3583 issue: 45–46 year: 2009 end-page: 3602 article-title: A computational framework for fluid–solid‐growth modeling in cardiovascular simulations publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 28 start-page: 143 issue: 1 year: 1998 end-page: 156 article-title: Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects publication-title: Journal of Vascular Surgery – volume: 34 start-page: 815 issue: 6 year: 2001 end-page: 819 article-title: Merging of intersecting triangulations for finite element modeling publication-title: Journal of Biomechanics – volume: 10 start-page: 221 issue: 1 year: 2008 end-page: 246 article-title: Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models publication-title: Annual Review of Biomedical Engineering – volume: 33 start-page: 1704 issue: 12 year: 2005 end-page: 1709 article-title: Flow imaging sand computing: large artery hemodynamics publication-title: Annals of Biomedical Engineering – volume: 196 start-page: 2943 issue: 29–30 year: 2007 end-page: 2959 article-title: Patient‐specific vascular NURBS modeling for isogeometric analysis of blood flow publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 13 start-page: 530 issue: 3 year: 2007 end-page: 548 article-title: Curve‐skeleton properties, applications, and algorithms publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 51 start-page: 985 issue: 8 year: 2001 end-page: 1008 article-title: From medical images to anatomically accurate finite element grids publication-title: International Journal for Numerical Methods in Engineering – volume: 198 start-page: 3551 issue: 45–46 year: 2009 end-page: 3566 article-title: Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three‐dimensional finite element simulations of blood flow publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 22 start-page: 61 issue: 1 year: 1997 end-page: 79 article-title: Geodesic active contours publication-title: International Journal of Computer Vision – volume: 67 start-page: 405 issue: 5 year: 2005 end-page: 451 article-title: Provably good sampling and meshing of surfaces publication-title: Graphical Models – volume: 53 start-page: 502 issue: 4 year: 1983 end-page: 514 article-title: Carotid bifurcation atherosclerosis quantitative correlation of plaque localization with flow velocity profiles and wall shear‐stress publication-title: Circulation Research – year: 1999 – volume: 195 start-page: 1885 issue: 13–16 year: 2006 end-page: 1895 article-title: Computer modeling of cardiovascular fluid–structure interactions with the deforming‐spatial‐domain/stabilized space–time formulation publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 10 start-page: 221 issue: 1 year: 2008 ident: 10.1002/cnm.1404-BIB4|cit4 article-title: Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models publication-title: Annual Review of Biomedical Engineering doi: 10.1146/annurev.bioeng.10.061807.160439 – volume: 18 start-page: 33 issue: 6 year: 1999 ident: 10.1002/cnm.1404-BIB13|cit13 article-title: Improving geometric model construction for blood flow modeling publication-title: IEEE Engineering in Medicine and Biology Magazine doi: 10.1109/51.805142 – volume: 67 start-page: 405 issue: 5 year: 2005 ident: 10.1002/cnm.1404-BIB38|cit38 article-title: Provably good sampling and meshing of surfaces publication-title: Graphical Models doi: 10.1016/j.gmod.2005.01.004 – ident: 10.1002/cnm.1404-BIB20|cit20 – volume: 5 start-page: 41 issue: 1 year: 1989 ident: 10.1002/cnm.1404-BIB44|cit44 article-title: Strength, elasticity and viscoelastic properties of cerebral aneurysms publication-title: Heart Vessels doi: 10.1007/BF02058357 – volume: 36 start-page: 197 issue: 1 year: 2004 ident: 10.1002/cnm.1404-BIB5|cit5 article-title: Experimental and computational methods in cardiovascular fluid mechanics publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fluid.36.050802.121944 – volume: 26 issue: 3 year: 2007 ident: 10.1002/cnm.1404-BIB36|cit36 article-title: Isosurface stuffing: fast tetrahedral meshes with good dihedral angles publication-title: ACM Transactions on Graphics doi: 10.1145/1276377.1276448 – ident: 10.1002/cnm.1404-BIB37|cit37 – volume: 37 start-page: 14 issue: 1 year: 2009 ident: 10.1002/cnm.1404-BIB40|cit40 article-title: Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-008-9590-0 – volume: 4 start-page: 231 issue: 5 year: 1999 ident: 10.1002/cnm.1404-BIB9|cit9 article-title: Predictive medicine: computational techniques in therapeutic decision-making publication-title: Computer Aided Surgery doi: 10.3109/10929089909148176 – volume: 39 start-page: 425 issue: 3 year: 1981 ident: 10.1002/cnm.1404-BIB1|cit1 article-title: Correlation between intimal thickness and fluid shear in human arteries publication-title: Atherosclerosis doi: 10.1016/0021-9150(81)90027-7 – volume: 11 start-page: 109 issue: 1 year: 2009 ident: 10.1002/cnm.1404-BIB11|cit11 article-title: Patient-specific modeling of cardiovascular mechanics publication-title: Annual Review of Biomedical Engineering doi: 10.1146/annurev.bioeng.10.061807.160521 – volume: 51 start-page: 985 issue: 8 year: 2001 ident: 10.1002/cnm.1404-BIB14|cit14 article-title: From medical images to anatomically accurate finite element grids publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/nme.205 – ident: 10.1002/cnm.1404-BIB24|cit24 – volume: 198 start-page: 3551 issue: 45-46 year: 2009 ident: 10.1002/cnm.1404-BIB43|cit43 article-title: Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2009.02.012 – volume-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science year: 1999 ident: 10.1002/cnm.1404-BIB19|cit19 – volume: 83 start-page: 155 issue: 2-3 year: 2005 ident: 10.1002/cnm.1404-BIB27|cit27 article-title: Fluid-structure interaction in blood flows on geometries based on medical imaging publication-title: Computers and Structures doi: 10.1016/j.compstruc.2004.03.083 – volume: 31 start-page: 1116 issue: 3 year: 2006 ident: 10.1002/cnm.1404-BIB35|cit35 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 28 start-page: 143 issue: 1 year: 1998 ident: 10.1002/cnm.1404-BIB7|cit7 article-title: Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects publication-title: Journal of Vascular Surgery doi: 10.1016/S0741-5214(98)70210-1 – volume: 22 start-page: 875 issue: 7 year: 2003 ident: 10.1002/cnm.1404-BIB17|cit17 article-title: Isosurfaces as deformable models for magnetic resonance angiography publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2003.815056 – volume: 27 start-page: 331 issue: 3 year: 2008 ident: 10.1002/cnm.1404-BIB22|cit22 article-title: Multiscale vascular surface model generation from medical imaging data using hierarchical features publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2007.905081 – volume: 195 start-page: 1885 issue: 13-16 year: 2006 ident: 10.1002/cnm.1404-BIB30|cit30 article-title: Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2005.05.050 – volume: 34 start-page: 815 issue: 6 year: 2001 ident: 10.1002/cnm.1404-BIB18|cit18 article-title: Merging of intersecting triangulations for finite element modeling publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(01)00018-5 – volume: 9 start-page: 1286 issue: 11 year: 2002 ident: 10.1002/cnm.1404-BIB8|cit8 article-title: Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging publication-title: Academic Radiology doi: 10.1016/S1076-6332(03)80562-7 – volume: 158 start-page: 155 issue: 1-2 year: 1998 ident: 10.1002/cnm.1404-BIB6|cit6 article-title: Finite element modeling of blood flow in arteries publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(98)80008-X – volume: 13 start-page: 530 issue: 3 year: 2007 ident: 10.1002/cnm.1404-BIB41|cit41 article-title: Curve-skeleton properties, applications, and algorithms publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2007.1002 – volume: 22 start-page: 674 issue: 5 year: 2003 ident: 10.1002/cnm.1404-BIB21|cit21 article-title: Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2003.812261 – volume: 38 start-page: 310 issue: 4-5 year: 2006 ident: 10.1002/cnm.1404-BIB28|cit28 article-title: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow publication-title: Computational Mechanics doi: 10.1007/s00466-006-0084-3 – volume: 56 start-page: 249 issue: 3 year: 1998 ident: 10.1002/cnm.1404-BIB12|cit12 article-title: Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/S0169-2607(98)00008-X – volume: 22 start-page: 61 issue: 1 year: 1997 ident: 10.1002/cnm.1404-BIB34|cit34 article-title: Geodesic active contours publication-title: International Journal of Computer Vision doi: 10.1023/A:1007979827043 – volume: 26 start-page: 227 issue: 4 year: 2002 ident: 10.1002/cnm.1404-BIB15|cit15 article-title: Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/S0895-6111(02)00020-4 – volume: 46 start-page: 1097 issue: 11 year: 2008 ident: 10.1002/cnm.1404-BIB23|cit23 article-title: An image-based modeling framework for patient-specific computational hemodynamics publication-title: Medical and Biological Engineering and Computing doi: 10.1007/s11517-008-0420-1 – ident: 10.1002/cnm.1404-BIB39|cit39 – volume: 37 start-page: 927 issue: 5 year: 2009 ident: 10.1002/cnm.1404-BIB29|cit29 article-title: Blood flow in a compliant vessel by the immersed boundary method publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-009-9669-2 – volume: 195 start-page: 5685 issue: 41-43 year: 2006 ident: 10.1002/cnm.1404-BIB31|cit31 article-title: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2005.11.011 – volume: 191 start-page: 561 issue: 6-7 year: 2001 ident: 10.1002/cnm.1404-BIB26|cit26 article-title: On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(01)00302-4 – volume: 44 start-page: 1254 issue: 6 year: 2006 ident: 10.1002/cnm.1404-BIB3|cit3 article-title: Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury publication-title: Journal of Vascular Surgery doi: 10.1016/j.jvs.2006.08.026 – volume: 20 start-page: 1411 issue: 12 year: 2001 ident: 10.1002/cnm.1404-BIB16|cit16 article-title: Vessel surface reconstruction with a tubular deformable model publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.974935 – volume: 195 start-page: 3776 issue: 29-32 year: 2006 ident: 10.1002/cnm.1404-BIB42|cit42 article-title: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2005.04.014 – volume: 198 start-page: 3583 issue: 45-46 year: 2009 ident: 10.1002/cnm.1404-BIB33|cit33 article-title: A computational framework for fluid-solid-growth modeling in cardiovascular simulations publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2008.09.013 – volume: 53 start-page: 502 issue: 4 year: 1983 ident: 10.1002/cnm.1404-BIB2|cit2 article-title: Carotid bifurcation atherosclerosis quantitative correlation of plaque localization with flow velocity profiles and wall shear-stress publication-title: Circulation Research doi: 10.1161/01.RES.53.4.502 – volume-title: McDonald's Blood Flow in Arteries: Theoretic, Experimental, and Clinical Principles year: 2005 ident: 10.1002/cnm.1404-BIB32|cit32 – volume: 33 start-page: 1704 issue: 12 year: 2005 ident: 10.1002/cnm.1404-BIB10|cit10 article-title: Flow imaging sand computing: large artery hemodynamics publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-005-8772-2 – volume: 196 start-page: 2943 issue: 29-30 year: 2007 ident: 10.1002/cnm.1404-BIB25|cit25 article-title: Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2007.02.009 |
SSID | ssj0000299973 |
Score | 2.1625352 |
Snippet | Simulation of blood flow using image‐based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant... Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1000 |
SubjectTerms | Biological and medical sciences Blood and lymphatic vessels Blood flow blood flow simulation Cardiology. Vascular system Computational methods in fluid dynamics Computer simulation deformable walls Diseases Exact sciences and technology Fluid dynamics Fluid-structure interaction Fundamental and applied biological sciences. Psychology Fundamental areas of phenomenology (including applications) Hemodynamics. Rheology image-based modeling Mathematical models Medical sciences Numerical analysis Physics Segmentation Solid mechanics Structural and continuum mechanics subject-specific geometry Three dimensional vascular model construction Vertebrates: cardiovascular system Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) wall mechanical properties |
Title | Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties |
URI | https://api.istex.fr/ark:/67375/WNG-09HR9V6Z-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1404 https://www.ncbi.nlm.nih.gov/pubmed/21765984 https://www.proquest.com/docview/1671254851 https://www.proquest.com/docview/1835476485 https://pubmed.ncbi.nlm.nih.gov/PMC3137382 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQe-FCKc_lsTISKqdsEydO4mNbWFZIXYlCoYJDZDtOu2o2qTa725YTP4HfyC9hxnmUhYIQpyTKWEkmM_aX8ZfPhDzXyvc0DBSOSCHJg5QZJ469wBGZ9Jnx3LQm0eyPw9Fh8OaIHzWsSvwXptaH6ApumBm2v8YEl6ravhIN1cV0gNow0P0iVQvx0AHryisudLPCzi8zy5kTvmilZ1223bZdGYzW0a8XSI6UFfgnqxe2uA55_k6g_BnY2pFpuEE-t89UE1JOB4u5Gugvv8g9_t9D3ya3GsBKd-oI2yQ3THGHbDTglTZdQ3WXLN9Nps1SYLTMqCXE0ywvz-mkoKmx2Fjlhi5RrDyvKBLuj2m1UFgI-v71G_7yibQlemzKqZnPLqksUloh4Vvm-SVdwk1ji3M4omc4hTBDLdh75HD46v3eyGkWdXA0YLvACRQXKgOcopnkBuCZUZkLn0mCZ8wzPBYG91mgJCAP5afC09KLtB_pWAslhX-frBVlYR4SqnToZlr6aYCKQjwVKuKe0VlqlK-MYT3yon27iW4Uz3HhjTyptZpZAu5M0J098qyzPKtVPq6x2bIB0hnI2Smy4iKefBy_TlwxOhAfwk_J2x7pr0RQ14AFPk50cbhaG1IJJDPO0MjClIsq8cIIAGcAKPgvNliqi0Iw6pEHdRheXcGLQi5iuNdoJUA7AxQTXz1TTE6sqLjvocYV-GzLxt8f3ZDsjfdx--hfDR-Tm3UdHinOT8jafLYwTwHIzVWfrO_svtwd9m3q_gDINUqr |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXG9gAvjG86YBgJjad0sRMnsXhCE6PAWomxwTQhWbbjbNXSdGrajvHET-A38kvwdT5GYSDEU1vlWklu77VPrk_OReipVgHRdqHweGqTPEyp8ZKEhB7PZEAN8dOKRNMfRL398M0BO1hCz5t3YSp9iLbgBpnh5mtIcChIb16ohupi1AVxmCtoBRp6u-epXdoWWHw70XK3w0wda44HvBGf9elmM3hhOVoBz34GeqQsrYeyqrXFZdjzdwrlz9DWrU3bq-hTc1cVJeWkO5uqrv7yi-Djf972DXS9xqz4RRVkN9GSKW6h1Rq_4np2KG-j-fvhqO4GhscZdpx4nOXjMzwscGocPFa5wXPQK89LDJz7I1zOFNSCvn_9Bm99AnMJH5nxyEwn51gWKS6B8y3z_BzP7VXDiDP7C5_CLsIE5GDvoP3tl3tbPa_u6-BpC-9CL1SMq8xCFU0lMxahGZX59kmJs4wSwxJu4DsNlbTgQwUpJ1qSWAexTjRXkgd30XIxLsx9hJWO_EzLIA1BVIilXMWMGJ2lRgXKGNpBz5q_V-ha9Bx6b-SikmumwrpTgDs76ElreVoJfVxis-EipDWQkxMgxsVMfBy8Ej7v7fIP0aF410HrCyHUDqBhAHtdzJ6tiSlh8xk2aWRhxrNSkCi2mDO0QPgvNlCtiyNr1EH3qji8OAOJI8YTe63xQoS2BqAnvnikGB47XfGAgMyV9dmGC8A_ukFsDfrwufavho_R1d5ef0fsvB68fYCuVWV5YDw_RMvTycw8srhuqtZd_v4AxfhNVA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgkxAvG3fKZRgJjad0iS9J_Ig2SrmsgsFgggfLdpytWppUTdsxnvgJ_EZ-CT5JmlEYCPGURDlWkpNz7C_HXz4j9MhoGhg3UHgicUnOEmK9OA6YJ1JFiQ38pCbR7A7C_j57ccAPGlYl_AtT60O0BTfIjKq_hgQfJ-nWmWioyUdd0Ia5iFZZ6McQ0Tt7pK2v-K6fFdUEM6lIc4KKhfasT7YWjZdGo1Vw7GdgR6rSOSitV7Y4D3r-zqD8GdlWQ1NvHX1aPFTNSDnuzqa6a778ovf4f099Ba01iBU_qUPsKrpg82tovUGvuOkbyuto_nY4atYCw0WKK0Y8TrPiBA9znNgKHOvM4jmolWclBsb9IS5nGipB379-g38-gbeED20xstPJKVZ5gktgfKssO8Vzd9PQ4sQd4THMIUxADPYG2u89fbfd95pVHTzjwB3zmOZCpw6oGKK4dfjM6tR330mCpySwPBYW9gnTykEPTRMRGBVEhkYmNkIrQW-ilbzI7W2EtQn91CiaMJAU4onQEQ-sSROrqbaWdNDjxduVppE8h5U3MlmLNRPp3CnBnR30sLUc1zIf59hsVgHSGqjJMdDiIi4_DJ5JX_T3xPvwo3zTQRtLEdQ2IIzCTBd3V1uElHTZDFM0KrfFrJRBGDnEyRwM_osN1Oqi0Bl10K06DM-uEEQhF7G712gpQFsDUBNfPpMPjypVcRqAyJXz2WYVf390g9we7ML2zr8aPkCXXu_05Kvng5d30eW6Jg9053toZTqZ2fsO1E31RpW9PwDYz0wM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+blood+flow+in+deformable+vessels+using+subject-specific+geometry+and+spatially+varying+wall+properties&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Xiong%2C+Guanglei&rft.au=Figueroa%2C+C.+Alberto&rft.au=Xiao%2C+Nan&rft.au=Taylor%2C+Charles+A.&rft.date=2011-07-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=27&rft.issue=7&rft.spage=1000&rft.epage=1016&rft_id=info:doi/10.1002%2Fcnm.1404&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_09HR9V6Z_Q |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |