Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement
While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over g...
Saved in:
Published in | Molecular ecology resources Vol. 19; no. 2; pp. 426 - 438 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false‐positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along‐shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat‐specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs. |
---|---|
AbstractList | While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false‐positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along‐shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat‐specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs. While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false-positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along-shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat-specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs.While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false-positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along-shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat-specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs. While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false‐positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along‐shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat‐specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs. |
Author | Gemmell, Neil J. Spencer, Hamish G. Taylor, Helen R. Knapp, Michael Jeunen, Gert‐Jan Lamare, Miles D. Stat, Michael Bunce, Michael |
Author_xml | – sequence: 1 givenname: Gert‐Jan orcidid: 0000-0001-7458-3550 surname: Jeunen fullname: Jeunen, Gert‐Jan email: gert-jan.jeunen@otago.ac.nz organization: University of Otago – sequence: 2 givenname: Michael surname: Knapp fullname: Knapp, Michael organization: University of Otago – sequence: 3 givenname: Hamish G. orcidid: 0000-0001-7531-597X surname: Spencer fullname: Spencer, Hamish G. organization: University of Otago – sequence: 4 givenname: Miles D. surname: Lamare fullname: Lamare, Miles D. organization: University of Otago – sequence: 5 givenname: Helen R. orcidid: 0000-0001-7951-0772 surname: Taylor fullname: Taylor, Helen R. organization: University of Otago – sequence: 6 givenname: Michael surname: Stat fullname: Stat, Michael organization: Macquarie University – sequence: 7 givenname: Michael orcidid: 0000-0002-7721-4790 surname: Bunce fullname: Bunce, Michael organization: Curtin University – sequence: 8 givenname: Neil J. orcidid: 0000-0003-0671-3637 surname: Gemmell fullname: Gemmell, Neil J. organization: University of Otago |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30576077$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1PHDEQhq2IKHwkdbrIUhpSHNi-9dpbIriESIQ0QaKz_DFLjHZtYvsOXcNvx5uDK2jOhT0ePe-MZt5DtBdiAIQ-U3JC6zmlgvMZ6Tp5Qlkn2Tt0sM3sbWN5u48Oc74npCWdaD6g_TnhoiVCHKCnRVj5FMMIoegBX1yf4WOo9zc8QtFGJxudD3c4wQr0kHEuFb7Dzmeb_OiDLj4GrMdNcgUpAx518gHwX2180SVjG0MAW8Bhs8aPukDCY1zB1PIjet_XsvDp5T1CN98Xf84vZ1e_f_w8P7uaWU4pm8nGMgcUejBCMOHmDWemd1KwudXSdqZlfUeY6w032nZMMiJc_cuGaC4rf4SON3UfUvy3hFzUWCeAYdAB4jIrxhglpJYju1HK63abhvOKfn2D3sdlCnWQSsmWNWTeskp9eaGWZgSnHuridFqrVxMqcLoBbIo5J-i3CCVqsllNRqrJVPXf5qrgbxR2WnW1oiTth926Rz_Aelcb9WtxvdE9A8aDujg |
CitedBy_id | crossref_primary_10_1002_ece3_8150 crossref_primary_10_1002_edn3_70018 crossref_primary_10_1038_s41598_023_42389_3 crossref_primary_10_1007_s11160_023_09805_3 crossref_primary_10_1016_j_dsr_2022_103871 crossref_primary_10_3389_fmars_2020_605148 crossref_primary_10_1002_edn3_93 crossref_primary_10_1051_bioconf_202410602002 crossref_primary_10_3354_meps13994 crossref_primary_10_7717_peerj_17091 crossref_primary_10_3390_fishes10020058 crossref_primary_10_1002_lol2_10271 crossref_primary_10_1007_s00227_020_03773_z crossref_primary_10_3390_su15129497 crossref_primary_10_1111_2041_210X_13276 crossref_primary_10_1071_MF19175 crossref_primary_10_1038_s41598_024_66912_2 crossref_primary_10_7717_peerj_14810 crossref_primary_10_1016_j_scitotenv_2024_175657 crossref_primary_10_1098_rspb_2021_2613 crossref_primary_10_1098_rspb_2019_1409 crossref_primary_10_1111_1755_0998_13375 crossref_primary_10_1016_j_ecss_2023_108522 crossref_primary_10_1002_edn3_70024 crossref_primary_10_1016_j_ecolind_2021_107698 crossref_primary_10_1111_mec_15587 crossref_primary_10_1111_mec_15742 crossref_primary_10_1111_1755_0998_13931 crossref_primary_10_1038_s42003_021_01760_8 crossref_primary_10_1111_1755_0998_13536 crossref_primary_10_1016_j_marpol_2023_105807 crossref_primary_10_1002_aqc_4144 crossref_primary_10_1080_03014223_2021_1900299 crossref_primary_10_1371_journal_pone_0286228 crossref_primary_10_3390_biology10111132 crossref_primary_10_1002_edn3_584 crossref_primary_10_1016_j_marpolbul_2023_115430 crossref_primary_10_1016_j_rsma_2020_101489 crossref_primary_10_1002_edn3_223 crossref_primary_10_3390_w12102874 crossref_primary_10_3389_fmars_2021_760108 crossref_primary_10_3390_genes10030192 crossref_primary_10_1038_s41598_020_68843_0 crossref_primary_10_3389_fmars_2022_987774 crossref_primary_10_1007_s00300_021_02822_7 crossref_primary_10_1038_s41598_024_60917_7 crossref_primary_10_3897_mbmg_8_128646 crossref_primary_10_1016_j_marpolbul_2022_113860 crossref_primary_10_1093_icesjms_fsad017 crossref_primary_10_1093_icesjms_fsad139 crossref_primary_10_1002_edn3_70033 crossref_primary_10_1038_s41598_019_47899_7 crossref_primary_10_1093_icesjms_fsad022 crossref_primary_10_1016_j_biocon_2022_109881 crossref_primary_10_1002_edn3_74 crossref_primary_10_1186_s40793_024_00594_1 crossref_primary_10_3389_fmars_2023_1320540 crossref_primary_10_1016_j_jenvman_2024_122131 crossref_primary_10_1038_s41893_020_0522_9 crossref_primary_10_1016_j_ecolind_2023_110044 crossref_primary_10_1007_s10531_020_01980_0 crossref_primary_10_1038_s44185_023_00033_3 crossref_primary_10_7717_peerj_12458 crossref_primary_10_1038_s41598_021_00288_5 crossref_primary_10_1371_journal_pone_0244495 crossref_primary_10_1016_j_ocecoaman_2023_106625 crossref_primary_10_1002_ece3_70857 crossref_primary_10_1016_j_envres_2024_119454 crossref_primary_10_1002_edn3_70043 crossref_primary_10_3389_fmars_2021_629629 crossref_primary_10_3390_jmse10030375 crossref_primary_10_7717_peerj_14992 crossref_primary_10_1098_rspb_2023_0771 crossref_primary_10_1016_j_scitotenv_2022_158143 crossref_primary_10_1111_jfb_14403 crossref_primary_10_7717_peerj_14071 crossref_primary_10_1007_s00338_024_02506_8 crossref_primary_10_1002_edn3_366 crossref_primary_10_3390_biology12111446 crossref_primary_10_1002_ece3_7382 crossref_primary_10_1371_journal_pone_0224119 crossref_primary_10_1016_j_ecolind_2023_110795 crossref_primary_10_1007_s00300_023_03187_9 crossref_primary_10_1016_j_scitotenv_2024_174354 crossref_primary_10_1002_edn3_545 crossref_primary_10_1016_j_watres_2021_117994 crossref_primary_10_3390_fishes7010001 crossref_primary_10_1016_j_ecolind_2024_112290 crossref_primary_10_1002_edn3_70061 crossref_primary_10_1007_s12526_024_01447_3 crossref_primary_10_1016_j_marpolbul_2024_117242 crossref_primary_10_1111_jfb_15406 crossref_primary_10_3389_fmars_2021_800474 crossref_primary_10_1093_icesjms_fsad169 crossref_primary_10_1016_j_ecolind_2023_110718 crossref_primary_10_1002_edn3_154 crossref_primary_10_1002_edn3_155 crossref_primary_10_1007_s00338_024_02594_6 crossref_primary_10_1007_s10750_023_05253_z crossref_primary_10_3389_fmars_2024_1390489 crossref_primary_10_1093_icesjms_fsae097 crossref_primary_10_3390_jmse13010060 crossref_primary_10_1038_s41598_021_93859_5 crossref_primary_10_1016_j_ecolind_2023_111111 crossref_primary_10_7717_peerj_17967 crossref_primary_10_1111_een_12831 crossref_primary_10_3354_aei00408 crossref_primary_10_1371_journal_pone_0266720 crossref_primary_10_3389_fmars_2020_00682 crossref_primary_10_1098_rspb_2021_0112 crossref_primary_10_1016_j_scitotenv_2024_176541 crossref_primary_10_1111_mec_15661 crossref_primary_10_7717_peerj_16075 crossref_primary_10_1111_ddi_13228 crossref_primary_10_1007_s11157_019_09501_4 crossref_primary_10_3389_fmars_2022_918295 crossref_primary_10_3390_su16198335 crossref_primary_10_1007_s10530_019_02126_2 crossref_primary_10_1016_j_marenvres_2025_107041 crossref_primary_10_3389_fmars_2020_552047 crossref_primary_10_1111_mec_15382 crossref_primary_10_1146_annurev_marine_041421_082251 crossref_primary_10_1002_edn3_48 crossref_primary_10_1002_edn3_49 crossref_primary_10_1073_pnas_2307214121 crossref_primary_10_1002_ece3_6071 crossref_primary_10_1038_s42003_024_06695_4 crossref_primary_10_1016_j_marpolbul_2021_112893 crossref_primary_10_3897_BDJ_12_e116921 crossref_primary_10_1038_s43247_023_00829_y crossref_primary_10_1016_j_marenvres_2022_105692 crossref_primary_10_3390_jmse12101729 crossref_primary_10_1016_j_scitotenv_2025_179194 crossref_primary_10_3390_jmse12060971 crossref_primary_10_1080_00288330_2024_2439088 crossref_primary_10_1111_faf_12553 crossref_primary_10_1002_edn3_35 crossref_primary_10_1016_j_ocecoaman_2023_106785 crossref_primary_10_3389_fmars_2023_1209093 crossref_primary_10_1002_edn3_177 crossref_primary_10_1002_edn3_451 crossref_primary_10_1111_jpy_13087 crossref_primary_10_3897_mbmg_5_66557 crossref_primary_10_1002_edn3_294 crossref_primary_10_1016_j_marpolbul_2021_113183 crossref_primary_10_3389_fevo_2021_574877 crossref_primary_10_1016_j_scitotenv_2022_153223 crossref_primary_10_3389_fmars_2023_1061530 crossref_primary_10_1002_ece3_6482 crossref_primary_10_1111_1755_0998_14001 crossref_primary_10_3390_ani13111777 crossref_primary_10_1007_s10530_019_02193_5 crossref_primary_10_3390_ijerph19159445 crossref_primary_10_1007_s00338_022_02301_3 crossref_primary_10_1016_j_marpolbul_2020_111707 crossref_primary_10_1139_cjfas_2021_0215 crossref_primary_10_1038_s41598_020_70307_4 crossref_primary_10_1111_cobi_13437 crossref_primary_10_1016_j_dsr_2022_103806 crossref_primary_10_1002_edn3_201 crossref_primary_10_1111_1462_2920_15406 crossref_primary_10_1002_edn3_162 crossref_primary_10_1007_s00338_024_02566_w crossref_primary_10_1016_j_marpolbul_2022_114062 |
Cites_doi | 10.1029/1999JC000144 10.1126/science.1064088 10.1101/113472 10.1016/j.biocon.2014.11.023 10.1016/j.biocon.2014.11.017 10.1111/1755-0998.12180 10.1098/rsbl.2014.0562 10.1038/nature21708 10.1101/164046 10.1111/faf.12286 10.1038/s41598-017-12501-5 10.7717/peerj.3044 10.1111/1755-0998.12159 10.7717/peerj.1832 10.1371/journal.pone.0041732 10.1371/journal.pone.0173073 10.1093/bioinformatics/btt593 10.1016/j.biocon.2014.11.019 10.1111/j.1365-294X.2009.04158.x 10.1111/mec.13660 10.1111/mec.13481 10.1111/1755-0998.12685 10.1371/journal.pone.0013716 10.1073/pnas.1424997112 10.1111/1365-2664.12428 10.1080/0028825X.1988.10410111 10.1111/2041-210X.12789 10.1046/j.1469-8137.2003.00894.x 10.1371/journal.pone.0189119 10.1111/j.1365-2664.2012.02171.x 10.1111/ele.12189 10.1371/journal.pone.0027310 10.1111/1755-0998.12281 10.1016/j.biocon.2014.11.038 10.1071/MF11147 10.1002/ece3.3123 10.1371/journal.pone.0088786 10.1038/srep40368 10.1186/1472-6785-12-28 10.1126/science.1187512 10.1111/2041-210X.12595 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2 10.1038/ncomms14087 10.3389/fmars.2016.00283 10.1093/bioinformatics/btq461 10.1016/S0967-0645(98)00035-6 10.1093/icb/34.1.100 10.1111/mec.14350 10.1186/1742-9994-10-34 10.1371/journal.pone.0148698 10.1016/j.tree.2015.08.009 10.1590/S1679-87592007000100003 10.1093/bioinformatics/bts199 10.1111/2041-210X.12849 10.1038/s41559-016-0004 10.1016/j.biocon.2015.09.021 10.1371/journal.pone.0124671 10.1016/j.scitotenv.2018.02.295 10.1071/MF97074 10.7717/peerj.4644 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons Ltd 2018 John Wiley & Sons Ltd. Copyright © 2019 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2018 John Wiley & Sons Ltd – notice: 2018 John Wiley & Sons Ltd. – notice: Copyright © 2019 John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/1755-0998.12982 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Entomology Abstracts CrossRef AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1755-0998 |
EndPage | 438 |
ExternalDocumentID | 30576077 10_1111_1755_0998_12982 MEN12982 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5112-84c2de1efeb7727d3452bfd8723ca8c9b62f902dfb5bac928207d02d840a587d3 |
IEDL.DBID | DR2 |
ISSN | 1755-098X 1755-0998 |
IngestDate | Fri Jul 11 18:31:21 EDT 2025 Fri Jul 11 10:52:16 EDT 2025 Fri Jul 25 12:19:01 EDT 2025 Wed Feb 19 02:37:05 EST 2025 Tue Jul 01 01:18:57 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Wed Jan 22 16:34:59 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | marine eDNA spatial resolution metabarcoding biodiversity assessment |
Language | English |
License | 2018 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5112-84c2de1efeb7727d3452bfd8723ca8c9b62f902dfb5bac928207d02d840a587d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0671-3637 0000-0001-7531-597X 0000-0001-7951-0772 0000-0001-7458-3550 0000-0002-7721-4790 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/Environmental_DNA_eDNA_metabarcoding_reveals_strong_discrimination_among_diverse_marine_habitats_connected_by_water_movement/25905562 |
PMID | 30576077 |
PQID | 2186240362 |
PQPubID | 1096410 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2221007230 proquest_miscellaneous_2159984455 proquest_journals_2186240362 pubmed_primary_30576077 crossref_primary_10_1111_1755_0998_12982 crossref_citationtrail_10_1111_1755_0998_12982 wiley_primary_10_1111_1755_0998_12982_MEN12982 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Molecular ecology resources |
PublicationTitleAlternate | Mol Ecol Resour |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 1998; 49 2017; 7 2017; 8 2015; 183 2017; 3 2015; 30 2012; 12 1992; 12 1998; 45 2001; 106 2018; 6 2018; 9 2001; 294 2010; 26 2013; 16 2013; 10 1987 1994; 34 2014; 14 2003; 160 2011; 22 2008; 159 2012; 28 2014; 9 2010; 5 2014; 10 2009; 18 2012; 63 2015; 15 2017; 26 2010; 328 2011 2010 2015; 52 1997; 67 2015; 10 2008 2007; 55 2011; 6 2016; 11 2016; 4 2018; 19 2016; 7 2015; 192 2016; 1 2018; 633 2017; 17 2015; 112 1988; 26 2017; 12 2018 2017 2012; 49 2014; 30 2012; 7 2017; 543 2016; 25 Díez I. (e_1_2_9_16_1) 2008; 159 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 deCook S. C. (e_1_2_9_9_1) 2010 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 Paavo B. (e_1_2_9_48_1) 2011 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Elbrecht V. (e_1_2_9_19_1) 2017; 5 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Jeunen G.-J. (e_1_2_9_29_1) 2018 e_1_2_9_70_1 Prince A. M. (e_1_2_9_53_1) 1992; 12 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 Yaldwyn J. C. (e_1_2_9_68_1) 2011; 22 Ayling T. (e_1_2_9_3_1) 1987 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_69_1 |
References_xml | – volume: 5 start-page: e13716 issue: 10 year: 2010 article-title: Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free‐living marine nematodes publication-title: PLoS ONE – volume: 183 start-page: 93 year: 2015 end-page: 102 article-title: Fish environmental DNA is more concentrated in aquatic sediments than surface water publication-title: Biological Conservation – volume: 4 start-page: e1832 year: 2016 article-title: Comparative analysis of different survey methods for monitoring fish assemblages in coastal habitats publication-title: PeerJ – volume: 12 start-page: e0189119 issue: 12 year: 2017 article-title: A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems publication-title: PLoS ONE – volume: 8 start-page: 1265 issue: 10 year: 2017 end-page: 1275 article-title: Assessing strengths and weaknesses of DNA metabarcoding‐based macroinvertebrate identification for routine stream monitoring publication-title: Methods in Ecology and Evolution – start-page: 1 year: 2008 end-page: 41 – volume: 7 start-page: 1299 issue: 11 year: 2016 end-page: 1307 article-title: Critical considerations for the application of environmental DNA methods to detect aquatic species publication-title: Methods in Ecology and Evolution – volume: 7 start-page: e41732 issue: 8 year: 2012 article-title: Detection of a diverse marine fish fauna using environmental DNA from seawater samples publication-title: PLoS ONE – volume: 63 start-page: 68 issue: 1 year: 2012 end-page: 77 article-title: How does tidal submersion time affect macroinvertebrate community patterns on a temperate sheltered sandflat? publication-title: Marine and Freshwater Research – volume: 34 start-page: 100 issue: 1 year: 1994 end-page: 114 article-title: Temperate Coastal Marine Communities: Biodiversity and Threats1 publication-title: American Zoologist – volume: 49 start-page: 19 issue: 1 year: 1998 end-page: 24 article-title: Feeding and schooling behaviour of barracouta (Thyrsites atun) off Otago, New Zealand publication-title: Marine and Freshwater Research – volume: 7 start-page: 5435 issue: 14 year: 2017 end-page: 5453 article-title: DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion ( ) publication-title: Ecology and Evolution – volume: 30 start-page: 673 issue: 11 year: 2015 end-page: 684 article-title: Biodiversity and resilience of ecosystem functions publication-title: Trends in Ecology & Evolution – volume: 14 start-page: 109 issue: 1 year: 2014 end-page: 116 article-title: Factors influencing detection of eDNA from a stream‐dwelling amphibian publication-title: Molecular Ecology Resources – volume: 30 start-page: 614 issue: 5 year: 2014 end-page: 620 article-title: PEAR: a fast and accurate Illumina Paired‐End reAd mergeR publication-title: Bioinformatics (Oxford, England) – volume: 159 start-page: 555 issue: 1 year: 2008 article-title: Ecological monitoring of intertidal phytobenthic communities of the Basque Coast (N. Spain) following the Prestige oil spill publication-title: Environmental Monitoring and Assessment – volume: 1 start-page: 4 year: 2016 article-title: Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA publication-title: Nature Ecology & Evolution – volume: 10 start-page: 20140562 issue: 9 year: 2014 end-page: 20140562 article-title: DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match publication-title: Biology Letters – volume: 7 start-page: 12240 issue: 1 year: 2017 article-title: Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment publication-title: Scientific Reports – volume: 16 start-page: 1424 issue: 12 year: 2013 end-page: 1435 article-title: Predicting species distributions for conservation decisions publication-title: Ecology Letters – volume: 28 start-page: 1647 issue: 12 year: 2012 end-page: 1649 article-title: Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics (Oxford, England) – volume: 49 start-page: 953 issue: 4 year: 2012 end-page: 959 article-title: Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog publication-title: Journal of Applied Ecology – volume: 112 start-page: 2076 issue: 7 year: 2015 end-page: 2081 article-title: DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 160 start-page: 4 issue: 1 year: 2003 end-page: 5 article-title: Taxonomic misidentification in public DNA databases publication-title: New Phytologist – volume: 22 start-page: 171 year: 2011 end-page: 272 article-title: Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) publication-title: Tuhinga – volume: 11 start-page: e0148698 issue: 3 year: 2016 article-title: Indexed PCR primers induce template‐specific bias in large‐scale DNA sequencing studies publication-title: PLoS ONE – volume: 9 start-page: 1 issue: 2 year: 2014 end-page: 8 article-title: Transport distance of invertebrate environmental DNA in a natural river publication-title: PLoS ONE – volume: 45 start-page: 1295 issue: 7 year: 1998 end-page: 1325 article-title: Spatial distribution of planktivorous fish schools in relation to krill abundance and local hydrography off Otago, New Zealand publication-title: Deep Sea Research Part II: Topical Studies in Oceanography – volume: 183 start-page: 46 year: 2015 end-page: 52 article-title: Monitoring the near‐extinct European weather loach in Denmark based on environmental DNA from water samples publication-title: Biological Conservation – volume: 55 start-page: 19 year: 2007 end-page: 27 article-title: Method for monitoring intertidal communities in a steep rocky shore: a combination of digital image technology and field operational strategy publication-title: Brazilian Journal of Oceanography – volume: 26 start-page: 183 issue: 2 year: 1988 end-page: 192 article-title: The use of field transplants in determining environmental tolerance in salt marshes of Otago, New Zealand publication-title: New Zealand Journal of Botany – volume: 12 start-page: 358 issue: 3 year: 1992 end-page: 360 article-title: PCR: how to kill unwanted DNA publication-title: BioTechniques – volume: 543 start-page: 665 year: 2017 article-title: Capacity shortfalls hinder the performance of marine protected areas globally publication-title: Nature – volume: 633 start-page: 695 year: 2018 end-page: 703 article-title: Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: Increasing ef fi cacy of sampling designs publication-title: Science of the Total Environment – volume: 18 start-page: 2022 issue: 9 year: 2009 end-page: 2038 article-title: Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces publication-title: Molecular Ecology – volume: 17 start-page: e25 issue: 6 year: 2017 end-page: e33 article-title: Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA publication-title: Molecular Ecology Resources – volume: 192 start-page: 247 year: 2015 end-page: 257 article-title: Temporal correlations in population trends: Conservation implications from time‐series analysis of diverse animal taxa publication-title: Biological Conservation – volume: 106 start-page: 7037 issue: C4 year: 2001 end-page: 7049 article-title: Acoustic Doppler current profiler measurements of the velocity field of an ebb tidal jet publication-title: Journal of Geophysical Research: Oceans – volume: 14 start-page: 374 issue: 2 year: 2014 end-page: 380 article-title: Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA publication-title: Molecular Ecology Resources – start-page: 1 year: 2018 end-page: 13 article-title: Species-level biodiversity assessment using marine environmental DNA metabarcoding requires protocol optimization and standardization publication-title: Ecol Evol – volume: 12 start-page: 1 issue: 2 year: 2017 end-page: 15 article-title: Environmental DNA reflects spatial and temporal jellyfish distribution publication-title: PLoS ONE – year: 1987 – volume: 10 start-page: 1 issue: 1 year: 2013 end-page: 14 article-title: A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents publication-title: Frontiers in Zoology – volume: 294 start-page: 804 issue: 5543 year: 2001 end-page: 808 article-title: Biodiversity and ecosystem functioning: Current knowledge and future challenges publication-title: Science – volume: 7 start-page: 40368 year: 2017 article-title: Environmental DNA metabarcoding reveals local fish communities in a species‐rich coastal sea publication-title: Scientific Reports – volume: 25 start-page: 527 issue: 2 year: 2016 end-page: 541 article-title: Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA publication-title: Molecular Ecology – volume: 19 start-page: 751 issue: 5 year: 2018 end-page: 768 article-title: The sceptical optimist: challenges and perspectives for the application of environmental DNA in marine fisheries publication-title: Fish and Fisheries – volume: 67 start-page: 345 issue: 3 year: 1997 end-page: 366 article-title: Species assemblages and indicator species: the need for a flexible asymmetrical approach publication-title: Ecological Monographs – volume: 15 start-page: 168 issue: 1 year: 2015 end-page: 176 article-title: The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction publication-title: Molecular Ecology Resources – year: 2010 – volume: 26 start-page: 5872 issue: 21 year: 2017 end-page: 5895 article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities publication-title: Molecular Ecology – volume: 52 start-page: 823 issue: 4 year: 2015 end-page: 826 article-title: The downside of eDNA as a survey tool in water bodies publication-title: Journal of Applied Ecology – volume: 183 start-page: 4 year: 2015 end-page: 18 article-title: Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity publication-title: Biological Conservation – volume: 5 start-page: 11 year: 2017 article-title: Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment publication-title: Frontiers in Environmental Science – volume: 183 start-page: 85 year: 2015 end-page: 92 article-title: Quantifying effects of UV‐B, temperature, and pH on eDNA degradation in aquatic microcosms publication-title: Biological Conservation – volume: 25 start-page: 3101 issue: 13 year: 2016 end-page: 3119 article-title: Environmental DNA metabarcoding of lake fish communities reflects long‐term data from established survey methods publication-title: Molecular Ecology – volume: 9 start-page: 134 issue: 1 year: 2018 end-page: 147 article-title: Scrutinizing key steps for reliable metabarcoding of environmental samples publication-title: Methods in Ecology and Evolution – volume: 5 start-page: e3044 year: 2017 article-title: Spatial distribution of environmental DNA in a nearshore marine habitat publication-title: PeerJ – volume: 8 start-page: 14087 year: 2017 article-title: Annual time‐series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity publication-title: Nature Communications – volume: 10 start-page: 1 issue: 4 year: 2015 end-page: 21 article-title: From Benchtop to Desktop: Important Considerations when Designing Amplicon Sequencing Workflows publication-title: PLoS ONE – volume: 26 start-page: 2460 issue: 19 year: 2010 end-page: 2461 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics (Oxford, England) – start-page: 515 year: 2011 end-page: 528 article-title: Macrofaunal community patterns of adjacent coastal sediments with wave‐reflecting or wave‐dissipating characteristics publication-title: Journal of Coastal Research – volume: 12 start-page: 28 issue: 1 year: 2012 article-title: Assessing biodiversity of a freshwater benthic macroinvertebrate community through non‐destructive environmental barcoding of DNA from preservative ethanol publication-title: BMC Ecology – volume: 328 start-page: 1164 issue: 5982 year: 2010 end-page: 1168 article-title: Global Biodiversity: Indicators of Recent Declines publication-title: Science – volume: 6 start-page: e4644 year: 2018 article-title: Estimating intraspecific genetic diversity from community DNA metabarcoding data publication-title: PeerJ – volume: 3 start-page: 283 year: 2017 article-title: Genetic and manual survey methods yield different and complementary views of an ecosystem publication-title: Frontiers in Marine Science – year: 2017 – volume: 6 start-page: 1 issue: 12 year: 2011 end-page: 14 article-title: Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA‐based studies publication-title: PLoS ONE – ident: e_1_2_9_45_1 doi: 10.1029/1999JC000144 – ident: e_1_2_9_36_1 doi: 10.1126/science.1064088 – ident: e_1_2_9_66_1 doi: 10.1101/113472 – ident: e_1_2_9_57_1 doi: 10.1016/j.biocon.2014.11.023 – ident: e_1_2_9_65_1 doi: 10.1016/j.biocon.2014.11.017 – ident: e_1_2_9_50_1 doi: 10.1111/1755-0998.12180 – ident: e_1_2_9_10_1 doi: 10.1098/rsbl.2014.0562 – ident: e_1_2_9_22_1 doi: 10.1038/nature21708 – ident: e_1_2_9_37_1 doi: 10.1101/164046 – ident: e_1_2_9_28_1 doi: 10.1111/faf.12286 – ident: e_1_2_9_59_1 doi: 10.1038/s41598-017-12501-5 – start-page: 515 year: 2011 ident: e_1_2_9_48_1 article-title: Macrofaunal community patterns of adjacent coastal sediments with wave‐reflecting or wave‐dissipating characteristics publication-title: Journal of Coastal Research – ident: e_1_2_9_42_1 doi: 10.7717/peerj.3044 – ident: e_1_2_9_51_1 doi: 10.1111/1755-0998.12159 – ident: e_1_2_9_4_1 doi: 10.7717/peerj.1832 – volume: 22 start-page: 171 year: 2011 ident: e_1_2_9_68_1 article-title: Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) publication-title: Tuhinga – ident: e_1_2_9_63_1 doi: 10.1371/journal.pone.0041732 – ident: e_1_2_9_38_1 doi: 10.1371/journal.pone.0173073 – volume: 5 start-page: 11 year: 2017 ident: e_1_2_9_19_1 article-title: Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment publication-title: Frontiers in Environmental Science – ident: e_1_2_9_70_1 doi: 10.1093/bioinformatics/btt593 – volume: 12 start-page: 358 issue: 3 year: 1992 ident: e_1_2_9_53_1 article-title: PCR: how to kill unwanted DNA publication-title: BioTechniques – ident: e_1_2_9_64_1 doi: 10.1016/j.biocon.2014.11.019 – start-page: 1 year: 2018 ident: e_1_2_9_29_1 article-title: Species-level biodiversity assessment using marine environmental DNA metabarcoding requires protocol optimization and standardization publication-title: Ecol Evol – ident: e_1_2_9_11_1 doi: 10.1111/j.1365-294X.2009.04158.x – ident: e_1_2_9_27_1 doi: 10.1111/mec.13660 – ident: e_1_2_9_52_1 doi: 10.1111/mec.13481 – ident: e_1_2_9_30_1 doi: 10.1111/1755-0998.12685 – ident: e_1_2_9_15_1 doi: 10.1371/journal.pone.0013716 – ident: e_1_2_9_34_1 doi: 10.1073/pnas.1424997112 – ident: e_1_2_9_55_1 doi: 10.1111/1365-2664.12428 – ident: e_1_2_9_49_1 doi: 10.1080/0028825X.1988.10410111 – ident: e_1_2_9_20_1 doi: 10.1111/2041-210X.12789 – ident: e_1_2_9_67_1 doi: 10.1046/j.1469-8137.2003.00894.x – ident: e_1_2_9_60_1 doi: 10.1371/journal.pone.0189119 – ident: e_1_2_9_14_1 doi: 10.1111/j.1365-2664.2012.02171.x – ident: e_1_2_9_25_1 doi: 10.1111/ele.12189 – ident: e_1_2_9_56_1 doi: 10.1371/journal.pone.0027310 – ident: e_1_2_9_54_1 doi: 10.1111/1755-0998.12281 – ident: e_1_2_9_61_1 doi: 10.1016/j.biocon.2014.11.038 – ident: e_1_2_9_47_1 doi: 10.1071/MF11147 – ident: e_1_2_9_5_1 doi: 10.1002/ece3.3123 – ident: e_1_2_9_12_1 doi: 10.1371/journal.pone.0088786 – ident: e_1_2_9_69_1 doi: 10.1038/srep40368 – ident: e_1_2_9_26_1 doi: 10.1186/1472-6785-12-28 – ident: e_1_2_9_8_1 doi: 10.1126/science.1187512 – ident: e_1_2_9_7_1 – ident: e_1_2_9_24_1 doi: 10.1111/2041-210X.12595 – volume-title: New Zealand coastal marine invertebrates year: 2010 ident: e_1_2_9_9_1 – ident: e_1_2_9_17_1 doi: 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2 – volume-title: Collins guide to the sea fishes of New Zealand year: 1987 ident: e_1_2_9_3_1 – ident: e_1_2_9_6_1 doi: 10.1038/ncomms14087 – ident: e_1_2_9_33_1 doi: 10.3389/fmars.2016.00283 – ident: e_1_2_9_18_1 doi: 10.1093/bioinformatics/btq461 – ident: e_1_2_9_44_1 doi: 10.1016/S0967-0645(98)00035-6 – ident: e_1_2_9_62_1 doi: 10.1093/icb/34.1.100 – ident: e_1_2_9_13_1 doi: 10.1111/mec.14350 – ident: e_1_2_9_35_1 doi: 10.1186/1742-9994-10-34 – ident: e_1_2_9_41_1 doi: 10.1371/journal.pone.0148698 – ident: e_1_2_9_46_1 doi: 10.1016/j.tree.2015.08.009 – ident: e_1_2_9_39_1 doi: 10.1590/S1679-87592007000100003 – ident: e_1_2_9_31_1 doi: 10.1093/bioinformatics/bts199 – ident: e_1_2_9_2_1 doi: 10.1111/2041-210X.12849 – ident: e_1_2_9_58_1 doi: 10.1038/s41559-016-0004 – ident: e_1_2_9_32_1 doi: 10.1016/j.biocon.2015.09.021 – ident: e_1_2_9_40_1 doi: 10.1371/journal.pone.0124671 – volume: 159 start-page: 555 issue: 1 year: 2008 ident: e_1_2_9_16_1 article-title: Ecological monitoring of intertidal phytobenthic communities of the Basque Coast (N. Spain) following the Prestige oil spill publication-title: Environmental Monitoring and Assessment – ident: e_1_2_9_23_1 doi: 10.1016/j.scitotenv.2018.02.295 – ident: e_1_2_9_43_1 doi: 10.1071/MF97074 – ident: e_1_2_9_21_1 doi: 10.7717/peerj.4644 |
SSID | ssj0060974 |
Score | 2.6147478 |
Snippet | While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 426 |
SubjectTerms | Aquatic habitats Aquatic Organisms - classification Aquatic Organisms - genetics Aquatic Organisms - growth & development Biodiversity biodiversity assessment Biota Cluster Analysis Crustacea Crustaceans cytochrome-c oxidase Cytochromes data collection Deoxyribonucleic acid Dispersal Dispersion DNA DNA barcoding DNA Barcoding, Taxonomic DNA, Ribosomal - chemistry DNA, Ribosomal - genetics Ecosystem Electron Transport Complex IV - genetics Environmental DNA Eukaryota - classification Eukaryota - genetics Eukaryota - growth & development fish Genera genes Habitat preferences Habitats marine eDNA Marine environment metabarcoding Metagenomics Monitoring Monitoring methods Ordination Phylogeny Polls & surveys ribosomal RNA RNA, Ribosomal, 16S - genetics rRNA 16S Sequence Analysis, DNA Shellfish spatial resolution surveys Taxa Water flow Water Movements |
Title | Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12982 https://www.ncbi.nlm.nih.gov/pubmed/30576077 https://www.proquest.com/docview/2186240362 https://www.proquest.com/docview/2159984455 https://www.proquest.com/docview/2221007230 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EELz4ftQXK3jQQ0KaZpPNUbQigj2Ihd7CPj1oG2lTpB787c5sHr5QES8lbWbDZjOz82367TeEHPE4tibQwmsLE3iQoRNPSK49YdqKcRtbKxzbohdf9qOrAavZhLgXptSHaF64YWS4-RoDXMjJuyCHvMc8wDfch5TFcRZGxhbCoptGQCoOUqfDXNnyQSXug1yeT-0_5qUvYPMjdnXJ52KZyLrbJefk3p8W0lfPnxQd_3VfK2Spgqb0tPSlVTJnRmtkoetkrWfr5KX7ticOzM57p_TYwOcJHZoCiQEqxzxIURMKfJpO8CX7HcVtv2XpMHQB6oobwY_IBjF0KHDzIUWxcAC9E6qQdqMABFM5o08Ag8d0mDtF82KD9C-6t2eXXlW9wVMI4jweqVCbtrFGAoJPdCdiobSaJ2FHCa5SGYc2DUJtJZNCpbD0CxIN32HFKRgH-00yP8pHZptQAbMyOFWoO9xGMgVfUjqVEVcqYlLyoEX8-tllqpI2xwobD1m9xMFBzXBQMzeoLXLcNHgsVT2-N92rnSGrwnuSYSEvFDKM4fRhcxoCE_9tESOTT9GGwUWiiLEfbMIQWSqwDGyRrdLRmv7ARJzEQZLAzTl3-a2j2XW35w52_tpglywCDExLZt0emS_GU7MPUKuQBy6aXgFGqh3M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EEb34flSrruBBDylpmk02x6KV-upBFHoL-_SgbcWmiB787c5s0vhCRbyEPCZhs5nZ-WYz-w0hezyKrPG18OrC-B546NgTkmtPmLpi3EbWCpdt0Yna1-Fpl3XfrYXJ-SHKCTe0DDdeo4HjhPQ7KwfHxzwAOLwGPovDMDyFdb1dWHVZUkhFfuKYmAth3i3ofTCb59MDPnqmL3DzI3p17ud4nqhxw_Osk9vaKJM19fyJ0_F_b7ZA5gp0Spu5Oi2SCdNfItMtx2z9tExeWm_L4kDsqNOk-wa2B7RnMswNUAN0hRRpoUCt6RDn2W8orvzNq4ehFlBX3whOYkKIoT2B6w8p8oUD7h1ShZk3CnAwlU_0EZDwA-0NHKl5tkKuj1tXh22vKODgKcRxHg9VoE3dWCMBxMe6EbJAWs3joKEEV4mMApv4gbaSSaESiP78WMMxBJ2CcZBfJZP9Qd-sEypgYAa9CnSD21AmoE5KJzLkSoVMSu5XSG388VJVsJtjkY27dBzlYKem2Kmp69QK2S9vuM-JPb4XrY61IS0sfJhiLS_kMozg8m55GWwTf7iIvhmMUIbBQ8KQsR9kggATVSASrJC1XNPK9sBYHEd-HMPLOX35raHpRavjdjb-esMOmWlfXZyn5yeds00yC6gwyRPtqmQyexiZLUBemdx2pvUKIKQh5w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hEKiXAn1AymuReqAHR46zu14fEUnEo0RVVSRu1j45QBJEHFX0wG9nZv3gJaiqXiw7Hlvr9czOt8633xDyVQrhXWxV1FEujiBDp5HS0kbKdQyXXnivAttiKA7P2PE5r9mEuBam1IdoPrhhZITxGgP82vpHQQ55j0eAb2QbUpaEUXiBiViiY_d-NgpSIs6CEHNlLM8rdR8k8zy7wdPE9AJtPgWvIfsMlomu212STi7bs0K3zZ9nko7_9WAr5H2FTel-6UyrZM6NP5DFftC1vv1I7voPi-LArDfcp3sOtt_oyBXIDDATTIQURaHAqekUv7JfUFz3W9YOQx-goboR_Ih0EEdHClcfUlQLB9Q7pQZ5NwZQMNW39Dfg4Bs6mgRJ8-ITORv0fx0cRlX5hsggioskM4l1HeedBgif2i7jifZWpknXKGkyLRKfxYn1mmtlMpj7xamFY5hyKi7B_jOZH0_Gbp1QBcMyeFViu9IznYEzGZtpJo1hXGsZt0i7fne5qbTNscTGVV7PcbBTc-zUPHRqi-w1F1yXsh6vm27WzpBX8T3NsZIXKhkKOL3bnIbIxL9b1NhNZmjD4SaMcf6GTZIgTQXmgS2yVjpa0x4YiVMRpyk8XHCXvzU0P-0Pw86Xf71ghyz96A3y70fDkw3yDiBhVrLsNsl8cTNzWwC7Cr0dAusesQYgnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+DNA+%28eDNA%29+metabarcoding+reveals+strong+discrimination+among+diverse+marine+habitats+connected+by+water+movement&rft.jtitle=Molecular+ecology+resources&rft.au=Jeunen%2C+Gert-Jan&rft.au=Knapp%2C+Michael&rft.au=Spencer%2C+Hamish+G&rft.au=Lamare%2C+Miles+D&rft.date=2019-03-01&rft.issn=1755-0998&rft.eissn=1755-0998&rft.volume=19&rft.issue=2&rft.spage=426&rft_id=info:doi/10.1111%2F1755-0998.12982&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon |