Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement

While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over g...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology resources Vol. 19; no. 2; pp. 426 - 438
Main Authors Jeunen, Gert‐Jan, Knapp, Michael, Spencer, Hamish G., Lamare, Miles D., Taylor, Helen R., Stat, Michael, Bunce, Michael, Gemmell, Neil J.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false‐positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along‐shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat‐specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs.
AbstractList While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false‐positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along‐shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat‐specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs.
While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false-positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along-shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat-specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs.While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false-positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along-shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat-specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs.
While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false‐positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along‐shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat‐specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs.
Author Gemmell, Neil J.
Spencer, Hamish G.
Taylor, Helen R.
Knapp, Michael
Jeunen, Gert‐Jan
Lamare, Miles D.
Stat, Michael
Bunce, Michael
Author_xml – sequence: 1
  givenname: Gert‐Jan
  orcidid: 0000-0001-7458-3550
  surname: Jeunen
  fullname: Jeunen, Gert‐Jan
  email: gert-jan.jeunen@otago.ac.nz
  organization: University of Otago
– sequence: 2
  givenname: Michael
  surname: Knapp
  fullname: Knapp, Michael
  organization: University of Otago
– sequence: 3
  givenname: Hamish G.
  orcidid: 0000-0001-7531-597X
  surname: Spencer
  fullname: Spencer, Hamish G.
  organization: University of Otago
– sequence: 4
  givenname: Miles D.
  surname: Lamare
  fullname: Lamare, Miles D.
  organization: University of Otago
– sequence: 5
  givenname: Helen R.
  orcidid: 0000-0001-7951-0772
  surname: Taylor
  fullname: Taylor, Helen R.
  organization: University of Otago
– sequence: 6
  givenname: Michael
  surname: Stat
  fullname: Stat, Michael
  organization: Macquarie University
– sequence: 7
  givenname: Michael
  orcidid: 0000-0002-7721-4790
  surname: Bunce
  fullname: Bunce, Michael
  organization: Curtin University
– sequence: 8
  givenname: Neil J.
  orcidid: 0000-0003-0671-3637
  surname: Gemmell
  fullname: Gemmell, Neil J.
  organization: University of Otago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30576077$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1PHDEQhq2IKHwkdbrIUhpSHNi-9dpbIriESIQ0QaKz_DFLjHZtYvsOXcNvx5uDK2jOhT0ePe-MZt5DtBdiAIQ-U3JC6zmlgvMZ6Tp5Qlkn2Tt0sM3sbWN5u48Oc74npCWdaD6g_TnhoiVCHKCnRVj5FMMIoegBX1yf4WOo9zc8QtFGJxudD3c4wQr0kHEuFb7Dzmeb_OiDLj4GrMdNcgUpAx518gHwX2180SVjG0MAW8Bhs8aPukDCY1zB1PIjet_XsvDp5T1CN98Xf84vZ1e_f_w8P7uaWU4pm8nGMgcUejBCMOHmDWemd1KwudXSdqZlfUeY6w032nZMMiJc_cuGaC4rf4SON3UfUvy3hFzUWCeAYdAB4jIrxhglpJYju1HK63abhvOKfn2D3sdlCnWQSsmWNWTeskp9eaGWZgSnHuridFqrVxMqcLoBbIo5J-i3CCVqsllNRqrJVPXf5qrgbxR2WnW1oiTth926Rz_Aelcb9WtxvdE9A8aDujg
CitedBy_id crossref_primary_10_1002_ece3_8150
crossref_primary_10_1002_edn3_70018
crossref_primary_10_1038_s41598_023_42389_3
crossref_primary_10_1007_s11160_023_09805_3
crossref_primary_10_1016_j_dsr_2022_103871
crossref_primary_10_3389_fmars_2020_605148
crossref_primary_10_1002_edn3_93
crossref_primary_10_1051_bioconf_202410602002
crossref_primary_10_3354_meps13994
crossref_primary_10_7717_peerj_17091
crossref_primary_10_3390_fishes10020058
crossref_primary_10_1002_lol2_10271
crossref_primary_10_1007_s00227_020_03773_z
crossref_primary_10_3390_su15129497
crossref_primary_10_1111_2041_210X_13276
crossref_primary_10_1071_MF19175
crossref_primary_10_1038_s41598_024_66912_2
crossref_primary_10_7717_peerj_14810
crossref_primary_10_1016_j_scitotenv_2024_175657
crossref_primary_10_1098_rspb_2021_2613
crossref_primary_10_1098_rspb_2019_1409
crossref_primary_10_1111_1755_0998_13375
crossref_primary_10_1016_j_ecss_2023_108522
crossref_primary_10_1002_edn3_70024
crossref_primary_10_1016_j_ecolind_2021_107698
crossref_primary_10_1111_mec_15587
crossref_primary_10_1111_mec_15742
crossref_primary_10_1111_1755_0998_13931
crossref_primary_10_1038_s42003_021_01760_8
crossref_primary_10_1111_1755_0998_13536
crossref_primary_10_1016_j_marpol_2023_105807
crossref_primary_10_1002_aqc_4144
crossref_primary_10_1080_03014223_2021_1900299
crossref_primary_10_1371_journal_pone_0286228
crossref_primary_10_3390_biology10111132
crossref_primary_10_1002_edn3_584
crossref_primary_10_1016_j_marpolbul_2023_115430
crossref_primary_10_1016_j_rsma_2020_101489
crossref_primary_10_1002_edn3_223
crossref_primary_10_3390_w12102874
crossref_primary_10_3389_fmars_2021_760108
crossref_primary_10_3390_genes10030192
crossref_primary_10_1038_s41598_020_68843_0
crossref_primary_10_3389_fmars_2022_987774
crossref_primary_10_1007_s00300_021_02822_7
crossref_primary_10_1038_s41598_024_60917_7
crossref_primary_10_3897_mbmg_8_128646
crossref_primary_10_1016_j_marpolbul_2022_113860
crossref_primary_10_1093_icesjms_fsad017
crossref_primary_10_1093_icesjms_fsad139
crossref_primary_10_1002_edn3_70033
crossref_primary_10_1038_s41598_019_47899_7
crossref_primary_10_1093_icesjms_fsad022
crossref_primary_10_1016_j_biocon_2022_109881
crossref_primary_10_1002_edn3_74
crossref_primary_10_1186_s40793_024_00594_1
crossref_primary_10_3389_fmars_2023_1320540
crossref_primary_10_1016_j_jenvman_2024_122131
crossref_primary_10_1038_s41893_020_0522_9
crossref_primary_10_1016_j_ecolind_2023_110044
crossref_primary_10_1007_s10531_020_01980_0
crossref_primary_10_1038_s44185_023_00033_3
crossref_primary_10_7717_peerj_12458
crossref_primary_10_1038_s41598_021_00288_5
crossref_primary_10_1371_journal_pone_0244495
crossref_primary_10_1016_j_ocecoaman_2023_106625
crossref_primary_10_1002_ece3_70857
crossref_primary_10_1016_j_envres_2024_119454
crossref_primary_10_1002_edn3_70043
crossref_primary_10_3389_fmars_2021_629629
crossref_primary_10_3390_jmse10030375
crossref_primary_10_7717_peerj_14992
crossref_primary_10_1098_rspb_2023_0771
crossref_primary_10_1016_j_scitotenv_2022_158143
crossref_primary_10_1111_jfb_14403
crossref_primary_10_7717_peerj_14071
crossref_primary_10_1007_s00338_024_02506_8
crossref_primary_10_1002_edn3_366
crossref_primary_10_3390_biology12111446
crossref_primary_10_1002_ece3_7382
crossref_primary_10_1371_journal_pone_0224119
crossref_primary_10_1016_j_ecolind_2023_110795
crossref_primary_10_1007_s00300_023_03187_9
crossref_primary_10_1016_j_scitotenv_2024_174354
crossref_primary_10_1002_edn3_545
crossref_primary_10_1016_j_watres_2021_117994
crossref_primary_10_3390_fishes7010001
crossref_primary_10_1016_j_ecolind_2024_112290
crossref_primary_10_1002_edn3_70061
crossref_primary_10_1007_s12526_024_01447_3
crossref_primary_10_1016_j_marpolbul_2024_117242
crossref_primary_10_1111_jfb_15406
crossref_primary_10_3389_fmars_2021_800474
crossref_primary_10_1093_icesjms_fsad169
crossref_primary_10_1016_j_ecolind_2023_110718
crossref_primary_10_1002_edn3_154
crossref_primary_10_1002_edn3_155
crossref_primary_10_1007_s00338_024_02594_6
crossref_primary_10_1007_s10750_023_05253_z
crossref_primary_10_3389_fmars_2024_1390489
crossref_primary_10_1093_icesjms_fsae097
crossref_primary_10_3390_jmse13010060
crossref_primary_10_1038_s41598_021_93859_5
crossref_primary_10_1016_j_ecolind_2023_111111
crossref_primary_10_7717_peerj_17967
crossref_primary_10_1111_een_12831
crossref_primary_10_3354_aei00408
crossref_primary_10_1371_journal_pone_0266720
crossref_primary_10_3389_fmars_2020_00682
crossref_primary_10_1098_rspb_2021_0112
crossref_primary_10_1016_j_scitotenv_2024_176541
crossref_primary_10_1111_mec_15661
crossref_primary_10_7717_peerj_16075
crossref_primary_10_1111_ddi_13228
crossref_primary_10_1007_s11157_019_09501_4
crossref_primary_10_3389_fmars_2022_918295
crossref_primary_10_3390_su16198335
crossref_primary_10_1007_s10530_019_02126_2
crossref_primary_10_1016_j_marenvres_2025_107041
crossref_primary_10_3389_fmars_2020_552047
crossref_primary_10_1111_mec_15382
crossref_primary_10_1146_annurev_marine_041421_082251
crossref_primary_10_1002_edn3_48
crossref_primary_10_1002_edn3_49
crossref_primary_10_1073_pnas_2307214121
crossref_primary_10_1002_ece3_6071
crossref_primary_10_1038_s42003_024_06695_4
crossref_primary_10_1016_j_marpolbul_2021_112893
crossref_primary_10_3897_BDJ_12_e116921
crossref_primary_10_1038_s43247_023_00829_y
crossref_primary_10_1016_j_marenvres_2022_105692
crossref_primary_10_3390_jmse12101729
crossref_primary_10_1016_j_scitotenv_2025_179194
crossref_primary_10_3390_jmse12060971
crossref_primary_10_1080_00288330_2024_2439088
crossref_primary_10_1111_faf_12553
crossref_primary_10_1002_edn3_35
crossref_primary_10_1016_j_ocecoaman_2023_106785
crossref_primary_10_3389_fmars_2023_1209093
crossref_primary_10_1002_edn3_177
crossref_primary_10_1002_edn3_451
crossref_primary_10_1111_jpy_13087
crossref_primary_10_3897_mbmg_5_66557
crossref_primary_10_1002_edn3_294
crossref_primary_10_1016_j_marpolbul_2021_113183
crossref_primary_10_3389_fevo_2021_574877
crossref_primary_10_1016_j_scitotenv_2022_153223
crossref_primary_10_3389_fmars_2023_1061530
crossref_primary_10_1002_ece3_6482
crossref_primary_10_1111_1755_0998_14001
crossref_primary_10_3390_ani13111777
crossref_primary_10_1007_s10530_019_02193_5
crossref_primary_10_3390_ijerph19159445
crossref_primary_10_1007_s00338_022_02301_3
crossref_primary_10_1016_j_marpolbul_2020_111707
crossref_primary_10_1139_cjfas_2021_0215
crossref_primary_10_1038_s41598_020_70307_4
crossref_primary_10_1111_cobi_13437
crossref_primary_10_1016_j_dsr_2022_103806
crossref_primary_10_1002_edn3_201
crossref_primary_10_1111_1462_2920_15406
crossref_primary_10_1002_edn3_162
crossref_primary_10_1007_s00338_024_02566_w
crossref_primary_10_1016_j_marpolbul_2022_114062
Cites_doi 10.1029/1999JC000144
10.1126/science.1064088
10.1101/113472
10.1016/j.biocon.2014.11.023
10.1016/j.biocon.2014.11.017
10.1111/1755-0998.12180
10.1098/rsbl.2014.0562
10.1038/nature21708
10.1101/164046
10.1111/faf.12286
10.1038/s41598-017-12501-5
10.7717/peerj.3044
10.1111/1755-0998.12159
10.7717/peerj.1832
10.1371/journal.pone.0041732
10.1371/journal.pone.0173073
10.1093/bioinformatics/btt593
10.1016/j.biocon.2014.11.019
10.1111/j.1365-294X.2009.04158.x
10.1111/mec.13660
10.1111/mec.13481
10.1111/1755-0998.12685
10.1371/journal.pone.0013716
10.1073/pnas.1424997112
10.1111/1365-2664.12428
10.1080/0028825X.1988.10410111
10.1111/2041-210X.12789
10.1046/j.1469-8137.2003.00894.x
10.1371/journal.pone.0189119
10.1111/j.1365-2664.2012.02171.x
10.1111/ele.12189
10.1371/journal.pone.0027310
10.1111/1755-0998.12281
10.1016/j.biocon.2014.11.038
10.1071/MF11147
10.1002/ece3.3123
10.1371/journal.pone.0088786
10.1038/srep40368
10.1186/1472-6785-12-28
10.1126/science.1187512
10.1111/2041-210X.12595
10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
10.1038/ncomms14087
10.3389/fmars.2016.00283
10.1093/bioinformatics/btq461
10.1016/S0967-0645(98)00035-6
10.1093/icb/34.1.100
10.1111/mec.14350
10.1186/1742-9994-10-34
10.1371/journal.pone.0148698
10.1016/j.tree.2015.08.009
10.1590/S1679-87592007000100003
10.1093/bioinformatics/bts199
10.1111/2041-210X.12849
10.1038/s41559-016-0004
10.1016/j.biocon.2015.09.021
10.1371/journal.pone.0124671
10.1016/j.scitotenv.2018.02.295
10.1071/MF97074
10.7717/peerj.4644
ContentType Journal Article
Copyright 2018 John Wiley & Sons Ltd
2018 John Wiley & Sons Ltd.
Copyright © 2019 John Wiley & Sons Ltd
Copyright_xml – notice: 2018 John Wiley & Sons Ltd
– notice: 2018 John Wiley & Sons Ltd.
– notice: Copyright © 2019 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/1755-0998.12982
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
Entomology Abstracts
CrossRef
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1755-0998
EndPage 438
ExternalDocumentID 30576077
10_1111_1755_0998_12982
MEN12982
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5112-84c2de1efeb7727d3452bfd8723ca8c9b62f902dfb5bac928207d02d840a587d3
IEDL.DBID DR2
ISSN 1755-098X
1755-0998
IngestDate Fri Jul 11 18:31:21 EDT 2025
Fri Jul 11 10:52:16 EDT 2025
Fri Jul 25 12:19:01 EDT 2025
Wed Feb 19 02:37:05 EST 2025
Tue Jul 01 01:18:57 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Wed Jan 22 16:34:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords marine eDNA
spatial resolution
metabarcoding
biodiversity assessment
Language English
License 2018 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5112-84c2de1efeb7727d3452bfd8723ca8c9b62f902dfb5bac928207d02d840a587d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0671-3637
0000-0001-7531-597X
0000-0001-7951-0772
0000-0001-7458-3550
0000-0002-7721-4790
OpenAccessLink https://figshare.com/articles/journal_contribution/Environmental_DNA_eDNA_metabarcoding_reveals_strong_discrimination_among_diverse_marine_habitats_connected_by_water_movement/25905562
PMID 30576077
PQID 2186240362
PQPubID 1096410
PageCount 13
ParticipantIDs proquest_miscellaneous_2221007230
proquest_miscellaneous_2159984455
proquest_journals_2186240362
pubmed_primary_30576077
crossref_primary_10_1111_1755_0998_12982
crossref_citationtrail_10_1111_1755_0998_12982
wiley_primary_10_1111_1755_0998_12982_MEN12982
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology resources
PublicationTitleAlternate Mol Ecol Resour
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
1998; 49
2017; 7
2017; 8
2015; 183
2017; 3
2015; 30
2012; 12
1992; 12
1998; 45
2001; 106
2018; 6
2018; 9
2001; 294
2010; 26
2013; 16
2013; 10
1987
1994; 34
2014; 14
2003; 160
2011; 22
2008; 159
2012; 28
2014; 9
2010; 5
2014; 10
2009; 18
2012; 63
2015; 15
2017; 26
2010; 328
2011
2010
2015; 52
1997; 67
2015; 10
2008
2007; 55
2011; 6
2016; 11
2016; 4
2018; 19
2016; 7
2015; 192
2016; 1
2018; 633
2017; 17
2015; 112
1988; 26
2017; 12
2018
2017
2012; 49
2014; 30
2012; 7
2017; 543
2016; 25
Díez I. (e_1_2_9_16_1) 2008; 159
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
deCook S. C. (e_1_2_9_9_1) 2010
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
Paavo B. (e_1_2_9_48_1) 2011
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Elbrecht V. (e_1_2_9_19_1) 2017; 5
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Jeunen G.-J. (e_1_2_9_29_1) 2018
e_1_2_9_70_1
Prince A. M. (e_1_2_9_53_1) 1992; 12
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
Yaldwyn J. C. (e_1_2_9_68_1) 2011; 22
Ayling T. (e_1_2_9_3_1) 1987
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_69_1
References_xml – volume: 5
  start-page: e13716
  issue: 10
  year: 2010
  article-title: Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free‐living marine nematodes
  publication-title: PLoS ONE
– volume: 183
  start-page: 93
  year: 2015
  end-page: 102
  article-title: Fish environmental DNA is more concentrated in aquatic sediments than surface water
  publication-title: Biological Conservation
– volume: 4
  start-page: e1832
  year: 2016
  article-title: Comparative analysis of different survey methods for monitoring fish assemblages in coastal habitats
  publication-title: PeerJ
– volume: 12
  start-page: e0189119
  issue: 12
  year: 2017
  article-title: A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems
  publication-title: PLoS ONE
– volume: 8
  start-page: 1265
  issue: 10
  year: 2017
  end-page: 1275
  article-title: Assessing strengths and weaknesses of DNA metabarcoding‐based macroinvertebrate identification for routine stream monitoring
  publication-title: Methods in Ecology and Evolution
– start-page: 1
  year: 2008
  end-page: 41
– volume: 7
  start-page: 1299
  issue: 11
  year: 2016
  end-page: 1307
  article-title: Critical considerations for the application of environmental DNA methods to detect aquatic species
  publication-title: Methods in Ecology and Evolution
– volume: 7
  start-page: e41732
  issue: 8
  year: 2012
  article-title: Detection of a diverse marine fish fauna using environmental DNA from seawater samples
  publication-title: PLoS ONE
– volume: 63
  start-page: 68
  issue: 1
  year: 2012
  end-page: 77
  article-title: How does tidal submersion time affect macroinvertebrate community patterns on a temperate sheltered sandflat?
  publication-title: Marine and Freshwater Research
– volume: 34
  start-page: 100
  issue: 1
  year: 1994
  end-page: 114
  article-title: Temperate Coastal Marine Communities: Biodiversity and Threats1
  publication-title: American Zoologist
– volume: 49
  start-page: 19
  issue: 1
  year: 1998
  end-page: 24
  article-title: Feeding and schooling behaviour of barracouta (Thyrsites atun) off Otago, New Zealand
  publication-title: Marine and Freshwater Research
– volume: 7
  start-page: 5435
  issue: 14
  year: 2017
  end-page: 5453
  article-title: DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion ( )
  publication-title: Ecology and Evolution
– volume: 30
  start-page: 673
  issue: 11
  year: 2015
  end-page: 684
  article-title: Biodiversity and resilience of ecosystem functions
  publication-title: Trends in Ecology & Evolution
– volume: 14
  start-page: 109
  issue: 1
  year: 2014
  end-page: 116
  article-title: Factors influencing detection of eDNA from a stream‐dwelling amphibian
  publication-title: Molecular Ecology Resources
– volume: 30
  start-page: 614
  issue: 5
  year: 2014
  end-page: 620
  article-title: PEAR: a fast and accurate Illumina Paired‐End reAd mergeR
  publication-title: Bioinformatics (Oxford, England)
– volume: 159
  start-page: 555
  issue: 1
  year: 2008
  article-title: Ecological monitoring of intertidal phytobenthic communities of the Basque Coast (N. Spain) following the Prestige oil spill
  publication-title: Environmental Monitoring and Assessment
– volume: 1
  start-page: 4
  year: 2016
  article-title: Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA
  publication-title: Nature Ecology & Evolution
– volume: 10
  start-page: 20140562
  issue: 9
  year: 2014
  end-page: 20140562
  article-title: DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match
  publication-title: Biology Letters
– volume: 7
  start-page: 12240
  issue: 1
  year: 2017
  article-title: Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment
  publication-title: Scientific Reports
– volume: 16
  start-page: 1424
  issue: 12
  year: 2013
  end-page: 1435
  article-title: Predicting species distributions for conservation decisions
  publication-title: Ecology Letters
– volume: 28
  start-page: 1647
  issue: 12
  year: 2012
  end-page: 1649
  article-title: Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data
  publication-title: Bioinformatics (Oxford, England)
– volume: 49
  start-page: 953
  issue: 4
  year: 2012
  end-page: 959
  article-title: Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog
  publication-title: Journal of Applied Ecology
– volume: 112
  start-page: 2076
  issue: 7
  year: 2015
  end-page: 2081
  article-title: DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 160
  start-page: 4
  issue: 1
  year: 2003
  end-page: 5
  article-title: Taxonomic misidentification in public DNA databases
  publication-title: New Phytologist
– volume: 22
  start-page: 171
  year: 2011
  end-page: 272
  article-title: Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea)
  publication-title: Tuhinga
– volume: 11
  start-page: e0148698
  issue: 3
  year: 2016
  article-title: Indexed PCR primers induce template‐specific bias in large‐scale DNA sequencing studies
  publication-title: PLoS ONE
– volume: 9
  start-page: 1
  issue: 2
  year: 2014
  end-page: 8
  article-title: Transport distance of invertebrate environmental DNA in a natural river
  publication-title: PLoS ONE
– volume: 45
  start-page: 1295
  issue: 7
  year: 1998
  end-page: 1325
  article-title: Spatial distribution of planktivorous fish schools in relation to krill abundance and local hydrography off Otago, New Zealand
  publication-title: Deep Sea Research Part II: Topical Studies in Oceanography
– volume: 183
  start-page: 46
  year: 2015
  end-page: 52
  article-title: Monitoring the near‐extinct European weather loach in Denmark based on environmental DNA from water samples
  publication-title: Biological Conservation
– volume: 55
  start-page: 19
  year: 2007
  end-page: 27
  article-title: Method for monitoring intertidal communities in a steep rocky shore: a combination of digital image technology and field operational strategy
  publication-title: Brazilian Journal of Oceanography
– volume: 26
  start-page: 183
  issue: 2
  year: 1988
  end-page: 192
  article-title: The use of field transplants in determining environmental tolerance in salt marshes of Otago, New Zealand
  publication-title: New Zealand Journal of Botany
– volume: 12
  start-page: 358
  issue: 3
  year: 1992
  end-page: 360
  article-title: PCR: how to kill unwanted DNA
  publication-title: BioTechniques
– volume: 543
  start-page: 665
  year: 2017
  article-title: Capacity shortfalls hinder the performance of marine protected areas globally
  publication-title: Nature
– volume: 633
  start-page: 695
  year: 2018
  end-page: 703
  article-title: Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: Increasing ef fi cacy of sampling designs
  publication-title: Science of the Total Environment
– volume: 18
  start-page: 2022
  issue: 9
  year: 2009
  end-page: 2038
  article-title: Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces
  publication-title: Molecular Ecology
– volume: 17
  start-page: e25
  issue: 6
  year: 2017
  end-page: e33
  article-title: Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA
  publication-title: Molecular Ecology Resources
– volume: 192
  start-page: 247
  year: 2015
  end-page: 257
  article-title: Temporal correlations in population trends: Conservation implications from time‐series analysis of diverse animal taxa
  publication-title: Biological Conservation
– volume: 106
  start-page: 7037
  issue: C4
  year: 2001
  end-page: 7049
  article-title: Acoustic Doppler current profiler measurements of the velocity field of an ebb tidal jet
  publication-title: Journal of Geophysical Research: Oceans
– volume: 14
  start-page: 374
  issue: 2
  year: 2014
  end-page: 380
  article-title: Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA
  publication-title: Molecular Ecology Resources
– start-page: 1
  year: 2018
  end-page: 13
  article-title: Species-level biodiversity assessment using marine environmental DNA metabarcoding requires protocol optimization and standardization
  publication-title: Ecol Evol
– volume: 12
  start-page: 1
  issue: 2
  year: 2017
  end-page: 15
  article-title: Environmental DNA reflects spatial and temporal jellyfish distribution
  publication-title: PLoS ONE
– year: 1987
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  end-page: 14
  article-title: A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents
  publication-title: Frontiers in Zoology
– volume: 294
  start-page: 804
  issue: 5543
  year: 2001
  end-page: 808
  article-title: Biodiversity and ecosystem functioning: Current knowledge and future challenges
  publication-title: Science
– volume: 7
  start-page: 40368
  year: 2017
  article-title: Environmental DNA metabarcoding reveals local fish communities in a species‐rich coastal sea
  publication-title: Scientific Reports
– volume: 25
  start-page: 527
  issue: 2
  year: 2016
  end-page: 541
  article-title: Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA
  publication-title: Molecular Ecology
– volume: 19
  start-page: 751
  issue: 5
  year: 2018
  end-page: 768
  article-title: The sceptical optimist: challenges and perspectives for the application of environmental DNA in marine fisheries
  publication-title: Fish and Fisheries
– volume: 67
  start-page: 345
  issue: 3
  year: 1997
  end-page: 366
  article-title: Species assemblages and indicator species: the need for a flexible asymmetrical approach
  publication-title: Ecological Monographs
– volume: 15
  start-page: 168
  issue: 1
  year: 2015
  end-page: 176
  article-title: The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction
  publication-title: Molecular Ecology Resources
– year: 2010
– volume: 26
  start-page: 5872
  issue: 21
  year: 2017
  end-page: 5895
  article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities
  publication-title: Molecular Ecology
– volume: 52
  start-page: 823
  issue: 4
  year: 2015
  end-page: 826
  article-title: The downside of eDNA as a survey tool in water bodies
  publication-title: Journal of Applied Ecology
– volume: 183
  start-page: 4
  year: 2015
  end-page: 18
  article-title: Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity
  publication-title: Biological Conservation
– volume: 5
  start-page: 11
  year: 2017
  article-title: Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment
  publication-title: Frontiers in Environmental Science
– volume: 183
  start-page: 85
  year: 2015
  end-page: 92
  article-title: Quantifying effects of UV‐B, temperature, and pH on eDNA degradation in aquatic microcosms
  publication-title: Biological Conservation
– volume: 25
  start-page: 3101
  issue: 13
  year: 2016
  end-page: 3119
  article-title: Environmental DNA metabarcoding of lake fish communities reflects long‐term data from established survey methods
  publication-title: Molecular Ecology
– volume: 9
  start-page: 134
  issue: 1
  year: 2018
  end-page: 147
  article-title: Scrutinizing key steps for reliable metabarcoding of environmental samples
  publication-title: Methods in Ecology and Evolution
– volume: 5
  start-page: e3044
  year: 2017
  article-title: Spatial distribution of environmental DNA in a nearshore marine habitat
  publication-title: PeerJ
– volume: 8
  start-page: 14087
  year: 2017
  article-title: Annual time‐series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity
  publication-title: Nature Communications
– volume: 10
  start-page: 1
  issue: 4
  year: 2015
  end-page: 21
  article-title: From Benchtop to Desktop: Important Considerations when Designing Amplicon Sequencing Workflows
  publication-title: PLoS ONE
– volume: 26
  start-page: 2460
  issue: 19
  year: 2010
  end-page: 2461
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics (Oxford, England)
– start-page: 515
  year: 2011
  end-page: 528
  article-title: Macrofaunal community patterns of adjacent coastal sediments with wave‐reflecting or wave‐dissipating characteristics
  publication-title: Journal of Coastal Research
– volume: 12
  start-page: 28
  issue: 1
  year: 2012
  article-title: Assessing biodiversity of a freshwater benthic macroinvertebrate community through non‐destructive environmental barcoding of DNA from preservative ethanol
  publication-title: BMC Ecology
– volume: 328
  start-page: 1164
  issue: 5982
  year: 2010
  end-page: 1168
  article-title: Global Biodiversity: Indicators of Recent Declines
  publication-title: Science
– volume: 6
  start-page: e4644
  year: 2018
  article-title: Estimating intraspecific genetic diversity from community DNA metabarcoding data
  publication-title: PeerJ
– volume: 3
  start-page: 283
  year: 2017
  article-title: Genetic and manual survey methods yield different and complementary views of an ecosystem
  publication-title: Frontiers in Marine Science
– year: 2017
– volume: 6
  start-page: 1
  issue: 12
  year: 2011
  end-page: 14
  article-title: Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA‐based studies
  publication-title: PLoS ONE
– ident: e_1_2_9_45_1
  doi: 10.1029/1999JC000144
– ident: e_1_2_9_36_1
  doi: 10.1126/science.1064088
– ident: e_1_2_9_66_1
  doi: 10.1101/113472
– ident: e_1_2_9_57_1
  doi: 10.1016/j.biocon.2014.11.023
– ident: e_1_2_9_65_1
  doi: 10.1016/j.biocon.2014.11.017
– ident: e_1_2_9_50_1
  doi: 10.1111/1755-0998.12180
– ident: e_1_2_9_10_1
  doi: 10.1098/rsbl.2014.0562
– ident: e_1_2_9_22_1
  doi: 10.1038/nature21708
– ident: e_1_2_9_37_1
  doi: 10.1101/164046
– ident: e_1_2_9_28_1
  doi: 10.1111/faf.12286
– ident: e_1_2_9_59_1
  doi: 10.1038/s41598-017-12501-5
– start-page: 515
  year: 2011
  ident: e_1_2_9_48_1
  article-title: Macrofaunal community patterns of adjacent coastal sediments with wave‐reflecting or wave‐dissipating characteristics
  publication-title: Journal of Coastal Research
– ident: e_1_2_9_42_1
  doi: 10.7717/peerj.3044
– ident: e_1_2_9_51_1
  doi: 10.1111/1755-0998.12159
– ident: e_1_2_9_4_1
  doi: 10.7717/peerj.1832
– volume: 22
  start-page: 171
  year: 2011
  ident: e_1_2_9_68_1
  article-title: Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea)
  publication-title: Tuhinga
– ident: e_1_2_9_63_1
  doi: 10.1371/journal.pone.0041732
– ident: e_1_2_9_38_1
  doi: 10.1371/journal.pone.0173073
– volume: 5
  start-page: 11
  year: 2017
  ident: e_1_2_9_19_1
  article-title: Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment
  publication-title: Frontiers in Environmental Science
– ident: e_1_2_9_70_1
  doi: 10.1093/bioinformatics/btt593
– volume: 12
  start-page: 358
  issue: 3
  year: 1992
  ident: e_1_2_9_53_1
  article-title: PCR: how to kill unwanted DNA
  publication-title: BioTechniques
– ident: e_1_2_9_64_1
  doi: 10.1016/j.biocon.2014.11.019
– start-page: 1
  year: 2018
  ident: e_1_2_9_29_1
  article-title: Species-level biodiversity assessment using marine environmental DNA metabarcoding requires protocol optimization and standardization
  publication-title: Ecol Evol
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1365-294X.2009.04158.x
– ident: e_1_2_9_27_1
  doi: 10.1111/mec.13660
– ident: e_1_2_9_52_1
  doi: 10.1111/mec.13481
– ident: e_1_2_9_30_1
  doi: 10.1111/1755-0998.12685
– ident: e_1_2_9_15_1
  doi: 10.1371/journal.pone.0013716
– ident: e_1_2_9_34_1
  doi: 10.1073/pnas.1424997112
– ident: e_1_2_9_55_1
  doi: 10.1111/1365-2664.12428
– ident: e_1_2_9_49_1
  doi: 10.1080/0028825X.1988.10410111
– ident: e_1_2_9_20_1
  doi: 10.1111/2041-210X.12789
– ident: e_1_2_9_67_1
  doi: 10.1046/j.1469-8137.2003.00894.x
– ident: e_1_2_9_60_1
  doi: 10.1371/journal.pone.0189119
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1365-2664.2012.02171.x
– ident: e_1_2_9_25_1
  doi: 10.1111/ele.12189
– ident: e_1_2_9_56_1
  doi: 10.1371/journal.pone.0027310
– ident: e_1_2_9_54_1
  doi: 10.1111/1755-0998.12281
– ident: e_1_2_9_61_1
  doi: 10.1016/j.biocon.2014.11.038
– ident: e_1_2_9_47_1
  doi: 10.1071/MF11147
– ident: e_1_2_9_5_1
  doi: 10.1002/ece3.3123
– ident: e_1_2_9_12_1
  doi: 10.1371/journal.pone.0088786
– ident: e_1_2_9_69_1
  doi: 10.1038/srep40368
– ident: e_1_2_9_26_1
  doi: 10.1186/1472-6785-12-28
– ident: e_1_2_9_8_1
  doi: 10.1126/science.1187512
– ident: e_1_2_9_7_1
– ident: e_1_2_9_24_1
  doi: 10.1111/2041-210X.12595
– volume-title: New Zealand coastal marine invertebrates
  year: 2010
  ident: e_1_2_9_9_1
– ident: e_1_2_9_17_1
  doi: 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
– volume-title: Collins guide to the sea fishes of New Zealand
  year: 1987
  ident: e_1_2_9_3_1
– ident: e_1_2_9_6_1
  doi: 10.1038/ncomms14087
– ident: e_1_2_9_33_1
  doi: 10.3389/fmars.2016.00283
– ident: e_1_2_9_18_1
  doi: 10.1093/bioinformatics/btq461
– ident: e_1_2_9_44_1
  doi: 10.1016/S0967-0645(98)00035-6
– ident: e_1_2_9_62_1
  doi: 10.1093/icb/34.1.100
– ident: e_1_2_9_13_1
  doi: 10.1111/mec.14350
– ident: e_1_2_9_35_1
  doi: 10.1186/1742-9994-10-34
– ident: e_1_2_9_41_1
  doi: 10.1371/journal.pone.0148698
– ident: e_1_2_9_46_1
  doi: 10.1016/j.tree.2015.08.009
– ident: e_1_2_9_39_1
  doi: 10.1590/S1679-87592007000100003
– ident: e_1_2_9_31_1
  doi: 10.1093/bioinformatics/bts199
– ident: e_1_2_9_2_1
  doi: 10.1111/2041-210X.12849
– ident: e_1_2_9_58_1
  doi: 10.1038/s41559-016-0004
– ident: e_1_2_9_32_1
  doi: 10.1016/j.biocon.2015.09.021
– ident: e_1_2_9_40_1
  doi: 10.1371/journal.pone.0124671
– volume: 159
  start-page: 555
  issue: 1
  year: 2008
  ident: e_1_2_9_16_1
  article-title: Ecological monitoring of intertidal phytobenthic communities of the Basque Coast (N. Spain) following the Prestige oil spill
  publication-title: Environmental Monitoring and Assessment
– ident: e_1_2_9_23_1
  doi: 10.1016/j.scitotenv.2018.02.295
– ident: e_1_2_9_43_1
  doi: 10.1071/MF97074
– ident: e_1_2_9_21_1
  doi: 10.7717/peerj.4644
SSID ssj0060974
Score 2.6147478
Snippet While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 426
SubjectTerms Aquatic habitats
Aquatic Organisms - classification
Aquatic Organisms - genetics
Aquatic Organisms - growth & development
Biodiversity
biodiversity assessment
Biota
Cluster Analysis
Crustacea
Crustaceans
cytochrome-c oxidase
Cytochromes
data collection
Deoxyribonucleic acid
Dispersal
Dispersion
DNA
DNA barcoding
DNA Barcoding, Taxonomic
DNA, Ribosomal - chemistry
DNA, Ribosomal - genetics
Ecosystem
Electron Transport Complex IV - genetics
Environmental DNA
Eukaryota - classification
Eukaryota - genetics
Eukaryota - growth & development
fish
Genera
genes
Habitat preferences
Habitats
marine eDNA
Marine environment
metabarcoding
Metagenomics
Monitoring
Monitoring methods
Ordination
Phylogeny
Polls & surveys
ribosomal RNA
RNA, Ribosomal, 16S - genetics
rRNA 16S
Sequence Analysis, DNA
Shellfish
spatial resolution
surveys
Taxa
Water flow
Water Movements
Title Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12982
https://www.ncbi.nlm.nih.gov/pubmed/30576077
https://www.proquest.com/docview/2186240362
https://www.proquest.com/docview/2159984455
https://www.proquest.com/docview/2221007230
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EELz4ftQXK3jQQ0KaZpPNUbQigj2Ihd7CPj1oG2lTpB787c5sHr5QES8lbWbDZjOz82367TeEHPE4tibQwmsLE3iQoRNPSK49YdqKcRtbKxzbohdf9qOrAavZhLgXptSHaF64YWS4-RoDXMjJuyCHvMc8wDfch5TFcRZGxhbCoptGQCoOUqfDXNnyQSXug1yeT-0_5qUvYPMjdnXJ52KZyLrbJefk3p8W0lfPnxQd_3VfK2Spgqb0tPSlVTJnRmtkoetkrWfr5KX7ticOzM57p_TYwOcJHZoCiQEqxzxIURMKfJpO8CX7HcVtv2XpMHQB6oobwY_IBjF0KHDzIUWxcAC9E6qQdqMABFM5o08Ag8d0mDtF82KD9C-6t2eXXlW9wVMI4jweqVCbtrFGAoJPdCdiobSaJ2FHCa5SGYc2DUJtJZNCpbD0CxIN32HFKRgH-00yP8pHZptQAbMyOFWoO9xGMgVfUjqVEVcqYlLyoEX8-tllqpI2xwobD1m9xMFBzXBQMzeoLXLcNHgsVT2-N92rnSGrwnuSYSEvFDKM4fRhcxoCE_9tESOTT9GGwUWiiLEfbMIQWSqwDGyRrdLRmv7ARJzEQZLAzTl3-a2j2XW35w52_tpglywCDExLZt0emS_GU7MPUKuQBy6aXgFGqh3M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EEb34flSrruBBDylpmk02x6KV-upBFHoL-_SgbcWmiB787c5s0vhCRbyEPCZhs5nZ-WYz-w0hezyKrPG18OrC-B546NgTkmtPmLpi3EbWCpdt0Yna1-Fpl3XfrYXJ-SHKCTe0DDdeo4HjhPQ7KwfHxzwAOLwGPovDMDyFdb1dWHVZUkhFfuKYmAth3i3ofTCb59MDPnqmL3DzI3p17ud4nqhxw_Osk9vaKJM19fyJ0_F_b7ZA5gp0Spu5Oi2SCdNfItMtx2z9tExeWm_L4kDsqNOk-wa2B7RnMswNUAN0hRRpoUCt6RDn2W8orvzNq4ehFlBX3whOYkKIoT2B6w8p8oUD7h1ShZk3CnAwlU_0EZDwA-0NHKl5tkKuj1tXh22vKODgKcRxHg9VoE3dWCMBxMe6EbJAWs3joKEEV4mMApv4gbaSSaESiP78WMMxBJ2CcZBfJZP9Qd-sEypgYAa9CnSD21AmoE5KJzLkSoVMSu5XSG388VJVsJtjkY27dBzlYKem2Kmp69QK2S9vuM-JPb4XrY61IS0sfJhiLS_kMozg8m55GWwTf7iIvhmMUIbBQ8KQsR9kggATVSASrJC1XNPK9sBYHEd-HMPLOX35raHpRavjdjb-esMOmWlfXZyn5yeds00yC6gwyRPtqmQyexiZLUBemdx2pvUKIKQh5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hEKiXAn1AymuReqAHR46zu14fEUnEo0RVVSRu1j45QBJEHFX0wG9nZv3gJaiqXiw7Hlvr9czOt8633xDyVQrhXWxV1FEujiBDp5HS0kbKdQyXXnivAttiKA7P2PE5r9mEuBam1IdoPrhhZITxGgP82vpHQQ55j0eAb2QbUpaEUXiBiViiY_d-NgpSIs6CEHNlLM8rdR8k8zy7wdPE9AJtPgWvIfsMlomu212STi7bs0K3zZ9nko7_9WAr5H2FTel-6UyrZM6NP5DFftC1vv1I7voPi-LArDfcp3sOtt_oyBXIDDATTIQURaHAqekUv7JfUFz3W9YOQx-goboR_Ih0EEdHClcfUlQLB9Q7pQZ5NwZQMNW39Dfg4Bs6mgRJ8-ITORv0fx0cRlX5hsggioskM4l1HeedBgif2i7jifZWpknXKGkyLRKfxYn1mmtlMpj7xamFY5hyKi7B_jOZH0_Gbp1QBcMyeFViu9IznYEzGZtpJo1hXGsZt0i7fne5qbTNscTGVV7PcbBTc-zUPHRqi-w1F1yXsh6vm27WzpBX8T3NsZIXKhkKOL3bnIbIxL9b1NhNZmjD4SaMcf6GTZIgTQXmgS2yVjpa0x4YiVMRpyk8XHCXvzU0P-0Pw86Xf71ghyz96A3y70fDkw3yDiBhVrLsNsl8cTNzWwC7Cr0dAusesQYgnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+DNA+%28eDNA%29+metabarcoding+reveals+strong+discrimination+among+diverse+marine+habitats+connected+by+water+movement&rft.jtitle=Molecular+ecology+resources&rft.au=Jeunen%2C+Gert-Jan&rft.au=Knapp%2C+Michael&rft.au=Spencer%2C+Hamish+G&rft.au=Lamare%2C+Miles+D&rft.date=2019-03-01&rft.issn=1755-0998&rft.eissn=1755-0998&rft.volume=19&rft.issue=2&rft.spage=426&rft_id=info:doi/10.1111%2F1755-0998.12982&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon