Diurnal patterns of methane emissions from paddy rice fields in the Philippines
Methane (CH₄) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub‐dail...
Saved in:
Published in | Journal of plant nutrition and soil science Vol. 178; no. 5; pp. 755 - 767 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag
01.10.2015
WILEY-VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methane (CH₄) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub‐daily variations of CH₄ emissions. Here we evaluated diurnal patterns of CH₄ emissions from traditional paddy rice production as observed during field measurements in the Philippines. Field emissions were measured during three consecutive cropping seasons using an automated chamber and gas sampling system with fluxes being obtained every 4 h. Methane fluxes were monitored with a total of nine chambers during the dry seasons in 2012 and 2013 and 27 chambers during the wet season in 2012. Significant and consistent diurnal patterns of CH₄ emissions were mainly observed from the start of field flooding until the middle of cropping periods, i.e., periods with low leaf area of the rice crop. Our data show that disregarding the diurnal variability of fluxes results in an average overestimation of seasonal CH₄ emissions of 22% (16–31%) if measurements were conducted only around noon. Scheduling manual sampling either at early morning (7:00–9:00) or evening (17:00–19:00) results in estimations of seasonal emissions within 94–101% of the “true” value as calculated from multiple daily flux measurements. Alternatively, uncertainties of seasonal emissions can be reduced to an average of ≤3% by applying sinus function or Gauss function‐based correction factors. Application of correction factors allows the performance of flux measurements at any time of day. We also investigated N₂O emissions from rice paddies with respect to diurnal variations, but did not find, as in the case of CH₄, any significant and persistent diurnal pattern. |
---|---|
AbstractList | Methane (CH₄) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub‐daily variations of CH₄ emissions. Here we evaluated diurnal patterns of CH₄ emissions from traditional paddy rice production as observed during field measurements in the Philippines. Field emissions were measured during three consecutive cropping seasons using an automated chamber and gas sampling system with fluxes being obtained every 4 h. Methane fluxes were monitored with a total of nine chambers during the dry seasons in 2012 and 2013 and 27 chambers during the wet season in 2012. Significant and consistent diurnal patterns of CH₄ emissions were mainly observed from the start of field flooding until the middle of cropping periods, i.e., periods with low leaf area of the rice crop. Our data show that disregarding the diurnal variability of fluxes results in an average overestimation of seasonal CH₄ emissions of 22% (16–31%) if measurements were conducted only around noon. Scheduling manual sampling either at early morning (7:00–9:00) or evening (17:00–19:00) results in estimations of seasonal emissions within 94–101% of the “true” value as calculated from multiple daily flux measurements. Alternatively, uncertainties of seasonal emissions can be reduced to an average of ≤3% by applying sinus function or Gauss function‐based correction factors. Application of correction factors allows the performance of flux measurements at any time of day. We also investigated N₂O emissions from rice paddies with respect to diurnal variations, but did not find, as in the case of CH₄, any significant and persistent diurnal pattern. Methane (CH 4 ) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub‐daily variations of CH 4 emissions. Here we evaluated diurnal patterns of CH 4 emissions from traditional paddy rice production as observed during field measurements in the Philippines. Field emissions were measured during three consecutive cropping seasons using an automated chamber and gas sampling system with fluxes being obtained every 4 h. Methane fluxes were monitored with a total of nine chambers during the dry seasons in 2012 and 2013 and 27 chambers during the wet season in 2012. Significant and consistent diurnal patterns of CH 4 emissions were mainly observed from the start of field flooding until the middle of cropping periods, i.e ., periods with low leaf area of the rice crop. Our data show that disregarding the diurnal variability of fluxes results in an average overestimation of seasonal CH 4 emissions of 22% (16–31%) if measurements were conducted only around noon. Scheduling manual sampling either at early morning (7:00–9:00) or evening (17:00–19:00) results in estimations of seasonal emissions within 94–101% of the “true” value as calculated from multiple daily flux measurements. Alternatively, uncertainties of seasonal emissions can be reduced to an average of ≤3% by applying sinus function or Gauss function‐based correction factors. Application of correction factors allows the performance of flux measurements at any time of day. We also investigated N 2 O emissions from rice paddies with respect to diurnal variations, but did not find, as in the case of CH 4 , any significant and persistent diurnal pattern. Methane (CH4) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub-daily variations of CH4 emissions. Here we evaluated diurnal patterns of CH4 emissions from traditional paddy rice production as observed during field measurements in the Philippines. Field emissions were measured during three consecutive cropping seasons using an automated chamber and gas sampling system with fluxes being obtained every 4 h. Methane fluxes were monitored with a total of nine chambers during the dry seasons in 2012 and 2013 and 27 chambers during the wet season in 2012. Significant and consistent diurnal patterns of CH4 emissions were mainly observed from the start of field flooding until the middle of cropping periods, i.e., periods with low leaf area of the rice crop. Our data show that disregarding the diurnal variability of fluxes results in an average overestimation of seasonal CH4 emissions of 22% (16-31%) if measurements were conducted only around noon. Scheduling manual sampling either at early morning (7:00-9:00) or evening (17:00-19:00) results in estimations of seasonal emissions within 94-101% of the "true" value as calculated from multiple daily flux measurements. Alternatively, uncertainties of seasonal emissions can be reduced to an average of ≤3% by applying sinus function or Gauss function-based correction factors. Application of correction factors allows the performance of flux measurements at any time of day. We also investigated N2O emissions from rice paddies with respect to diurnal variations, but did not find, as in the case of CH4, any significant and persistent diurnal pattern. Methane (CH sub(4)) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub-daily variations of CH sub(4) emissions. Here we evaluated diurnal patterns of CH sub(4) emissions from traditional paddy rice production as observed during field measurements in the Philippines. Field emissions were measured during three consecutive cropping seasons using an automated chamber and gas sampling system with fluxes being obtained every 4 h. Methane fluxes were monitored with a total of nine chambers during the dry seasons in 2012 and 2013 and 27 chambers during the wet season in 2012. Significant and consistent diurnal patterns of CH sub(4) emissions were mainly observed from the start of field flooding until the middle of cropping periods, i.e., periods with low leaf area of the rice crop. Our data show that disregarding the diurnal variability of fluxes results in an average overestimation of seasonal CH sub(4) emissions of 22% (16-31%) if measurements were conducted only around noon. Scheduling manual sampling either at early morning (7:00-9:00) or evening (17:00-19:00) results in estimations of seasonal emissions within 94-101% of the "true" value as calculated from multiple daily flux measurements. Alternatively, uncertainties of seasonal emissions can be reduced to an average of less than or equal to 3% by applying sinus function or Gauss function-based correction factors. Application of correction factors allows the performance of flux measurements at any time of day. We also investigated N sub(2)O emissions from rice paddies with respect to diurnal variations, but did not find, as in the case of CH sub(4), any significant and persistent diurnal pattern. |
Author | Weller, Sebastian Wassmann, Reiner Tirol‐Padre, Agnes Kiese, Ralf Kraus, David Butterbach‐Bahl, Klaus |
Author_xml | – sequence: 1 fullname: Weller, Sebastian – sequence: 2 fullname: Kraus, David – sequence: 3 fullname: Butterbach‐Bahl, Klaus – sequence: 4 fullname: Wassmann, Reiner – sequence: 5 fullname: Tirol‐Padre, Agnes – sequence: 6 fullname: Kiese, Ralf |
BookMark | eNqNkc9rFDEUx4NUsK1evRrw4mXW_JgkM0dtbassbUGL0EtI88PNmp2MSZZ2_3szHSlSKHp6j8fn83i87wHYG-JgAXiN0QIjRN6vxzAsCMIMIdSTZ2AfM0Iawkm7V_uW8qYTFL0ABzmvK9LinuyDi2O_TYMKcFSl2DRkGB3c2LJSg4V243P2sQ5dipuKGLODyWsLnbfBZOgHWFYWXq588OPoB5tfgudOhWxf_amH4Ork07ejs2Z5cfr56MOy0Qxj0jCsqBA9bjUz2hqmHSPKcHdjlSCG4qnVDlEqdGe04VQhrpVtsbvpsUGcHoJ3894xxV9bm4ust2obQr07brPEgtGWCEza_0Ap6fBEVvTtI3Qd798zUbjreEdxV6l2pnSKOSfrpPZFlfqokpQPEiM5BSKnQORDIFVbPNLG5Dcq7Z4W-lm49cHu_kHLL5fL87_dZnZ9LvbuwVXpp-SCCia_n5_Kk-PuWnw86-V15d_MvFNRqh_JZ3n1dV5HauE9_Q0RMLiW |
CitedBy_id | crossref_primary_10_1007_s10661_017_6184_z crossref_primary_10_1016_j_scitotenv_2022_159917 crossref_primary_10_3390_w13162171 crossref_primary_10_1016_j_agee_2016_03_037 crossref_primary_10_1371_journal_pone_0191352 crossref_primary_10_1007_s11104_016_2824_2 crossref_primary_10_1016_j_atmosenv_2017_08_007 crossref_primary_10_4236_jep_2017_89060 crossref_primary_10_1080_15226514_2016_1216077 crossref_primary_10_1002_agg2_20119 crossref_primary_10_1016_j_agrformet_2017_11_010 crossref_primary_10_1016_j_agrformet_2025_110504 crossref_primary_10_1016_j_scitotenv_2019_07_012 crossref_primary_10_15446_agron_colomb_v41n1_107053 crossref_primary_10_1016_j_atmosenv_2018_02_015 crossref_primary_10_3390_su132011336 crossref_primary_10_1016_j_scitotenv_2018_09_141 |
Cites_doi | 10.1038/nature08931 10.1111/j.1365-2486.2010.02179.x 10.1111/j.1469-8137.2009.03044.x 10.1128/mr.60.4.609-640.1996 10.1080/20430779.2014.892807 10.1007/s10705-014-9658-1 10.1029/2012GL051303 10.1046/j.1365-3040.2003.01080.x 10.1016/B978-0-12-639010-0.50007-8 10.1046/j.1365-2486.2001.00395.x 10.5194/bg-11-2709-2014 10.1016/S0167-8809(99)00074-2 10.1016/S0045-6535(97)00257-9 10.1023/A:1009790920271 10.1007/s10333-008-0147-5 10.3389/fmicb.2014.00752 10.1016/S0038-0717(98)00061-3 10.1016/j.ejsobi.2007.09.008 10.1007/s10705-010-9371-7 10.1007/BF00992873 10.1007/s11104-014-2255-x 10.1007/BF00002060 10.1023/A:1021178713988 10.1023/A:1004202515767 10.1080/00103624.2012.756510 10.1023/A:1004817212321 10.1023/A:1009753923339 10.1046/j.1365-3040.1997.d01-142.x 10.1029/JD094iD13p16405 10.1007/BF00058731 10.1111/j.1469-8137.1989.tb00355.x 10.1029/96GB00517 10.1016/S1352-2310(97)00492-5 10.1016/S0045-6535(97)00283-X 10.1029/91GB02586 10.1016/j.soilbio.2011.11.022 10.1080/20430779.2012.729988 10.1023/A:1004203208686 10.1007/BF00647675 10.1029/96GB03761 10.1029/JD091iD11p11803 |
ContentType | Journal Article |
Copyright | Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | FBQ BSCLL AAYXX CITATION 7ST 7T7 8FD C1K FR3 P64 SOI 7S9 L.6 |
DOI | 10.1002/jpln.201500092 |
DatabaseName | AGRIS Istex CrossRef Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Engineering Research Database AGRICOLA Environment Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Botany |
EISSN | 1522-2624 |
EndPage | 767 |
ExternalDocumentID | 3826396791 10_1002_jpln_201500092 JPLN201500092 ark_67375_WNG_FD8Z7BH9_Z US201500220169 |
Genre | article |
GeographicLocations | Philippines ISEW, Philippines |
GeographicLocations_xml | – name: Philippines – name: ISEW, Philippines |
GrantInformation_xml | – fundername: German Research Foundation (DFG) |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FBQ FEDTE G-S G.N GNP GODZA H.T H.X HF~ HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c5112-51a377914c5dced5cf52ad6fbea72d31d6fbcf0337c8dcd63a06cae41fb91d063 |
IEDL.DBID | DR2 |
ISSN | 1436-8730 |
IngestDate | Fri Jul 11 18:26:29 EDT 2025 Fri Jul 11 04:38:13 EDT 2025 Fri Jul 25 22:12:14 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Tue Jul 01 00:47:40 EDT 2025 Wed Jan 22 16:24:57 EST 2025 Wed Oct 30 09:55:55 EDT 2024 Wed Dec 27 18:45:42 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5112-51a377914c5dced5cf52ad6fbea72d31d6fbcf0337c8dcd63a06cae41fb91d063 |
Notes | http://dx.doi.org/10.1002/jpln.201500092 German Research Foundation (DFG) ArticleID:JPLN201500092 istex:965DCFB797B7513AE697EE1C2D1FE20471AE63F4 ark:/67375/WNG-FD8Z7BH9-Z ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1718868318 |
PQPubID | 1016373 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1753427124 proquest_miscellaneous_1732811243 proquest_journals_1718868318 crossref_citationtrail_10_1002_jpln_201500092 crossref_primary_10_1002_jpln_201500092 wiley_primary_10_1002_jpln_201500092_JPLN201500092 istex_primary_ark_67375_WNG_FD8Z7BH9_Z fao_agris_US201500220169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October, 2015 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: October, 2015 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Journal of plant nutrition and soil science |
PublicationTitleAlternate | J. Plant Nutr. Soil Sci |
PublicationYear | 2015 |
Publisher | WILEY‐VCH Verlag WILEY-VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag – name: WILEY-VCH Verlag – name: Wiley Subscription Services, Inc |
References | Weller, S., Kraus, D., Ayag, K. R. P., Wassmann, R., Alberto, M. C. R., Butterbach-Bahl, K., Kiese, R. (2015): Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycl. Agroecosyst. 101, 37-53. Hosono, T., Nouchi, I. (1997): The dependence of methane transport in rice plants on the root zone temperature. Plant Soil 191, 233-240. Yun, S.-I., Choi, W.-J., Choi, J.-E., Kim, H.-Y. (2013): High-time resolution analysis of diel variation in methane emission from flooded rice fields. Commun. Soil Sci. Plant Anal. 44, 1620-1628. Aulakh, M. S., Wassmann, R., Bueno, C., Rennenberg, H. (2001): Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230, 77-86. Conrad, R. (2002): Control of microbial methane production in wetland rice fields. Nutr. Cycl. Agroecosys. 64, 59-69. Schütz, H., Schröder, P., Rennenberg, H. (1991): Role of Plants in Regulating the Methane Flux to the Atmosphere, in Mooney, H., Holland, E., Sharkey, T. (eds.): Trace Gas Emissions by Plants. Academic Press, San Diego, CA, USA, pp. 29-64. Wang, B., Aiguo, D., Renxing, S., Schütz, H., Rennenberg, H., Seiler, W., Haibai, W. (1990): CH4 emission from a Chinese rice paddy field. Acta Meteorol. Sin. 4, 265-275. Gilbert, B., Frenzel, P. (1998): Rice roots and CH4 oxidation: The activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 30, 1903-1916. Yang, S.-S., Chang, H.-L. (1999): Diurnal variation of methane emission from paddy fields at different growth stages of rice cultivation in Taiwan. Agric. Ecosyst. Environ. 76, 75-84. Kimura, M. (1997): Sources of methane emitted from paddy fields. Nutr. Cycl. Agroecosys. 49, 153-161. Yagi, K., Tsuruta, H., Kanda, K., Minami, K. (1996): Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Global Biogeochem. Cy. 10, 255-267. Conrad, R. (1996): Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 60, 609-640. Sander, B. O., Wassmann, R. (2014): Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method. Greenh. Gas Meas. Manage. 4, 1-13. Smith, K. A., Thomson, P. E., Clayton, H., McTaggart, I. P., Conen, F. (1998): Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ. 32, 3301-3309. Thompson, M. V., Holbrook, N. M. (2003): Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant Cell Environ. 26, 1561-1577. Waters, I., Armstrong, W., Thompson, C., Setter, T., Adkins, S., Gibbs, J., Greenway, H. (1989): Diurnal changes in radial oxygen loss and ethanol-metabolism in roots of submerged and non-submerged rice seedlings. New Phytol. 113, 439-451. Savage, K., Phillips, R., Davidson, E. (2014): High temporal frequency measurements of greenhouse gas emissions from soils. Biogeosciences 11, 2709-2720. Xu, X., Kuzyakov, Y., Wanek, W., Richter, A. (2008): Root-derived respiration and non-structural carbon of rice seedlings. Eur. J. Soil Biol. 44, 22-29. Krüger, M., Frenzel, P., Conrad, R. (2001): Microbial processes influencing methane emission from rice fields. Global Change Biol. 7, 49-63. Dannenberg, S., Conrad, R. (1999): Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45, 53-71. Satpathy, S. N., Rath, A. K., Ramakrishnan, B., Rao, V. R., Adhya, T. K., Sethunathan, N. (1997): Diurnal variation in methane efflux at different growth stages of tropical rice. Plant Soil 195, 267-271. Wang, B., Neue, H. U., Samonte, H. P. (1999): Factors controlling diet patterns of methane emission via rice. Nutr. Cycl. Agroecosyst. 53, 229-235. Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H. (2013): Anthropogenic and Natural Radiative Forcing, in Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M (eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 659-740. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C., Myneni, R. B., Piao, S., Thornton, P. (2013): Carbon and Other Biogeochemical Cycles, in Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M (eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 465-570. Wolf, B., Zheng, X., Brüggemann, N., Chen, W., Dannenmann, M., Han, X., Sutton, M. A., Wu, H., Yao, Z., Butterbach-Bahl, K. (2010): Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature 464, 881-884. Breidenbach, B., Conrad, R. (2015): Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Front. Microbiol. 5, DOI: 10.3389/fmicb.2014.00752. Buendia, L. V., Neue, H. U., Wassmann, R., Lantin, R. S., Javellana, A. M., Arah, J., Wang, Z., Wanfang, L., Makarim, A. K., Corton, T. M., Charoenslip, N. (1998): An efficient sampling strategy for estimating methane emission from rice field. Chemosphere 36, 395-407. Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H., Seiler, W. (1989): A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. Atmospheres 94, 16405-16416. Kumar, J. I. N., Viyol, S. (2009): Short term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India. Paddy Water Environ. 7, 11-16. Sass, R. L., Fisher, F. M., Turner, F. T., Jund, M. F. (1991): Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation. Global Biogeochem. Cy. 5, 335-350. Chanton, J. P., Whiting, G. J., Blair, N. E., Lindau, C. W., Bollich, P. K. (1997): Methane emission from rice: Stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochem. Cy. 11, 15-27. Kraus, D., Weller, S., Klatt, S., Haas, E., Wassmann, R., Kiese, R., Butterbach-Bahl, K. (2015): A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant Soil 386, 125-149. Zhan, M., Cao, C., Wang, J., Jiang, Y., Cai, M., Yue, L., Shahrear, A. (2011): Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China. Nutr. Cycl. Agroecosyst. 89, 1-13. Kuzyakov, Y., Gavrichkova, O. (2010): REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biol. 16, 3386-3406. Seiler, W., Holzapfel-Pschorn, A., Conrad, R., Scharffe, D. (1984): Methane emission from rice paddies. J. Atmospheric Chem. 1, 241-268. Alves, B. J. R., Smith, K. A., Flores, R. A., Cardoso, A. S., Oliveira, W. R. D., Jantalia, C. P., Urquiaga, S., Boddey, R. M. (2012): Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol. Biochem. 46, 129-135. Wang, B., Neue, H. U., Samonte, H. P. (1997): The effect of controlled soil temperature on diel CH4 emission variation. Chemosphere 35, 2083-2092. Adhya, T. K., Rath, A., Gupta, P. K., Rao, V. R., Das, S. N., Parida, K. M., Parashar, D. C., Sethunathan, N. (1994): Methane emission from flooded rice fields under irrigated conditions. Biol. Fert. Soils 18, 245-248. Butterbach-Bahl, K., Papen, H., Rennenberg, H. (1997): Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ. 20, 1175-1183. Hatala, J. A., Detto, M., Baldocchi, D. D. (2012): Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophys. Res. Lett. 39, DOI: 10.1029/2012GL051303. Holzapfel-Pschorn, A., Seiler, W. (1986): Methane emission during a cultivation period from an Italian rice paddy. J. Geophys. Res. Atmospheres 91, 11803-11814. Minamikawa, K., Yagi, K., Tokida, T., Sander, B. O., Wassmann, R. (2012): Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method. Greenh. Gas Meas. Manage. 2, 118-128. Ruehr, N. K., Offermann, C. A., Gessler, A., Winkler, J. B., Ferrio, J. P., Buchmann, N., Barnard, R. L. (2009): Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol. 184, 950-961. Schütz, H., Seiler, W., Conrad, R. (1990): Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry 11, 77-95. 1986; 91 2010; 16 1990; 11 2015; 5 2013; 44 1989; 113 1997; 20 1997; 195 2015; 386 2015; 101 2010; 464 1999; 45 1997; 49 2012; 39 2003 1991 1996; 10 1991; 5 1989; 94 2012; 2 2014; 4 2001; 230 1997; 11 2001; 7 2002; 64 1984; 1 1997; 35 1996; 60 2003; 26 1999; 76 2009; 7 1999; 53 2009; 184 2008; 44 2011; 89 1994; 18 1997; 191 2013 1998; 30 2012; 46 1998; 32 2014; 11 1998; 36 1990; 4 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 Myhre G. (e_1_2_7_22_1) 2013 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Ciais P. (e_1_2_7_8_1) 2013 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Schütz H. (e_1_2_7_30_1) 1991 Wang B. (e_1_2_7_35_1) 1990; 4 Conrad R. (e_1_2_7_9_1) 1996; 60 |
References_xml | – reference: Butterbach-Bahl, K., Papen, H., Rennenberg, H. (1997): Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ. 20, 1175-1183. – reference: Yagi, K., Tsuruta, H., Kanda, K., Minami, K. (1996): Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Global Biogeochem. Cy. 10, 255-267. – reference: Breidenbach, B., Conrad, R. (2015): Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Front. Microbiol. 5, DOI: 10.3389/fmicb.2014.00752. – reference: Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H. (2013): Anthropogenic and Natural Radiative Forcing, in Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M (eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 659-740. – reference: Adhya, T. K., Rath, A., Gupta, P. K., Rao, V. R., Das, S. N., Parida, K. M., Parashar, D. C., Sethunathan, N. (1994): Methane emission from flooded rice fields under irrigated conditions. Biol. Fert. Soils 18, 245-248. – reference: Ruehr, N. K., Offermann, C. A., Gessler, A., Winkler, J. B., Ferrio, J. P., Buchmann, N., Barnard, R. L. (2009): Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol. 184, 950-961. – reference: Hatala, J. A., Detto, M., Baldocchi, D. D. (2012): Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophys. Res. Lett. 39, DOI: 10.1029/2012GL051303. – reference: Wang, B., Neue, H. U., Samonte, H. P. (1999): Factors controlling diet patterns of methane emission via rice. Nutr. Cycl. Agroecosyst. 53, 229-235. – reference: Yang, S.-S., Chang, H.-L. (1999): Diurnal variation of methane emission from paddy fields at different growth stages of rice cultivation in Taiwan. Agric. Ecosyst. Environ. 76, 75-84. – reference: Kimura, M. (1997): Sources of methane emitted from paddy fields. Nutr. Cycl. Agroecosys. 49, 153-161. – reference: Chanton, J. P., Whiting, G. J., Blair, N. E., Lindau, C. W., Bollich, P. K. (1997): Methane emission from rice: Stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochem. Cy. 11, 15-27. – reference: Krüger, M., Frenzel, P., Conrad, R. (2001): Microbial processes influencing methane emission from rice fields. Global Change Biol. 7, 49-63. – reference: Sass, R. L., Fisher, F. M., Turner, F. T., Jund, M. F. (1991): Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation. Global Biogeochem. Cy. 5, 335-350. – reference: Conrad, R. (1996): Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 60, 609-640. – reference: Sander, B. O., Wassmann, R. (2014): Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method. Greenh. Gas Meas. Manage. 4, 1-13. – reference: Smith, K. A., Thomson, P. E., Clayton, H., McTaggart, I. P., Conen, F. (1998): Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ. 32, 3301-3309. – reference: Seiler, W., Holzapfel-Pschorn, A., Conrad, R., Scharffe, D. (1984): Methane emission from rice paddies. J. Atmospheric Chem. 1, 241-268. – reference: Schütz, H., Schröder, P., Rennenberg, H. (1991): Role of Plants in Regulating the Methane Flux to the Atmosphere, in Mooney, H., Holland, E., Sharkey, T. (eds.): Trace Gas Emissions by Plants. Academic Press, San Diego, CA, USA, pp. 29-64. – reference: Savage, K., Phillips, R., Davidson, E. (2014): High temporal frequency measurements of greenhouse gas emissions from soils. Biogeosciences 11, 2709-2720. – reference: Alves, B. J. R., Smith, K. A., Flores, R. A., Cardoso, A. S., Oliveira, W. R. D., Jantalia, C. P., Urquiaga, S., Boddey, R. M. (2012): Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol. Biochem. 46, 129-135. – reference: Thompson, M. V., Holbrook, N. M. (2003): Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant Cell Environ. 26, 1561-1577. – reference: Schütz, H., Seiler, W., Conrad, R. (1990): Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry 11, 77-95. – reference: Buendia, L. V., Neue, H. U., Wassmann, R., Lantin, R. S., Javellana, A. M., Arah, J., Wang, Z., Wanfang, L., Makarim, A. K., Corton, T. M., Charoenslip, N. (1998): An efficient sampling strategy for estimating methane emission from rice field. Chemosphere 36, 395-407. – reference: Conrad, R. (2002): Control of microbial methane production in wetland rice fields. Nutr. Cycl. Agroecosys. 64, 59-69. – reference: Satpathy, S. N., Rath, A. K., Ramakrishnan, B., Rao, V. R., Adhya, T. K., Sethunathan, N. (1997): Diurnal variation in methane efflux at different growth stages of tropical rice. Plant Soil 195, 267-271. – reference: Kraus, D., Weller, S., Klatt, S., Haas, E., Wassmann, R., Kiese, R., Butterbach-Bahl, K. (2015): A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant Soil 386, 125-149. – reference: Aulakh, M. S., Wassmann, R., Bueno, C., Rennenberg, H. (2001): Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230, 77-86. – reference: Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C., Myneni, R. B., Piao, S., Thornton, P. (2013): Carbon and Other Biogeochemical Cycles, in Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M (eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 465-570. – reference: Kuzyakov, Y., Gavrichkova, O. (2010): REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biol. 16, 3386-3406. – reference: Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H., Seiler, W. (1989): A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. Atmospheres 94, 16405-16416. – reference: Yun, S.-I., Choi, W.-J., Choi, J.-E., Kim, H.-Y. (2013): High-time resolution analysis of diel variation in methane emission from flooded rice fields. Commun. Soil Sci. Plant Anal. 44, 1620-1628. – reference: Zhan, M., Cao, C., Wang, J., Jiang, Y., Cai, M., Yue, L., Shahrear, A. (2011): Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China. Nutr. Cycl. Agroecosyst. 89, 1-13. – reference: Minamikawa, K., Yagi, K., Tokida, T., Sander, B. O., Wassmann, R. (2012): Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method. Greenh. Gas Meas. Manage. 2, 118-128. – reference: Xu, X., Kuzyakov, Y., Wanek, W., Richter, A. (2008): Root-derived respiration and non-structural carbon of rice seedlings. Eur. J. Soil Biol. 44, 22-29. – reference: Waters, I., Armstrong, W., Thompson, C., Setter, T., Adkins, S., Gibbs, J., Greenway, H. (1989): Diurnal changes in radial oxygen loss and ethanol-metabolism in roots of submerged and non-submerged rice seedlings. New Phytol. 113, 439-451. – reference: Holzapfel-Pschorn, A., Seiler, W. (1986): Methane emission during a cultivation period from an Italian rice paddy. J. Geophys. Res. Atmospheres 91, 11803-11814. – reference: Weller, S., Kraus, D., Ayag, K. R. P., Wassmann, R., Alberto, M. C. R., Butterbach-Bahl, K., Kiese, R. (2015): Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycl. Agroecosyst. 101, 37-53. – reference: Dannenberg, S., Conrad, R. (1999): Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45, 53-71. – reference: Wang, B., Aiguo, D., Renxing, S., Schütz, H., Rennenberg, H., Seiler, W., Haibai, W. (1990): CH4 emission from a Chinese rice paddy field. Acta Meteorol. Sin. 4, 265-275. – reference: Wolf, B., Zheng, X., Brüggemann, N., Chen, W., Dannenmann, M., Han, X., Sutton, M. A., Wu, H., Yao, Z., Butterbach-Bahl, K. (2010): Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature 464, 881-884. – reference: Gilbert, B., Frenzel, P. (1998): Rice roots and CH4 oxidation: The activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 30, 1903-1916. – reference: Hosono, T., Nouchi, I. (1997): The dependence of methane transport in rice plants on the root zone temperature. Plant Soil 191, 233-240. – reference: Kumar, J. I. N., Viyol, S. (2009): Short term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India. Paddy Water Environ. 7, 11-16. – reference: Wang, B., Neue, H. U., Samonte, H. P. (1997): The effect of controlled soil temperature on diel CH4 emission variation. Chemosphere 35, 2083-2092. – volume: 4 start-page: 1 year: 2014 end-page: 13 article-title: Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method. publication-title: Greenh. Gas Meas. Manage. – volume: 386 start-page: 125 year: 2015 end-page: 149 article-title: A new LandscapeDNDC biogeochemical module to predict CH and N O emissions from lowland rice and upland cropping systems. publication-title: Plant Soil – start-page: 659 year: 2013 end-page: 740 – volume: 44 start-page: 1620 year: 2013 end-page: 1628 article-title: High‐time resolution analysis of diel variation in methane emission from flooded rice fields. publication-title: Commun. Soil Sci. Plant Anal. – volume: 464 start-page: 881 year: 2010 end-page: 884 article-title: Grazing‐induced reduction of natural nitrous oxide release from continental steppe. publication-title: Nature – volume: 113 start-page: 439 year: 1989 end-page: 451 article-title: Diurnal changes in radial oxygen loss and ethanol‐metabolism in roots of submerged and non‐submerged rice seedlings. publication-title: New Phytol. – volume: 45 start-page: 53 year: 1999 end-page: 71 article-title: Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. publication-title: Biogeochemistry – year: 2003 – volume: 195 start-page: 267 year: 1997 end-page: 271 article-title: Diurnal variation in methane efflux at different growth stages of tropical rice. publication-title: Plant Soil – volume: 1 start-page: 241 year: 1984 end-page: 268 article-title: Methane emission from rice paddies. publication-title: J. Atmospheric Chem. – volume: 11 start-page: 15 year: 1997 end-page: 27 article-title: Methane emission from rice: Stable isotopes, diurnal variations, and CO exchange. publication-title: Global Biogeochem. Cy. – volume: 35 start-page: 2083 year: 1997 end-page: 2092 article-title: The effect of controlled soil temperature on diel CH emission variation. publication-title: Chemosphere – volume: 94 start-page: 16405 year: 1989 end-page: 16416 article-title: A 3‐year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. publication-title: J. Geophys. Res. Atmospheres – volume: 53 start-page: 229 year: 1999 end-page: 235 article-title: Factors controlling diet patterns of methane emission via rice. publication-title: Nutr. Cycl. Agroecosyst. – volume: 191 start-page: 233 year: 1997 end-page: 240 article-title: The dependence of methane transport in rice plants on the root zone temperature. publication-title: Plant Soil – volume: 49 start-page: 153 year: 1997 end-page: 161 article-title: Sources of methane emitted from paddy fields. publication-title: Nutr. Cycl. Agroecosys. – volume: 46 start-page: 129 year: 2012 end-page: 135 article-title: Selection of the most suitable sampling time for static chambers for the estimation of daily mean N O flux from soils. publication-title: Soil Biol. Biochem. – volume: 11 start-page: 2709 year: 2014 end-page: 2720 article-title: High temporal frequency measurements of greenhouse gas emissions from soils. publication-title: Biogeosciences – volume: 39 year: 2012 article-title: Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. publication-title: Geophys. Res. Lett. – volume: 26 start-page: 1561 year: 2003 end-page: 1577 article-title: Scaling phloem transport: water potential equilibrium and osmoregulatory flow. publication-title: Plant Cell Environ. – volume: 44 start-page: 22 year: 2008 end-page: 29 article-title: Root‐derived respiration and non‐structural carbon of rice seedlings. publication-title: Eur. J. Soil Biol. – volume: 18 start-page: 245 year: 1994 end-page: 248 article-title: Methane emission from flooded rice fields under irrigated conditions. publication-title: Biol. Fert. Soils – volume: 11 start-page: 77 year: 1990 end-page: 95 article-title: Influence of soil temperature on methane emission from rice paddy fields. publication-title: Biogeochemistry – volume: 101 start-page: 37 year: 2015 end-page: 53 article-title: Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. publication-title: Nutr. Cycl. Agroecosyst. – volume: 5 year: 2015 article-title: Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. publication-title: Front. Microbiol. – volume: 20 start-page: 1175 year: 1997 end-page: 1183 article-title: Impact of gas transport through rice cultivars on methane emission from rice paddy fields. publication-title: Plant Cell Environ. – volume: 30 start-page: 1903 year: 1998 end-page: 1916 article-title: Rice roots and CH oxidation: The activity of bacteria, their distribution and the microenvironment. publication-title: Soil Biol. Biochem. – volume: 76 start-page: 75 year: 1999 end-page: 84 article-title: Diurnal variation of methane emission from paddy fields at different growth stages of rice cultivation in Taiwan. publication-title: Agric. Ecosyst. Environ. – volume: 64 start-page: 59 year: 2002 end-page: 69 article-title: Control of microbial methane production in wetland rice fields. publication-title: Nutr. Cycl. Agroecosys. – volume: 184 start-page: 950 year: 2009 end-page: 961 article-title: Drought effects on allocation of recent carbon: from beech leaves to soil CO efflux. publication-title: New Phytol. – volume: 7 start-page: 11 year: 2009 end-page: 16 article-title: Short term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India. publication-title: Paddy Water Environ. – volume: 4 start-page: 265 year: 1990 end-page: 275 article-title: CH emission from a Chinese rice paddy field. publication-title: Acta Meteorol. Sin. – volume: 36 start-page: 395 year: 1998 end-page: 407 article-title: An efficient sampling strategy for estimating methane emission from rice field. publication-title: Chemosphere – volume: 60 start-page: 609 year: 1996 end-page: 640 article-title: Soil microorganisms as controllers of atmospheric trace gases (H , CO, CH , OCS, N O, and NO). publication-title: Microbiol. Rev. – volume: 2 start-page: 118 year: 2012 end-page: 128 article-title: Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method. publication-title: Greenh. Gas Meas. Manage. – volume: 32 start-page: 3301 year: 1998 end-page: 3309 article-title: Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. publication-title: Atmos. Environ. – volume: 10 start-page: 255 year: 1996 end-page: 267 article-title: Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. publication-title: Global Biogeochem. Cy. – volume: 5 start-page: 335 year: 1991 end-page: 350 article-title: Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation. publication-title: Global Biogeochem. Cy. – volume: 7 start-page: 49 year: 2001 end-page: 63 article-title: Microbial processes influencing methane emission from rice fields. publication-title: Global Change Biol. – volume: 230 start-page: 77 year: 2001 end-page: 86 article-title: Impact of root exudates of different cultivars and plant development stages of rice ( L.) on methane production in a paddy soil. publication-title: Plant Soil – start-page: 465 year: 2013 end-page: 570 – volume: 91 start-page: 11803 year: 1986 end-page: 11814 article-title: Methane emission during a cultivation period from an Italian rice paddy. publication-title: J. Geophys. Res. Atmospheres – start-page: 29 year: 1991 end-page: 64 – volume: 89 start-page: 1 year: 2011 end-page: 13 article-title: Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice‐duck systems in Southern China. publication-title: Nutr. Cycl. Agroecosyst. – volume: 16 start-page: 3386 year: 2010 end-page: 3406 article-title: REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. publication-title: Global Change Biol. – ident: e_1_2_7_40_1 doi: 10.1038/nature08931 – ident: e_1_2_7_20_1 doi: 10.1111/j.1365-2486.2010.02179.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1469-8137.2009.03044.x – start-page: 465 volume-title: Climate Change 2013: The Physical Science Basis. year: 2013 ident: e_1_2_7_8_1 – volume: 60 start-page: 609 year: 1996 ident: e_1_2_7_9_1 article-title: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). publication-title: Microbiol. Rev. doi: 10.1128/mr.60.4.609-640.1996 – start-page: 659 volume-title: Climate Change 2013: The Physical Science Basis. year: 2013 ident: e_1_2_7_22_1 – ident: e_1_2_7_25_1 doi: 10.1080/20430779.2014.892807 – volume: 4 start-page: 265 year: 1990 ident: e_1_2_7_35_1 article-title: CH4 emission from a Chinese rice paddy field. publication-title: Acta Meteorol. Sin. – ident: e_1_2_7_39_1 doi: 10.1007/s10705-014-9658-1 – ident: e_1_2_7_13_1 doi: 10.1029/2012GL051303 – ident: e_1_2_7_34_1 doi: 10.1046/j.1365-3040.2003.01080.x – start-page: 29 volume-title: Trace Gas Emissions by Plants. year: 1991 ident: e_1_2_7_30_1 doi: 10.1016/B978-0-12-639010-0.50007-8 – ident: e_1_2_7_18_1 doi: 10.1046/j.1365-2486.2001.00395.x – ident: e_1_2_7_28_1 doi: 10.5194/bg-11-2709-2014 – ident: e_1_2_7_43_1 doi: 10.1016/S0167-8809(99)00074-2 – ident: e_1_2_7_36_1 doi: 10.1016/S0045-6535(97)00257-9 – ident: e_1_2_7_16_1 doi: 10.1023/A:1009790920271 – ident: e_1_2_7_19_1 doi: 10.1007/s10333-008-0147-5 – ident: e_1_2_7_4_1 doi: 10.3389/fmicb.2014.00752 – ident: e_1_2_7_12_1 doi: 10.1016/S0038-0717(98)00061-3 – ident: e_1_2_7_41_1 doi: 10.1016/j.ejsobi.2007.09.008 – ident: e_1_2_7_45_1 doi: 10.1007/s10705-010-9371-7 – ident: e_1_2_7_11_1 doi: 10.1007/BF00992873 – ident: e_1_2_7_17_1 doi: 10.1007/s11104-014-2255-x – ident: e_1_2_7_31_1 doi: 10.1007/BF00002060 – ident: e_1_2_7_10_1 doi: 10.1023/A:1021178713988 – ident: e_1_2_7_27_1 doi: 10.1023/A:1004202515767 – ident: e_1_2_7_44_1 doi: 10.1080/00103624.2012.756510 – ident: e_1_2_7_3_1 doi: 10.1023/A:1004817212321 – ident: e_1_2_7_37_1 doi: 10.1023/A:1009753923339 – ident: e_1_2_7_6_1 doi: 10.1046/j.1365-3040.1997.d01-142.x – ident: e_1_2_7_29_1 doi: 10.1029/JD094iD13p16405 – ident: e_1_2_7_32_1 doi: 10.1007/BF00058731 – ident: e_1_2_7_38_1 doi: 10.1111/j.1469-8137.1989.tb00355.x – ident: e_1_2_7_42_1 doi: 10.1029/96GB00517 – ident: e_1_2_7_33_1 doi: 10.1016/S1352-2310(97)00492-5 – ident: e_1_2_7_5_1 doi: 10.1016/S0045-6535(97)00283-X – ident: e_1_2_7_26_1 doi: 10.1029/91GB02586 – ident: e_1_2_7_2_1 doi: 10.1016/j.soilbio.2011.11.022 – ident: e_1_2_7_21_1 doi: 10.1080/20430779.2012.729988 – ident: e_1_2_7_15_1 doi: 10.1023/A:1004203208686 – ident: e_1_2_7_1_1 doi: 10.1007/BF00647675 – ident: e_1_2_7_23_1 – ident: e_1_2_7_7_1 doi: 10.1029/96GB03761 – ident: e_1_2_7_14_1 doi: 10.1029/JD091iD11p11803 |
SSID | ssj0004192 |
Score | 2.1859498 |
Snippet | Methane (CH₄) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air,... Methane (CH4) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air,... Methane (CH 4 ) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in... Methane (CH sub(4)) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature... |
SourceID | proquest crossref wiley istex fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 755 |
SubjectTerms | air temperature automated chamber system Cereal crops Crop production diurnal variation Diurnal variations Dry season Emission measurements Emissions Floods Floodwater greenhouse gas greenhouse gas emissions leaf area Methane methane production Nitrous oxide Oryza sativa paddies Philippines Rainy season rice Rice fields Seasons soil wet season |
Title | Diurnal patterns of methane emissions from paddy rice fields in the Philippines |
URI | https://api.istex.fr/ark:/67375/WNG-FD8Z7BH9-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.201500092 https://www.proquest.com/docview/1718868318 https://www.proquest.com/docview/1732811243 https://www.proquest.com/docview/1753427124 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BNCR4gFGYFhiTkRA8ZUucOB-PG1upJigIqJj2Yjm2g8ampGpaifLXcxen2YoESPCWj3OU3J3tX87n3wG8oECFLgPKVKNoVZBzP9c68AW6j1K8DE1Bu5HfjZPRJD49E2c3dvE7fog-4EY9ox2vqYOrojm4Jg39Nr0i_tKwZfSnQZgStggVfbzmj6IlznZ7EbHuoi-vWBsDfrDefG1Wul2qGrEqqfn7GvC8CV_b-Wf4ANTqzV3ayeX-Yl7s6x-_kDr-z6dtwf0OnLJD500P4ZatBnDv8OusI-iwA7jjilcuB7B5VCOwXD6C98cXrt205eqsGlaXjCpTq8oyKidHAbmG0UYWFDFmyYjIiLW5cw27qBhiUOYCO1NKwn8Mk-HJ59cjv6vT4GuCa2hXRbSFYayF0dag7QVXJikLq1JuopAO0R-iKNWZ0SaJVJBoZeOwLPLQIEbaho2qruwOMBunqRBlqsoIf6V4roSNA8OLLDXCxEnmgb-yk9QdiTnV0riSjn6ZS9Kd7HXnwatefuroO34ruYNmlwpV2sjJJ3edcyKr8eBl6wv9E9TskvLhUiG_jN_I4XF2nh6Ncnnuwe7KWWQ3FDQyxNk_SzIcOz143t9G5dPKDBqiXpBMxDNUZRz9SUZEMU9RyAPees9fvkiefng77s-e_Eujp3CXjl3y4i5szGcL-wxB2LzYazvaT0WYJTI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAQEHHguogQJGQnBKmzjvY0tZlrJdEHRV1Ivl2A4qrZLVZldi-fXMOI-ySIAEtzzGUTwztr9Mxt8APKdAhSo8ylSjaJWXcTdTynMjdB8peeHrnHYjH07i0TQ8-Bx12YS0F6bhh-gDbjQy7HxNA5wC0jsXrKFfZ-dEYOpbSn-cha9QWW_7VfXxgkGKfnLaDUbEu4ve3PE2enxnvf3aunS5kBWiVVL0tzXo-TOAtSvQ8Dbk3bs3iSdn28tFvq2-_0Lr-F-duwO3WnzKdhuHuguXTDmAm7tf5i1HhxnAtaZ-5WoAV_cqxJare_B-_7RpN7N0nWXNqoJRcWpZGkYV5SgmVzPay4IiWq8YcRkxmz5Xs9OSIQxlTWxnRnn492E6fH30auS2pRpcRYgNTSuJudAPVaSV0Wj-iEsdF7mRCdeBT4foEkGQqFQrHQfSi5U0oV_kma8RJj2AjbIqzSYwEyZJFBWJLAL8muKZjEzoaZ6niY50GKcOuJ2hhGp5zKmcxrloGJi5IN2JXncOvOzlZw2Dx28lN9HuQqJKazH91FznnPhqHHhhnaF_gpyfUUpcEonjyRsx3E9Pkr1RJk4c2Oq8RbSzQS18BABpnOL06cCz_jYqn37OoCGqJckEPEVVhsGfZKIg5AkKOcCt-_ylR-Lgw3jSnz38l0ZP4fro6HAsxm8n7x7BDbre5DJuwcZivjSPEZMt8id21P0AlTwpTQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeQgOPBZQAwWMhOCUNnHex5ZlWUpZKmBF1Yvl2A4qrZJosyux_Hpm4mzaRQIkuOUxjpKZsf1lPP4G4DkFKlThUaYaRau8jLuZUp4boftIyQtf57Qb-f0kHk_D_aPo6MIufssP0QfcqGe04zV18FoXO-ekod_qM-Iv9VtGfxyEr4Sxl5JfDz-eE0jRGme7v4hod9GZV7SNHt9Zb782LV0uZIVglfT8fQ15XsSv7QQ0ug1y9eo27-R0ezHPt9WPX1gd_-fb7sCtDp2yXetOd-GSKQdwc_frrGPoMAO4ZqtXLgdwda9CZLm8Bx-GJ7Zd3ZJ1lg2rCkalqWVpGNWTo4hcw2gnC4povWTEZMTa5LmGnZQMQSizkZ2asvDvw3T0-vOrsdsVanAV4TU0rCTeQj9UkVZGo_EjLnVc5EYmXAc-HaJDBEGiUq10HEgvVtKEfpFnvkaQ9AA2yqo0m8BMmCRRVCSyCPBfimcyMqGneZ4mOtJhnDrgruwkVMdiTsU0zoTlX-aCdCd63TnwspevLX_HbyU30exCokobMf1kr3NObDUOvGh9oX-CnJ1SQlwSiS-TN2I0TI-TvXEmjh3YWjmL6MaCRvg4_adxioOnA8_626h8WppBQ1QLkgl4iqoMgz_JREHIExRygLfe85cvEvuHB5P-7OG_NHoK1w-HI3HwdvLuEdygyzaRcQs25rOFeYyAbJ4_afvcTwg9KAU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diurnal+patterns+of+methane+emissions+from+paddy+rice+fields+in+the+Philippines&rft.jtitle=Journal+of+plant+nutrition+and+soil+science&rft.au=Weller%2C+Sebastian&rft.au=Kraus%2C+David&rft.au=Butterbach%E2%80%90Bahl%2C+Klaus&rft.au=Wassmann%2C+Reiner&rft.date=2015-10-01&rft.issn=1436-8730&rft.volume=178&rft.issue=5+p.755-767&rft.spage=755&rft.epage=767&rft_id=info:doi/10.1002%2Fjpln.201500092&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-8730&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-8730&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-8730&client=summon |