Diurnal patterns of methane emissions from paddy rice fields in the Philippines

Methane (CH₄) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub‐dail...

Full description

Saved in:
Bibliographic Details
Published inJournal of plant nutrition and soil science Vol. 178; no. 5; pp. 755 - 767
Main Authors Weller, Sebastian, Kraus, David, Butterbach‐Bahl, Klaus, Wassmann, Reiner, Tirol‐Padre, Agnes, Kiese, Ralf
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag 01.10.2015
WILEY-VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methane (CH₄) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub‐daily variations of CH₄ emissions. Here we evaluated diurnal patterns of CH₄ emissions from traditional paddy rice production as observed during field measurements in the Philippines. Field emissions were measured during three consecutive cropping seasons using an automated chamber and gas sampling system with fluxes being obtained every 4 h. Methane fluxes were monitored with a total of nine chambers during the dry seasons in 2012 and 2013 and 27 chambers during the wet season in 2012. Significant and consistent diurnal patterns of CH₄ emissions were mainly observed from the start of field flooding until the middle of cropping periods, i.e., periods with low leaf area of the rice crop. Our data show that disregarding the diurnal variability of fluxes results in an average overestimation of seasonal CH₄ emissions of 22% (16–31%) if measurements were conducted only around noon. Scheduling manual sampling either at early morning (7:00–9:00) or evening (17:00–19:00) results in estimations of seasonal emissions within 94–101% of the “true” value as calculated from multiple daily flux measurements. Alternatively, uncertainties of seasonal emissions can be reduced to an average of ≤3% by applying sinus function or Gauss function‐based correction factors. Application of correction factors allows the performance of flux measurements at any time of day. We also investigated N₂O emissions from rice paddies with respect to diurnal variations, but did not find, as in the case of CH₄, any significant and persistent diurnal pattern.
AbstractList Methane (CH₄) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub‐daily variations of CH₄ emissions. Here we evaluated diurnal patterns of CH₄ emissions from traditional paddy rice production as observed during field measurements in the Philippines. Field emissions were measured during three consecutive cropping seasons using an automated chamber and gas sampling system with fluxes being obtained every 4 h. Methane fluxes were monitored with a total of nine chambers during the dry seasons in 2012 and 2013 and 27 chambers during the wet season in 2012. Significant and consistent diurnal patterns of CH₄ emissions were mainly observed from the start of field flooding until the middle of cropping periods, i.e., periods with low leaf area of the rice crop. Our data show that disregarding the diurnal variability of fluxes results in an average overestimation of seasonal CH₄ emissions of 22% (16–31%) if measurements were conducted only around noon. Scheduling manual sampling either at early morning (7:00–9:00) or evening (17:00–19:00) results in estimations of seasonal emissions within 94–101% of the “true” value as calculated from multiple daily flux measurements. Alternatively, uncertainties of seasonal emissions can be reduced to an average of ≤3% by applying sinus function or Gauss function‐based correction factors. Application of correction factors allows the performance of flux measurements at any time of day. We also investigated N₂O emissions from rice paddies with respect to diurnal variations, but did not find, as in the case of CH₄, any significant and persistent diurnal pattern.
Methane (CH 4 ) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub‐daily variations of CH 4 emissions. Here we evaluated diurnal patterns of CH 4 emissions from traditional paddy rice production as observed during field measurements in the Philippines. Field emissions were measured during three consecutive cropping seasons using an automated chamber and gas sampling system with fluxes being obtained every 4 h. Methane fluxes were monitored with a total of nine chambers during the dry seasons in 2012 and 2013 and 27 chambers during the wet season in 2012. Significant and consistent diurnal patterns of CH 4 emissions were mainly observed from the start of field flooding until the middle of cropping periods, i.e ., periods with low leaf area of the rice crop. Our data show that disregarding the diurnal variability of fluxes results in an average overestimation of seasonal CH 4 emissions of 22% (16–31%) if measurements were conducted only around noon. Scheduling manual sampling either at early morning (7:00–9:00) or evening (17:00–19:00) results in estimations of seasonal emissions within 94–101% of the “true” value as calculated from multiple daily flux measurements. Alternatively, uncertainties of seasonal emissions can be reduced to an average of ≤3% by applying sinus function or Gauss function‐based correction factors. Application of correction factors allows the performance of flux measurements at any time of day. We also investigated N 2 O emissions from rice paddies with respect to diurnal variations, but did not find, as in the case of CH 4 , any significant and persistent diurnal pattern.
Methane (CH4) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub-daily variations of CH4 emissions. Here we evaluated diurnal patterns of CH4 emissions from traditional paddy rice production as observed during field measurements in the Philippines. Field emissions were measured during three consecutive cropping seasons using an automated chamber and gas sampling system with fluxes being obtained every 4 h. Methane fluxes were monitored with a total of nine chambers during the dry seasons in 2012 and 2013 and 27 chambers during the wet season in 2012. Significant and consistent diurnal patterns of CH4 emissions were mainly observed from the start of field flooding until the middle of cropping periods, i.e., periods with low leaf area of the rice crop. Our data show that disregarding the diurnal variability of fluxes results in an average overestimation of seasonal CH4 emissions of 22% (16-31%) if measurements were conducted only around noon. Scheduling manual sampling either at early morning (7:00-9:00) or evening (17:00-19:00) results in estimations of seasonal emissions within 94-101% of the "true" value as calculated from multiple daily flux measurements. Alternatively, uncertainties of seasonal emissions can be reduced to an average of ≤3% by applying sinus function or Gauss function-based correction factors. Application of correction factors allows the performance of flux measurements at any time of day. We also investigated N2O emissions from rice paddies with respect to diurnal variations, but did not find, as in the case of CH4, any significant and persistent diurnal pattern.
Methane (CH sub(4)) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air, floodwater, and soil. Field measurements, however, are often scheduled at a fixed time of a given measuring day, thereby neglecting sub-daily variations of CH sub(4) emissions. Here we evaluated diurnal patterns of CH sub(4) emissions from traditional paddy rice production as observed during field measurements in the Philippines. Field emissions were measured during three consecutive cropping seasons using an automated chamber and gas sampling system with fluxes being obtained every 4 h. Methane fluxes were monitored with a total of nine chambers during the dry seasons in 2012 and 2013 and 27 chambers during the wet season in 2012. Significant and consistent diurnal patterns of CH sub(4) emissions were mainly observed from the start of field flooding until the middle of cropping periods, i.e., periods with low leaf area of the rice crop. Our data show that disregarding the diurnal variability of fluxes results in an average overestimation of seasonal CH sub(4) emissions of 22% (16-31%) if measurements were conducted only around noon. Scheduling manual sampling either at early morning (7:00-9:00) or evening (17:00-19:00) results in estimations of seasonal emissions within 94-101% of the "true" value as calculated from multiple daily flux measurements. Alternatively, uncertainties of seasonal emissions can be reduced to an average of less than or equal to 3% by applying sinus function or Gauss function-based correction factors. Application of correction factors allows the performance of flux measurements at any time of day. We also investigated N sub(2)O emissions from rice paddies with respect to diurnal variations, but did not find, as in the case of CH sub(4), any significant and persistent diurnal pattern.
Author Weller, Sebastian
Wassmann, Reiner
Tirol‐Padre, Agnes
Kiese, Ralf
Kraus, David
Butterbach‐Bahl, Klaus
Author_xml – sequence: 1
  fullname: Weller, Sebastian
– sequence: 2
  fullname: Kraus, David
– sequence: 3
  fullname: Butterbach‐Bahl, Klaus
– sequence: 4
  fullname: Wassmann, Reiner
– sequence: 5
  fullname: Tirol‐Padre, Agnes
– sequence: 6
  fullname: Kiese, Ralf
BookMark eNqNkc9rFDEUx4NUsK1evRrw4mXW_JgkM0dtbassbUGL0EtI88PNmp2MSZZ2_3szHSlSKHp6j8fn83i87wHYG-JgAXiN0QIjRN6vxzAsCMIMIdSTZ2AfM0Iawkm7V_uW8qYTFL0ABzmvK9LinuyDi2O_TYMKcFSl2DRkGB3c2LJSg4V243P2sQ5dipuKGLODyWsLnbfBZOgHWFYWXq588OPoB5tfgudOhWxf_amH4Ork07ejs2Z5cfr56MOy0Qxj0jCsqBA9bjUz2hqmHSPKcHdjlSCG4qnVDlEqdGe04VQhrpVtsbvpsUGcHoJ3894xxV9bm4ust2obQr07brPEgtGWCEza_0Ap6fBEVvTtI3Qd798zUbjreEdxV6l2pnSKOSfrpPZFlfqokpQPEiM5BSKnQORDIFVbPNLG5Dcq7Z4W-lm49cHu_kHLL5fL87_dZnZ9LvbuwVXpp-SCCia_n5_Kk-PuWnw86-V15d_MvFNRqh_JZ3n1dV5HauE9_Q0RMLiW
CitedBy_id crossref_primary_10_1007_s10661_017_6184_z
crossref_primary_10_1016_j_scitotenv_2022_159917
crossref_primary_10_3390_w13162171
crossref_primary_10_1016_j_agee_2016_03_037
crossref_primary_10_1371_journal_pone_0191352
crossref_primary_10_1007_s11104_016_2824_2
crossref_primary_10_1016_j_atmosenv_2017_08_007
crossref_primary_10_4236_jep_2017_89060
crossref_primary_10_1080_15226514_2016_1216077
crossref_primary_10_1002_agg2_20119
crossref_primary_10_1016_j_agrformet_2017_11_010
crossref_primary_10_1016_j_agrformet_2025_110504
crossref_primary_10_1016_j_scitotenv_2019_07_012
crossref_primary_10_15446_agron_colomb_v41n1_107053
crossref_primary_10_1016_j_atmosenv_2018_02_015
crossref_primary_10_3390_su132011336
crossref_primary_10_1016_j_scitotenv_2018_09_141
Cites_doi 10.1038/nature08931
10.1111/j.1365-2486.2010.02179.x
10.1111/j.1469-8137.2009.03044.x
10.1128/mr.60.4.609-640.1996
10.1080/20430779.2014.892807
10.1007/s10705-014-9658-1
10.1029/2012GL051303
10.1046/j.1365-3040.2003.01080.x
10.1016/B978-0-12-639010-0.50007-8
10.1046/j.1365-2486.2001.00395.x
10.5194/bg-11-2709-2014
10.1016/S0167-8809(99)00074-2
10.1016/S0045-6535(97)00257-9
10.1023/A:1009790920271
10.1007/s10333-008-0147-5
10.3389/fmicb.2014.00752
10.1016/S0038-0717(98)00061-3
10.1016/j.ejsobi.2007.09.008
10.1007/s10705-010-9371-7
10.1007/BF00992873
10.1007/s11104-014-2255-x
10.1007/BF00002060
10.1023/A:1021178713988
10.1023/A:1004202515767
10.1080/00103624.2012.756510
10.1023/A:1004817212321
10.1023/A:1009753923339
10.1046/j.1365-3040.1997.d01-142.x
10.1029/JD094iD13p16405
10.1007/BF00058731
10.1111/j.1469-8137.1989.tb00355.x
10.1029/96GB00517
10.1016/S1352-2310(97)00492-5
10.1016/S0045-6535(97)00283-X
10.1029/91GB02586
10.1016/j.soilbio.2011.11.022
10.1080/20430779.2012.729988
10.1023/A:1004203208686
10.1007/BF00647675
10.1029/96GB03761
10.1029/JD091iD11p11803
ContentType Journal Article
Copyright Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID FBQ
BSCLL
AAYXX
CITATION
7ST
7T7
8FD
C1K
FR3
P64
SOI
7S9
L.6
DOI 10.1002/jpln.201500092
DatabaseName AGRIS
Istex
CrossRef
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Engineering Research Database

AGRICOLA
Environment Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Botany
EISSN 1522-2624
EndPage 767
ExternalDocumentID 3826396791
10_1002_jpln_201500092
JPLN201500092
ark_67375_WNG_FD8Z7BH9_Z
US201500220169
Genre article
GeographicLocations Philippines
ISEW, Philippines
GeographicLocations_xml – name: Philippines
– name: ISEW, Philippines
GrantInformation_xml – fundername: German Research Foundation (DFG)
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c5112-51a377914c5dced5cf52ad6fbea72d31d6fbcf0337c8dcd63a06cae41fb91d063
IEDL.DBID DR2
ISSN 1436-8730
IngestDate Fri Jul 11 18:26:29 EDT 2025
Fri Jul 11 04:38:13 EDT 2025
Fri Jul 25 22:12:14 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Tue Jul 01 00:47:40 EDT 2025
Wed Jan 22 16:24:57 EST 2025
Wed Oct 30 09:55:55 EDT 2024
Wed Dec 27 18:45:42 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5112-51a377914c5dced5cf52ad6fbea72d31d6fbcf0337c8dcd63a06cae41fb91d063
Notes http://dx.doi.org/10.1002/jpln.201500092
German Research Foundation (DFG)
ArticleID:JPLN201500092
istex:965DCFB797B7513AE697EE1C2D1FE20471AE63F4
ark:/67375/WNG-FD8Z7BH9-Z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1718868318
PQPubID 1016373
PageCount 13
ParticipantIDs proquest_miscellaneous_1753427124
proquest_miscellaneous_1732811243
proquest_journals_1718868318
crossref_citationtrail_10_1002_jpln_201500092
crossref_primary_10_1002_jpln_201500092
wiley_primary_10_1002_jpln_201500092_JPLN201500092
istex_primary_ark_67375_WNG_FD8Z7BH9_Z
fao_agris_US201500220169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October, 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October, 2015
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Journal of plant nutrition and soil science
PublicationTitleAlternate J. Plant Nutr. Soil Sci
PublicationYear 2015
Publisher WILEY‐VCH Verlag
WILEY-VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag
– name: WILEY-VCH Verlag
– name: Wiley Subscription Services, Inc
References Weller, S., Kraus, D., Ayag, K. R. P., Wassmann, R., Alberto, M. C. R., Butterbach-Bahl, K., Kiese, R. (2015): Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycl. Agroecosyst. 101, 37-53.
Hosono, T., Nouchi, I. (1997): The dependence of methane transport in rice plants on the root zone temperature. Plant Soil 191, 233-240.
Yun, S.-I., Choi, W.-J., Choi, J.-E., Kim, H.-Y. (2013): High-time resolution analysis of diel variation in methane emission from flooded rice fields. Commun. Soil Sci. Plant Anal. 44, 1620-1628.
Aulakh, M. S., Wassmann, R., Bueno, C., Rennenberg, H. (2001): Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230, 77-86.
Conrad, R. (2002): Control of microbial methane production in wetland rice fields. Nutr. Cycl. Agroecosys. 64, 59-69.
Schütz, H., Schröder, P., Rennenberg, H. (1991): Role of Plants in Regulating the Methane Flux to the Atmosphere, in Mooney, H., Holland, E., Sharkey, T. (eds.): Trace Gas Emissions by Plants. Academic Press, San Diego, CA, USA, pp. 29-64.
Wang, B., Aiguo, D., Renxing, S., Schütz, H., Rennenberg, H., Seiler, W., Haibai, W. (1990): CH4 emission from a Chinese rice paddy field. Acta Meteorol. Sin. 4, 265-275.
Gilbert, B., Frenzel, P. (1998): Rice roots and CH4 oxidation: The activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 30, 1903-1916.
Yang, S.-S., Chang, H.-L. (1999): Diurnal variation of methane emission from paddy fields at different growth stages of rice cultivation in Taiwan. Agric. Ecosyst. Environ. 76, 75-84.
Kimura, M. (1997): Sources of methane emitted from paddy fields. Nutr. Cycl. Agroecosys. 49, 153-161.
Yagi, K., Tsuruta, H., Kanda, K., Minami, K. (1996): Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Global Biogeochem. Cy. 10, 255-267.
Conrad, R. (1996): Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 60, 609-640.
Sander, B. O., Wassmann, R. (2014): Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method. Greenh. Gas Meas. Manage. 4, 1-13.
Smith, K. A., Thomson, P. E., Clayton, H., McTaggart, I. P., Conen, F. (1998): Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ. 32, 3301-3309.
Thompson, M. V., Holbrook, N. M. (2003): Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant Cell Environ. 26, 1561-1577.
Waters, I., Armstrong, W., Thompson, C., Setter, T., Adkins, S., Gibbs, J., Greenway, H. (1989): Diurnal changes in radial oxygen loss and ethanol-metabolism in roots of submerged and non-submerged rice seedlings. New Phytol. 113, 439-451.
Savage, K., Phillips, R., Davidson, E. (2014): High temporal frequency measurements of greenhouse gas emissions from soils. Biogeosciences 11, 2709-2720.
Xu, X., Kuzyakov, Y., Wanek, W., Richter, A. (2008): Root-derived respiration and non-structural carbon of rice seedlings. Eur. J. Soil Biol. 44, 22-29.
Krüger, M., Frenzel, P., Conrad, R. (2001): Microbial processes influencing methane emission from rice fields. Global Change Biol. 7, 49-63.
Dannenberg, S., Conrad, R. (1999): Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45, 53-71.
Satpathy, S. N., Rath, A. K., Ramakrishnan, B., Rao, V. R., Adhya, T. K., Sethunathan, N. (1997): Diurnal variation in methane efflux at different growth stages of tropical rice. Plant Soil 195, 267-271.
Wang, B., Neue, H. U., Samonte, H. P. (1999): Factors controlling diet patterns of methane emission via rice. Nutr. Cycl. Agroecosyst. 53, 229-235.
Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H. (2013): Anthropogenic and Natural Radiative Forcing, in Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M (eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 659-740.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C., Myneni, R. B., Piao, S., Thornton, P. (2013): Carbon and Other Biogeochemical Cycles, in Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M (eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 465-570.
Wolf, B., Zheng, X., Brüggemann, N., Chen, W., Dannenmann, M., Han, X., Sutton, M. A., Wu, H., Yao, Z., Butterbach-Bahl, K. (2010): Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature 464, 881-884.
Breidenbach, B., Conrad, R. (2015): Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Front. Microbiol. 5, DOI: 10.3389/fmicb.2014.00752.
Buendia, L. V., Neue, H. U., Wassmann, R., Lantin, R. S., Javellana, A. M., Arah, J., Wang, Z., Wanfang, L., Makarim, A. K., Corton, T. M., Charoenslip, N. (1998): An efficient sampling strategy for estimating methane emission from rice field. Chemosphere 36, 395-407.
Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H., Seiler, W. (1989): A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. Atmospheres 94, 16405-16416.
Kumar, J. I. N., Viyol, S. (2009): Short term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India. Paddy Water Environ. 7, 11-16.
Sass, R. L., Fisher, F. M., Turner, F. T., Jund, M. F. (1991): Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation. Global Biogeochem. Cy. 5, 335-350.
Chanton, J. P., Whiting, G. J., Blair, N. E., Lindau, C. W., Bollich, P. K. (1997): Methane emission from rice: Stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochem. Cy. 11, 15-27.
Kraus, D., Weller, S., Klatt, S., Haas, E., Wassmann, R., Kiese, R., Butterbach-Bahl, K. (2015): A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant Soil 386, 125-149.
Zhan, M., Cao, C., Wang, J., Jiang, Y., Cai, M., Yue, L., Shahrear, A. (2011): Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China. Nutr. Cycl. Agroecosyst. 89, 1-13.
Kuzyakov, Y., Gavrichkova, O. (2010): REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biol. 16, 3386-3406.
Seiler, W., Holzapfel-Pschorn, A., Conrad, R., Scharffe, D. (1984): Methane emission from rice paddies. J. Atmospheric Chem. 1, 241-268.
Alves, B. J. R., Smith, K. A., Flores, R. A., Cardoso, A. S., Oliveira, W. R. D., Jantalia, C. P., Urquiaga, S., Boddey, R. M. (2012): Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol. Biochem. 46, 129-135.
Wang, B., Neue, H. U., Samonte, H. P. (1997): The effect of controlled soil temperature on diel CH4 emission variation. Chemosphere 35, 2083-2092.
Adhya, T. K., Rath, A., Gupta, P. K., Rao, V. R., Das, S. N., Parida, K. M., Parashar, D. C., Sethunathan, N. (1994): Methane emission from flooded rice fields under irrigated conditions. Biol. Fert. Soils 18, 245-248.
Butterbach-Bahl, K., Papen, H., Rennenberg, H. (1997): Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ. 20, 1175-1183.
Hatala, J. A., Detto, M., Baldocchi, D. D. (2012): Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophys. Res. Lett. 39, DOI: 10.1029/2012GL051303.
Holzapfel-Pschorn, A., Seiler, W. (1986): Methane emission during a cultivation period from an Italian rice paddy. J. Geophys. Res. Atmospheres 91, 11803-11814.
Minamikawa, K., Yagi, K., Tokida, T., Sander, B. O., Wassmann, R. (2012): Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method. Greenh. Gas Meas. Manage. 2, 118-128.
Ruehr, N. K., Offermann, C. A., Gessler, A., Winkler, J. B., Ferrio, J. P., Buchmann, N., Barnard, R. L. (2009): Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol. 184, 950-961.
Schütz, H., Seiler, W., Conrad, R. (1990): Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry 11, 77-95.
1986; 91
2010; 16
1990; 11
2015; 5
2013; 44
1989; 113
1997; 20
1997; 195
2015; 386
2015; 101
2010; 464
1999; 45
1997; 49
2012; 39
2003
1991
1996; 10
1991; 5
1989; 94
2012; 2
2014; 4
2001; 230
1997; 11
2001; 7
2002; 64
1984; 1
1997; 35
1996; 60
2003; 26
1999; 76
2009; 7
1999; 53
2009; 184
2008; 44
2011; 89
1994; 18
1997; 191
2013
1998; 30
2012; 46
1998; 32
2014; 11
1998; 36
1990; 4
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
Myhre G. (e_1_2_7_22_1) 2013
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Ciais P. (e_1_2_7_8_1) 2013
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Schütz H. (e_1_2_7_30_1) 1991
Wang B. (e_1_2_7_35_1) 1990; 4
Conrad R. (e_1_2_7_9_1) 1996; 60
References_xml – reference: Butterbach-Bahl, K., Papen, H., Rennenberg, H. (1997): Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ. 20, 1175-1183.
– reference: Yagi, K., Tsuruta, H., Kanda, K., Minami, K. (1996): Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Global Biogeochem. Cy. 10, 255-267.
– reference: Breidenbach, B., Conrad, R. (2015): Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Front. Microbiol. 5, DOI: 10.3389/fmicb.2014.00752.
– reference: Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H. (2013): Anthropogenic and Natural Radiative Forcing, in Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M (eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 659-740.
– reference: Adhya, T. K., Rath, A., Gupta, P. K., Rao, V. R., Das, S. N., Parida, K. M., Parashar, D. C., Sethunathan, N. (1994): Methane emission from flooded rice fields under irrigated conditions. Biol. Fert. Soils 18, 245-248.
– reference: Ruehr, N. K., Offermann, C. A., Gessler, A., Winkler, J. B., Ferrio, J. P., Buchmann, N., Barnard, R. L. (2009): Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol. 184, 950-961.
– reference: Hatala, J. A., Detto, M., Baldocchi, D. D. (2012): Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophys. Res. Lett. 39, DOI: 10.1029/2012GL051303.
– reference: Wang, B., Neue, H. U., Samonte, H. P. (1999): Factors controlling diet patterns of methane emission via rice. Nutr. Cycl. Agroecosyst. 53, 229-235.
– reference: Yang, S.-S., Chang, H.-L. (1999): Diurnal variation of methane emission from paddy fields at different growth stages of rice cultivation in Taiwan. Agric. Ecosyst. Environ. 76, 75-84.
– reference: Kimura, M. (1997): Sources of methane emitted from paddy fields. Nutr. Cycl. Agroecosys. 49, 153-161.
– reference: Chanton, J. P., Whiting, G. J., Blair, N. E., Lindau, C. W., Bollich, P. K. (1997): Methane emission from rice: Stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochem. Cy. 11, 15-27.
– reference: Krüger, M., Frenzel, P., Conrad, R. (2001): Microbial processes influencing methane emission from rice fields. Global Change Biol. 7, 49-63.
– reference: Sass, R. L., Fisher, F. M., Turner, F. T., Jund, M. F. (1991): Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation. Global Biogeochem. Cy. 5, 335-350.
– reference: Conrad, R. (1996): Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 60, 609-640.
– reference: Sander, B. O., Wassmann, R. (2014): Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method. Greenh. Gas Meas. Manage. 4, 1-13.
– reference: Smith, K. A., Thomson, P. E., Clayton, H., McTaggart, I. P., Conen, F. (1998): Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ. 32, 3301-3309.
– reference: Seiler, W., Holzapfel-Pschorn, A., Conrad, R., Scharffe, D. (1984): Methane emission from rice paddies. J. Atmospheric Chem. 1, 241-268.
– reference: Schütz, H., Schröder, P., Rennenberg, H. (1991): Role of Plants in Regulating the Methane Flux to the Atmosphere, in Mooney, H., Holland, E., Sharkey, T. (eds.): Trace Gas Emissions by Plants. Academic Press, San Diego, CA, USA, pp. 29-64.
– reference: Savage, K., Phillips, R., Davidson, E. (2014): High temporal frequency measurements of greenhouse gas emissions from soils. Biogeosciences 11, 2709-2720.
– reference: Alves, B. J. R., Smith, K. A., Flores, R. A., Cardoso, A. S., Oliveira, W. R. D., Jantalia, C. P., Urquiaga, S., Boddey, R. M. (2012): Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol. Biochem. 46, 129-135.
– reference: Thompson, M. V., Holbrook, N. M. (2003): Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant Cell Environ. 26, 1561-1577.
– reference: Schütz, H., Seiler, W., Conrad, R. (1990): Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry 11, 77-95.
– reference: Buendia, L. V., Neue, H. U., Wassmann, R., Lantin, R. S., Javellana, A. M., Arah, J., Wang, Z., Wanfang, L., Makarim, A. K., Corton, T. M., Charoenslip, N. (1998): An efficient sampling strategy for estimating methane emission from rice field. Chemosphere 36, 395-407.
– reference: Conrad, R. (2002): Control of microbial methane production in wetland rice fields. Nutr. Cycl. Agroecosys. 64, 59-69.
– reference: Satpathy, S. N., Rath, A. K., Ramakrishnan, B., Rao, V. R., Adhya, T. K., Sethunathan, N. (1997): Diurnal variation in methane efflux at different growth stages of tropical rice. Plant Soil 195, 267-271.
– reference: Kraus, D., Weller, S., Klatt, S., Haas, E., Wassmann, R., Kiese, R., Butterbach-Bahl, K. (2015): A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant Soil 386, 125-149.
– reference: Aulakh, M. S., Wassmann, R., Bueno, C., Rennenberg, H. (2001): Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230, 77-86.
– reference: Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C., Myneni, R. B., Piao, S., Thornton, P. (2013): Carbon and Other Biogeochemical Cycles, in Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M (eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 465-570.
– reference: Kuzyakov, Y., Gavrichkova, O. (2010): REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biol. 16, 3386-3406.
– reference: Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H., Seiler, W. (1989): A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. Atmospheres 94, 16405-16416.
– reference: Yun, S.-I., Choi, W.-J., Choi, J.-E., Kim, H.-Y. (2013): High-time resolution analysis of diel variation in methane emission from flooded rice fields. Commun. Soil Sci. Plant Anal. 44, 1620-1628.
– reference: Zhan, M., Cao, C., Wang, J., Jiang, Y., Cai, M., Yue, L., Shahrear, A. (2011): Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China. Nutr. Cycl. Agroecosyst. 89, 1-13.
– reference: Minamikawa, K., Yagi, K., Tokida, T., Sander, B. O., Wassmann, R. (2012): Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method. Greenh. Gas Meas. Manage. 2, 118-128.
– reference: Xu, X., Kuzyakov, Y., Wanek, W., Richter, A. (2008): Root-derived respiration and non-structural carbon of rice seedlings. Eur. J. Soil Biol. 44, 22-29.
– reference: Waters, I., Armstrong, W., Thompson, C., Setter, T., Adkins, S., Gibbs, J., Greenway, H. (1989): Diurnal changes in radial oxygen loss and ethanol-metabolism in roots of submerged and non-submerged rice seedlings. New Phytol. 113, 439-451.
– reference: Holzapfel-Pschorn, A., Seiler, W. (1986): Methane emission during a cultivation period from an Italian rice paddy. J. Geophys. Res. Atmospheres 91, 11803-11814.
– reference: Weller, S., Kraus, D., Ayag, K. R. P., Wassmann, R., Alberto, M. C. R., Butterbach-Bahl, K., Kiese, R. (2015): Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycl. Agroecosyst. 101, 37-53.
– reference: Dannenberg, S., Conrad, R. (1999): Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45, 53-71.
– reference: Wang, B., Aiguo, D., Renxing, S., Schütz, H., Rennenberg, H., Seiler, W., Haibai, W. (1990): CH4 emission from a Chinese rice paddy field. Acta Meteorol. Sin. 4, 265-275.
– reference: Wolf, B., Zheng, X., Brüggemann, N., Chen, W., Dannenmann, M., Han, X., Sutton, M. A., Wu, H., Yao, Z., Butterbach-Bahl, K. (2010): Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature 464, 881-884.
– reference: Gilbert, B., Frenzel, P. (1998): Rice roots and CH4 oxidation: The activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 30, 1903-1916.
– reference: Hosono, T., Nouchi, I. (1997): The dependence of methane transport in rice plants on the root zone temperature. Plant Soil 191, 233-240.
– reference: Kumar, J. I. N., Viyol, S. (2009): Short term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India. Paddy Water Environ. 7, 11-16.
– reference: Wang, B., Neue, H. U., Samonte, H. P. (1997): The effect of controlled soil temperature on diel CH4 emission variation. Chemosphere 35, 2083-2092.
– volume: 4
  start-page: 1
  year: 2014
  end-page: 13
  article-title: Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method.
  publication-title: Greenh. Gas Meas. Manage.
– volume: 386
  start-page: 125
  year: 2015
  end-page: 149
  article-title: A new LandscapeDNDC biogeochemical module to predict CH and N O emissions from lowland rice and upland cropping systems.
  publication-title: Plant Soil
– start-page: 659
  year: 2013
  end-page: 740
– volume: 44
  start-page: 1620
  year: 2013
  end-page: 1628
  article-title: High‐time resolution analysis of diel variation in methane emission from flooded rice fields.
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 464
  start-page: 881
  year: 2010
  end-page: 884
  article-title: Grazing‐induced reduction of natural nitrous oxide release from continental steppe.
  publication-title: Nature
– volume: 113
  start-page: 439
  year: 1989
  end-page: 451
  article-title: Diurnal changes in radial oxygen loss and ethanol‐metabolism in roots of submerged and non‐submerged rice seedlings.
  publication-title: New Phytol.
– volume: 45
  start-page: 53
  year: 1999
  end-page: 71
  article-title: Effect of rice plants on methane production and rhizospheric metabolism in paddy soil.
  publication-title: Biogeochemistry
– year: 2003
– volume: 195
  start-page: 267
  year: 1997
  end-page: 271
  article-title: Diurnal variation in methane efflux at different growth stages of tropical rice.
  publication-title: Plant Soil
– volume: 1
  start-page: 241
  year: 1984
  end-page: 268
  article-title: Methane emission from rice paddies.
  publication-title: J. Atmospheric Chem.
– volume: 11
  start-page: 15
  year: 1997
  end-page: 27
  article-title: Methane emission from rice: Stable isotopes, diurnal variations, and CO exchange.
  publication-title: Global Biogeochem. Cy.
– volume: 35
  start-page: 2083
  year: 1997
  end-page: 2092
  article-title: The effect of controlled soil temperature on diel CH emission variation.
  publication-title: Chemosphere
– volume: 94
  start-page: 16405
  year: 1989
  end-page: 16416
  article-title: A 3‐year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy.
  publication-title: J. Geophys. Res. Atmospheres
– volume: 53
  start-page: 229
  year: 1999
  end-page: 235
  article-title: Factors controlling diet patterns of methane emission via rice.
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 191
  start-page: 233
  year: 1997
  end-page: 240
  article-title: The dependence of methane transport in rice plants on the root zone temperature.
  publication-title: Plant Soil
– volume: 49
  start-page: 153
  year: 1997
  end-page: 161
  article-title: Sources of methane emitted from paddy fields.
  publication-title: Nutr. Cycl. Agroecosys.
– volume: 46
  start-page: 129
  year: 2012
  end-page: 135
  article-title: Selection of the most suitable sampling time for static chambers for the estimation of daily mean N O flux from soils.
  publication-title: Soil Biol. Biochem.
– volume: 11
  start-page: 2709
  year: 2014
  end-page: 2720
  article-title: High temporal frequency measurements of greenhouse gas emissions from soils.
  publication-title: Biogeosciences
– volume: 39
  year: 2012
  article-title: Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice.
  publication-title: Geophys. Res. Lett.
– volume: 26
  start-page: 1561
  year: 2003
  end-page: 1577
  article-title: Scaling phloem transport: water potential equilibrium and osmoregulatory flow.
  publication-title: Plant Cell Environ.
– volume: 44
  start-page: 22
  year: 2008
  end-page: 29
  article-title: Root‐derived respiration and non‐structural carbon of rice seedlings.
  publication-title: Eur. J. Soil Biol.
– volume: 18
  start-page: 245
  year: 1994
  end-page: 248
  article-title: Methane emission from flooded rice fields under irrigated conditions.
  publication-title: Biol. Fert. Soils
– volume: 11
  start-page: 77
  year: 1990
  end-page: 95
  article-title: Influence of soil temperature on methane emission from rice paddy fields.
  publication-title: Biogeochemistry
– volume: 101
  start-page: 37
  year: 2015
  end-page: 53
  article-title: Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems.
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 5
  year: 2015
  article-title: Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage.
  publication-title: Front. Microbiol.
– volume: 20
  start-page: 1175
  year: 1997
  end-page: 1183
  article-title: Impact of gas transport through rice cultivars on methane emission from rice paddy fields.
  publication-title: Plant Cell Environ.
– volume: 30
  start-page: 1903
  year: 1998
  end-page: 1916
  article-title: Rice roots and CH oxidation: The activity of bacteria, their distribution and the microenvironment.
  publication-title: Soil Biol. Biochem.
– volume: 76
  start-page: 75
  year: 1999
  end-page: 84
  article-title: Diurnal variation of methane emission from paddy fields at different growth stages of rice cultivation in Taiwan.
  publication-title: Agric. Ecosyst. Environ.
– volume: 64
  start-page: 59
  year: 2002
  end-page: 69
  article-title: Control of microbial methane production in wetland rice fields.
  publication-title: Nutr. Cycl. Agroecosys.
– volume: 184
  start-page: 950
  year: 2009
  end-page: 961
  article-title: Drought effects on allocation of recent carbon: from beech leaves to soil CO efflux.
  publication-title: New Phytol.
– volume: 7
  start-page: 11
  year: 2009
  end-page: 16
  article-title: Short term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India.
  publication-title: Paddy Water Environ.
– volume: 4
  start-page: 265
  year: 1990
  end-page: 275
  article-title: CH emission from a Chinese rice paddy field.
  publication-title: Acta Meteorol. Sin.
– volume: 36
  start-page: 395
  year: 1998
  end-page: 407
  article-title: An efficient sampling strategy for estimating methane emission from rice field.
  publication-title: Chemosphere
– volume: 60
  start-page: 609
  year: 1996
  end-page: 640
  article-title: Soil microorganisms as controllers of atmospheric trace gases (H , CO, CH , OCS, N O, and NO).
  publication-title: Microbiol. Rev.
– volume: 2
  start-page: 118
  year: 2012
  end-page: 128
  article-title: Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method.
  publication-title: Greenh. Gas Meas. Manage.
– volume: 32
  start-page: 3301
  year: 1998
  end-page: 3309
  article-title: Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils.
  publication-title: Atmos. Environ.
– volume: 10
  start-page: 255
  year: 1996
  end-page: 267
  article-title: Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring.
  publication-title: Global Biogeochem. Cy.
– volume: 5
  start-page: 335
  year: 1991
  end-page: 350
  article-title: Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation.
  publication-title: Global Biogeochem. Cy.
– volume: 7
  start-page: 49
  year: 2001
  end-page: 63
  article-title: Microbial processes influencing methane emission from rice fields.
  publication-title: Global Change Biol.
– volume: 230
  start-page: 77
  year: 2001
  end-page: 86
  article-title: Impact of root exudates of different cultivars and plant development stages of rice ( L.) on methane production in a paddy soil.
  publication-title: Plant Soil
– start-page: 465
  year: 2013
  end-page: 570
– volume: 91
  start-page: 11803
  year: 1986
  end-page: 11814
  article-title: Methane emission during a cultivation period from an Italian rice paddy.
  publication-title: J. Geophys. Res. Atmospheres
– start-page: 29
  year: 1991
  end-page: 64
– volume: 89
  start-page: 1
  year: 2011
  end-page: 13
  article-title: Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice‐duck systems in Southern China.
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 16
  start-page: 3386
  year: 2010
  end-page: 3406
  article-title: REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls.
  publication-title: Global Change Biol.
– ident: e_1_2_7_40_1
  doi: 10.1038/nature08931
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-2486.2010.02179.x
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1469-8137.2009.03044.x
– start-page: 465
  volume-title: Climate Change 2013: The Physical Science Basis.
  year: 2013
  ident: e_1_2_7_8_1
– volume: 60
  start-page: 609
  year: 1996
  ident: e_1_2_7_9_1
  article-title: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO).
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.60.4.609-640.1996
– start-page: 659
  volume-title: Climate Change 2013: The Physical Science Basis.
  year: 2013
  ident: e_1_2_7_22_1
– ident: e_1_2_7_25_1
  doi: 10.1080/20430779.2014.892807
– volume: 4
  start-page: 265
  year: 1990
  ident: e_1_2_7_35_1
  article-title: CH4 emission from a Chinese rice paddy field.
  publication-title: Acta Meteorol. Sin.
– ident: e_1_2_7_39_1
  doi: 10.1007/s10705-014-9658-1
– ident: e_1_2_7_13_1
  doi: 10.1029/2012GL051303
– ident: e_1_2_7_34_1
  doi: 10.1046/j.1365-3040.2003.01080.x
– start-page: 29
  volume-title: Trace Gas Emissions by Plants.
  year: 1991
  ident: e_1_2_7_30_1
  doi: 10.1016/B978-0-12-639010-0.50007-8
– ident: e_1_2_7_18_1
  doi: 10.1046/j.1365-2486.2001.00395.x
– ident: e_1_2_7_28_1
  doi: 10.5194/bg-11-2709-2014
– ident: e_1_2_7_43_1
  doi: 10.1016/S0167-8809(99)00074-2
– ident: e_1_2_7_36_1
  doi: 10.1016/S0045-6535(97)00257-9
– ident: e_1_2_7_16_1
  doi: 10.1023/A:1009790920271
– ident: e_1_2_7_19_1
  doi: 10.1007/s10333-008-0147-5
– ident: e_1_2_7_4_1
  doi: 10.3389/fmicb.2014.00752
– ident: e_1_2_7_12_1
  doi: 10.1016/S0038-0717(98)00061-3
– ident: e_1_2_7_41_1
  doi: 10.1016/j.ejsobi.2007.09.008
– ident: e_1_2_7_45_1
  doi: 10.1007/s10705-010-9371-7
– ident: e_1_2_7_11_1
  doi: 10.1007/BF00992873
– ident: e_1_2_7_17_1
  doi: 10.1007/s11104-014-2255-x
– ident: e_1_2_7_31_1
  doi: 10.1007/BF00002060
– ident: e_1_2_7_10_1
  doi: 10.1023/A:1021178713988
– ident: e_1_2_7_27_1
  doi: 10.1023/A:1004202515767
– ident: e_1_2_7_44_1
  doi: 10.1080/00103624.2012.756510
– ident: e_1_2_7_3_1
  doi: 10.1023/A:1004817212321
– ident: e_1_2_7_37_1
  doi: 10.1023/A:1009753923339
– ident: e_1_2_7_6_1
  doi: 10.1046/j.1365-3040.1997.d01-142.x
– ident: e_1_2_7_29_1
  doi: 10.1029/JD094iD13p16405
– ident: e_1_2_7_32_1
  doi: 10.1007/BF00058731
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1469-8137.1989.tb00355.x
– ident: e_1_2_7_42_1
  doi: 10.1029/96GB00517
– ident: e_1_2_7_33_1
  doi: 10.1016/S1352-2310(97)00492-5
– ident: e_1_2_7_5_1
  doi: 10.1016/S0045-6535(97)00283-X
– ident: e_1_2_7_26_1
  doi: 10.1029/91GB02586
– ident: e_1_2_7_2_1
  doi: 10.1016/j.soilbio.2011.11.022
– ident: e_1_2_7_21_1
  doi: 10.1080/20430779.2012.729988
– ident: e_1_2_7_15_1
  doi: 10.1023/A:1004203208686
– ident: e_1_2_7_1_1
  doi: 10.1007/BF00647675
– ident: e_1_2_7_23_1
– ident: e_1_2_7_7_1
  doi: 10.1029/96GB03761
– ident: e_1_2_7_14_1
  doi: 10.1029/JD091iD11p11803
SSID ssj0004192
Score 2.1859498
Snippet Methane (CH₄) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air,...
Methane (CH4) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in air,...
Methane (CH 4 ) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature in...
Methane (CH sub(4)) emissions from rice paddies often show significant diurnal variations, most likely driven by diurnal changes of radiation and temperature...
SourceID proquest
crossref
wiley
istex
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 755
SubjectTerms air temperature
automated chamber system
Cereal crops
Crop production
diurnal variation
Diurnal variations
Dry season
Emission measurements
Emissions
Floods
Floodwater
greenhouse gas
greenhouse gas emissions
leaf area
Methane
methane production
Nitrous oxide
Oryza sativa
paddies
Philippines
Rainy season
rice
Rice fields
Seasons
soil
wet season
Title Diurnal patterns of methane emissions from paddy rice fields in the Philippines
URI https://api.istex.fr/ark:/67375/WNG-FD8Z7BH9-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.201500092
https://www.proquest.com/docview/1718868318
https://www.proquest.com/docview/1732811243
https://www.proquest.com/docview/1753427124
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BNCR4gFGYFhiTkRA8ZUucOB-PG1upJigIqJj2Yjm2g8ampGpaifLXcxen2YoESPCWj3OU3J3tX87n3wG8oECFLgPKVKNoVZBzP9c68AW6j1K8DE1Bu5HfjZPRJD49E2c3dvE7fog-4EY9ox2vqYOrojm4Jg39Nr0i_tKwZfSnQZgStggVfbzmj6IlznZ7EbHuoi-vWBsDfrDefG1Wul2qGrEqqfn7GvC8CV_b-Wf4ANTqzV3ayeX-Yl7s6x-_kDr-z6dtwf0OnLJD500P4ZatBnDv8OusI-iwA7jjilcuB7B5VCOwXD6C98cXrt205eqsGlaXjCpTq8oyKidHAbmG0UYWFDFmyYjIiLW5cw27qBhiUOYCO1NKwn8Mk-HJ59cjv6vT4GuCa2hXRbSFYayF0dag7QVXJikLq1JuopAO0R-iKNWZ0SaJVJBoZeOwLPLQIEbaho2qruwOMBunqRBlqsoIf6V4roSNA8OLLDXCxEnmgb-yk9QdiTnV0riSjn6ZS9Kd7HXnwatefuroO34ruYNmlwpV2sjJJ3edcyKr8eBl6wv9E9TskvLhUiG_jN_I4XF2nh6Ncnnuwe7KWWQ3FDQyxNk_SzIcOz143t9G5dPKDBqiXpBMxDNUZRz9SUZEMU9RyAPees9fvkiefng77s-e_Eujp3CXjl3y4i5szGcL-wxB2LzYazvaT0WYJTI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAQEHHguogQJGQnBKmzjvY0tZlrJdEHRV1Ivl2A4qrZLVZldi-fXMOI-ySIAEtzzGUTwztr9Mxt8APKdAhSo8ylSjaJWXcTdTynMjdB8peeHrnHYjH07i0TQ8-Bx12YS0F6bhh-gDbjQy7HxNA5wC0jsXrKFfZ-dEYOpbSn-cha9QWW_7VfXxgkGKfnLaDUbEu4ve3PE2enxnvf3aunS5kBWiVVL0tzXo-TOAtSvQ8Dbk3bs3iSdn28tFvq2-_0Lr-F-duwO3WnzKdhuHuguXTDmAm7tf5i1HhxnAtaZ-5WoAV_cqxJare_B-_7RpN7N0nWXNqoJRcWpZGkYV5SgmVzPay4IiWq8YcRkxmz5Xs9OSIQxlTWxnRnn492E6fH30auS2pRpcRYgNTSuJudAPVaSV0Wj-iEsdF7mRCdeBT4foEkGQqFQrHQfSi5U0oV_kma8RJj2AjbIqzSYwEyZJFBWJLAL8muKZjEzoaZ6niY50GKcOuJ2hhGp5zKmcxrloGJi5IN2JXncOvOzlZw2Dx28lN9HuQqJKazH91FznnPhqHHhhnaF_gpyfUUpcEonjyRsx3E9Pkr1RJk4c2Oq8RbSzQS18BABpnOL06cCz_jYqn37OoCGqJckEPEVVhsGfZKIg5AkKOcCt-_ylR-Lgw3jSnz38l0ZP4fro6HAsxm8n7x7BDbre5DJuwcZivjSPEZMt8id21P0AlTwpTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeQgOPBZQAwWMhOCUNnHex5ZlWUpZKmBF1Yvl2A4qrZJosyux_Hpm4mzaRQIkuOUxjpKZsf1lPP4G4DkFKlThUaYaRau8jLuZUp4boftIyQtf57Qb-f0kHk_D_aPo6MIufssP0QfcqGe04zV18FoXO-ekod_qM-Iv9VtGfxyEr4Sxl5JfDz-eE0jRGme7v4hod9GZV7SNHt9Zb782LV0uZIVglfT8fQ15XsSv7QQ0ug1y9eo27-R0ezHPt9WPX1gd_-fb7sCtDp2yXetOd-GSKQdwc_frrGPoMAO4ZqtXLgdwda9CZLm8Bx-GJ7Zd3ZJ1lg2rCkalqWVpGNWTo4hcw2gnC4povWTEZMTa5LmGnZQMQSizkZ2asvDvw3T0-vOrsdsVanAV4TU0rCTeQj9UkVZGo_EjLnVc5EYmXAc-HaJDBEGiUq10HEgvVtKEfpFnvkaQ9AA2yqo0m8BMmCRRVCSyCPBfimcyMqGneZ4mOtJhnDrgruwkVMdiTsU0zoTlX-aCdCd63TnwspevLX_HbyU30exCokobMf1kr3NObDUOvGh9oX-CnJ1SQlwSiS-TN2I0TI-TvXEmjh3YWjmL6MaCRvg4_adxioOnA8_626h8WppBQ1QLkgl4iqoMgz_JREHIExRygLfe85cvEvuHB5P-7OG_NHoK1w-HI3HwdvLuEdygyzaRcQs25rOFeYyAbJ4_afvcTwg9KAU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diurnal+patterns+of+methane+emissions+from+paddy+rice+fields+in+the+Philippines&rft.jtitle=Journal+of+plant+nutrition+and+soil+science&rft.au=Weller%2C+Sebastian&rft.au=Kraus%2C+David&rft.au=Butterbach%E2%80%90Bahl%2C+Klaus&rft.au=Wassmann%2C+Reiner&rft.date=2015-10-01&rft.issn=1436-8730&rft.volume=178&rft.issue=5+p.755-767&rft.spage=755&rft.epage=767&rft_id=info:doi/10.1002%2Fjpln.201500092&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-8730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-8730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-8730&client=summon