When is the probability ranking principle suboptimal?

The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. Gordon and Lenk (1991) demonstrated that this principal is optimal within a signal detection—decision theory framework, and it maximizes the inquirer's expected utility for...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Society for Information Science Vol. 43; no. 1; pp. 1 - 14
Main Authors Gordon, Michael D., Lenk, Peter
Format Journal Article
LanguageEnglish
Published Washington, D.C Wiley Subscription Services, Inc., A Wiley Company 01.01.1992
John Wiley & Sons
American Documentation Institute
Wiley Periodicals Inc
Subjects
Online AccessGet full text
ISSN0002-8231
1097-4571
DOI10.1002/(SICI)1097-4571(199201)43:1<1::AID-ASI1>3.0.CO;2-5

Cover

Abstract The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. Gordon and Lenk (1991) demonstrated that this principal is optimal within a signal detection—decision theory framework, and it maximizes the inquirer's expected utility for relevant documents. These results hold under three conditions: calibration, independent assessment of relevance by the inquirer, and certainty about the computed probabilities of relevance. We demonstrate that the probability ranking principle can be suboptimal with respect to expected utility when one of these conditions fails to hold. © 1992 John Wiley & Sons, Inc.
AbstractList The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. This principal is optimal within a signal detection-decision theory framework, and it maximises the inquirer's expected utility for relevant documents. These results hold under 3 conditions: calibration; independent assessment of relevance by the inquirer; and certainty about the computed probabilities of relevance. The probability ranking principle can be suboptimal with respect to expected utility when one of these conditions fails to hold. 00 Original abstract
The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. Gordon and Lenk (1991) demonstrated that this principal is optimal within a signal detection—decision theory framework, and it maximizes the inquirer's expected utility for relevant documents. These results hold under three conditions: calibration, independent assessment of relevance by the inquirer, and certainty about the computed probabilities of relevance. We demonstrate that the probability ranking principle can be suboptimal with respect to expected utility when one of these conditions fails to hold. © 1992 John Wiley & Sons, Inc.
The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. It is demonstrated that this principal is optimal within a signal detection-decision theory framework and that it maximizes the inquirer's expected utility for relevant documents. These results hold under 3 conditions: 1. calibration, 2. independent assessment of relevance by the inquirer, and 3. certainty about the computed probabilities of relevance. It is shown that the probability ranking principle can be suboptimal with respect to expected utility when one of these conditions fails to hold.
Discussion of probabilistic information retrieval systems highlights the probability ranking principle and discusses when the standard retrieval policy is optimal. Topics discussed include calibration and refinement; independent assessment of relevance by the inquirer; certainty about the computed probabilities of relevance; and confidence and highest predictive distribution (HPD) intervals. (23 references) (LRW)
The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. Gordon and Lenk (1991) demonstrated that this principal is optimal within a signal detection--deci sion theory framework, and it maximizes the inquirer's expected utility for relevant documents. These results hold under three conditions: calibration, independent assessment of relevance by the inquirer, and certainty about the computed probabilities of relevance. We demonstrate that the probability ranking principle can be suboptimal with respect to expected utility when one of these conditions fails to hold.
Author Gordon, Michael D.
Lenk, Peter
Author_xml – sequence: 1
  givenname: Michael D.
  surname: Gordon
  fullname: Gordon, Michael D.
  organization: School of Business Administration, The University of Michigan, Ann Arbor, MI 48109-1234
– sequence: 2
  givenname: Peter
  surname: Lenk
  fullname: Lenk, Peter
  organization: School of Business Administration, The University of Michigan, Ann Arbor, MI 48109-1234
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ441715$$DView record in ERIC
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5286228$$DView record in Pascal Francis
BookMark eNp9kVtv00AQRi1UJNLCP-DBAgTtg8POXrzrgECRKYlRRSQC6uNovVnTbR07eBNB_j1rXEWIS5_2MkdHM_MdR0dN29gomgAZAyH05emyyIszIJlMuJBwCllGCZxxNoHXMJlMi3fJdFnAGzYm43zxiibiXjQ64EfRiARLoiiDB9Gx99fhmWWpGEXi8so2sfPx9srGm64tdelqt93HnW5uXPM1_LnGuE1tY78r283WrXX99mF0v9K1t49uz5Poy_vzz_k8uVjMinx6kRgBAImqdCmMBsr5ipjSAKQglQG2IooxxWzJrOWmKqXmGQG6YlCZimlNJKGrVLGT6MXgDZ1921m_xbXzxta1bmy78yg5E0IqQQP5_E5SSCIVqCyAT_4Ar9td14QpkEIauiBpGqCn_4OAhUYFzYAE6tktpb3RdRVWZpzHsLG17vYoqEop7Yd4PGC2c-ZQPf_AOUgQofxpKJuu9b6z1QEBgn34iH342KeJfZo4hI-cYbgjhvCxDx8ZEswXSPE36XdX2_1fxjuF__D9egdpMkid39ofB6nubjCVTAq8_DjDmVyS5XyuwqJ-AmEozIA
CODEN AISJB6
ContentType Journal Article
Copyright Copyright © 1992 John Wiley & Sons, Inc.
1992 INIST-CNRS
Copyright Wiley Periodicals Inc. Jan 1992
Copyright_xml – notice: Copyright © 1992 John Wiley & Sons, Inc.
– notice: 1992 INIST-CNRS
– notice: Copyright Wiley Periodicals Inc. Jan 1992
DBID BSCLL
AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
IQODW
AGQHT
AIATT
APEJR
FYSDU
GHEHK
HYQOX
HZAIM
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMFND
PMHAD
PMKZF
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVKVW
PVMQY
PZGFC
~P4
~P5
3V.
7WY
7WZ
7X7
7XB
87Z
88E
8FE
8FG
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
AIMQZ
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
LIQON
M0A
M0C
M0S
M1O
M1P
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PYYUZ
Q9U
E3H
F2A
7SC
8FD
L7M
L~C
L~D
DOI 10.1002/(SICI)1097-4571(199201)43:1<1::AID-ASI1>3.0.CO;2-5
DatabaseName Istex
CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
Pascal-Francis
Periodicals Archive Online Foundation Collection 2
Periodicals Archive Online Collection 5 (2022)
Periodicals Archive Online Foundation Collection 2 (2022)
Periodicals Index Online Segment 07
Periodicals Index Online Segment 08
ProQuest Historical Periodicals
Periodicals Index Online Segment 26
Periodicals Index Online
Primary Sources Access—Foundation Edition (Plan E) - West
Primary Sources Access (Plan D) - International
Primary Sources Access & Build (Plan A) - MEA
Primary Sources Access—Foundation Edition (Plan E) - Midwest
Primary Sources Access—Foundation Edition (Plan E) - Northeast
Primary Sources Access (Plan D) - Southeast
Primary Sources Access (Plan D) - North Central
Primary Sources Access—Foundation Edition (Plan E) - Southeast
Primary Sources Access (Plan D) - South Central
Primary Sources Access & Build (Plan A) - UK / I
Primary Sources Access (Plan D) - Canada
Primary Sources Access (Plan D) - EMEALA
Primary Sources Access—Foundation Edition (Plan E) - North Central
Primary Sources Access—Foundation Edition (Plan E) - South Central
Primary Sources Access & Build (Plan A) - International
Primary Sources Access—Foundation Edition (Plan E) - International
Primary Sources Access (Plan D) - West
Periodicals Index Online Segments 1-50
Primary Sources Access (Plan D) - APAC
Primary Sources Access (Plan D) - Midwest
ProQuest One History
Primary Sources Access (Plan D) - MEA
ProQuest Digital Collections
Primary Sources Access—Foundation Edition (Plan E) - Canada
Primary Sources Access—Foundation Edition (Plan E) - UK / I
Primary Sources Access—Foundation Edition (Plan E) - EMEALA
Primary Sources Access & Build (Plan A) - APAC
Primary Sources Access & Build (Plan A) - Canada
Primary Sources Access & Build (Plan A) - West
Primary Sources Access & Build (Plan A) - EMEALA
Primary Sources Access (Plan D) - Northeast
Primary Sources Access & Build (Plan A) - Midwest
Primary Sources Access & Build (Plan A) - North Central
Primary Sources Access & Build (Plan A) - Northeast
Primary Sources Access & Build (Plan A) - South Central
Primary Sources Access & Build (Plan A) - Southeast
Primary Sources Access (Plan D) - UK / I
ProQuest Historical Periodicals Collection
Primary Sources Access—Foundation Edition (Plan E) - APAC
Primary Sources Access—Foundation Edition (Plan E) - MEA
PAO Collection 5
Periodicals Archive Online Collection 5
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest One Literature
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
Library & Information Science Collection
ProQuest Central Korea
Business Premium Collection (Alumni)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest One Literature - U.S. Customers Only
ABI/INFORM Global
ABI/INFORM Global
ProQuest Health & Medical Collection
Library Science Database
Medical Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ABI/INFORM Collection China
ProQuest Central Basic
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Computer and Information Systems Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
ERIC
Periodicals Index Online Segment 26
Periodicals Index Online Segments 1-50
Periodicals Index Online
Periodicals Archive Online Foundation Collection 2
Periodicals Archive Online Collection 5 (2022)
Historical Periodicals Collection
ProQuest One History
Periodicals Archive Online Foundation Collection 2 (2022)
ProQuest Digital Collections
PAO Collection 5 (with 1996-2000 update)
PAO Collection 5
Periodicals Index Online Segment 08
Periodicals Index Online Segment 07
ProQuest Historical Periodicals
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
Library & Information Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Literature
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ProQuest One Literature - U.S. Customers Only
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ABI/INFORM China
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
ABI/INFORM Archive
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
Library and Information Science Abstracts (LISA)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Library and Information Science Abstracts (LISA)

Computer and Information Systems Abstracts
ERIC
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1097-4571
ERIC EJ441715
EndPage 14
ExternalDocumentID 639273361
5286228
EJ441715
10_1002__SICI_1097_4571_199201_43_1_1__AID_ASI1_3_0_CO_2_5
ASI1
ark_67375_WNG_G7S0SHH8_1
Genre article
Statistics/Data Report
GeographicLocations New York
United States--US
California
GeographicLocations_xml – name: New York
– name: United States--US
– name: California
GroupedDBID -~X
.4I
.DC
.GA
.GJ
.Y3
0-V
07C
0B8
10A
186
1L6
1OB
1OC
1OL
29L
31~
3V.
3WU
4.4
4ZD
51W
51X
52N
52O
52P
52S
52T
52W
52X
5GY
66C
7PT
7WY
7X7
8-1
8-4
8-5
883
88E
8FE
8FG
8FI
8FJ
8FL
8FW
8G5
8R4
8R5
8VB
930
A03
AAEVG
AAHHS
AAMNL
AANLZ
AAWTL
AAXRX
AAYOK
AAZKR
ABCUV
ABIJN
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIOK
ACPOU
ACREJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADMHC
ADMHG
ADOZA
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AGQHT
AHBTC
AHKVK
AI.
AIATT
AIMQZ
AITYG
AIURR
AIWBW
AJBDE
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALUQN
AMBMR
AMYDB
APEJR
ARALO
ARAPS
ATUGU
AZFZN
AZQEC
BDRZF
BENPR
BEZIV
BGLVJ
BPHCQ
BRXPI
BSCLL
BVXVI
BY8
CCPQU
CJNVE
CMOOK
CNYFK
CO8
CS3
D-F
DCZOG
DRFUL
DRSTM
DWQXO
EBS
EBU
ECVKH
EJD
ELW
F00
F01
F04
FEDTE
FRNLG
FYUFA
G-S
GNP
GNUQQ
GODZA
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HF~
HGLYW
HHY
HMCUK
HVGLF
HYQOX
H~9
I-F
JPC
K1G
K60
K6V
K6~
K7-
KQQ
LATKE
LAW
LEEKS
LH4
LIQON
LITHE
LOXES
LP6
LP7
LPU
LUTES
LYRES
M0C
M0F
M0P
M1O
M1P
M2O
M59
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
O-F
OHT
P-O
P4D
P62
PALCI
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
Q2X
Q5E
QB0
QRW
QWB
RIWAO
ROL
RWI
SAMSI
SUPJJ
TN5
U5U
UB1
UKHRP
VH1
VQA
W99
WH7
WIH
WIK
WJL
WQJ
WRC
WWI
WXSBR
XG1
XV2
XZL
ZCA
ZCG
ZL0
ZZTAW
~02
~P4
~P5
AAHQN
AAMMB
AANHP
AAWJA
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AETEA
AFWVQ
AGQPQ
AGXDD
AGYGG
AHQJS
AIDQK
AIDYY
PHGZM
PHGZT
PJZUB
PMFND
PMKZF
PPXIY
PQGLB
PRQQA
PVKVW
AAYXX
CITATION
77I
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
PUEGO
REK
WWN
IQODW
FYSDU
GHEHK
HZAIM
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMHAD
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVMQY
PZGFC
7XB
8FK
JQ2
K9.
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
E3H
F2A
7SC
8FD
L7M
L~C
L~D
ID FETCH-LOGICAL-c5111-8fab5ca1244d0cbc116178c13d083383eb3ee4cfb7a49012d31fcf3aa0702d683
IEDL.DBID 8FG
ISSN 0002-8231
IngestDate Fri Sep 05 06:21:55 EDT 2025
Fri Sep 05 00:16:08 EDT 2025
Fri Jul 25 04:48:51 EDT 2025
Fri Jul 25 23:53:52 EDT 2025
Wed Apr 23 03:05:49 EDT 2025
Tue Sep 02 19:15:37 EDT 2025
Tue Jul 01 00:49:25 EDT 2025
Wed Aug 20 07:27:42 EDT 2025
Mon Nov 18 03:20:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess false
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords Condition
Relevance
Document retrieval
Document retrieval system
Decision theory
Prediction
Probabilistic model
Statistical decision
Optimization
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5111-8fab5ca1244d0cbc116178c13d083383eb3ee4cfb7a49012d31fcf3aa0702d683
Notes istex:214F9E4C7665D4FE5044883648EAFF8D4A734DAA
ark:/67375/WNG-G7S0SHH8-1
ArticleID:ASI1
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Statistics/Data Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1301252910
PQPubID 1818555
PageCount 14
ParticipantIDs proquest_miscellaneous_743557852
proquest_miscellaneous_57078189
proquest_journals_216901066
proquest_journals_1301252910
pascalfrancis_primary_5286228
eric_primary_EJ441715
crossref_primary_10_1002__SICI_1097_4571_199201_43_1_1__AID_ASI1_3_0_CO_2_5
wiley_primary_10_1002_SICI_1097_4571_199201_43_1_1_AID_ASI1_3_0_CO_2_5_ASI1
istex_primary_ark_67375_WNG_G7S0SHH8_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1992-01
January 1992
1992-01-00
1992-00-00
1992
19920101
PublicationDateYYYYMMDD 1992-01-01
PublicationDate_xml – month: 01
  year: 1992
  text: 1992-01
PublicationDecade 1990
PublicationPlace Washington, D.C
PublicationPlace_xml – name: Washington, D.C
– name: New York, NY
– name: New York, N.Y
– name: New York
PublicationTitle Journal of the American Society for Information Science
PublicationTitleAlternate J. Am. Soc. Inf. Sci
PublicationYear 1992
Publisher Wiley Subscription Services, Inc., A Wiley Company
John Wiley & Sons
American Documentation Institute
Wiley Periodicals Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: John Wiley & Sons
– name: American Documentation Institute
– name: Wiley Periodicals Inc
References Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78, 1-3.
Tague, J. M. (1973). A Bayesian approach to information retrieval. Information Storage and Retrieval, 9, 129-142.
Berger, J. O. (1985). Statistical decision theory and Bayesian analysis. New York: Springer Verlag.
Cox, D. R. (1970). The analysis of binary data. London: Methuen.
Savage, J. L. (1971). The elicitation of personal probabilities. Journal of the American Statistical Association, 77, 783-801.
Robertson, S. E. (1977). The probability ranking principle in IR. Journal of Documentation, 33, 294-304.
Eisenberg, M., & Barry, C. (1988). Order effects: A study of the possible influence of presentation order on user judgements of document relevance. Journal of the American Society for Information Science, 39, 293-300.
DeGroot, M. H., & Fienberg, S. H. (1983). The comparison and evaluation of forecasters. The Statistician, 32, 12-22.
Gordon, M. (1991). Ranking large document collections by a state space search. Information Processing and Management, Vol. 27, No. 1, pp. 27-41.
Lenk, P., & Floyd, B. (1988). Dynamically updating relevance judgements in probabilistic information systems via users' feedback. Management Science, 34, 1450-1459.
Van Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). London: Butterworths.
Kochen, M. (1974). Principles of information retrieval. Los Angeles: Melville Publishing.
Bookstein, A. (1977). When the most 'pertinent' document should not be retrieved-an analysis of the Swets' model. Journal of the American Society for Information Science, 13, 377-383.
Bickel, P. J., & Doksum, K. A. (1977). Mathematical statistics. San Francisco: Holden-Day.
Maron, M. F., & Kuhns, J. L. (1960). On relevance, probabilistic indexing, and information retrieval. Journal of ACM, 7, 216-244.
Fuhr, N., & Hüther, H. (1989). Optimum probability estimation from empirical distributions. Information Processing & Management, 25, 493-507.
Robertson, S. E., & Sparck Jones, K. (1976). Relevance weighting of search terms. Journal of the American Society for Information Science, 27, 129-146.
Gordon, M., & Lenk, P. (1991). A utility theoretic examination of the probability ranking principle in information retrieval. Journal of the American Society for Information Science, 42, 703-714.
Losee, R. M. (1988). Parameter estimation for probabilistic document retrieval models. Journal of the American Society for Information Science, 39, 8-16.
Bookstein, A. (1983). Information retrieval: A sequential learning process. Journal of the American Society for Information Science, 34, 331-342.
1971; 77
1950; 78
1991; 27
1973; 9
1982; 1
1991; 42
1988; 39
1983; 32
1985
1974
1988; 34
1972
1977; 33
1960; 7
1977; 13
1970
1976; 27
1989; 25
1979
1977
1983; 34
References_xml – reference: Bickel, P. J., & Doksum, K. A. (1977). Mathematical statistics. San Francisco: Holden-Day.
– reference: Bookstein, A. (1983). Information retrieval: A sequential learning process. Journal of the American Society for Information Science, 34, 331-342.
– reference: Robertson, S. E., & Sparck Jones, K. (1976). Relevance weighting of search terms. Journal of the American Society for Information Science, 27, 129-146.
– reference: Tague, J. M. (1973). A Bayesian approach to information retrieval. Information Storage and Retrieval, 9, 129-142.
– reference: Lenk, P., & Floyd, B. (1988). Dynamically updating relevance judgements in probabilistic information systems via users' feedback. Management Science, 34, 1450-1459.
– reference: Berger, J. O. (1985). Statistical decision theory and Bayesian analysis. New York: Springer Verlag.
– reference: DeGroot, M. H., & Fienberg, S. H. (1983). The comparison and evaluation of forecasters. The Statistician, 32, 12-22.
– reference: Van Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). London: Butterworths.
– reference: Gordon, M. (1991). Ranking large document collections by a state space search. Information Processing and Management, Vol. 27, No. 1, pp. 27-41.
– reference: Bookstein, A. (1977). When the most 'pertinent' document should not be retrieved-an analysis of the Swets' model. Journal of the American Society for Information Science, 13, 377-383.
– reference: Fuhr, N., & Hüther, H. (1989). Optimum probability estimation from empirical distributions. Information Processing & Management, 25, 493-507.
– reference: Gordon, M., & Lenk, P. (1991). A utility theoretic examination of the probability ranking principle in information retrieval. Journal of the American Society for Information Science, 42, 703-714.
– reference: Maron, M. F., & Kuhns, J. L. (1960). On relevance, probabilistic indexing, and information retrieval. Journal of ACM, 7, 216-244.
– reference: Eisenberg, M., & Barry, C. (1988). Order effects: A study of the possible influence of presentation order on user judgements of document relevance. Journal of the American Society for Information Science, 39, 293-300.
– reference: Kochen, M. (1974). Principles of information retrieval. Los Angeles: Melville Publishing.
– reference: Savage, J. L. (1971). The elicitation of personal probabilities. Journal of the American Statistical Association, 77, 783-801.
– reference: Losee, R. M. (1988). Parameter estimation for probabilistic document retrieval models. Journal of the American Society for Information Science, 39, 8-16.
– reference: Cox, D. R. (1970). The analysis of binary data. London: Methuen.
– reference: Robertson, S. E. (1977). The probability ranking principle in IR. Journal of Documentation, 33, 294-304.
– reference: Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78, 1-3.
– year: 1985
– volume: 25
  start-page: 493
  year: 1989
  end-page: 507
  article-title: Optimum probability estimation from empirical distributions
  publication-title: Information Processing & Management
– volume: 42
  start-page: 703
  year: 1991
  end-page: 714
  article-title: A utility theoretic examination of the probability ranking principle in information retrieval
  publication-title: Journal of the American Society for Information Science
– volume: 33
  start-page: 294
  year: 1977
  end-page: 304
  article-title: The probability ranking principle in IR
  publication-title: Journal of Documentation
– volume: 39
  start-page: 8
  year: 1988
  end-page: 16
  article-title: Parameter estimation for probabilistic document retrieval models
  publication-title: Journal of the American Society for Information Science
– volume: 27
  start-page: 27
  issue: 1
  year: 1991
  end-page: 41
  article-title: Ranking large document collections by a state space search
  publication-title: Information Processing and Management
– volume: 78
  start-page: 1
  year: 1950
  end-page: 3
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Monthly Weather Review
– volume: 7
  start-page: 216
  year: 1960
  end-page: 244
  article-title: On relevance, probabilistic indexing, and information retrieval
  publication-title: Journal of ACM
– volume: 34
  start-page: 331
  year: 1983
  end-page: 342
  article-title: Information retrieval: A sequential learning process
  publication-title: Journal of the American Society for Information Science
– volume: 27
  start-page: 129
  year: 1976
  end-page: 146
  article-title: Relevance weighting of search terms
  publication-title: Journal of the American Society for Information Science
– volume: 9
  start-page: 129
  year: 1973
  end-page: 142
  article-title: A Bayesian approach to information retrieval
  publication-title: Information Storage and Retrieval
– year: 1972
– volume: 32
  start-page: 12
  year: 1983
  end-page: 22
  article-title: The comparison and evaluation of forecasters
  publication-title: The Statistician
– year: 1974
– year: 1970
– volume: 34
  start-page: 1450
  year: 1988
  end-page: 1459
  article-title: Dynamically updating relevance judgements in probabilistic information systems via users' feedback
  publication-title: Management Science
– volume: 13
  start-page: 377
  year: 1977
  end-page: 383
  article-title: When the most 'pertinent' document should not be retrieved—an analysis of the Swets' model
  publication-title: Journal of the American Society for Information Science
– year: 1979
– year: 1977
– volume: 39
  start-page: 293
  year: 1988
  end-page: 300
  article-title: Order effects: A study of the possible influence of presentation order on user judgements of document relevance
  publication-title: Journal of the American Society for Information Science
– volume: 77
  start-page: 783
  year: 1971
  end-page: 801
  article-title: The elicitation of personal probabilities
  publication-title: Journal of the American Statistical Association
– volume: 1
  start-page: 291
  year: 1982
  end-page: 314
SSID ssj0009965
Score 1.2350308
Snippet The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. Gordon and Lenk (1991) demonstrated...
Discussion of probabilistic information retrieval systems highlights the probability ranking principle and discusses when the standard retrieval policy is...
The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. This principal is optimal within a...
The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. It is demonstrated that this...
SourceID proquest
pascalfrancis
eric
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Calibration
Confidence Intervals (Statistics)
Decision theory
Exact sciences and technology
Expected utility
Information and communication sciences
Information processing and retrieval
Information Retrieval
Information retrieval systems. Information and document management system
Information science
Information science. Documentation
Information storage
Information storage and retrieval
Information work
Mathematical Formulas
Parameter estimation
Probabilistic indexing
Probabilistic Models
Probability
Ranking
Relevance
Relevance (Information Retrieval)
Science
Sciences and techniques of general use
Searching
Signal detection
Subject indexing
Technical services
User Satisfaction (Information)
Title When is the probability ranking principle suboptimal?
URI https://api.istex.fr/ark:/67375/WNG-G7S0SHH8-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291097-4571%28199201%2943%3A1%3C1%3A%3AAID-ASI1%3E3.0.CO%3B2-5
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ441715
https://www.proquest.com/docview/1301252910
https://www.proquest.com/docview/216901066
https://www.proquest.com/docview/57078189
https://www.proquest.com/docview/743557852
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6xVULwgGAMEbYWP6Bpe8gWO3GSFsRUSn8N0U4rE32zHCd9AdrRbhL899w5blg12EvUxm0U3ec7f-c73wG8kWgUM5HHfkKXSJjYbxZR7tNqYWKhRVLYLN9RPLiMzqZy6nJzVi6tcm0TraHOF4b2yE8ExXPQf4lPr3761DSKgquug8YW1DguNDTN017_b83dZiwr9os85iG0XM3Rk8PJsDM8ouirH8mEH1ISZsCPorDF3_FWqz386LcnQ_4-PA6OO-O36K9trFsuNbpGSPyidEq9QonOylYYG1z1NuO1S1bvKTxxXJO1y8nxDB4U8x14fKsC4Q7U3bkFdsDcwSQCijmNfw4SjfWcDVcMeSI7X6Ly22Ta3-xC254LeM9t1jM0QQu0Pz_099NduOx1v3QGvuu04BskXNxPZzqTRtNanwcmM5y8ntTwMEeGhj4setxFEZlZlugIURB5yGdmFmqNBgMxTsMXsD1fzIuXwOjsUJDEWROhQmdIZwS9kbmIc4HPjTz4tJajuioLaqiydLJQilApY-KEiipRUVGo8LNSiIoiVFSoAtUZK6GkB7sERfWk7hm1VON4_8BiUw3o5TdKYUuk-jrqq34yCSaDQaq4B_UN8Ko_SIG-nkg92F-DqZx2rygEiLxQINPyYO_ucDVVPXhdjaLWUihGz4vFzUpJW2QpbXrA_vMLZHaSChEJFJidQ3ekda-w_iEr-_3VvS-8B4_KdGTaYtqH7evlTVFH0nWdNWArmSYNq2ANqH3ojs4vGnazAa-f-fgPMRIg7g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JctNAEO0KSRXLgSWEQiQmc4BUcpCjGWkk2Swpl7NYcRJTOClyG0Yj-RKwg5eC8E_8Ct9EtxYTE8gtBy4uW2OPrNbrntfqnm6AFxKNYiwS3w7oxRPGt2upl9i0WhhfaBGkWZbvkd868fZP5ekc_Cj3wlBaZWkTM0OdDAw9I98UFM9B_8XfOv9iU9MoCq6WHTRyVLTTi6_osY3eRNt4e18Ksbtz3GzZRVMB2yC34HbY07E0mpa1xDGx4UTwQ8PdBMkIumvoXKapZ3pxoD08oUhc3jM9V2vUDbyc0MV5b8ECde4ihTrknd81fmu-nLJt5E23oV7UON1c70bNaIOivbYnA75OSZ8O3_DcOn_N6_VGtG03uhF_61adarPzCv3DmXWySMVeoDv_jdI39QjvYC9vvTHDjS8z7GyJ3H0AP0vh5pkxZ9XJOK6a73_UnfxvpP8Q7hdknTVy7XoEc2l_Ee5dKuG4CJVi4wdbY8XOLkI6K0zmY5C42vVZNGJItNm7IVrPLBv5gr3XWdMKPFZEOxja8AEa8M_609YSnNzIdT2B-f6gnz4FRpuvnMCPayht9CZ1TLpjZCL8ROC8ngXtEhjqPK9IovLa00IpglmeVEAwUznMlOcqfK8UwkwRzJSrHNXsKKGkBUuErelMO_uEbI7H1zKwTQf08IxyAAOpPhztqb2g63RbrVBxCyozaJz-QAp0lkVowUqJKFWYxxHFUJFYC6SqFixfHZ6izYLV6SiaPYpl6X46mIyUzKpUhTUL2D--gdRYUiUngQLLlOKKtK4V1l9klX1-du0fXoU7rePDA3UQHbWX4W6e203P61ZgfjycpBVksOP4eWY3GHy8aVX5BY9sm6s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkFB7qFpKVRdS9tAiOJh4117bSR8oCoSYVAE1Rc1tun5d2iY0AbX8tf66zthOIKLlxiVyvMlK3m925hvP7AzAa01KMVapbwf84anEtxuZl9psLRJfGRVkRZZv3--eecdDPVyCP7OzMJxWOdOJhaJOxwm_I6-TriVbrMi61fMqLeL0oLN__tPmDlIcaZ210yhFpJdd_SL3bfo-OiCs3yjVOfzc7tpVhwE7IaIh7TA3sU4M27jUSeJEMtsPE-mmxEzIdyNPM8u8JI8D45HhVKkr8yR3jaGNQs8WujTvA1gJXGJVtJeCYXBd8Lfh6zn1JhK1Cs2q4Gl9ZxC1o10O_dqeDuQOZ4A6ctdzm_KdbDZb0YHdGkTyg7vn7LVP3pKzuGA0q7zsFRaD35zLaaYEZ1724VggyjfpdmEvO0_gcUV0RauUzKewlI3W4NGN8odrUKsOTYhtUZ2KYikRlbp5BposxUhEU0EkVZxOSPMUmbxX4pMpGj7QvSpSIEj_jUn5_TDf99fh7F5AeA7Lo_EoewGCDy45gR83iEiRJ2ZilrtEp8pPFc3rWdCbrSOel9U8sKzbrBAZlTIgz6hgiQp6LtI1IqGCjAq66GD7BBVqC9YZivlMh8fcz03S_e0Cm_mAmXzj_LlA45f-ER4FA2fQ7YYoLagtgDf_g1bkaKrQgs0ZmFiplilebwQLNm4PK457kp_vW7A1HyWVwXEgM8rGl1PURYWnsGGB-M8viFZqroKkaMEKGbq1Wncu1j_Wqvj-8u7n2YJV2tL4Mer3NuBhmRfN77o2YflicpnViP1dxK-KbSbg633v67-2bV2W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+is+the+probability+ranking+principle+suboptimal%3F&rft.jtitle=Journal+of+the+American+Society+for+Information+Science&rft.au=GORDON%2C+M.+D&rft.au=LENK%2C+P&rft.date=1992&rft.pub=John+Wiley+%26+Sons&rft.issn=0002-8231&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1002%2F%28SICI%291097-4571%28199201%2943%3A1%3C1%3A%3AAID-ASI1%3E3.0.CO%3B2-5&rft.externalDBID=n%2Fa&rft.externalDocID=5286228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-8231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-8231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-8231&client=summon