When is the probability ranking principle suboptimal?
The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. Gordon and Lenk (1991) demonstrated that this principal is optimal within a signal detection—decision theory framework, and it maximizes the inquirer's expected utility for...
Saved in:
Published in | Journal of the American Society for Information Science Vol. 43; no. 1; pp. 1 - 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, D.C
Wiley Subscription Services, Inc., A Wiley Company
01.01.1992
John Wiley & Sons American Documentation Institute Wiley Periodicals Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0002-8231 1097-4571 |
DOI | 10.1002/(SICI)1097-4571(199201)43:1<1::AID-ASI1>3.0.CO;2-5 |
Cover
Abstract | The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. Gordon and Lenk (1991) demonstrated that this principal is optimal within a signal detection—decision theory framework, and it maximizes the inquirer's expected utility for relevant documents. These results hold under three conditions: calibration, independent assessment of relevance by the inquirer, and certainty about the computed probabilities of relevance. We demonstrate that the probability ranking principle can be suboptimal with respect to expected utility when one of these conditions fails to hold. © 1992 John Wiley & Sons, Inc. |
---|---|
AbstractList | The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. This principal is optimal within a signal detection-decision theory framework, and it maximises the inquirer's expected utility for relevant documents. These results hold under 3 conditions: calibration; independent assessment of relevance by the inquirer; and certainty about the computed probabilities of relevance. The probability ranking principle can be suboptimal with respect to expected utility when one of these conditions fails to hold. 00 Original abstract The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. Gordon and Lenk (1991) demonstrated that this principal is optimal within a signal detection—decision theory framework, and it maximizes the inquirer's expected utility for relevant documents. These results hold under three conditions: calibration, independent assessment of relevance by the inquirer, and certainty about the computed probabilities of relevance. We demonstrate that the probability ranking principle can be suboptimal with respect to expected utility when one of these conditions fails to hold. © 1992 John Wiley & Sons, Inc. The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. It is demonstrated that this principal is optimal within a signal detection-decision theory framework and that it maximizes the inquirer's expected utility for relevant documents. These results hold under 3 conditions: 1. calibration, 2. independent assessment of relevance by the inquirer, and 3. certainty about the computed probabilities of relevance. It is shown that the probability ranking principle can be suboptimal with respect to expected utility when one of these conditions fails to hold. Discussion of probabilistic information retrieval systems highlights the probability ranking principle and discusses when the standard retrieval policy is optimal. Topics discussed include calibration and refinement; independent assessment of relevance by the inquirer; certainty about the computed probabilities of relevance; and confidence and highest predictive distribution (HPD) intervals. (23 references) (LRW) The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. Gordon and Lenk (1991) demonstrated that this principal is optimal within a signal detection--deci sion theory framework, and it maximizes the inquirer's expected utility for relevant documents. These results hold under three conditions: calibration, independent assessment of relevance by the inquirer, and certainty about the computed probabilities of relevance. We demonstrate that the probability ranking principle can be suboptimal with respect to expected utility when one of these conditions fails to hold. |
Author | Gordon, Michael D. Lenk, Peter |
Author_xml | – sequence: 1 givenname: Michael D. surname: Gordon fullname: Gordon, Michael D. organization: School of Business Administration, The University of Michigan, Ann Arbor, MI 48109-1234 – sequence: 2 givenname: Peter surname: Lenk fullname: Lenk, Peter organization: School of Business Administration, The University of Michigan, Ann Arbor, MI 48109-1234 |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ441715$$DView record in ERIC http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5286228$$DView record in Pascal Francis |
BookMark | eNp9kVtv00AQRi1UJNLCP-DBAgTtg8POXrzrgECRKYlRRSQC6uNovVnTbR07eBNB_j1rXEWIS5_2MkdHM_MdR0dN29gomgAZAyH05emyyIszIJlMuJBwCllGCZxxNoHXMJlMi3fJdFnAGzYm43zxiibiXjQ64EfRiARLoiiDB9Gx99fhmWWpGEXi8so2sfPx9srGm64tdelqt93HnW5uXPM1_LnGuE1tY78r283WrXX99mF0v9K1t49uz5Poy_vzz_k8uVjMinx6kRgBAImqdCmMBsr5ipjSAKQglQG2IooxxWzJrOWmKqXmGQG6YlCZimlNJKGrVLGT6MXgDZ1921m_xbXzxta1bmy78yg5E0IqQQP5_E5SSCIVqCyAT_4Ar9td14QpkEIauiBpGqCn_4OAhUYFzYAE6tktpb3RdRVWZpzHsLG17vYoqEop7Yd4PGC2c-ZQPf_AOUgQofxpKJuu9b6z1QEBgn34iH342KeJfZo4hI-cYbgjhvCxDx8ZEswXSPE36XdX2_1fxjuF__D9egdpMkid39ofB6nubjCVTAq8_DjDmVyS5XyuwqJ-AmEozIA |
CODEN | AISJB6 |
ContentType | Journal Article |
Copyright | Copyright © 1992 John Wiley & Sons, Inc. 1992 INIST-CNRS Copyright Wiley Periodicals Inc. Jan 1992 |
Copyright_xml | – notice: Copyright © 1992 John Wiley & Sons, Inc. – notice: 1992 INIST-CNRS – notice: Copyright Wiley Periodicals Inc. Jan 1992 |
DBID | BSCLL AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN IQODW AGQHT AIATT APEJR FYSDU GHEHK HYQOX HZAIM K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMFND PMHAD PMKZF PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVKVW PVMQY PZGFC ~P4 ~P5 3V. 7WY 7WZ 7X7 7XB 87Z 88E 8FE 8FG 8FI 8FJ 8FK 8FL ABUWG AFKRA AIMQZ ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. L.- LIQON M0A M0C M0S M1O M1P P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PYYUZ Q9U E3H F2A 7SC 8FD L7M L~C L~D |
DOI | 10.1002/(SICI)1097-4571(199201)43:1<1::AID-ASI1>3.0.CO;2-5 |
DatabaseName | Istex CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC Pascal-Francis Periodicals Archive Online Foundation Collection 2 Periodicals Archive Online Collection 5 (2022) Periodicals Archive Online Foundation Collection 2 (2022) Periodicals Index Online Segment 07 Periodicals Index Online Segment 08 ProQuest Historical Periodicals Periodicals Index Online Segment 26 Periodicals Index Online Primary Sources Access—Foundation Edition (Plan E) - West Primary Sources Access (Plan D) - International Primary Sources Access & Build (Plan A) - MEA Primary Sources Access—Foundation Edition (Plan E) - Midwest Primary Sources Access—Foundation Edition (Plan E) - Northeast Primary Sources Access (Plan D) - Southeast Primary Sources Access (Plan D) - North Central Primary Sources Access—Foundation Edition (Plan E) - Southeast Primary Sources Access (Plan D) - South Central Primary Sources Access & Build (Plan A) - UK / I Primary Sources Access (Plan D) - Canada Primary Sources Access (Plan D) - EMEALA Primary Sources Access—Foundation Edition (Plan E) - North Central Primary Sources Access—Foundation Edition (Plan E) - South Central Primary Sources Access & Build (Plan A) - International Primary Sources Access—Foundation Edition (Plan E) - International Primary Sources Access (Plan D) - West Periodicals Index Online Segments 1-50 Primary Sources Access (Plan D) - APAC Primary Sources Access (Plan D) - Midwest ProQuest One History Primary Sources Access (Plan D) - MEA ProQuest Digital Collections Primary Sources Access—Foundation Edition (Plan E) - Canada Primary Sources Access—Foundation Edition (Plan E) - UK / I Primary Sources Access—Foundation Edition (Plan E) - EMEALA Primary Sources Access & Build (Plan A) - APAC Primary Sources Access & Build (Plan A) - Canada Primary Sources Access & Build (Plan A) - West Primary Sources Access & Build (Plan A) - EMEALA Primary Sources Access (Plan D) - Northeast Primary Sources Access & Build (Plan A) - Midwest Primary Sources Access & Build (Plan A) - North Central Primary Sources Access & Build (Plan A) - Northeast Primary Sources Access & Build (Plan A) - South Central Primary Sources Access & Build (Plan A) - Southeast Primary Sources Access (Plan D) - UK / I ProQuest Historical Periodicals Collection Primary Sources Access—Foundation Edition (Plan E) - APAC Primary Sources Access—Foundation Edition (Plan E) - MEA PAO Collection 5 Periodicals Archive Online Collection 5 ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest One Literature Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Library & Information Science Collection ProQuest Central Korea Business Premium Collection (Alumni) Proquest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest One Literature - U.S. Customers Only ABI/INFORM Global ABI/INFORM Global ProQuest Health & Medical Collection Library Science Database Medical Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ABI/INFORM Collection China ProQuest Central Basic Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Computer and Information Systems Abstracts Technology Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef ERIC Periodicals Index Online Segment 26 Periodicals Index Online Segments 1-50 Periodicals Index Online Periodicals Archive Online Foundation Collection 2 Periodicals Archive Online Collection 5 (2022) Historical Periodicals Collection ProQuest One History Periodicals Archive Online Foundation Collection 2 (2022) ProQuest Digital Collections PAO Collection 5 (with 1996-2000 update) PAO Collection 5 Periodicals Index Online Segment 08 Periodicals Index Online Segment 07 ProQuest Historical Periodicals ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection Library & Information Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Literature ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ProQuest One Literature - U.S. Customers Only ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ABI/INFORM China ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) ABI/INFORM Archive ProQuest Central (Alumni) Business Premium Collection (Alumni) Library and Information Science Abstracts (LISA) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Library and Information Science Abstracts (LISA) Computer and Information Systems Abstracts ERIC ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1097-4571 |
ERIC | EJ441715 |
EndPage | 14 |
ExternalDocumentID | 639273361 5286228 EJ441715 10_1002__SICI_1097_4571_199201_43_1_1__AID_ASI1_3_0_CO_2_5 ASI1 ark_67375_WNG_G7S0SHH8_1 |
Genre | article Statistics/Data Report |
GeographicLocations | New York United States--US California |
GeographicLocations_xml | – name: New York – name: United States--US – name: California |
GroupedDBID | -~X .4I .DC .GA .GJ .Y3 0-V 07C 0B8 10A 186 1L6 1OB 1OC 1OL 29L 31~ 3V. 3WU 4.4 4ZD 51W 51X 52N 52O 52P 52S 52T 52W 52X 5GY 66C 7PT 7WY 7X7 8-1 8-4 8-5 883 88E 8FE 8FG 8FI 8FJ 8FL 8FW 8G5 8R4 8R5 8VB 930 A03 AAEVG AAHHS AAMNL AANLZ AAWTL AAXRX AAYOK AAZKR ABCUV ABIJN ABJNI ABPPZ ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIOK ACPOU ACREJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADMGS ADMHC ADMHG ADOZA AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFKRA AFPWT AFZJQ AGQHT AHBTC AHKVK AI. AIATT AIMQZ AITYG AIURR AIWBW AJBDE AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALUQN AMBMR AMYDB APEJR ARALO ARAPS ATUGU AZFZN AZQEC BDRZF BENPR BEZIV BGLVJ BPHCQ BRXPI BSCLL BVXVI BY8 CCPQU CJNVE CMOOK CNYFK CO8 CS3 D-F DCZOG DRFUL DRSTM DWQXO EBS EBU ECVKH EJD ELW F00 F01 F04 FEDTE FRNLG FYUFA G-S GNP GNUQQ GODZA GROUPED_ABI_INFORM_ARCHIVE GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HF~ HGLYW HHY HMCUK HVGLF HYQOX H~9 I-F JPC K1G K60 K6V K6~ K7- KQQ LATKE LAW LEEKS LH4 LIQON LITHE LOXES LP6 LP7 LPU LUTES LYRES M0C M0F M0P M1O M1P M2O M59 MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM O-F OHT P-O P4D P62 PALCI PQBIZ PQBZA PQQKQ PROAC PSQYO Q2X Q5E QB0 QRW QWB RIWAO ROL RWI SAMSI SUPJJ TN5 U5U UB1 UKHRP VH1 VQA W99 WH7 WIH WIK WJL WQJ WRC WWI WXSBR XG1 XV2 XZL ZCA ZCG ZL0 ZZTAW ~02 ~P4 ~P5 AAHQN AAMMB AANHP AAWJA AAYCA ACRPL ACYXJ ADNMO AEFGJ AETEA AFWVQ AGQPQ AGXDD AGYGG AHQJS AIDQK AIDYY PHGZM PHGZT PJZUB PMFND PMKZF PPXIY PQGLB PRQQA PVKVW AAYXX CITATION 77I 7SW BJH BNH BNI BNJ BNO ERI PET PUEGO REK WWN IQODW FYSDU GHEHK HZAIM K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMHAD PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVMQY PZGFC 7XB 8FK JQ2 K9. L.- PKEHL PQEST PQUKI PRINS Q9U E3H F2A 7SC 8FD L7M L~C L~D |
ID | FETCH-LOGICAL-c5111-8fab5ca1244d0cbc116178c13d083383eb3ee4cfb7a49012d31fcf3aa0702d683 |
IEDL.DBID | 8FG |
ISSN | 0002-8231 |
IngestDate | Fri Sep 05 06:21:55 EDT 2025 Fri Sep 05 00:16:08 EDT 2025 Fri Jul 25 04:48:51 EDT 2025 Fri Jul 25 23:53:52 EDT 2025 Wed Apr 23 03:05:49 EDT 2025 Tue Sep 02 19:15:37 EDT 2025 Tue Jul 01 00:49:25 EDT 2025 Wed Aug 20 07:27:42 EDT 2025 Mon Nov 18 03:20:31 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | false |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Keywords | Condition Relevance Document retrieval Document retrieval system Decision theory Prediction Probabilistic model Statistical decision Optimization |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5111-8fab5ca1244d0cbc116178c13d083383eb3ee4cfb7a49012d31fcf3aa0702d683 |
Notes | istex:214F9E4C7665D4FE5044883648EAFF8D4A734DAA ark:/67375/WNG-G7S0SHH8-1 ArticleID:ASI1 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Statistics/Data Report-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1301252910 |
PQPubID | 1818555 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_743557852 proquest_miscellaneous_57078189 proquest_journals_216901066 proquest_journals_1301252910 pascalfrancis_primary_5286228 eric_primary_EJ441715 crossref_primary_10_1002__SICI_1097_4571_199201_43_1_1__AID_ASI1_3_0_CO_2_5 wiley_primary_10_1002_SICI_1097_4571_199201_43_1_1_AID_ASI1_3_0_CO_2_5_ASI1 istex_primary_ark_67375_WNG_G7S0SHH8_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1992-01 January 1992 1992-01-00 1992-00-00 1992 19920101 |
PublicationDateYYYYMMDD | 1992-01-01 |
PublicationDate_xml | – month: 01 year: 1992 text: 1992-01 |
PublicationDecade | 1990 |
PublicationPlace | Washington, D.C |
PublicationPlace_xml | – name: Washington, D.C – name: New York, NY – name: New York, N.Y – name: New York |
PublicationTitle | Journal of the American Society for Information Science |
PublicationTitleAlternate | J. Am. Soc. Inf. Sci |
PublicationYear | 1992 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company John Wiley & Sons American Documentation Institute Wiley Periodicals Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: John Wiley & Sons – name: American Documentation Institute – name: Wiley Periodicals Inc |
References | Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78, 1-3. Tague, J. M. (1973). A Bayesian approach to information retrieval. Information Storage and Retrieval, 9, 129-142. Berger, J. O. (1985). Statistical decision theory and Bayesian analysis. New York: Springer Verlag. Cox, D. R. (1970). The analysis of binary data. London: Methuen. Savage, J. L. (1971). The elicitation of personal probabilities. Journal of the American Statistical Association, 77, 783-801. Robertson, S. E. (1977). The probability ranking principle in IR. Journal of Documentation, 33, 294-304. Eisenberg, M., & Barry, C. (1988). Order effects: A study of the possible influence of presentation order on user judgements of document relevance. Journal of the American Society for Information Science, 39, 293-300. DeGroot, M. H., & Fienberg, S. H. (1983). The comparison and evaluation of forecasters. The Statistician, 32, 12-22. Gordon, M. (1991). Ranking large document collections by a state space search. Information Processing and Management, Vol. 27, No. 1, pp. 27-41. Lenk, P., & Floyd, B. (1988). Dynamically updating relevance judgements in probabilistic information systems via users' feedback. Management Science, 34, 1450-1459. Van Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). London: Butterworths. Kochen, M. (1974). Principles of information retrieval. Los Angeles: Melville Publishing. Bookstein, A. (1977). When the most 'pertinent' document should not be retrieved-an analysis of the Swets' model. Journal of the American Society for Information Science, 13, 377-383. Bickel, P. J., & Doksum, K. A. (1977). Mathematical statistics. San Francisco: Holden-Day. Maron, M. F., & Kuhns, J. L. (1960). On relevance, probabilistic indexing, and information retrieval. Journal of ACM, 7, 216-244. Fuhr, N., & Hüther, H. (1989). Optimum probability estimation from empirical distributions. Information Processing & Management, 25, 493-507. Robertson, S. E., & Sparck Jones, K. (1976). Relevance weighting of search terms. Journal of the American Society for Information Science, 27, 129-146. Gordon, M., & Lenk, P. (1991). A utility theoretic examination of the probability ranking principle in information retrieval. Journal of the American Society for Information Science, 42, 703-714. Losee, R. M. (1988). Parameter estimation for probabilistic document retrieval models. Journal of the American Society for Information Science, 39, 8-16. Bookstein, A. (1983). Information retrieval: A sequential learning process. Journal of the American Society for Information Science, 34, 331-342. 1971; 77 1950; 78 1991; 27 1973; 9 1982; 1 1991; 42 1988; 39 1983; 32 1985 1974 1988; 34 1972 1977; 33 1960; 7 1977; 13 1970 1976; 27 1989; 25 1979 1977 1983; 34 |
References_xml | – reference: Bickel, P. J., & Doksum, K. A. (1977). Mathematical statistics. San Francisco: Holden-Day. – reference: Bookstein, A. (1983). Information retrieval: A sequential learning process. Journal of the American Society for Information Science, 34, 331-342. – reference: Robertson, S. E., & Sparck Jones, K. (1976). Relevance weighting of search terms. Journal of the American Society for Information Science, 27, 129-146. – reference: Tague, J. M. (1973). A Bayesian approach to information retrieval. Information Storage and Retrieval, 9, 129-142. – reference: Lenk, P., & Floyd, B. (1988). Dynamically updating relevance judgements in probabilistic information systems via users' feedback. Management Science, 34, 1450-1459. – reference: Berger, J. O. (1985). Statistical decision theory and Bayesian analysis. New York: Springer Verlag. – reference: DeGroot, M. H., & Fienberg, S. H. (1983). The comparison and evaluation of forecasters. The Statistician, 32, 12-22. – reference: Van Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). London: Butterworths. – reference: Gordon, M. (1991). Ranking large document collections by a state space search. Information Processing and Management, Vol. 27, No. 1, pp. 27-41. – reference: Bookstein, A. (1977). When the most 'pertinent' document should not be retrieved-an analysis of the Swets' model. Journal of the American Society for Information Science, 13, 377-383. – reference: Fuhr, N., & Hüther, H. (1989). Optimum probability estimation from empirical distributions. Information Processing & Management, 25, 493-507. – reference: Gordon, M., & Lenk, P. (1991). A utility theoretic examination of the probability ranking principle in information retrieval. Journal of the American Society for Information Science, 42, 703-714. – reference: Maron, M. F., & Kuhns, J. L. (1960). On relevance, probabilistic indexing, and information retrieval. Journal of ACM, 7, 216-244. – reference: Eisenberg, M., & Barry, C. (1988). Order effects: A study of the possible influence of presentation order on user judgements of document relevance. Journal of the American Society for Information Science, 39, 293-300. – reference: Kochen, M. (1974). Principles of information retrieval. Los Angeles: Melville Publishing. – reference: Savage, J. L. (1971). The elicitation of personal probabilities. Journal of the American Statistical Association, 77, 783-801. – reference: Losee, R. M. (1988). Parameter estimation for probabilistic document retrieval models. Journal of the American Society for Information Science, 39, 8-16. – reference: Cox, D. R. (1970). The analysis of binary data. London: Methuen. – reference: Robertson, S. E. (1977). The probability ranking principle in IR. Journal of Documentation, 33, 294-304. – reference: Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78, 1-3. – year: 1985 – volume: 25 start-page: 493 year: 1989 end-page: 507 article-title: Optimum probability estimation from empirical distributions publication-title: Information Processing & Management – volume: 42 start-page: 703 year: 1991 end-page: 714 article-title: A utility theoretic examination of the probability ranking principle in information retrieval publication-title: Journal of the American Society for Information Science – volume: 33 start-page: 294 year: 1977 end-page: 304 article-title: The probability ranking principle in IR publication-title: Journal of Documentation – volume: 39 start-page: 8 year: 1988 end-page: 16 article-title: Parameter estimation for probabilistic document retrieval models publication-title: Journal of the American Society for Information Science – volume: 27 start-page: 27 issue: 1 year: 1991 end-page: 41 article-title: Ranking large document collections by a state space search publication-title: Information Processing and Management – volume: 78 start-page: 1 year: 1950 end-page: 3 article-title: Verification of forecasts expressed in terms of probability publication-title: Monthly Weather Review – volume: 7 start-page: 216 year: 1960 end-page: 244 article-title: On relevance, probabilistic indexing, and information retrieval publication-title: Journal of ACM – volume: 34 start-page: 331 year: 1983 end-page: 342 article-title: Information retrieval: A sequential learning process publication-title: Journal of the American Society for Information Science – volume: 27 start-page: 129 year: 1976 end-page: 146 article-title: Relevance weighting of search terms publication-title: Journal of the American Society for Information Science – volume: 9 start-page: 129 year: 1973 end-page: 142 article-title: A Bayesian approach to information retrieval publication-title: Information Storage and Retrieval – year: 1972 – volume: 32 start-page: 12 year: 1983 end-page: 22 article-title: The comparison and evaluation of forecasters publication-title: The Statistician – year: 1974 – year: 1970 – volume: 34 start-page: 1450 year: 1988 end-page: 1459 article-title: Dynamically updating relevance judgements in probabilistic information systems via users' feedback publication-title: Management Science – volume: 13 start-page: 377 year: 1977 end-page: 383 article-title: When the most 'pertinent' document should not be retrieved—an analysis of the Swets' model publication-title: Journal of the American Society for Information Science – year: 1979 – year: 1977 – volume: 39 start-page: 293 year: 1988 end-page: 300 article-title: Order effects: A study of the possible influence of presentation order on user judgements of document relevance publication-title: Journal of the American Society for Information Science – volume: 77 start-page: 783 year: 1971 end-page: 801 article-title: The elicitation of personal probabilities publication-title: Journal of the American Statistical Association – volume: 1 start-page: 291 year: 1982 end-page: 314 |
SSID | ssj0009965 |
Score | 1.2350308 |
Snippet | The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. Gordon and Lenk (1991) demonstrated... Discussion of probabilistic information retrieval systems highlights the probability ranking principle and discusses when the standard retrieval policy is... The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. This principal is optimal within a... The probability ranking principle retrieves documents in decreasing order of their predictive probabilities of relevance. It is demonstrated that this... |
SourceID | proquest pascalfrancis eric crossref wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Calibration Confidence Intervals (Statistics) Decision theory Exact sciences and technology Expected utility Information and communication sciences Information processing and retrieval Information Retrieval Information retrieval systems. Information and document management system Information science Information science. Documentation Information storage Information storage and retrieval Information work Mathematical Formulas Parameter estimation Probabilistic indexing Probabilistic Models Probability Ranking Relevance Relevance (Information Retrieval) Science Sciences and techniques of general use Searching Signal detection Subject indexing Technical services User Satisfaction (Information) |
Title | When is the probability ranking principle suboptimal? |
URI | https://api.istex.fr/ark:/67375/WNG-G7S0SHH8-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291097-4571%28199201%2943%3A1%3C1%3A%3AAID-ASI1%3E3.0.CO%3B2-5 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ441715 https://www.proquest.com/docview/1301252910 https://www.proquest.com/docview/216901066 https://www.proquest.com/docview/57078189 https://www.proquest.com/docview/743557852 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6xVULwgGAMEbYWP6Bpe8gWO3GSFsRUSn8N0U4rE32zHCd9AdrRbhL899w5blg12EvUxm0U3ec7f-c73wG8kWgUM5HHfkKXSJjYbxZR7tNqYWKhRVLYLN9RPLiMzqZy6nJzVi6tcm0TraHOF4b2yE8ExXPQf4lPr3761DSKgquug8YW1DguNDTN017_b83dZiwr9os85iG0XM3Rk8PJsDM8ouirH8mEH1ISZsCPorDF3_FWqz386LcnQ_4-PA6OO-O36K9trFsuNbpGSPyidEq9QonOylYYG1z1NuO1S1bvKTxxXJO1y8nxDB4U8x14fKsC4Q7U3bkFdsDcwSQCijmNfw4SjfWcDVcMeSI7X6Ly22Ta3-xC254LeM9t1jM0QQu0Pz_099NduOx1v3QGvuu04BskXNxPZzqTRtNanwcmM5y8ntTwMEeGhj4setxFEZlZlugIURB5yGdmFmqNBgMxTsMXsD1fzIuXwOjsUJDEWROhQmdIZwS9kbmIc4HPjTz4tJajuioLaqiydLJQilApY-KEiipRUVGo8LNSiIoiVFSoAtUZK6GkB7sERfWk7hm1VON4_8BiUw3o5TdKYUuk-jrqq34yCSaDQaq4B_UN8Ko_SIG-nkg92F-DqZx2rygEiLxQINPyYO_ucDVVPXhdjaLWUihGz4vFzUpJW2QpbXrA_vMLZHaSChEJFJidQ3ekda-w_iEr-_3VvS-8B4_KdGTaYtqH7evlTVFH0nWdNWArmSYNq2ANqH3ojs4vGnazAa-f-fgPMRIg7g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JctNAEO0KSRXLgSWEQiQmc4BUcpCjGWkk2Swpl7NYcRJTOClyG0Yj-RKwg5eC8E_8Ct9EtxYTE8gtBy4uW2OPrNbrntfqnm6AFxKNYiwS3w7oxRPGt2upl9i0WhhfaBGkWZbvkd868fZP5ekc_Cj3wlBaZWkTM0OdDAw9I98UFM9B_8XfOv9iU9MoCq6WHTRyVLTTi6_osY3eRNt4e18Ksbtz3GzZRVMB2yC34HbY07E0mpa1xDGx4UTwQ8PdBMkIumvoXKapZ3pxoD08oUhc3jM9V2vUDbyc0MV5b8ECde4ihTrknd81fmu-nLJt5E23oV7UON1c70bNaIOivbYnA75OSZ8O3_DcOn_N6_VGtG03uhF_61adarPzCv3DmXWySMVeoDv_jdI39QjvYC9vvTHDjS8z7GyJ3H0AP0vh5pkxZ9XJOK6a73_UnfxvpP8Q7hdknTVy7XoEc2l_Ee5dKuG4CJVi4wdbY8XOLkI6K0zmY5C42vVZNGJItNm7IVrPLBv5gr3XWdMKPFZEOxja8AEa8M_609YSnNzIdT2B-f6gnz4FRpuvnMCPayht9CZ1TLpjZCL8ROC8ngXtEhjqPK9IovLa00IpglmeVEAwUznMlOcqfK8UwkwRzJSrHNXsKKGkBUuErelMO_uEbI7H1zKwTQf08IxyAAOpPhztqb2g63RbrVBxCyozaJz-QAp0lkVowUqJKFWYxxHFUJFYC6SqFixfHZ6izYLV6SiaPYpl6X46mIyUzKpUhTUL2D--gdRYUiUngQLLlOKKtK4V1l9klX1-du0fXoU7rePDA3UQHbWX4W6e203P61ZgfjycpBVksOP4eWY3GHy8aVX5BY9sm6s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkFB7qFpKVRdS9tAiOJh4117bSR8oCoSYVAE1Rc1tun5d2iY0AbX8tf66zthOIKLlxiVyvMlK3m925hvP7AzAa01KMVapbwf84anEtxuZl9psLRJfGRVkRZZv3--eecdDPVyCP7OzMJxWOdOJhaJOxwm_I6-TriVbrMi61fMqLeL0oLN__tPmDlIcaZ210yhFpJdd_SL3bfo-OiCs3yjVOfzc7tpVhwE7IaIh7TA3sU4M27jUSeJEMtsPE-mmxEzIdyNPM8u8JI8D45HhVKkr8yR3jaGNQs8WujTvA1gJXGJVtJeCYXBd8Lfh6zn1JhK1Cs2q4Gl9ZxC1o10O_dqeDuQOZ4A6ctdzm_KdbDZb0YHdGkTyg7vn7LVP3pKzuGA0q7zsFRaD35zLaaYEZ1724VggyjfpdmEvO0_gcUV0RauUzKewlI3W4NGN8odrUKsOTYhtUZ2KYikRlbp5BposxUhEU0EkVZxOSPMUmbxX4pMpGj7QvSpSIEj_jUn5_TDf99fh7F5AeA7Lo_EoewGCDy45gR83iEiRJ2ZilrtEp8pPFc3rWdCbrSOel9U8sKzbrBAZlTIgz6hgiQp6LtI1IqGCjAq66GD7BBVqC9YZivlMh8fcz03S_e0Cm_mAmXzj_LlA45f-ER4FA2fQ7YYoLagtgDf_g1bkaKrQgs0ZmFiplilebwQLNm4PK457kp_vW7A1HyWVwXEgM8rGl1PURYWnsGGB-M8viFZqroKkaMEKGbq1Wncu1j_Wqvj-8u7n2YJV2tL4Mer3NuBhmRfN77o2YflicpnViP1dxK-KbSbg633v67-2bV2W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+is+the+probability+ranking+principle+suboptimal%3F&rft.jtitle=Journal+of+the+American+Society+for+Information+Science&rft.au=GORDON%2C+M.+D&rft.au=LENK%2C+P&rft.date=1992&rft.pub=John+Wiley+%26+Sons&rft.issn=0002-8231&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1002%2F%28SICI%291097-4571%28199201%2943%3A1%3C1%3A%3AAID-ASI1%3E3.0.CO%3B2-5&rft.externalDBID=n%2Fa&rft.externalDocID=5286228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-8231&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-8231&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-8231&client=summon |