Microphase Separation of Block Copolymer Thin Films

Today, high‐ordered micro‐ and nano‐patterned surfaces are widely used in many areas, such as in the preparation of super‐thin dielectric films, photonic crystals, antireflective films, super‐non‐wetting surfaces, bio‐compatible surfaces and microelectric devices. Considering the critical fabricatio...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 31; no. 7; pp. 591 - 608
Main Authors Zhang, Jilin, Yu, Xinhong, Yang, Ping, Peng, Juan, Luo, Chunxia, Huang, Weihuan, Han, Yanchun
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 06.04.2010
WILEY‐VCH Verlag
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Today, high‐ordered micro‐ and nano‐patterned surfaces are widely used in many areas, such as in the preparation of super‐thin dielectric films, photonic crystals, antireflective films, super‐non‐wetting surfaces, bio‐compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano‐scale structures (<100 nm), the development of other micro‐ and nano‐patterning techniques that can be used to fabricate long‐range ordered features – especially nanoscale arrays – is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length‐scales of 10–50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long‐range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order–order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given. Preparing long‐range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays. We summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Evolution, order–order transitions and reversible switching microdomains are also considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. The outlook for this research area is discussed.
AbstractList Today, high‐ordered micro‐ and nano‐patterned surfaces are widely used in many areas, such as in the preparation of super‐thin dielectric films, photonic crystals, antireflective films, super‐non‐wetting surfaces, bio‐compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano‐scale structures (<100 nm), the development of other micro‐ and nano‐patterning techniques that can be used to fabricate long‐range ordered features – especially nanoscale arrays – is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length‐scales of 10–50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long‐range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order–order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given. magnified image
Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic crystals, antireflective films, super-non-wetting surfaces, bio-compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano-scale structures (<100 nm), the development of other micro- and nano-patterning techniques that can be used to fabricate long-range ordered features - especially nanoscale arrays - is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length-scales of 10-50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long-range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order-order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given.
Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic crystals, antireflective films, super-non-wetting surfaces, bio-compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano-scale structures (<100 nm), the development of other micro- and nano-patterning techniques that can be used to fabricate long-range ordered features - especially nanoscale arrays - is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length-scales of 10-50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long-range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order-order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given.Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic crystals, antireflective films, super-non-wetting surfaces, bio-compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano-scale structures (<100 nm), the development of other micro- and nano-patterning techniques that can be used to fabricate long-range ordered features - especially nanoscale arrays - is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length-scales of 10-50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long-range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order-order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given.
Today, high‐ordered micro‐ and nano‐patterned surfaces are widely used in many areas, such as in the preparation of super‐thin dielectric films, photonic crystals, antireflective films, super‐non‐wetting surfaces, bio‐compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano‐scale structures (<100 nm), the development of other micro‐ and nano‐patterning techniques that can be used to fabricate long‐range ordered features – especially nanoscale arrays – is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length‐scales of 10–50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long‐range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order–order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given. Preparing long‐range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays. We summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Evolution, order–order transitions and reversible switching microdomains are also considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. The outlook for this research area is discussed.
Author Zhang, Jilin
Yang, Ping
Yu, Xinhong
Huang, Weihuan
Luo, Chunxia
Han, Yanchun
Peng, Juan
Author_xml – sequence: 1
  givenname: Jilin
  surname: Zhang
  fullname: Zhang, Jilin
  organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
– sequence: 2
  givenname: Xinhong
  surname: Yu
  fullname: Yu, Xinhong
  organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
– sequence: 3
  givenname: Ping
  surname: Yang
  fullname: Yang, Ping
  organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
– sequence: 4
  givenname: Juan
  surname: Peng
  fullname: Peng, Juan
  organization: The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
– sequence: 5
  givenname: Chunxia
  surname: Luo
  fullname: Luo, Chunxia
  organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
– sequence: 6
  givenname: Weihuan
  surname: Huang
  fullname: Huang, Weihuan
  organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
– sequence: 7
  givenname: Yanchun
  surname: Han
  fullname: Han, Yanchun
  email: ychan@ciac.jl.cn
  organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22550714$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21590947$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB-wZYmyQbDJcK8Tv5ZlYApSC6IUWFqO46imSRzsjGD-PS4zDAgJWPkuvu9YOueYHIxhdIQ8RFggAH02mGgXFEABsBrvkCNkFMtKUXGQb6C0xKrih-Q4pc8AIGug98ghRaZA1eKIVBfexjBdm-SK924y0cw-jEXoiud9sDfFMkyh3wwuFlfXfixWvh_SfXK3M31yD3bvCfmwenm1fFWevz17vTw9Ly1DxFICSuc6p6Bj3NUt50JJC7ZpOyGosx02tm2wbgWVLYpGIKWM0lYqZoVrbHVCnmxzpxi-rF2a9eCTdX1vRhfWSUuecxCkzOTTf5LIc3jNheQZfbRD183gWj1Fnzvc6J-VZODxDjDJmr6LZrQ-_eIoYyCwztxiy-X-Uoqu2yMI-nYbfbuN3m-ThfoPwfr5R91zNL7_u6a22lffu81_PtEXp5fL391y6_o0u29718QbzUUlmP705kyr1Qv1jtOP-rL6DtWHsBg
CitedBy_id crossref_primary_10_1021_acsami_1c08841
crossref_primary_10_1146_annurev_chembioeng_061114_123209
crossref_primary_10_3390_polym12071553
crossref_primary_10_1002_marc_201000695
crossref_primary_10_1002_marc_201300314
crossref_primary_10_1007_s13726_024_01332_7
crossref_primary_10_1002_macp_201900477
crossref_primary_10_1007_s11427_013_4499_8
crossref_primary_10_1039_c3tc30359d
crossref_primary_10_1021_ma2026429
crossref_primary_10_1021_acs_langmuir_2c02230
crossref_primary_10_1021_jacs_3c13543
crossref_primary_10_1002_admi_202400661
crossref_primary_10_1088_0957_4484_26_5_055301
crossref_primary_10_1631_jzus_A1300119
crossref_primary_10_1002_marc_201300880
crossref_primary_10_1007_s11431_014_5647_5
crossref_primary_10_1021_ma500106x
crossref_primary_10_1021_acsnano_4c13416
crossref_primary_10_1002_chem_201200934
crossref_primary_10_1002_smll_201002336
crossref_primary_10_1007_s11426_013_4951_4
crossref_primary_10_1016_j_eurpolymj_2014_08_016
crossref_primary_10_1016_j_progpolymsci_2015_10_008
crossref_primary_10_3390_nano9050662
crossref_primary_10_1080_08927022_2011_569549
crossref_primary_10_1002_marc_201300763
crossref_primary_10_1002_marc_201600229
crossref_primary_10_1021_acsmacrolett_9b00439
crossref_primary_10_1021_ie504457e
crossref_primary_10_1016_j_polymer_2023_125880
crossref_primary_10_1016_j_polymer_2010_11_012
crossref_primary_10_1016_j_progpolymsci_2010_12_006
crossref_primary_10_1007_s40242_013_3260_y
crossref_primary_10_1016_j_jcis_2012_01_030
crossref_primary_10_1021_acs_langmuir_2c03114
Cites_doi 10.1063/1.1751177
10.1021/ja0508929
10.1021/ma9619288
10.1021/ma00107a015
10.1103/PhysRevLett.65.1112
10.1021/la701084x
10.1038/nature01775
10.1021/ma9002903
10.1002/adma.200304906
10.1021/ma900422n
10.1007/978-0-387-77667-5
10.1103/PhysRevLett.86.6030
10.1002/1521-4095(20020104)14:1<31::AID-ADMA31>3.0.CO;2-3
10.1021/ma011889m
10.1063/1.1750930
10.1146/annurev.pc.41.100190.002521
10.1021/ma070404c
10.1088/0957-4484/19/23/235301
10.1063/1.882522
10.1021/ma025879c
10.1021/ma010671x
10.1021/ma9906074
10.1021/ma0497761
10.1021/ma981321m
10.1016/j.polymer.2003.08.011
10.1021/ma981925q
10.1017/S0022112097006101
10.1021/ma992132m
10.1021/ma981538g
10.1063/1.1750971
10.1103/PhysRevLett.82.2602
10.1002/marc.200800675
10.1021/ma070005h
10.1038/nmat2068
10.1126/science.1111041
10.1039/b820312a
10.1021/ja000275e
10.1021/ma800848b
10.1103/PhysRevLett.83.3844
10.1063/1.1344605
10.1021/ma9910639
10.1021/bm050858m
10.1021/ma012184n
10.1126/science.273.5277.931
10.1006/jcis.1998.5820
10.1021/ma00125a026
10.1103/PhysRevLett.91.196101
10.1021/ja055377p
10.1063/1.2219446
10.1002/1521-4095(200108)13:15<1152::AID-ADMA1152>3.0.CO;2-5
10.1021/ma9714070
10.1002/1521-4095(200108)13:16<1217::AID-ADMA1217>3.0.CO;2-D
10.1021/ma981249s
10.1021/nl071354s
10.1021/la0360815
10.1063/1.2791003
10.1021/ma0257696
10.1146/annurev.matsci.31.1.323
10.1021/ma0212792
10.1021/ma971349i
10.1021/ma011734e
10.1021/nl9004833
10.1021/ma8009454
10.1146/annurev.fluid.32.1.709
10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
10.1021/ma062456s
10.1016/j.polymer.2008.03.020
10.1002/0470093943
10.1002/adma.200601421
10.1002/marc.200400665
10.1002/adma.200800826
10.1021/ma960343a
10.1021/ma800361d
10.1002/adma.200400643
10.1021/la0351360
ContentType Journal Article
Copyright Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
IQODW
NPM
7SR
7U5
8FD
JG9
L7M
7X8
DOI 10.1002/marc.200900541
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
EISSN 1521-3927
EndPage 608
ExternalDocumentID 21590947
22550714
10_1002_marc_200900541
MARC200900541
ark_67375_WNG_9FD9Q62V_R
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of China
  funderid: 2009CB930603
– fundername: Chinese Academy of Sciences
  funderid: KJCX2‐YW‐M11
– fundername: National Natural Science Foundation of China
  funderid: 20621401; 20834005
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
AAMMB
ABEML
ACSCC
ADMLS
AEFGJ
AGHNM
AGXDD
AIDQK
AIDYY
EBD
GYXMG
IQODW
M6T
PALCI
RIWAO
RJQFR
SAMSI
TUS
ZY4
NPM
7SR
7U5
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c5111-8018eefe90f56e4d66798c0cbdf772ecf1bcdb14d728d17b7122522d895c7ebc3
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 09:48:56 EDT 2025
Thu Jul 10 17:57:23 EDT 2025
Mon Jul 21 05:56:44 EDT 2025
Mon Jul 21 09:13:18 EDT 2025
Tue Jul 01 01:50:05 EDT 2025
Thu Apr 24 23:08:29 EDT 2025
Wed Jan 22 16:23:31 EST 2025
Wed Oct 30 09:46:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords block copolymers
State of the art
Patterning
microphase separation
Lithography
Order disorder transformation
Block copolymer
nanoheterogeneity
Thin film
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5111-8018eefe90f56e4d66798c0cbdf772ecf1bcdb14d728d17b7122522d895c7ebc3
Notes ArticleID:MARC200900541
Ministry of Science and Technology of China - No. 2009CB930603
istex:A44676415E835E24F8D99872208A5D8C73DE3EE3
Chinese Academy of Sciences - No. KJCX2-YW-M11
National Natural Science Foundation of China - No. 20621401; No. 20834005
ark:/67375/WNG-9FD9Q62V-R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21590947
PQID 1671246786
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_867721088
proquest_miscellaneous_1671246786
pubmed_primary_21590947
pascalfrancis_primary_22550714
crossref_primary_10_1002_marc_200900541
crossref_citationtrail_10_1002_marc_200900541
wiley_primary_10_1002_marc_200900541_MARC200900541
istex_primary_ark_67375_WNG_9FD9Q62V_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 6, 2010
PublicationDateYYYYMMDD 2010-04-06
PublicationDate_xml – month: 04
  year: 2010
  text: April 6, 2010
  day: 06
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol. Rapid Commun
PublicationYear 2010
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley
References S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, P. F. Nealey, Nature 2003, 424, 411.
L. Zhu, S. Z. D. Cheng, B. H. Calhoun, Q. Ge, R. P. Quirk, E. L. Thomas, B. S. Hsiao, F. Yeh, J. Am. Chem. Soc. 2000, 122, 5957.
D. Beattie, K. H. Wong, C. Williams, L. A. Poole-Warren, T. P. Davis, C. Barner-Kowollik, M. H. Stenzel, Biomacromolecules 2006, 7, 1072.
I. W. Hamley, J. P. A. Fairclough, N. J. Terril, A. J. Ryan, P. M. Lipic, F. S. Bates, E. Town-Andrews, Macromolecules 1996, 29, 8835.
L. Zhu, S. Z. D. Cheng, P. Huang, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu, Adv. Mater. 2002, 14, 31.
P. Huang, L. Zhu, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, Macromolecules 2001, 34, 6649.
E. Bodenschatz, W. Pesch, G. Ahlers, Annu. Rev. Fluid. Mech. 2000, 32, 709.
L. Zhu, P. Huang, W. Y. Chen, Q. Ge, R. P. Quirk, S. Z. D. Cheng, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu, Macromolecules 2002, 35, 3553.
L. Royer, Bull. Soc. Fr. Mineral Crystallogr. 1928, 51, 7.
S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, Nano Lett. 2009, 6, 2300.
C. De Rosa, C. Park, B. Lotz, L. J. Fetters, J. C. Wittmann, E. L. Thomas, Macromolecules 2000, 33, 4871.
B. C. Berry, A. W. Bosse, J. F. Douglas, R. L. Jones, A. Karim, Nano Lett. 2007, 7, 2789.
H. Elbs, C. Drummer, V. Abetz, G. Krausch, Macromolecules 2002, 35, 5570.
Y. R. Hong, D. H. Adamson, P. M. Chaikin, R. A. Register, Soft Matter 2009, 5, 1687.
M. J. Fasolka, A. M. Mayes, Annu. Rev. Mater. Res. 2001, 31, 323.
L. Zhu, P. Huang, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, J. C. Wittmann, B. S. Hsiao, F. Yeh, L. Liu, Phys. Rev. Lett. 2001, 86, 6030.
M. Kimura, M. J. Misner, T. Xu, S. H. Kim, T. P. Russell, Langmuir 2003, 19, 9910.
P. J. Flory, J. Chem. Phys. 1941, 9, 660
K. Karaky, L. Billon, C. Pouchan, J. Desbrières, Macromolecules 2007, 40, 458.
J. H. van deer Mere, Faraday Discuss. 1949, 5, 206.
H. Elbs, K. Fukunaga, R. Stadler, G. Sauer, R. Magerle, G. Krausch, Macromolecules 1999, 32, 1204.
J. P. A. Fairclough, S. M. Mai, W. Bras, L. Messe, S. C. Turner, A. J. Gleeson, C. Booth, I. W. Hamley, A. J. Ryan, J. Chem. Phys. 2001, 114, 5425.
K. Schmidt, H. G. Schoberth, M. Ruppel, H. Zettl, H. Hänsel, T. M. Weiss, V. Urban, G. Krausch, A. Böker, Nat. Mater. 2008, 7, 142.
A. P. Smith, J. F. Douglas, E. J. Amis, A. Karim, Langmuir 2007, 23, 12380.
J. Peng, D. H. Kim, W. Knoll, Y. Xuan, B. Li, Y. Han, J. Chem. Phys. 2006, 125, 064702.
"Developments in Block Copolymer Science and Technology", I. W. Hamley, Ed., John Wiley and Sons, 2004
J. Y. Cheng, C. T. Rettner, D. P. Sanders, H.-C. Kim, W. D. Hinsberg, Adv. Mater. 2008, 20, 3155.
S. Sakurai, Polymer 2008, 49, 2781.
E. Han, K. O. Stuen, M. Leolukman, C. C. Liu, P. F. Nealey, P. Gopalan, Macromolecules 2009, 42, 4896.
S. Walheim, M. Böltau, J. Mlynek, G. Krausch, U. Steiner, Macromolecules 1997, 30, 4995.
L. Leibler, Macromolecules 1980, 13, 1602.
E. V. Rogozhina, J. Werner, H. Kresse, S. A. Kuptsov, R. V. Talroze, Macromolecules 1999, 32, 3379.
V. Olszowka, V. Kuntermann, A. Böker, Macromolecules 2008, 41, 5515.
M. Stoykovich, M. Müller, S. O. Kim, H. H. Solak, E. W. Edward, J. J. De Pablo, P. F. Nealey, Science 2005, 308, 1442.
R. Limary, P. F. Green, Macromolecules 1999, 32, 8167.
K. Fukunaga, H. Elbs, R. Magerle, G. Krausch, Macromolecules 2000, 33, 947.
W. Zheng, Z. G. Wang, Macromolecules 1996, 28, 7215.
S. H. Kim, M. J. Misner, T. Xu, M. Kimura, T. P. Russell, Adv. Mater. 2004, 16, 226.
M. L. Huggins, J. Chem. Phys. 1941, 9, 440.
S. J. Vanhook, M. F. Schatz, J. B. Swift, W. D. McCormick, J. Fluid Mech. 1997, 345, 45.
A. Alexander-Katz, G. H. Fredrickson, Macromolecules 2007, 40, 4075.
R. A. Segalman, A. Hexemer, E. J. Kramer, Macromolecules 2003, 36, 6831
C. Park, J. Yoon, E. L. Thomas, Polymer 2003, 44, 6725
G. Reiter, G. Castelein, P. Hoerner, G. Riess, A. Blumen, J. Sommer, Phys. Rev. Lett. 1999, 83, 3844.
T. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, Science 1996, 273, 931.
R. A. Segalman, H. Yokoyama, E. J. Kramer, Adv. Mater. 2001, 13, 1152
J. Bang, U. Jeong, D. Yeol, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 1.
Y. Xuan, J. Peng, L. Cui, H. Wang, B. Li, Y. Han, Macromolecules 2004, 37, 7301.
M. M. de Villiers, P. Aramwit, G. S. Kwon, "Nanotechnology in Drug Delivery", Springer, New York 2009.
J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 1.
S. M. Park, M. P. Stoykovich, R. Ruiz, Y. Zhang, C. T. Black, P. F. Nealey, Adv. Mater. 2007, 19, 607.
L. Rockford, Y. Liu, P. Mansky, T. P. Russell, M. Yoon, S. G. J. Mochrie, Phys. Rev. Lett. 1999, 82, 2602.
D. E. Angelescu, J. H. Waller, D. A. Adamson, P. Deshpandle, S. Y. Chou, R. A. Register, P. M. Chaikin, Adv. Mater. 2004, 16, 1736.
Y. Chen, H. Huang, Z. Hu, T. He, Langmuir 2004, 20, 3805.
J. Bodycomb, Y. Funaki, K. Kimishima, T. Hashimoto, Macromolecules 1999, 32, 2075.
C. Lou, W. Huang, Y. Han, C. Pan, Macromol. Rapid. Commun. 2009, 30, 515.
K. Mita, H. Tanaka, K. Saijo, M. Takenaka, T. Hashimoto, Macromolecules 2007, 40, 5923.
C. Luo, W. Huang, Y. Han, Macromol. Rapid Commun. 2009, 22, 1917.
C. Tang, A. Tracz, M. Kruk, R. Zhang, D. M. Smilgies, K. Matyjaszewski, T. Kowalewski, J. Am. Chem. Soc. 2005, 127, 6918.
J. Peng, Y. Wei, H. Wang, B. Li, Y. Han, Macromol. Rapid Commun. 2005, 26, 738.
J. Y. Cheng, J. Pitera, O. H. Park, M. Flickner, R. Ruiz, C. T. Black, H. C. Kim, Appl. Phys. Lett. 2007, 91, 143106.
Y. Xia, G. M. Whitesides, Angew. Chem., Int. Ed. 1998, 37, 550.
K. S. Park, E. K. Seo, Y. R. Do, K. Kim, M. M. Sung, J. Am. Chem. Soc. 2006, 128, 858.
G. Kim, M. Libera, Macromolecules 1998, 31, 2569.
I. W. Hamley, E. L. Hiscutt, Y. W. Yang, C. Booth, J. Colloid Interface Sci. 1999, 209, 255.
R. A. Segalman, A. Hexemer, E. J. Kramer, Phys. Rev. Lett. 2003, 91, 196101/1
F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32.
K. Almdal, J. H. Rosedale, F. S. Bates, G. D. Wignall, G. H. Fredrickson, Phys. Rev. Lett. 1990, 65, 1112.
G. S. Swei, J. B. Lando, S. E. Rickert, K. A. Mauritz, Encycl. Polym. Sci. Eng. 1986, 6, 209.
J. Zhang, Y. Han, Chem. Soc. Rev. 2010, published online, 10.1039/b816231j
Y. Zhang, U. Wiesner, H. W. Spiess, Macromolecules 1995, 28, 778.
U. Wiesner, "Lecture Notes in Physics", Vol. 532, Springer, Berlin/Heidelberg 1999, pp. 214.
H. J. Jung, J. Chang, Y. J. Park, S. J. Kang, B. Lotz, J. Huh, C. Park, Macromolecules 2009, 42, 4148.
G. Kim, M. Libera, Macromolecules 1998, 31, 2670.
K. Fukunaga, T. Hashimoto, H. Elbs, G. Krausch, Macromolecules 2002, 35, 4406.
K. Mita, H. Tanaka, K. Saijo, M. Takenaka, T. Hashimoto, Macromolecules 2008, 41, 6787.
F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525.
T. Hashimoto, J. Bodycomb, Y. Funaki, K. Kimishima, Macromolecules 1999, 32, 952.
H. C. Kim, C. T. Rettner, L. Sundstrom, Nanotechnology 2008, 19, 235301.
S. Niu, R. F. Saraf, Macromolecules 2003, 36, 2428.
R. A. Segalman, K. E. Schaefer, G. H. Fredrickson, E. J. Kramer, S. Magonov, Macromolecules 2003, 36, 4498.
J. Peng, Y. Xuan, H. Wang, Y. Yang, B. Li, Y. Han, J. Chem. Phys. 2004, 120, 11163.
M. M. Mok, S. Pujari, W. R. Burghardt, C. M. Dettmer, S. T. Nguyen, C. J. Ellison, J. M. Torkelson, Macromolecules 2008, 41, 5818.
2002; 14
2004; 20
2004; 120
1941; 9
2009; 42
1949; 5
2008; 7
2003; 19
1999; 83
1999; 82
2005; 26
1999; 209
2001; 86
1990; 41
1997; 345
1996; 29
1996; 28
2003; 91
1995; 28
2004; 37
1986; 6
2007; 7
2005; 308
1999; 52
1999; 532
2000; 122
2008; 20
2001; 13
2006; 128
2007; 23
2006; 125
2003; 44
2009; 22
2007; 19
2009; 21
2010
2002; 35
2008; 19
2006; 7
2009
1928; 51
2003; 36
2007; 91
2004
1998; 37
1990; 65
2009; 30
2003; 424
2004; 16
1997; 30
1980; 13
2000; 32
2000; 33
2005; 127
2008; 49
1999; 32
2009; 6
2007; 40
2008; 41
2009; 5
1996; 273
2001; 34
1998; 31
2001; 114
2001; 31
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_95_2
e_1_2_6_30_2
e_1_2_6_91_2
e_1_2_6_19_2
Royer L. (e_1_2_6_54_2) 1928; 51
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_38_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_83_2
e_1_2_6_64_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_9_2
e_1_2_6_5_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
Bang J. (e_1_2_6_7_2) 2009; 21
e_1_2_6_87_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_96_2
e_1_2_6_31_2
e_1_2_6_92_2
Luo C. (e_1_2_6_94_2) 2009; 22
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_77_2
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_42_2
e_1_2_6_80_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_65_2
e_1_2_6_88_2
e_1_2_6_27_2
e_1_2_6_46_2
e_1_2_6_51_2
e_1_2_6_97_2
e_1_2_6_74_2
e_1_2_6_93_2
e_1_2_6_70_2
Zhang J. (e_1_2_6_82_2) 2010
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_36_2
Swei G. S. (e_1_2_6_56_2) 1986; 6
e_1_2_6_62_2
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_81_2
e_1_2_6_3_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_89_2
Wiesner U. (e_1_2_6_78_2) 1999
e_1_2_6_52_2
e_1_2_6_75_2
Bang J. (e_1_2_6_44_2) 2009; 21
e_1_2_6_71_2
e_1_2_6_90_2
e_1_2_6_18_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_79_2
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_40_2
van deer Mere J. H. (e_1_2_6_55_2) 1949; 5
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_48_2
e_1_2_6_21_2
e_1_2_6_67_2
e_1_2_6_25_2
References_xml – reference: J. Y. Cheng, J. Pitera, O. H. Park, M. Flickner, R. Ruiz, C. T. Black, H. C. Kim, Appl. Phys. Lett. 2007, 91, 143106.
– reference: M. M. de Villiers, P. Aramwit, G. S. Kwon, "Nanotechnology in Drug Delivery", Springer, New York 2009.
– reference: K. Mita, H. Tanaka, K. Saijo, M. Takenaka, T. Hashimoto, Macromolecules 2007, 40, 5923.
– reference: C. Tang, A. Tracz, M. Kruk, R. Zhang, D. M. Smilgies, K. Matyjaszewski, T. Kowalewski, J. Am. Chem. Soc. 2005, 127, 6918.
– reference: Y. Xia, G. M. Whitesides, Angew. Chem., Int. Ed. 1998, 37, 550.
– reference: M. L. Huggins, J. Chem. Phys. 1941, 9, 440.
– reference: S. Walheim, M. Böltau, J. Mlynek, G. Krausch, U. Steiner, Macromolecules 1997, 30, 4995.
– reference: E. Bodenschatz, W. Pesch, G. Ahlers, Annu. Rev. Fluid. Mech. 2000, 32, 709.
– reference: C. Park, J. Yoon, E. L. Thomas, Polymer 2003, 44, 6725;
– reference: U. Wiesner, "Lecture Notes in Physics", Vol. 532, Springer, Berlin/Heidelberg 1999, pp. 214.
– reference: S. H. Kim, M. J. Misner, T. Xu, M. Kimura, T. P. Russell, Adv. Mater. 2004, 16, 226.
– reference: J. Peng, Y. Xuan, H. Wang, Y. Yang, B. Li, Y. Han, J. Chem. Phys. 2004, 120, 11163.
– reference: B. C. Berry, A. W. Bosse, J. F. Douglas, R. L. Jones, A. Karim, Nano Lett. 2007, 7, 2789.
– reference: G. S. Swei, J. B. Lando, S. E. Rickert, K. A. Mauritz, Encycl. Polym. Sci. Eng. 1986, 6, 209.
– reference: K. Karaky, L. Billon, C. Pouchan, J. Desbrières, Macromolecules 2007, 40, 458.
– reference: S. Niu, R. F. Saraf, Macromolecules 2003, 36, 2428.
– reference: M. M. Mok, S. Pujari, W. R. Burghardt, C. M. Dettmer, S. T. Nguyen, C. J. Ellison, J. M. Torkelson, Macromolecules 2008, 41, 5818.
– reference: H. Elbs, C. Drummer, V. Abetz, G. Krausch, Macromolecules 2002, 35, 5570.
– reference: J. P. A. Fairclough, S. M. Mai, W. Bras, L. Messe, S. C. Turner, A. J. Gleeson, C. Booth, I. W. Hamley, A. J. Ryan, J. Chem. Phys. 2001, 114, 5425.
– reference: L. Zhu, P. Huang, W. Y. Chen, Q. Ge, R. P. Quirk, S. Z. D. Cheng, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu, Macromolecules 2002, 35, 3553.
– reference: M. Kimura, M. J. Misner, T. Xu, S. H. Kim, T. P. Russell, Langmuir 2003, 19, 9910.
– reference: R. A. Segalman, A. Hexemer, E. J. Kramer, Phys. Rev. Lett. 2003, 91, 196101/1;
– reference: Y. Xuan, J. Peng, L. Cui, H. Wang, B. Li, Y. Han, Macromolecules 2004, 37, 7301.
– reference: C. Luo, W. Huang, Y. Han, Macromol. Rapid Commun. 2009, 22, 1917.
– reference: R. A. Segalman, K. E. Schaefer, G. H. Fredrickson, E. J. Kramer, S. Magonov, Macromolecules 2003, 36, 4498.
– reference: J. Peng, D. H. Kim, W. Knoll, Y. Xuan, B. Li, Y. Han, J. Chem. Phys. 2006, 125, 064702.
– reference: K. Fukunaga, H. Elbs, R. Magerle, G. Krausch, Macromolecules 2000, 33, 947.
– reference: G. Kim, M. Libera, Macromolecules 1998, 31, 2670.
– reference: G. Reiter, G. Castelein, P. Hoerner, G. Riess, A. Blumen, J. Sommer, Phys. Rev. Lett. 1999, 83, 3844.
– reference: V. Olszowka, V. Kuntermann, A. Böker, Macromolecules 2008, 41, 5515.
– reference: D. Beattie, K. H. Wong, C. Williams, L. A. Poole-Warren, T. P. Davis, C. Barner-Kowollik, M. H. Stenzel, Biomacromolecules 2006, 7, 1072.
– reference: D. E. Angelescu, J. H. Waller, D. A. Adamson, P. Deshpandle, S. Y. Chou, R. A. Register, P. M. Chaikin, Adv. Mater. 2004, 16, 1736.
– reference: J. Bang, U. Jeong, D. Yeol, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 1.
– reference: A. P. Smith, J. F. Douglas, E. J. Amis, A. Karim, Langmuir 2007, 23, 12380.
– reference: W. Zheng, Z. G. Wang, Macromolecules 1996, 28, 7215.
– reference: K. Almdal, J. H. Rosedale, F. S. Bates, G. D. Wignall, G. H. Fredrickson, Phys. Rev. Lett. 1990, 65, 1112.
– reference: K. S. Park, E. K. Seo, Y. R. Do, K. Kim, M. M. Sung, J. Am. Chem. Soc. 2006, 128, 858.
– reference: I. W. Hamley, J. P. A. Fairclough, N. J. Terril, A. J. Ryan, P. M. Lipic, F. S. Bates, E. Town-Andrews, Macromolecules 1996, 29, 8835.
– reference: P. J. Flory, J. Chem. Phys. 1941, 9, 660;
– reference: H. J. Jung, J. Chang, Y. J. Park, S. J. Kang, B. Lotz, J. Huh, C. Park, Macromolecules 2009, 42, 4148.
– reference: L. Rockford, Y. Liu, P. Mansky, T. P. Russell, M. Yoon, S. G. J. Mochrie, Phys. Rev. Lett. 1999, 82, 2602.
– reference: L. Leibler, Macromolecules 1980, 13, 1602.
– reference: R. A. Segalman, A. Hexemer, E. J. Kramer, Macromolecules 2003, 36, 6831;
– reference: A. Alexander-Katz, G. H. Fredrickson, Macromolecules 2007, 40, 4075.
– reference: Y. R. Hong, D. H. Adamson, P. M. Chaikin, R. A. Register, Soft Matter 2009, 5, 1687.
– reference: J. Zhang, Y. Han, Chem. Soc. Rev. 2010, published online, 10.1039/b816231j,
– reference: K. Fukunaga, T. Hashimoto, H. Elbs, G. Krausch, Macromolecules 2002, 35, 4406.
– reference: R. A. Segalman, H. Yokoyama, E. J. Kramer, Adv. Mater. 2001, 13, 1152;
– reference: M. Stoykovich, M. Müller, S. O. Kim, H. H. Solak, E. W. Edward, J. J. De Pablo, P. F. Nealey, Science 2005, 308, 1442.
– reference: S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, P. F. Nealey, Nature 2003, 424, 411.
– reference: P. Huang, L. Zhu, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, Macromolecules 2001, 34, 6649.
– reference: E. Han, K. O. Stuen, M. Leolukman, C. C. Liu, P. F. Nealey, P. Gopalan, Macromolecules 2009, 42, 4896.
– reference: L. Zhu, P. Huang, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, J. C. Wittmann, B. S. Hsiao, F. Yeh, L. Liu, Phys. Rev. Lett. 2001, 86, 6030.
– reference: J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 1.
– reference: T. Hashimoto, J. Bodycomb, Y. Funaki, K. Kimishima, Macromolecules 1999, 32, 952.
– reference: H. C. Kim, C. T. Rettner, L. Sundstrom, Nanotechnology 2008, 19, 235301.
– reference: R. Limary, P. F. Green, Macromolecules 1999, 32, 8167.
– reference: H. Elbs, K. Fukunaga, R. Stadler, G. Sauer, R. Magerle, G. Krausch, Macromolecules 1999, 32, 1204.
– reference: I. W. Hamley, E. L. Hiscutt, Y. W. Yang, C. Booth, J. Colloid Interface Sci. 1999, 209, 255.
– reference: J. H. van deer Mere, Faraday Discuss. 1949, 5, 206.
– reference: M. J. Fasolka, A. M. Mayes, Annu. Rev. Mater. Res. 2001, 31, 323.
– reference: S. Sakurai, Polymer 2008, 49, 2781.
– reference: Y. Chen, H. Huang, Z. Hu, T. He, Langmuir 2004, 20, 3805.
– reference: J. Bodycomb, Y. Funaki, K. Kimishima, T. Hashimoto, Macromolecules 1999, 32, 2075.
– reference: G. Kim, M. Libera, Macromolecules 1998, 31, 2569.
– reference: E. V. Rogozhina, J. Werner, H. Kresse, S. A. Kuptsov, R. V. Talroze, Macromolecules 1999, 32, 3379.
– reference: L. Zhu, S. Z. D. Cheng, P. Huang, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu, Adv. Mater. 2002, 14, 31.
– reference: J. Peng, Y. Wei, H. Wang, B. Li, Y. Han, Macromol. Rapid Commun. 2005, 26, 738.
– reference: K. Schmidt, H. G. Schoberth, M. Ruppel, H. Zettl, H. Hänsel, T. M. Weiss, V. Urban, G. Krausch, A. Böker, Nat. Mater. 2008, 7, 142.
– reference: K. Mita, H. Tanaka, K. Saijo, M. Takenaka, T. Hashimoto, Macromolecules 2008, 41, 6787.
– reference: T. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, Science 1996, 273, 931.
– reference: L. Royer, Bull. Soc. Fr. Mineral Crystallogr. 1928, 51, 7.
– reference: J. Y. Cheng, C. T. Rettner, D. P. Sanders, H.-C. Kim, W. D. Hinsberg, Adv. Mater. 2008, 20, 3155.
– reference: F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32.
– reference: S. J. Vanhook, M. F. Schatz, J. B. Swift, W. D. McCormick, J. Fluid Mech. 1997, 345, 45.
– reference: C. De Rosa, C. Park, B. Lotz, L. J. Fetters, J. C. Wittmann, E. L. Thomas, Macromolecules 2000, 33, 4871.
– reference: "Developments in Block Copolymer Science and Technology", I. W. Hamley, Ed., John Wiley and Sons, 2004;
– reference: F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525.
– reference: L. Zhu, S. Z. D. Cheng, B. H. Calhoun, Q. Ge, R. P. Quirk, E. L. Thomas, B. S. Hsiao, F. Yeh, J. Am. Chem. Soc. 2000, 122, 5957.
– reference: S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, Nano Lett. 2009, 6, 2300.
– reference: Y. Zhang, U. Wiesner, H. W. Spiess, Macromolecules 1995, 28, 778.
– reference: S. M. Park, M. P. Stoykovich, R. Ruiz, Y. Zhang, C. T. Black, P. F. Nealey, Adv. Mater. 2007, 19, 607.
– reference: C. Lou, W. Huang, Y. Han, C. Pan, Macromol. Rapid. Commun. 2009, 30, 515.
– year: 2009
– volume: 32
  start-page: 3379
  year: 1999
  publication-title: Macromolecules
– volume: 127
  start-page: 6918
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 65
  start-page: 1112
  year: 1990
  publication-title: Phys. Rev. Lett.
– volume: 31
  start-page: 323
  year: 2001
  publication-title: Annu. Rev. Mater. Res.
– volume: 34
  start-page: 6649
  year: 2001
  publication-title: Macromolecules
– volume: 9
  start-page: 440
  year: 1941
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 2789
  year: 2007
  publication-title: Nano Lett.
– volume: 122
  start-page: 5957
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 4498
  year: 2003
  publication-title: Macromolecules
– volume: 13
  start-page: 1602
  year: 1980
  publication-title: Macromolecules
– volume: 21
  start-page: 1
  year: 2009
  publication-title: Adv. Mater.
– volume: 30
  start-page: 515
  year: 2009
  publication-title: Macromol. Rapid. Commun.
– volume: 52
  start-page: 32
  year: 1999
  publication-title: Phys. Today
– volume: 31
  start-page: 2670
  year: 1998
  publication-title: Macromolecules
– volume: 14
  start-page: 31
  year: 2002
  publication-title: Adv. Mater.
– volume: 273
  start-page: 931
  year: 1996
  publication-title: Science
– volume: 33
  start-page: 947
  year: 2000
  publication-title: Macromolecules
– volume: 31
  start-page: 2569
  year: 1998
  publication-title: Macromolecules
– volume: 35
  start-page: 4406
  year: 2002
  publication-title: Macromolecules
– volume: 120
  start-page: 11163
  year: 2004
  publication-title: J. Chem. Phys.
– volume: 83
  start-page: 3844
  year: 1999
  publication-title: Phys. Rev. Lett.
– volume: 37
  start-page: 7301
  year: 2004
  publication-title: Macromolecules
– volume: 37
  start-page: 550
  year: 1998
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 778
  year: 1995
  publication-title: Macromolecules
– volume: 40
  start-page: 5923
  year: 2007
  publication-title: Macromolecules
– volume: 33
  start-page: 4871
  year: 2000
  publication-title: Macromolecules
– volume: 6
  start-page: 2300
  year: 2009
  publication-title: Nano Lett.
– volume: 532
  start-page: 214
  year: 1999
– year: 2004
– volume: 42
  start-page: 4148
  year: 2009
  publication-title: Macromolecules
– volume: 32
  start-page: 2075
  year: 1999
  publication-title: Macromolecules
– volume: 91
  start-page: 196101/1
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 22
  year: 2009
  publication-title: Macromol. Rapid Commun.
– volume: 19
  start-page: 235301
  year: 2008
  publication-title: Nanotechnology
– volume: 35
  start-page: 5570
  year: 2002
  publication-title: Macromolecules
– volume: 5
  start-page: 206
  year: 1949
  publication-title: Faraday Discuss.
– volume: 345
  start-page: 45
  year: 1997
  publication-title: J. Fluid Mech.
– volume: 424
  start-page: 411
  year: 2003
  publication-title: Nature
– volume: 114
  start-page: 5425
  year: 2001
  publication-title: J. Chem. Phys.
– volume: 30
  start-page: 4995
  year: 1997
  publication-title: Macromolecules
– volume: 32
  start-page: 709
  year: 2000
  publication-title: Annu. Rev. Fluid. Mech.
– volume: 28
  start-page: 7215
  year: 1996
  publication-title: Macromolecules
– volume: 7
  start-page: 142
  year: 2008
  publication-title: Nat. Mater.
– volume: 32
  start-page: 8167
  year: 1999
  publication-title: Macromolecules
– volume: 9
  start-page: 660
  year: 1941
  publication-title: J. Chem. Phys.
– volume: 40
  start-page: 4075
  year: 2007
  publication-title: Macromolecules
– volume: 86
  start-page: 6030
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 91
  start-page: 143106
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 8835
  year: 1996
  publication-title: Macromolecules
– volume: 19
  start-page: 607
  year: 2007
  publication-title: Adv. Mater.
– volume: 19
  start-page: 9910
  year: 2003
  publication-title: Langmuir
– volume: 6
  start-page: 209
  year: 1986
  publication-title: Encycl. Polym. Sci. Eng.
– volume: 82
  start-page: 2602
  year: 1999
  publication-title: Phys. Rev. Lett.
– volume: 40
  start-page: 458
  year: 2007
  publication-title: Macromolecules
– volume: 36
  start-page: 2428
  year: 2003
  publication-title: Macromolecules
– volume: 128
  start-page: 858
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1687
  year: 2009
  publication-title: Soft Matter
– volume: 125
  start-page: 064702
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 51
  start-page: 7
  year: 1928
  publication-title: Bull. Soc. Fr. Mineral Crystallogr.
– volume: 32
  start-page: 952
  year: 1999
  publication-title: Macromolecules
– volume: 32
  start-page: 1204
  year: 1999
  publication-title: Macromolecules
– volume: 36
  start-page: 6831
  year: 2003
  publication-title: Macromolecules
– volume: 13
  start-page: 1152
  year: 2001
  publication-title: Adv. Mater.
– volume: 23
  start-page: 12380
  year: 2007
  publication-title: Langmuir
– volume: 16
  start-page: 226
  year: 2004
  publication-title: Adv. Mater.
– volume: 41
  start-page: 6787
  year: 2008
  publication-title: Macromolecules
– year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 308
  start-page: 1442
  year: 2005
  publication-title: Science
– volume: 41
  start-page: 5515
  year: 2008
  publication-title: Macromolecules
– volume: 26
  start-page: 738
  year: 2005
  publication-title: Macromol. Rapid Commun.
– volume: 20
  start-page: 3155
  year: 2008
  publication-title: Adv. Mater.
– volume: 41
  start-page: 525
  year: 1990
  publication-title: Annu. Rev. Phys. Chem.
– volume: 41
  start-page: 5818
  year: 2008
  publication-title: Macromolecules
– volume: 49
  start-page: 2781
  year: 2008
  publication-title: Polymer
– volume: 16
  start-page: 1736
  year: 2004
  publication-title: Adv. Mater.
– volume: 35
  start-page: 3553
  year: 2002
  publication-title: Macromolecules
– volume: 44
  start-page: 6725
  year: 2003
  publication-title: Polymer
– volume: 42
  start-page: 4896
  year: 2009
  publication-title: Macromolecules
– volume: 7
  start-page: 1072
  year: 2006
  publication-title: Biomacromolecules
– volume: 209
  start-page: 255
  year: 1999
  publication-title: J. Colloid Interface Sci.
– volume: 20
  start-page: 3805
  year: 2004
  publication-title: Langmuir
– ident: e_1_2_6_96_2
  doi: 10.1063/1.1751177
– ident: e_1_2_6_71_2
  doi: 10.1021/ja0508929
– ident: e_1_2_6_34_2
  doi: 10.1021/ma9619288
– ident: e_1_2_6_77_2
  doi: 10.1021/ma00107a015
– ident: e_1_2_6_17_2
  doi: 10.1103/PhysRevLett.65.1112
– ident: e_1_2_6_25_2
  doi: 10.1021/la701084x
– volume: 5
  start-page: 206
  year: 1949
  ident: e_1_2_6_55_2
  publication-title: Faraday Discuss.
– ident: e_1_2_6_74_2
  doi: 10.1038/nature01775
– ident: e_1_2_6_97_2
  doi: 10.1021/ma9002903
– ident: e_1_2_6_40_2
  doi: 10.1002/adma.200304906
– ident: e_1_2_6_3_2
– ident: e_1_2_6_81_2
  doi: 10.1021/ma900422n
– ident: e_1_2_6_9_2
  doi: 10.1007/978-0-387-77667-5
– ident: e_1_2_6_49_2
  doi: 10.1103/PhysRevLett.86.6030
– ident: e_1_2_6_51_2
  doi: 10.1002/1521-4095(20020104)14:1<31::AID-ADMA31>3.0.CO;2-3
– ident: e_1_2_6_32_2
  doi: 10.1021/ma011889m
– ident: e_1_2_6_13_2
  doi: 10.1063/1.1750930
– ident: e_1_2_6_14_2
  doi: 10.1146/annurev.pc.41.100190.002521
– ident: e_1_2_6_29_2
  doi: 10.1021/ma070404c
– ident: e_1_2_6_65_2
– ident: e_1_2_6_66_2
  doi: 10.1088/0957-4484/19/23/235301
– year: 2010
  ident: e_1_2_6_82_2
  publication-title: Chem. Soc. Rev.
– volume: 22
  year: 2009
  ident: e_1_2_6_94_2
  publication-title: Macromol. Rapid Commun.
– ident: e_1_2_6_90_2
  doi: 10.1063/1.882522
– ident: e_1_2_6_62_2
  doi: 10.1021/ma025879c
– ident: e_1_2_6_48_2
  doi: 10.1021/ma010671x
– ident: e_1_2_6_22_2
  doi: 10.1021/ma9906074
– ident: e_1_2_6_89_2
  doi: 10.1021/ma0497761
– ident: e_1_2_6_33_2
  doi: 10.1021/ma981321m
– ident: e_1_2_6_43_2
  doi: 10.1016/j.polymer.2003.08.011
– ident: e_1_2_6_10_2
  doi: 10.1021/ma981925q
– ident: e_1_2_6_69_2
  doi: 10.1017/S0022112097006101
– ident: e_1_2_6_57_2
  doi: 10.1021/ma992132m
– ident: e_1_2_6_27_2
  doi: 10.1021/ma981538g
– ident: e_1_2_6_12_2
  doi: 10.1063/1.1750971
– ident: e_1_2_6_95_2
– ident: e_1_2_6_73_2
  doi: 10.1103/PhysRevLett.82.2602
– ident: e_1_2_6_93_2
  doi: 10.1002/marc.200800675
– ident: e_1_2_6_16_2
  doi: 10.1021/ma070005h
– ident: e_1_2_6_84_2
  doi: 10.1038/nmat2068
– ident: e_1_2_6_75_2
  doi: 10.1126/science.1111041
– ident: e_1_2_6_80_2
  doi: 10.1039/b820312a
– ident: e_1_2_6_47_2
  doi: 10.1021/ja000275e
– ident: e_1_2_6_85_2
  doi: 10.1021/ma800848b
– ident: e_1_2_6_53_2
  doi: 10.1103/PhysRevLett.83.3844
– ident: e_1_2_6_42_2
– volume: 21
  start-page: 1
  year: 2009
  ident: e_1_2_6_44_2
  publication-title: Adv. Mater.
– ident: e_1_2_6_46_2
  doi: 10.1063/1.1344605
– ident: e_1_2_6_4_2
– ident: e_1_2_6_31_2
  doi: 10.1021/ma9910639
– ident: e_1_2_6_8_2
  doi: 10.1021/bm050858m
– ident: e_1_2_6_50_2
  doi: 10.1021/ma012184n
– ident: e_1_2_6_58_2
– ident: e_1_2_6_83_2
  doi: 10.1126/science.273.5277.931
– ident: e_1_2_6_52_2
  doi: 10.1006/jcis.1998.5820
– ident: e_1_2_6_91_2
  doi: 10.1021/ma00125a026
– ident: e_1_2_6_60_2
  doi: 10.1103/PhysRevLett.91.196101
– ident: e_1_2_6_2_2
  doi: 10.1021/ja055377p
– ident: e_1_2_6_41_2
  doi: 10.1063/1.2219446
– ident: e_1_2_6_59_2
  doi: 10.1002/1521-4095(200108)13:15<1152::AID-ADMA1152>3.0.CO;2-5
– ident: e_1_2_6_39_2
  doi: 10.1021/ma9714070
– volume: 6
  start-page: 209
  year: 1986
  ident: e_1_2_6_56_2
  publication-title: Encycl. Polym. Sci. Eng.
– start-page: 214
  volume-title: Lecture Notes in Physics
  year: 1999
  ident: e_1_2_6_78_2
– volume: 21
  start-page: 1
  year: 2009
  ident: e_1_2_6_7_2
  publication-title: Adv. Mater.
– ident: e_1_2_6_23_2
  doi: 10.1002/1521-4095(200108)13:16<1217::AID-ADMA1217>3.0.CO;2-D
– ident: e_1_2_6_15_2
  doi: 10.1002/1521-4095(200108)13:16<1217::AID-ADMA1217>3.0.CO;2-D
– ident: e_1_2_6_26_2
  doi: 10.1021/ma981249s
– ident: e_1_2_6_87_2
  doi: 10.1063/1.1751177
– ident: e_1_2_6_11_2
– ident: e_1_2_6_28_2
  doi: 10.1021/nl071354s
– ident: e_1_2_6_37_2
  doi: 10.1021/la0360815
– ident: e_1_2_6_64_2
  doi: 10.1063/1.2791003
– volume: 51
  start-page: 7
  year: 1928
  ident: e_1_2_6_54_2
  publication-title: Bull. Soc. Fr. Mineral Crystallogr.
– ident: e_1_2_6_61_2
  doi: 10.1021/ma0257696
– ident: e_1_2_6_21_2
  doi: 10.1146/annurev.matsci.31.1.323
– ident: e_1_2_6_24_2
  doi: 10.1021/ma070005h
– ident: e_1_2_6_5_2
– ident: e_1_2_6_36_2
  doi: 10.1021/ma0212792
– ident: e_1_2_6_38_2
  doi: 10.1021/ma971349i
– ident: e_1_2_6_35_2
  doi: 10.1021/ma011734e
– ident: e_1_2_6_67_2
  doi: 10.1021/nl9004833
– ident: e_1_2_6_19_2
  doi: 10.1021/ma8009454
– ident: e_1_2_6_68_2
  doi: 10.1146/annurev.fluid.32.1.709
– ident: e_1_2_6_1_2
  doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
– ident: e_1_2_6_20_2
  doi: 10.1021/ma062456s
– ident: e_1_2_6_86_2
  doi: 10.1016/j.polymer.2008.03.020
– ident: e_1_2_6_18_2
  doi: 10.1063/1.882522
– ident: e_1_2_6_6_2
  doi: 10.1002/0470093943
– ident: e_1_2_6_63_2
  doi: 10.1002/adma.200601421
– ident: e_1_2_6_88_2
  doi: 10.1002/marc.200400665
– ident: e_1_2_6_76_2
  doi: 10.1002/adma.200800826
– ident: e_1_2_6_72_2
  doi: 10.1002/adma.200304906
– ident: e_1_2_6_45_2
  doi: 10.1021/ma960343a
– ident: e_1_2_6_30_2
  doi: 10.1021/ma800361d
– ident: e_1_2_6_79_2
  doi: 10.1002/adma.200400643
– ident: e_1_2_6_92_2
  doi: 10.1021/ma011734e
– ident: e_1_2_6_70_2
  doi: 10.1021/la0351360
SSID ssj0008402
Score 2.1464179
Snippet Today, high‐ordered micro‐ and nano‐patterned surfaces are widely used in many areas, such as in the preparation of super‐thin dielectric films, photonic...
Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 591
SubjectTerms Applied sciences
Arrays
Block copolymers
Exact sciences and technology
lithography
microphase separation
Nanocomposites
nanoheterogeneity
Nanomaterials
Nanostructure
Organic polymers
Photolithography
Physicochemistry of polymers
Properties and characterization
Separation
Structure, morphology and analysis
Thin films
Title Microphase Separation of Block Copolymer Thin Films
URI https://api.istex.fr/ark:/67375/WNG-9FD9Q62V-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.200900541
https://www.ncbi.nlm.nih.gov/pubmed/21590947
https://www.proquest.com/docview/1671246786
https://www.proquest.com/docview/867721088
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoAL5U0KVEFCcEobO46THMvCUiFtJRYKvVm2Y4tq22y1D6n013cm3mRZRIUEx0hjWTMee76Jx98AvM5SLys8AxLuCpsIXWRJ6ZlEIOczJ5goUkNvh0dH8vBYfDrJT355xR_4IfofbrQz2vOaNrg28_01aShRPbSP9wh1UP5DBVuEisZr_ijMXsJ1J2ZcmIzJjrUx5fubwzei0m0y8CVVSeo5GsqHDhd_gqCbiLYNScNt0J0yoRJlsrdcmD179RvP4_9oex_urfBqfBAc7AHccs1DuDPo2sQ9gmxEJX0XPzAaxl9cYBKfNvHUx-8wTk7iAXVh-HnuZjG1CI2Hp2fn88dwPPzwdXCYrDoxJBYBGaMwVjrnXZX6XDpRS7q7sak1tUd07qxnxtaGibrgZc0KUzA8Jjivyyq3hTM2ewJbzbRxzyDmXte5lcIzXQqBnoCAytuc21I7b7I6gqRbCWVXNOXULeNMBYJlrsgUqjdFBG97-YtA0HGj5Jt2YXsxPZtQWVuRq-9HH1U1fF99lvybGkewu7Hy_QBUiuCziOBV5woKrU1XLLpx0-VcMYmqY-wpZQTxDTLEIIiJdllG8DS40XoCBJeYbxcR8NYZ_qKRGh2MB_3Xzr8Meg53Qz2ESFL5ArYWs6V7iTBrYXbbrXQNoRoceg
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h7WG8AOMzwEaQEDxlix3HSR63jlJgrUTZgDcrdmyBuqVTPyTgr-cublIVMSHBY6Szojuffb-zz78DeJHETha4B0TcZiYSZZZEuWMSgZxLrGAiizW9HR6O5OBcvPuSttWE9BbG80N0B260Mpr9mhY4HUgfrllDieuheb1HsAMToG1q691kVeM1gxTmL_7CE3MuTMdky9sY88PN8RtxaZtM_J3qJMs5msr5Hhd_AqGbmLYJSv3boFt1fC3K5GC50Afm529Mj_-l7x24tYKs4ZH3sV24Yeu7sNNrO8Xdg2RIVX1XXzEghh-tJxOf1uHUhccYKidhjxox_Li0s5C6hIb9bxeX8_tw3n991htEq2YMkUFMxiiS5dY6W8QulVZUkq5vTGx05RCgW-OYNpVmosp4XrFMZwx3Cs6rvEhNZrVJHsBWPa3tIwi5K6vUSOFYmQuBzoCYypmUm7y0TidVAFE7FcqsmMqpYcaF8hzLXJEpVGeKAF518leeo-NayZfNzHZi5WxClW1Zqj6P3qiif1J8kPyTGgewvzH13QBUihC0COB56wsKrU23LGVtp8u5YhJVx_CTywDCa2SIRBBz7TwP4KH3o_UPEF9iyp0FwBtv-ItGang07nVfj_9l0DPYGZwNT9Xp29H7J3DTl0eIKJZPYWsxW9o9RF0Lvd-sq19iNiCV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hTQJeYHwHxggSgqdsieM4zuPWEsZHKygM9mYlji1Qt7TqhwT89buLm5QiJiR4jHSWdeez73fx-XcAz-LQigzPgICZVAe8SONA2kggkLOx4RFPw5LeDg-G4viEvzlNTn95xe_4IbofbrQzmvOaNvi0sgdr0lCiemge7xHqwPxnm4tQkl_3R2sCKUxf3H0nplyYjYmWtjFkB5vjN8LSNln4O5VJFnO0lHUtLv6EQTchbROT8ptQtNq4UpTx_nJR7uufvxE9_o-6O3BjBVj9Q-dht-CKqW_DtV7bJ-4OxAOq6Zt-xXDofzSOSnxS-xPrH2GgHPs9asPw49zMfOoR6uffzs7nd-Ekf_mpdxysWjEEGhFZRHFMGmNNFtpEGF4JurzRoS4ri_DcaBuVuiojXqVMVlFaphGeE4xVMkt0akod34OtelKbB-AzW1SJFtxGheQcXQERldUJ07IwtowrD4J2JZRe8ZRTu4wz5RiWmSJTqM4UHrzo5KeOoeNSyefNwnZixWxMdW1por4MX6ks72cfBPusRh7sbax8NwCVIvzMPXjauoJCa9MdS1GbyXKuIoGqY_CRwgP_EhmiEMRMW0oP7js3Wk-A6BIT7tQD1jjDXzRSg8NRr_t6-C-DnsDV9_1cvXs9fPsIrrvaCB6EYhe2FrOleYyQa1HuNbvqAvt9H00
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microphase+separation+of+block+copolymer+thin+films&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Zhang%2C+Jilin&rft.au=Yu%2C+Xinhong&rft.au=Yang%2C+Ping&rft.au=Peng%2C+Juan&rft.date=2010-04-06&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=31&rft.issue=7&rft.spage=591&rft_id=info:doi/10.1002%2Fmarc.200900541&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon