Microphase Separation of Block Copolymer Thin Films
Today, high‐ordered micro‐ and nano‐patterned surfaces are widely used in many areas, such as in the preparation of super‐thin dielectric films, photonic crystals, antireflective films, super‐non‐wetting surfaces, bio‐compatible surfaces and microelectric devices. Considering the critical fabricatio...
Saved in:
Published in | Macromolecular rapid communications. Vol. 31; no. 7; pp. 591 - 608 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
06.04.2010
WILEY‐VCH Verlag Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Today, high‐ordered micro‐ and nano‐patterned surfaces are widely used in many areas, such as in the preparation of super‐thin dielectric films, photonic crystals, antireflective films, super‐non‐wetting surfaces, bio‐compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano‐scale structures (<100 nm), the development of other micro‐ and nano‐patterning techniques that can be used to fabricate long‐range ordered features – especially nanoscale arrays – is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length‐scales of 10–50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long‐range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order–order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given.
Preparing long‐range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays. We summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Evolution, order–order transitions and reversible switching microdomains are also considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. The outlook for this research area is discussed. |
---|---|
AbstractList | Today, high‐ordered micro‐ and nano‐patterned surfaces are widely used in many areas, such as in the preparation of super‐thin dielectric films, photonic crystals, antireflective films, super‐non‐wetting surfaces, bio‐compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano‐scale structures (<100 nm), the development of other micro‐ and nano‐patterning techniques that can be used to fabricate long‐range ordered features – especially nanoscale arrays – is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length‐scales of 10–50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long‐range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order–order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given.
magnified image Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic crystals, antireflective films, super-non-wetting surfaces, bio-compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano-scale structures (<100 nm), the development of other micro- and nano-patterning techniques that can be used to fabricate long-range ordered features - especially nanoscale arrays - is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length-scales of 10-50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long-range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order-order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given. Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic crystals, antireflective films, super-non-wetting surfaces, bio-compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano-scale structures (<100 nm), the development of other micro- and nano-patterning techniques that can be used to fabricate long-range ordered features - especially nanoscale arrays - is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length-scales of 10-50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long-range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order-order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given.Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic crystals, antireflective films, super-non-wetting surfaces, bio-compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano-scale structures (<100 nm), the development of other micro- and nano-patterning techniques that can be used to fabricate long-range ordered features - especially nanoscale arrays - is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length-scales of 10-50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long-range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order-order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given. Today, high‐ordered micro‐ and nano‐patterned surfaces are widely used in many areas, such as in the preparation of super‐thin dielectric films, photonic crystals, antireflective films, super‐non‐wetting surfaces, bio‐compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano‐scale structures (<100 nm), the development of other micro‐ and nano‐patterning techniques that can be used to fabricate long‐range ordered features – especially nanoscale arrays – is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length‐scales of 10–50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long‐range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order–order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given. Preparing long‐range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays. We summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Evolution, order–order transitions and reversible switching microdomains are also considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. The outlook for this research area is discussed. |
Author | Zhang, Jilin Yang, Ping Yu, Xinhong Huang, Weihuan Luo, Chunxia Han, Yanchun Peng, Juan |
Author_xml | – sequence: 1 givenname: Jilin surname: Zhang fullname: Zhang, Jilin organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China – sequence: 2 givenname: Xinhong surname: Yu fullname: Yu, Xinhong organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China – sequence: 3 givenname: Ping surname: Yang fullname: Yang, Ping organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China – sequence: 4 givenname: Juan surname: Peng fullname: Peng, Juan organization: The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Department of Macromolecular Science, Fudan University, Shanghai 200433, China – sequence: 5 givenname: Chunxia surname: Luo fullname: Luo, Chunxia organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China – sequence: 6 givenname: Weihuan surname: Huang fullname: Huang, Weihuan organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China – sequence: 7 givenname: Yanchun surname: Han fullname: Han, Yanchun email: ychan@ciac.jl.cn organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22550714$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21590947$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB-wZYmyQbDJcK8Tv5ZlYApSC6IUWFqO46imSRzsjGD-PS4zDAgJWPkuvu9YOueYHIxhdIQ8RFggAH02mGgXFEABsBrvkCNkFMtKUXGQb6C0xKrih-Q4pc8AIGug98ghRaZA1eKIVBfexjBdm-SK924y0cw-jEXoiud9sDfFMkyh3wwuFlfXfixWvh_SfXK3M31yD3bvCfmwenm1fFWevz17vTw9Ly1DxFICSuc6p6Bj3NUt50JJC7ZpOyGosx02tm2wbgWVLYpGIKWM0lYqZoVrbHVCnmxzpxi-rF2a9eCTdX1vRhfWSUuecxCkzOTTf5LIc3jNheQZfbRD183gWj1Fnzvc6J-VZODxDjDJmr6LZrQ-_eIoYyCwztxiy-X-Uoqu2yMI-nYbfbuN3m-ThfoPwfr5R91zNL7_u6a22lffu81_PtEXp5fL391y6_o0u29718QbzUUlmP705kyr1Qv1jtOP-rL6DtWHsBg |
CitedBy_id | crossref_primary_10_1021_acsami_1c08841 crossref_primary_10_1146_annurev_chembioeng_061114_123209 crossref_primary_10_3390_polym12071553 crossref_primary_10_1002_marc_201000695 crossref_primary_10_1002_marc_201300314 crossref_primary_10_1007_s13726_024_01332_7 crossref_primary_10_1002_macp_201900477 crossref_primary_10_1007_s11427_013_4499_8 crossref_primary_10_1039_c3tc30359d crossref_primary_10_1021_ma2026429 crossref_primary_10_1021_acs_langmuir_2c02230 crossref_primary_10_1021_jacs_3c13543 crossref_primary_10_1002_admi_202400661 crossref_primary_10_1088_0957_4484_26_5_055301 crossref_primary_10_1631_jzus_A1300119 crossref_primary_10_1002_marc_201300880 crossref_primary_10_1007_s11431_014_5647_5 crossref_primary_10_1021_ma500106x crossref_primary_10_1021_acsnano_4c13416 crossref_primary_10_1002_chem_201200934 crossref_primary_10_1002_smll_201002336 crossref_primary_10_1007_s11426_013_4951_4 crossref_primary_10_1016_j_eurpolymj_2014_08_016 crossref_primary_10_1016_j_progpolymsci_2015_10_008 crossref_primary_10_3390_nano9050662 crossref_primary_10_1080_08927022_2011_569549 crossref_primary_10_1002_marc_201300763 crossref_primary_10_1002_marc_201600229 crossref_primary_10_1021_acsmacrolett_9b00439 crossref_primary_10_1021_ie504457e crossref_primary_10_1016_j_polymer_2023_125880 crossref_primary_10_1016_j_polymer_2010_11_012 crossref_primary_10_1016_j_progpolymsci_2010_12_006 crossref_primary_10_1007_s40242_013_3260_y crossref_primary_10_1016_j_jcis_2012_01_030 crossref_primary_10_1021_acs_langmuir_2c03114 |
Cites_doi | 10.1063/1.1751177 10.1021/ja0508929 10.1021/ma9619288 10.1021/ma00107a015 10.1103/PhysRevLett.65.1112 10.1021/la701084x 10.1038/nature01775 10.1021/ma9002903 10.1002/adma.200304906 10.1021/ma900422n 10.1007/978-0-387-77667-5 10.1103/PhysRevLett.86.6030 10.1002/1521-4095(20020104)14:1<31::AID-ADMA31>3.0.CO;2-3 10.1021/ma011889m 10.1063/1.1750930 10.1146/annurev.pc.41.100190.002521 10.1021/ma070404c 10.1088/0957-4484/19/23/235301 10.1063/1.882522 10.1021/ma025879c 10.1021/ma010671x 10.1021/ma9906074 10.1021/ma0497761 10.1021/ma981321m 10.1016/j.polymer.2003.08.011 10.1021/ma981925q 10.1017/S0022112097006101 10.1021/ma992132m 10.1021/ma981538g 10.1063/1.1750971 10.1103/PhysRevLett.82.2602 10.1002/marc.200800675 10.1021/ma070005h 10.1038/nmat2068 10.1126/science.1111041 10.1039/b820312a 10.1021/ja000275e 10.1021/ma800848b 10.1103/PhysRevLett.83.3844 10.1063/1.1344605 10.1021/ma9910639 10.1021/bm050858m 10.1021/ma012184n 10.1126/science.273.5277.931 10.1006/jcis.1998.5820 10.1021/ma00125a026 10.1103/PhysRevLett.91.196101 10.1021/ja055377p 10.1063/1.2219446 10.1002/1521-4095(200108)13:15<1152::AID-ADMA1152>3.0.CO;2-5 10.1021/ma9714070 10.1002/1521-4095(200108)13:16<1217::AID-ADMA1217>3.0.CO;2-D 10.1021/ma981249s 10.1021/nl071354s 10.1021/la0360815 10.1063/1.2791003 10.1021/ma0257696 10.1146/annurev.matsci.31.1.323 10.1021/ma0212792 10.1021/ma971349i 10.1021/ma011734e 10.1021/nl9004833 10.1021/ma8009454 10.1146/annurev.fluid.32.1.709 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G 10.1021/ma062456s 10.1016/j.polymer.2008.03.020 10.1002/0470093943 10.1002/adma.200601421 10.1002/marc.200400665 10.1002/adma.200800826 10.1021/ma960343a 10.1021/ma800361d 10.1002/adma.200400643 10.1021/la0351360 |
ContentType | Journal Article |
Copyright | Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS – notice: Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION IQODW NPM 7SR 7U5 8FD JG9 L7M 7X8 |
DOI | 10.1002/marc.200900541 |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Applied Sciences |
EISSN | 1521-3927 |
EndPage | 608 |
ExternalDocumentID | 21590947 22550714 10_1002_marc_200900541 MARC200900541 ark_67375_WNG_9FD9Q62V_R |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of China funderid: 2009CB930603 – fundername: Chinese Academy of Sciences funderid: KJCX2‐YW‐M11 – fundername: National Natural Science Foundation of China funderid: 20621401; 20834005 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION AAMMB ABEML ACSCC ADMLS AEFGJ AGHNM AGXDD AIDQK AIDYY EBD GYXMG IQODW M6T PALCI RIWAO RJQFR SAMSI TUS ZY4 NPM 7SR 7U5 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c5111-8018eefe90f56e4d66798c0cbdf772ecf1bcdb14d728d17b7122522d895c7ebc3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 09:48:56 EDT 2025 Thu Jul 10 17:57:23 EDT 2025 Mon Jul 21 05:56:44 EDT 2025 Mon Jul 21 09:13:18 EDT 2025 Tue Jul 01 01:50:05 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Wed Jan 22 16:23:31 EST 2025 Wed Oct 30 09:46:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | block copolymers State of the art Patterning microphase separation Lithography Order disorder transformation Block copolymer nanoheterogeneity Thin film |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5111-8018eefe90f56e4d66798c0cbdf772ecf1bcdb14d728d17b7122522d895c7ebc3 |
Notes | ArticleID:MARC200900541 Ministry of Science and Technology of China - No. 2009CB930603 istex:A44676415E835E24F8D99872208A5D8C73DE3EE3 Chinese Academy of Sciences - No. KJCX2-YW-M11 National Natural Science Foundation of China - No. 20621401; No. 20834005 ark:/67375/WNG-9FD9Q62V-R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21590947 |
PQID | 1671246786 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_867721088 proquest_miscellaneous_1671246786 pubmed_primary_21590947 pascalfrancis_primary_22550714 crossref_primary_10_1002_marc_200900541 crossref_citationtrail_10_1002_marc_200900541 wiley_primary_10_1002_marc_200900541_MARC200900541 istex_primary_ark_67375_WNG_9FD9Q62V_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 6, 2010 |
PublicationDateYYYYMMDD | 2010-04-06 |
PublicationDate_xml | – month: 04 year: 2010 text: April 6, 2010 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol. Rapid Commun |
PublicationYear | 2010 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley |
References | S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, P. F. Nealey, Nature 2003, 424, 411. L. Zhu, S. Z. D. Cheng, B. H. Calhoun, Q. Ge, R. P. Quirk, E. L. Thomas, B. S. Hsiao, F. Yeh, J. Am. Chem. Soc. 2000, 122, 5957. D. Beattie, K. H. Wong, C. Williams, L. A. Poole-Warren, T. P. Davis, C. Barner-Kowollik, M. H. Stenzel, Biomacromolecules 2006, 7, 1072. I. W. Hamley, J. P. A. Fairclough, N. J. Terril, A. J. Ryan, P. M. Lipic, F. S. Bates, E. Town-Andrews, Macromolecules 1996, 29, 8835. L. Zhu, S. Z. D. Cheng, P. Huang, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu, Adv. Mater. 2002, 14, 31. P. Huang, L. Zhu, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, Macromolecules 2001, 34, 6649. E. Bodenschatz, W. Pesch, G. Ahlers, Annu. Rev. Fluid. Mech. 2000, 32, 709. L. Zhu, P. Huang, W. Y. Chen, Q. Ge, R. P. Quirk, S. Z. D. Cheng, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu, Macromolecules 2002, 35, 3553. L. Royer, Bull. Soc. Fr. Mineral Crystallogr. 1928, 51, 7. S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, Nano Lett. 2009, 6, 2300. C. De Rosa, C. Park, B. Lotz, L. J. Fetters, J. C. Wittmann, E. L. Thomas, Macromolecules 2000, 33, 4871. B. C. Berry, A. W. Bosse, J. F. Douglas, R. L. Jones, A. Karim, Nano Lett. 2007, 7, 2789. H. Elbs, C. Drummer, V. Abetz, G. Krausch, Macromolecules 2002, 35, 5570. Y. R. Hong, D. H. Adamson, P. M. Chaikin, R. A. Register, Soft Matter 2009, 5, 1687. M. J. Fasolka, A. M. Mayes, Annu. Rev. Mater. Res. 2001, 31, 323. L. Zhu, P. Huang, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, J. C. Wittmann, B. S. Hsiao, F. Yeh, L. Liu, Phys. Rev. Lett. 2001, 86, 6030. M. Kimura, M. J. Misner, T. Xu, S. H. Kim, T. P. Russell, Langmuir 2003, 19, 9910. P. J. Flory, J. Chem. Phys. 1941, 9, 660 K. Karaky, L. Billon, C. Pouchan, J. Desbrières, Macromolecules 2007, 40, 458. J. H. van deer Mere, Faraday Discuss. 1949, 5, 206. H. Elbs, K. Fukunaga, R. Stadler, G. Sauer, R. Magerle, G. Krausch, Macromolecules 1999, 32, 1204. J. P. A. Fairclough, S. M. Mai, W. Bras, L. Messe, S. C. Turner, A. J. Gleeson, C. Booth, I. W. Hamley, A. J. Ryan, J. Chem. Phys. 2001, 114, 5425. K. Schmidt, H. G. Schoberth, M. Ruppel, H. Zettl, H. Hänsel, T. M. Weiss, V. Urban, G. Krausch, A. Böker, Nat. Mater. 2008, 7, 142. A. P. Smith, J. F. Douglas, E. J. Amis, A. Karim, Langmuir 2007, 23, 12380. J. Peng, D. H. Kim, W. Knoll, Y. Xuan, B. Li, Y. Han, J. Chem. Phys. 2006, 125, 064702. "Developments in Block Copolymer Science and Technology", I. W. Hamley, Ed., John Wiley and Sons, 2004 J. Y. Cheng, C. T. Rettner, D. P. Sanders, H.-C. Kim, W. D. Hinsberg, Adv. Mater. 2008, 20, 3155. S. Sakurai, Polymer 2008, 49, 2781. E. Han, K. O. Stuen, M. Leolukman, C. C. Liu, P. F. Nealey, P. Gopalan, Macromolecules 2009, 42, 4896. S. Walheim, M. Böltau, J. Mlynek, G. Krausch, U. Steiner, Macromolecules 1997, 30, 4995. L. Leibler, Macromolecules 1980, 13, 1602. E. V. Rogozhina, J. Werner, H. Kresse, S. A. Kuptsov, R. V. Talroze, Macromolecules 1999, 32, 3379. V. Olszowka, V. Kuntermann, A. Böker, Macromolecules 2008, 41, 5515. M. Stoykovich, M. Müller, S. O. Kim, H. H. Solak, E. W. Edward, J. J. De Pablo, P. F. Nealey, Science 2005, 308, 1442. R. Limary, P. F. Green, Macromolecules 1999, 32, 8167. K. Fukunaga, H. Elbs, R. Magerle, G. Krausch, Macromolecules 2000, 33, 947. W. Zheng, Z. G. Wang, Macromolecules 1996, 28, 7215. S. H. Kim, M. J. Misner, T. Xu, M. Kimura, T. P. Russell, Adv. Mater. 2004, 16, 226. M. L. Huggins, J. Chem. Phys. 1941, 9, 440. S. J. Vanhook, M. F. Schatz, J. B. Swift, W. D. McCormick, J. Fluid Mech. 1997, 345, 45. A. Alexander-Katz, G. H. Fredrickson, Macromolecules 2007, 40, 4075. R. A. Segalman, A. Hexemer, E. J. Kramer, Macromolecules 2003, 36, 6831 C. Park, J. Yoon, E. L. Thomas, Polymer 2003, 44, 6725 G. Reiter, G. Castelein, P. Hoerner, G. Riess, A. Blumen, J. Sommer, Phys. Rev. Lett. 1999, 83, 3844. T. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, Science 1996, 273, 931. R. A. Segalman, H. Yokoyama, E. J. Kramer, Adv. Mater. 2001, 13, 1152 J. Bang, U. Jeong, D. Yeol, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 1. Y. Xuan, J. Peng, L. Cui, H. Wang, B. Li, Y. Han, Macromolecules 2004, 37, 7301. M. M. de Villiers, P. Aramwit, G. S. Kwon, "Nanotechnology in Drug Delivery", Springer, New York 2009. J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 1. S. M. Park, M. P. Stoykovich, R. Ruiz, Y. Zhang, C. T. Black, P. F. Nealey, Adv. Mater. 2007, 19, 607. L. Rockford, Y. Liu, P. Mansky, T. P. Russell, M. Yoon, S. G. J. Mochrie, Phys. Rev. Lett. 1999, 82, 2602. D. E. Angelescu, J. H. Waller, D. A. Adamson, P. Deshpandle, S. Y. Chou, R. A. Register, P. M. Chaikin, Adv. Mater. 2004, 16, 1736. Y. Chen, H. Huang, Z. Hu, T. He, Langmuir 2004, 20, 3805. J. Bodycomb, Y. Funaki, K. Kimishima, T. Hashimoto, Macromolecules 1999, 32, 2075. C. Lou, W. Huang, Y. Han, C. Pan, Macromol. Rapid. Commun. 2009, 30, 515. K. Mita, H. Tanaka, K. Saijo, M. Takenaka, T. Hashimoto, Macromolecules 2007, 40, 5923. C. Luo, W. Huang, Y. Han, Macromol. Rapid Commun. 2009, 22, 1917. C. Tang, A. Tracz, M. Kruk, R. Zhang, D. M. Smilgies, K. Matyjaszewski, T. Kowalewski, J. Am. Chem. Soc. 2005, 127, 6918. J. Peng, Y. Wei, H. Wang, B. Li, Y. Han, Macromol. Rapid Commun. 2005, 26, 738. J. Y. Cheng, J. Pitera, O. H. Park, M. Flickner, R. Ruiz, C. T. Black, H. C. Kim, Appl. Phys. Lett. 2007, 91, 143106. Y. Xia, G. M. Whitesides, Angew. Chem., Int. Ed. 1998, 37, 550. K. S. Park, E. K. Seo, Y. R. Do, K. Kim, M. M. Sung, J. Am. Chem. Soc. 2006, 128, 858. G. Kim, M. Libera, Macromolecules 1998, 31, 2569. I. W. Hamley, E. L. Hiscutt, Y. W. Yang, C. Booth, J. Colloid Interface Sci. 1999, 209, 255. R. A. Segalman, A. Hexemer, E. J. Kramer, Phys. Rev. Lett. 2003, 91, 196101/1 F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32. K. Almdal, J. H. Rosedale, F. S. Bates, G. D. Wignall, G. H. Fredrickson, Phys. Rev. Lett. 1990, 65, 1112. G. S. Swei, J. B. Lando, S. E. Rickert, K. A. Mauritz, Encycl. Polym. Sci. Eng. 1986, 6, 209. J. Zhang, Y. Han, Chem. Soc. Rev. 2010, published online, 10.1039/b816231j Y. Zhang, U. Wiesner, H. W. Spiess, Macromolecules 1995, 28, 778. U. Wiesner, "Lecture Notes in Physics", Vol. 532, Springer, Berlin/Heidelberg 1999, pp. 214. H. J. Jung, J. Chang, Y. J. Park, S. J. Kang, B. Lotz, J. Huh, C. Park, Macromolecules 2009, 42, 4148. G. Kim, M. Libera, Macromolecules 1998, 31, 2670. K. Fukunaga, T. Hashimoto, H. Elbs, G. Krausch, Macromolecules 2002, 35, 4406. K. Mita, H. Tanaka, K. Saijo, M. Takenaka, T. Hashimoto, Macromolecules 2008, 41, 6787. F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525. T. Hashimoto, J. Bodycomb, Y. Funaki, K. Kimishima, Macromolecules 1999, 32, 952. H. C. Kim, C. T. Rettner, L. Sundstrom, Nanotechnology 2008, 19, 235301. S. Niu, R. F. Saraf, Macromolecules 2003, 36, 2428. R. A. Segalman, K. E. Schaefer, G. H. Fredrickson, E. J. Kramer, S. Magonov, Macromolecules 2003, 36, 4498. J. Peng, Y. Xuan, H. Wang, Y. Yang, B. Li, Y. Han, J. Chem. Phys. 2004, 120, 11163. M. M. Mok, S. Pujari, W. R. Burghardt, C. M. Dettmer, S. T. Nguyen, C. J. Ellison, J. M. Torkelson, Macromolecules 2008, 41, 5818. 2002; 14 2004; 20 2004; 120 1941; 9 2009; 42 1949; 5 2008; 7 2003; 19 1999; 83 1999; 82 2005; 26 1999; 209 2001; 86 1990; 41 1997; 345 1996; 29 1996; 28 2003; 91 1995; 28 2004; 37 1986; 6 2007; 7 2005; 308 1999; 52 1999; 532 2000; 122 2008; 20 2001; 13 2006; 128 2007; 23 2006; 125 2003; 44 2009; 22 2007; 19 2009; 21 2010 2002; 35 2008; 19 2006; 7 2009 1928; 51 2003; 36 2007; 91 2004 1998; 37 1990; 65 2009; 30 2003; 424 2004; 16 1997; 30 1980; 13 2000; 32 2000; 33 2005; 127 2008; 49 1999; 32 2009; 6 2007; 40 2008; 41 2009; 5 1996; 273 2001; 34 1998; 31 2001; 114 2001; 31 e_1_2_6_72_2 e_1_2_6_53_2 e_1_2_6_95_2 e_1_2_6_30_2 e_1_2_6_91_2 e_1_2_6_19_2 Royer L. (e_1_2_6_54_2) 1928; 51 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_38_2 e_1_2_6_76_2 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_83_2 e_1_2_6_64_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_9_2 e_1_2_6_5_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 Bang J. (e_1_2_6_7_2) 2009; 21 e_1_2_6_87_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_96_2 e_1_2_6_31_2 e_1_2_6_92_2 Luo C. (e_1_2_6_94_2) 2009; 22 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_77_2 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_42_2 e_1_2_6_80_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_65_2 e_1_2_6_88_2 e_1_2_6_27_2 e_1_2_6_46_2 e_1_2_6_51_2 e_1_2_6_97_2 e_1_2_6_74_2 e_1_2_6_93_2 e_1_2_6_70_2 Zhang J. (e_1_2_6_82_2) 2010 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_36_2 Swei G. S. (e_1_2_6_56_2) 1986; 6 e_1_2_6_62_2 e_1_2_6_85_2 e_1_2_6_20_2 e_1_2_6_81_2 e_1_2_6_3_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_89_2 Wiesner U. (e_1_2_6_78_2) 1999 e_1_2_6_52_2 e_1_2_6_75_2 Bang J. (e_1_2_6_44_2) 2009; 21 e_1_2_6_71_2 e_1_2_6_90_2 e_1_2_6_18_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_79_2 e_1_2_6_63_2 e_1_2_6_86_2 e_1_2_6_40_2 van deer Mere J. H. (e_1_2_6_55_2) 1949; 5 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_48_2 e_1_2_6_21_2 e_1_2_6_67_2 e_1_2_6_25_2 |
References_xml | – reference: J. Y. Cheng, J. Pitera, O. H. Park, M. Flickner, R. Ruiz, C. T. Black, H. C. Kim, Appl. Phys. Lett. 2007, 91, 143106. – reference: M. M. de Villiers, P. Aramwit, G. S. Kwon, "Nanotechnology in Drug Delivery", Springer, New York 2009. – reference: K. Mita, H. Tanaka, K. Saijo, M. Takenaka, T. Hashimoto, Macromolecules 2007, 40, 5923. – reference: C. Tang, A. Tracz, M. Kruk, R. Zhang, D. M. Smilgies, K. Matyjaszewski, T. Kowalewski, J. Am. Chem. Soc. 2005, 127, 6918. – reference: Y. Xia, G. M. Whitesides, Angew. Chem., Int. Ed. 1998, 37, 550. – reference: M. L. Huggins, J. Chem. Phys. 1941, 9, 440. – reference: S. Walheim, M. Böltau, J. Mlynek, G. Krausch, U. Steiner, Macromolecules 1997, 30, 4995. – reference: E. Bodenschatz, W. Pesch, G. Ahlers, Annu. Rev. Fluid. Mech. 2000, 32, 709. – reference: C. Park, J. Yoon, E. L. Thomas, Polymer 2003, 44, 6725; – reference: U. Wiesner, "Lecture Notes in Physics", Vol. 532, Springer, Berlin/Heidelberg 1999, pp. 214. – reference: S. H. Kim, M. J. Misner, T. Xu, M. Kimura, T. P. Russell, Adv. Mater. 2004, 16, 226. – reference: J. Peng, Y. Xuan, H. Wang, Y. Yang, B. Li, Y. Han, J. Chem. Phys. 2004, 120, 11163. – reference: B. C. Berry, A. W. Bosse, J. F. Douglas, R. L. Jones, A. Karim, Nano Lett. 2007, 7, 2789. – reference: G. S. Swei, J. B. Lando, S. E. Rickert, K. A. Mauritz, Encycl. Polym. Sci. Eng. 1986, 6, 209. – reference: K. Karaky, L. Billon, C. Pouchan, J. Desbrières, Macromolecules 2007, 40, 458. – reference: S. Niu, R. F. Saraf, Macromolecules 2003, 36, 2428. – reference: M. M. Mok, S. Pujari, W. R. Burghardt, C. M. Dettmer, S. T. Nguyen, C. J. Ellison, J. M. Torkelson, Macromolecules 2008, 41, 5818. – reference: H. Elbs, C. Drummer, V. Abetz, G. Krausch, Macromolecules 2002, 35, 5570. – reference: J. P. A. Fairclough, S. M. Mai, W. Bras, L. Messe, S. C. Turner, A. J. Gleeson, C. Booth, I. W. Hamley, A. J. Ryan, J. Chem. Phys. 2001, 114, 5425. – reference: L. Zhu, P. Huang, W. Y. Chen, Q. Ge, R. P. Quirk, S. Z. D. Cheng, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu, Macromolecules 2002, 35, 3553. – reference: M. Kimura, M. J. Misner, T. Xu, S. H. Kim, T. P. Russell, Langmuir 2003, 19, 9910. – reference: R. A. Segalman, A. Hexemer, E. J. Kramer, Phys. Rev. Lett. 2003, 91, 196101/1; – reference: Y. Xuan, J. Peng, L. Cui, H. Wang, B. Li, Y. Han, Macromolecules 2004, 37, 7301. – reference: C. Luo, W. Huang, Y. Han, Macromol. Rapid Commun. 2009, 22, 1917. – reference: R. A. Segalman, K. E. Schaefer, G. H. Fredrickson, E. J. Kramer, S. Magonov, Macromolecules 2003, 36, 4498. – reference: J. Peng, D. H. Kim, W. Knoll, Y. Xuan, B. Li, Y. Han, J. Chem. Phys. 2006, 125, 064702. – reference: K. Fukunaga, H. Elbs, R. Magerle, G. Krausch, Macromolecules 2000, 33, 947. – reference: G. Kim, M. Libera, Macromolecules 1998, 31, 2670. – reference: G. Reiter, G. Castelein, P. Hoerner, G. Riess, A. Blumen, J. Sommer, Phys. Rev. Lett. 1999, 83, 3844. – reference: V. Olszowka, V. Kuntermann, A. Böker, Macromolecules 2008, 41, 5515. – reference: D. Beattie, K. H. Wong, C. Williams, L. A. Poole-Warren, T. P. Davis, C. Barner-Kowollik, M. H. Stenzel, Biomacromolecules 2006, 7, 1072. – reference: D. E. Angelescu, J. H. Waller, D. A. Adamson, P. Deshpandle, S. Y. Chou, R. A. Register, P. M. Chaikin, Adv. Mater. 2004, 16, 1736. – reference: J. Bang, U. Jeong, D. Yeol, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 1. – reference: A. P. Smith, J. F. Douglas, E. J. Amis, A. Karim, Langmuir 2007, 23, 12380. – reference: W. Zheng, Z. G. Wang, Macromolecules 1996, 28, 7215. – reference: K. Almdal, J. H. Rosedale, F. S. Bates, G. D. Wignall, G. H. Fredrickson, Phys. Rev. Lett. 1990, 65, 1112. – reference: K. S. Park, E. K. Seo, Y. R. Do, K. Kim, M. M. Sung, J. Am. Chem. Soc. 2006, 128, 858. – reference: I. W. Hamley, J. P. A. Fairclough, N. J. Terril, A. J. Ryan, P. M. Lipic, F. S. Bates, E. Town-Andrews, Macromolecules 1996, 29, 8835. – reference: P. J. Flory, J. Chem. Phys. 1941, 9, 660; – reference: H. J. Jung, J. Chang, Y. J. Park, S. J. Kang, B. Lotz, J. Huh, C. Park, Macromolecules 2009, 42, 4148. – reference: L. Rockford, Y. Liu, P. Mansky, T. P. Russell, M. Yoon, S. G. J. Mochrie, Phys. Rev. Lett. 1999, 82, 2602. – reference: L. Leibler, Macromolecules 1980, 13, 1602. – reference: R. A. Segalman, A. Hexemer, E. J. Kramer, Macromolecules 2003, 36, 6831; – reference: A. Alexander-Katz, G. H. Fredrickson, Macromolecules 2007, 40, 4075. – reference: Y. R. Hong, D. H. Adamson, P. M. Chaikin, R. A. Register, Soft Matter 2009, 5, 1687. – reference: J. Zhang, Y. Han, Chem. Soc. Rev. 2010, published online, 10.1039/b816231j, – reference: K. Fukunaga, T. Hashimoto, H. Elbs, G. Krausch, Macromolecules 2002, 35, 4406. – reference: R. A. Segalman, H. Yokoyama, E. J. Kramer, Adv. Mater. 2001, 13, 1152; – reference: M. Stoykovich, M. Müller, S. O. Kim, H. H. Solak, E. W. Edward, J. J. De Pablo, P. F. Nealey, Science 2005, 308, 1442. – reference: S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, P. F. Nealey, Nature 2003, 424, 411. – reference: P. Huang, L. Zhu, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, Macromolecules 2001, 34, 6649. – reference: E. Han, K. O. Stuen, M. Leolukman, C. C. Liu, P. F. Nealey, P. Gopalan, Macromolecules 2009, 42, 4896. – reference: L. Zhu, P. Huang, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, J. C. Wittmann, B. S. Hsiao, F. Yeh, L. Liu, Phys. Rev. Lett. 2001, 86, 6030. – reference: J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 1. – reference: T. Hashimoto, J. Bodycomb, Y. Funaki, K. Kimishima, Macromolecules 1999, 32, 952. – reference: H. C. Kim, C. T. Rettner, L. Sundstrom, Nanotechnology 2008, 19, 235301. – reference: R. Limary, P. F. Green, Macromolecules 1999, 32, 8167. – reference: H. Elbs, K. Fukunaga, R. Stadler, G. Sauer, R. Magerle, G. Krausch, Macromolecules 1999, 32, 1204. – reference: I. W. Hamley, E. L. Hiscutt, Y. W. Yang, C. Booth, J. Colloid Interface Sci. 1999, 209, 255. – reference: J. H. van deer Mere, Faraday Discuss. 1949, 5, 206. – reference: M. J. Fasolka, A. M. Mayes, Annu. Rev. Mater. Res. 2001, 31, 323. – reference: S. Sakurai, Polymer 2008, 49, 2781. – reference: Y. Chen, H. Huang, Z. Hu, T. He, Langmuir 2004, 20, 3805. – reference: J. Bodycomb, Y. Funaki, K. Kimishima, T. Hashimoto, Macromolecules 1999, 32, 2075. – reference: G. Kim, M. Libera, Macromolecules 1998, 31, 2569. – reference: E. V. Rogozhina, J. Werner, H. Kresse, S. A. Kuptsov, R. V. Talroze, Macromolecules 1999, 32, 3379. – reference: L. Zhu, S. Z. D. Cheng, P. Huang, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu, Adv. Mater. 2002, 14, 31. – reference: J. Peng, Y. Wei, H. Wang, B. Li, Y. Han, Macromol. Rapid Commun. 2005, 26, 738. – reference: K. Schmidt, H. G. Schoberth, M. Ruppel, H. Zettl, H. Hänsel, T. M. Weiss, V. Urban, G. Krausch, A. Böker, Nat. Mater. 2008, 7, 142. – reference: K. Mita, H. Tanaka, K. Saijo, M. Takenaka, T. Hashimoto, Macromolecules 2008, 41, 6787. – reference: T. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, Science 1996, 273, 931. – reference: L. Royer, Bull. Soc. Fr. Mineral Crystallogr. 1928, 51, 7. – reference: J. Y. Cheng, C. T. Rettner, D. P. Sanders, H.-C. Kim, W. D. Hinsberg, Adv. Mater. 2008, 20, 3155. – reference: F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32. – reference: S. J. Vanhook, M. F. Schatz, J. B. Swift, W. D. McCormick, J. Fluid Mech. 1997, 345, 45. – reference: C. De Rosa, C. Park, B. Lotz, L. J. Fetters, J. C. Wittmann, E. L. Thomas, Macromolecules 2000, 33, 4871. – reference: "Developments in Block Copolymer Science and Technology", I. W. Hamley, Ed., John Wiley and Sons, 2004; – reference: F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525. – reference: L. Zhu, S. Z. D. Cheng, B. H. Calhoun, Q. Ge, R. P. Quirk, E. L. Thomas, B. S. Hsiao, F. Yeh, J. Am. Chem. Soc. 2000, 122, 5957. – reference: S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, S. O. Kim, Nano Lett. 2009, 6, 2300. – reference: Y. Zhang, U. Wiesner, H. W. Spiess, Macromolecules 1995, 28, 778. – reference: S. M. Park, M. P. Stoykovich, R. Ruiz, Y. Zhang, C. T. Black, P. F. Nealey, Adv. Mater. 2007, 19, 607. – reference: C. Lou, W. Huang, Y. Han, C. Pan, Macromol. Rapid. Commun. 2009, 30, 515. – year: 2009 – volume: 32 start-page: 3379 year: 1999 publication-title: Macromolecules – volume: 127 start-page: 6918 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 65 start-page: 1112 year: 1990 publication-title: Phys. Rev. Lett. – volume: 31 start-page: 323 year: 2001 publication-title: Annu. Rev. Mater. Res. – volume: 34 start-page: 6649 year: 2001 publication-title: Macromolecules – volume: 9 start-page: 440 year: 1941 publication-title: J. Chem. Phys. – volume: 7 start-page: 2789 year: 2007 publication-title: Nano Lett. – volume: 122 start-page: 5957 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 4498 year: 2003 publication-title: Macromolecules – volume: 13 start-page: 1602 year: 1980 publication-title: Macromolecules – volume: 21 start-page: 1 year: 2009 publication-title: Adv. Mater. – volume: 30 start-page: 515 year: 2009 publication-title: Macromol. Rapid. Commun. – volume: 52 start-page: 32 year: 1999 publication-title: Phys. Today – volume: 31 start-page: 2670 year: 1998 publication-title: Macromolecules – volume: 14 start-page: 31 year: 2002 publication-title: Adv. Mater. – volume: 273 start-page: 931 year: 1996 publication-title: Science – volume: 33 start-page: 947 year: 2000 publication-title: Macromolecules – volume: 31 start-page: 2569 year: 1998 publication-title: Macromolecules – volume: 35 start-page: 4406 year: 2002 publication-title: Macromolecules – volume: 120 start-page: 11163 year: 2004 publication-title: J. Chem. Phys. – volume: 83 start-page: 3844 year: 1999 publication-title: Phys. Rev. Lett. – volume: 37 start-page: 7301 year: 2004 publication-title: Macromolecules – volume: 37 start-page: 550 year: 1998 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 778 year: 1995 publication-title: Macromolecules – volume: 40 start-page: 5923 year: 2007 publication-title: Macromolecules – volume: 33 start-page: 4871 year: 2000 publication-title: Macromolecules – volume: 6 start-page: 2300 year: 2009 publication-title: Nano Lett. – volume: 532 start-page: 214 year: 1999 – year: 2004 – volume: 42 start-page: 4148 year: 2009 publication-title: Macromolecules – volume: 32 start-page: 2075 year: 1999 publication-title: Macromolecules – volume: 91 start-page: 196101/1 year: 2003 publication-title: Phys. Rev. Lett. – volume: 22 year: 2009 publication-title: Macromol. Rapid Commun. – volume: 19 start-page: 235301 year: 2008 publication-title: Nanotechnology – volume: 35 start-page: 5570 year: 2002 publication-title: Macromolecules – volume: 5 start-page: 206 year: 1949 publication-title: Faraday Discuss. – volume: 345 start-page: 45 year: 1997 publication-title: J. Fluid Mech. – volume: 424 start-page: 411 year: 2003 publication-title: Nature – volume: 114 start-page: 5425 year: 2001 publication-title: J. Chem. Phys. – volume: 30 start-page: 4995 year: 1997 publication-title: Macromolecules – volume: 32 start-page: 709 year: 2000 publication-title: Annu. Rev. Fluid. Mech. – volume: 28 start-page: 7215 year: 1996 publication-title: Macromolecules – volume: 7 start-page: 142 year: 2008 publication-title: Nat. Mater. – volume: 32 start-page: 8167 year: 1999 publication-title: Macromolecules – volume: 9 start-page: 660 year: 1941 publication-title: J. Chem. Phys. – volume: 40 start-page: 4075 year: 2007 publication-title: Macromolecules – volume: 86 start-page: 6030 year: 2001 publication-title: Phys. Rev. Lett. – volume: 91 start-page: 143106 year: 2007 publication-title: Appl. Phys. Lett. – volume: 29 start-page: 8835 year: 1996 publication-title: Macromolecules – volume: 19 start-page: 607 year: 2007 publication-title: Adv. Mater. – volume: 19 start-page: 9910 year: 2003 publication-title: Langmuir – volume: 6 start-page: 209 year: 1986 publication-title: Encycl. Polym. Sci. Eng. – volume: 82 start-page: 2602 year: 1999 publication-title: Phys. Rev. Lett. – volume: 40 start-page: 458 year: 2007 publication-title: Macromolecules – volume: 36 start-page: 2428 year: 2003 publication-title: Macromolecules – volume: 128 start-page: 858 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1687 year: 2009 publication-title: Soft Matter – volume: 125 start-page: 064702 year: 2006 publication-title: J. Chem. Phys. – volume: 51 start-page: 7 year: 1928 publication-title: Bull. Soc. Fr. Mineral Crystallogr. – volume: 32 start-page: 952 year: 1999 publication-title: Macromolecules – volume: 32 start-page: 1204 year: 1999 publication-title: Macromolecules – volume: 36 start-page: 6831 year: 2003 publication-title: Macromolecules – volume: 13 start-page: 1152 year: 2001 publication-title: Adv. Mater. – volume: 23 start-page: 12380 year: 2007 publication-title: Langmuir – volume: 16 start-page: 226 year: 2004 publication-title: Adv. Mater. – volume: 41 start-page: 6787 year: 2008 publication-title: Macromolecules – year: 2010 publication-title: Chem. Soc. Rev. – volume: 308 start-page: 1442 year: 2005 publication-title: Science – volume: 41 start-page: 5515 year: 2008 publication-title: Macromolecules – volume: 26 start-page: 738 year: 2005 publication-title: Macromol. Rapid Commun. – volume: 20 start-page: 3155 year: 2008 publication-title: Adv. Mater. – volume: 41 start-page: 525 year: 1990 publication-title: Annu. Rev. Phys. Chem. – volume: 41 start-page: 5818 year: 2008 publication-title: Macromolecules – volume: 49 start-page: 2781 year: 2008 publication-title: Polymer – volume: 16 start-page: 1736 year: 2004 publication-title: Adv. Mater. – volume: 35 start-page: 3553 year: 2002 publication-title: Macromolecules – volume: 44 start-page: 6725 year: 2003 publication-title: Polymer – volume: 42 start-page: 4896 year: 2009 publication-title: Macromolecules – volume: 7 start-page: 1072 year: 2006 publication-title: Biomacromolecules – volume: 209 start-page: 255 year: 1999 publication-title: J. Colloid Interface Sci. – volume: 20 start-page: 3805 year: 2004 publication-title: Langmuir – ident: e_1_2_6_96_2 doi: 10.1063/1.1751177 – ident: e_1_2_6_71_2 doi: 10.1021/ja0508929 – ident: e_1_2_6_34_2 doi: 10.1021/ma9619288 – ident: e_1_2_6_77_2 doi: 10.1021/ma00107a015 – ident: e_1_2_6_17_2 doi: 10.1103/PhysRevLett.65.1112 – ident: e_1_2_6_25_2 doi: 10.1021/la701084x – volume: 5 start-page: 206 year: 1949 ident: e_1_2_6_55_2 publication-title: Faraday Discuss. – ident: e_1_2_6_74_2 doi: 10.1038/nature01775 – ident: e_1_2_6_97_2 doi: 10.1021/ma9002903 – ident: e_1_2_6_40_2 doi: 10.1002/adma.200304906 – ident: e_1_2_6_3_2 – ident: e_1_2_6_81_2 doi: 10.1021/ma900422n – ident: e_1_2_6_9_2 doi: 10.1007/978-0-387-77667-5 – ident: e_1_2_6_49_2 doi: 10.1103/PhysRevLett.86.6030 – ident: e_1_2_6_51_2 doi: 10.1002/1521-4095(20020104)14:1<31::AID-ADMA31>3.0.CO;2-3 – ident: e_1_2_6_32_2 doi: 10.1021/ma011889m – ident: e_1_2_6_13_2 doi: 10.1063/1.1750930 – ident: e_1_2_6_14_2 doi: 10.1146/annurev.pc.41.100190.002521 – ident: e_1_2_6_29_2 doi: 10.1021/ma070404c – ident: e_1_2_6_65_2 – ident: e_1_2_6_66_2 doi: 10.1088/0957-4484/19/23/235301 – year: 2010 ident: e_1_2_6_82_2 publication-title: Chem. Soc. Rev. – volume: 22 year: 2009 ident: e_1_2_6_94_2 publication-title: Macromol. Rapid Commun. – ident: e_1_2_6_90_2 doi: 10.1063/1.882522 – ident: e_1_2_6_62_2 doi: 10.1021/ma025879c – ident: e_1_2_6_48_2 doi: 10.1021/ma010671x – ident: e_1_2_6_22_2 doi: 10.1021/ma9906074 – ident: e_1_2_6_89_2 doi: 10.1021/ma0497761 – ident: e_1_2_6_33_2 doi: 10.1021/ma981321m – ident: e_1_2_6_43_2 doi: 10.1016/j.polymer.2003.08.011 – ident: e_1_2_6_10_2 doi: 10.1021/ma981925q – ident: e_1_2_6_69_2 doi: 10.1017/S0022112097006101 – ident: e_1_2_6_57_2 doi: 10.1021/ma992132m – ident: e_1_2_6_27_2 doi: 10.1021/ma981538g – ident: e_1_2_6_12_2 doi: 10.1063/1.1750971 – ident: e_1_2_6_95_2 – ident: e_1_2_6_73_2 doi: 10.1103/PhysRevLett.82.2602 – ident: e_1_2_6_93_2 doi: 10.1002/marc.200800675 – ident: e_1_2_6_16_2 doi: 10.1021/ma070005h – ident: e_1_2_6_84_2 doi: 10.1038/nmat2068 – ident: e_1_2_6_75_2 doi: 10.1126/science.1111041 – ident: e_1_2_6_80_2 doi: 10.1039/b820312a – ident: e_1_2_6_47_2 doi: 10.1021/ja000275e – ident: e_1_2_6_85_2 doi: 10.1021/ma800848b – ident: e_1_2_6_53_2 doi: 10.1103/PhysRevLett.83.3844 – ident: e_1_2_6_42_2 – volume: 21 start-page: 1 year: 2009 ident: e_1_2_6_44_2 publication-title: Adv. Mater. – ident: e_1_2_6_46_2 doi: 10.1063/1.1344605 – ident: e_1_2_6_4_2 – ident: e_1_2_6_31_2 doi: 10.1021/ma9910639 – ident: e_1_2_6_8_2 doi: 10.1021/bm050858m – ident: e_1_2_6_50_2 doi: 10.1021/ma012184n – ident: e_1_2_6_58_2 – ident: e_1_2_6_83_2 doi: 10.1126/science.273.5277.931 – ident: e_1_2_6_52_2 doi: 10.1006/jcis.1998.5820 – ident: e_1_2_6_91_2 doi: 10.1021/ma00125a026 – ident: e_1_2_6_60_2 doi: 10.1103/PhysRevLett.91.196101 – ident: e_1_2_6_2_2 doi: 10.1021/ja055377p – ident: e_1_2_6_41_2 doi: 10.1063/1.2219446 – ident: e_1_2_6_59_2 doi: 10.1002/1521-4095(200108)13:15<1152::AID-ADMA1152>3.0.CO;2-5 – ident: e_1_2_6_39_2 doi: 10.1021/ma9714070 – volume: 6 start-page: 209 year: 1986 ident: e_1_2_6_56_2 publication-title: Encycl. Polym. Sci. Eng. – start-page: 214 volume-title: Lecture Notes in Physics year: 1999 ident: e_1_2_6_78_2 – volume: 21 start-page: 1 year: 2009 ident: e_1_2_6_7_2 publication-title: Adv. Mater. – ident: e_1_2_6_23_2 doi: 10.1002/1521-4095(200108)13:16<1217::AID-ADMA1217>3.0.CO;2-D – ident: e_1_2_6_15_2 doi: 10.1002/1521-4095(200108)13:16<1217::AID-ADMA1217>3.0.CO;2-D – ident: e_1_2_6_26_2 doi: 10.1021/ma981249s – ident: e_1_2_6_87_2 doi: 10.1063/1.1751177 – ident: e_1_2_6_11_2 – ident: e_1_2_6_28_2 doi: 10.1021/nl071354s – ident: e_1_2_6_37_2 doi: 10.1021/la0360815 – ident: e_1_2_6_64_2 doi: 10.1063/1.2791003 – volume: 51 start-page: 7 year: 1928 ident: e_1_2_6_54_2 publication-title: Bull. Soc. Fr. Mineral Crystallogr. – ident: e_1_2_6_61_2 doi: 10.1021/ma0257696 – ident: e_1_2_6_21_2 doi: 10.1146/annurev.matsci.31.1.323 – ident: e_1_2_6_24_2 doi: 10.1021/ma070005h – ident: e_1_2_6_5_2 – ident: e_1_2_6_36_2 doi: 10.1021/ma0212792 – ident: e_1_2_6_38_2 doi: 10.1021/ma971349i – ident: e_1_2_6_35_2 doi: 10.1021/ma011734e – ident: e_1_2_6_67_2 doi: 10.1021/nl9004833 – ident: e_1_2_6_19_2 doi: 10.1021/ma8009454 – ident: e_1_2_6_68_2 doi: 10.1146/annurev.fluid.32.1.709 – ident: e_1_2_6_1_2 doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G – ident: e_1_2_6_20_2 doi: 10.1021/ma062456s – ident: e_1_2_6_86_2 doi: 10.1016/j.polymer.2008.03.020 – ident: e_1_2_6_18_2 doi: 10.1063/1.882522 – ident: e_1_2_6_6_2 doi: 10.1002/0470093943 – ident: e_1_2_6_63_2 doi: 10.1002/adma.200601421 – ident: e_1_2_6_88_2 doi: 10.1002/marc.200400665 – ident: e_1_2_6_76_2 doi: 10.1002/adma.200800826 – ident: e_1_2_6_72_2 doi: 10.1002/adma.200304906 – ident: e_1_2_6_45_2 doi: 10.1021/ma960343a – ident: e_1_2_6_30_2 doi: 10.1021/ma800361d – ident: e_1_2_6_79_2 doi: 10.1002/adma.200400643 – ident: e_1_2_6_92_2 doi: 10.1021/ma011734e – ident: e_1_2_6_70_2 doi: 10.1021/la0351360 |
SSID | ssj0008402 |
Score | 2.1464179 |
Snippet | Today, high‐ordered micro‐ and nano‐patterned surfaces are widely used in many areas, such as in the preparation of super‐thin dielectric films, photonic... Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 591 |
SubjectTerms | Applied sciences Arrays Block copolymers Exact sciences and technology lithography microphase separation Nanocomposites nanoheterogeneity Nanomaterials Nanostructure Organic polymers Photolithography Physicochemistry of polymers Properties and characterization Separation Structure, morphology and analysis Thin films |
Title | Microphase Separation of Block Copolymer Thin Films |
URI | https://api.istex.fr/ark:/67375/WNG-9FD9Q62V-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.200900541 https://www.ncbi.nlm.nih.gov/pubmed/21590947 https://www.proquest.com/docview/1671246786 https://www.proquest.com/docview/867721088 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoAL5U0KVEFCcEobO46THMvCUiFtJRYKvVm2Y4tq22y1D6n013cm3mRZRIUEx0hjWTMee76Jx98AvM5SLys8AxLuCpsIXWRJ6ZlEIOczJ5goUkNvh0dH8vBYfDrJT355xR_4IfofbrQz2vOaNrg28_01aShRPbSP9wh1UP5DBVuEisZr_ijMXsJ1J2ZcmIzJjrUx5fubwzei0m0y8CVVSeo5GsqHDhd_gqCbiLYNScNt0J0yoRJlsrdcmD179RvP4_9oex_urfBqfBAc7AHccs1DuDPo2sQ9gmxEJX0XPzAaxl9cYBKfNvHUx-8wTk7iAXVh-HnuZjG1CI2Hp2fn88dwPPzwdXCYrDoxJBYBGaMwVjrnXZX6XDpRS7q7sak1tUd07qxnxtaGibrgZc0KUzA8Jjivyyq3hTM2ewJbzbRxzyDmXte5lcIzXQqBnoCAytuc21I7b7I6gqRbCWVXNOXULeNMBYJlrsgUqjdFBG97-YtA0HGj5Jt2YXsxPZtQWVuRq-9HH1U1fF99lvybGkewu7Hy_QBUiuCziOBV5woKrU1XLLpx0-VcMYmqY-wpZQTxDTLEIIiJdllG8DS40XoCBJeYbxcR8NYZ_qKRGh2MB_3Xzr8Meg53Qz2ESFL5ArYWs6V7iTBrYXbbrXQNoRoceg |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h7WG8AOMzwEaQEDxlix3HSR63jlJgrUTZgDcrdmyBuqVTPyTgr-cublIVMSHBY6Szojuffb-zz78DeJHETha4B0TcZiYSZZZEuWMSgZxLrGAiizW9HR6O5OBcvPuSttWE9BbG80N0B260Mpr9mhY4HUgfrllDieuheb1HsAMToG1q691kVeM1gxTmL_7CE3MuTMdky9sY88PN8RtxaZtM_J3qJMs5msr5Hhd_AqGbmLYJSv3boFt1fC3K5GC50Afm529Mj_-l7x24tYKs4ZH3sV24Yeu7sNNrO8Xdg2RIVX1XXzEghh-tJxOf1uHUhccYKidhjxox_Li0s5C6hIb9bxeX8_tw3n991htEq2YMkUFMxiiS5dY6W8QulVZUkq5vTGx05RCgW-OYNpVmosp4XrFMZwx3Cs6rvEhNZrVJHsBWPa3tIwi5K6vUSOFYmQuBzoCYypmUm7y0TidVAFE7FcqsmMqpYcaF8hzLXJEpVGeKAF518leeo-NayZfNzHZi5WxClW1Zqj6P3qiif1J8kPyTGgewvzH13QBUihC0COB56wsKrU23LGVtp8u5YhJVx_CTywDCa2SIRBBz7TwP4KH3o_UPEF9iyp0FwBtv-ItGang07nVfj_9l0DPYGZwNT9Xp29H7J3DTl0eIKJZPYWsxW9o9RF0Lvd-sq19iNiCV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hTQJeYHwHxggSgqdsieM4zuPWEsZHKygM9mYlji1Qt7TqhwT89buLm5QiJiR4jHSWdeez73fx-XcAz-LQigzPgICZVAe8SONA2kggkLOx4RFPw5LeDg-G4viEvzlNTn95xe_4IbofbrQzmvOaNvi0sgdr0lCiemge7xHqwPxnm4tQkl_3R2sCKUxf3H0nplyYjYmWtjFkB5vjN8LSNln4O5VJFnO0lHUtLv6EQTchbROT8ptQtNq4UpTx_nJR7uufvxE9_o-6O3BjBVj9Q-dht-CKqW_DtV7bJ-4OxAOq6Zt-xXDofzSOSnxS-xPrH2GgHPs9asPw49zMfOoR6uffzs7nd-Ekf_mpdxysWjEEGhFZRHFMGmNNFtpEGF4JurzRoS4ri_DcaBuVuiojXqVMVlFaphGeE4xVMkt0akod34OtelKbB-AzW1SJFtxGheQcXQERldUJ07IwtowrD4J2JZRe8ZRTu4wz5RiWmSJTqM4UHrzo5KeOoeNSyefNwnZixWxMdW1por4MX6ks72cfBPusRh7sbax8NwCVIvzMPXjauoJCa9MdS1GbyXKuIoGqY_CRwgP_EhmiEMRMW0oP7js3Wk-A6BIT7tQD1jjDXzRSg8NRr_t6-C-DnsDV9_1cvXs9fPsIrrvaCB6EYhe2FrOleYyQa1HuNbvqAvt9H00 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microphase+separation+of+block+copolymer+thin+films&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Zhang%2C+Jilin&rft.au=Yu%2C+Xinhong&rft.au=Yang%2C+Ping&rft.au=Peng%2C+Juan&rft.date=2010-04-06&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=31&rft.issue=7&rft.spage=591&rft_id=info:doi/10.1002%2Fmarc.200900541&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |