Seasonal variation in nitrogen fixation and effects of climate change in a subarctic heath
Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen-and legume-associated N₂ fixation was studied with high frequency (e...
Saved in:
Published in | Plant and soil Vol. 379; no. 1/2; pp. 193 - 204 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer
01.06.2014
Springer International Publishing Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen-and legume-associated N₂ fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N₂ to a subarctic heath with an altered climate. Methods We estimated N₂ fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long-vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). Results N₂ fixation activity was measured from late April to mid November and 33 % of all N₂ was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of N₂ fixation in the cold period. Wanning increased N₂ fixation two-to fivefold during late spring. However, longterm summer warming tended to decrease N₂ fixation outside the treatment (tents present) period. Litter alone did not alter N₂ fixation but in combination with warming N₂ fixation increased, probably because N₂ fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. Conclusion In subarctic heath, the current N₂ fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N₂ fixation in different directions and thereby complicate predictions of future N cycling. |
---|---|
AbstractList | BACKGROUND AND AIMS: Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N₂ fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N₂ to a subarctic heath with an altered climate. METHODS: We estimated N₂ fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). RESULTS: N₂ fixation activity was measured from late April to mid November and 33 % of all N₂ was fixed outside the vascular plant growing season (Jun–Aug). This substantial amount underlines the importance of N₂ fixation in the cold period. Warming increased N₂ fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N₂ fixation outside the treatment (tents present) period. Litter alone did not alter N₂ fixation but in combination with warming N₂ fixation increased, probably because N₂ fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. CONCLUSION: In subarctic heath, the current N₂ fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N₂ fixation in different directions and thereby complicate predictions of future N cycling. Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N 2 fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N 2 to a subarctic heath with an altered climate. Methods We estimated N 2 fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). Results N 2 fixation activity was measured from late April to mid November and 33 % of all N 2 was fixed outside the vascular plant growing season (Jun–Aug). This substantial amount underlines the importance of N 2 fixation in the cold period. Warming increased N 2 fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N 2 fixation outside the treatment (tents present) period. Litter alone did not alter N 2 fixation but in combination with warming N 2 fixation increased, probably because N 2 fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. Conclusion In subarctic heath, the current N 2 fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N 2 fixation in different directions and thereby complicate predictions of future N cycling. Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N-2 fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N-2 to a subarctic heath with an altered climate. We estimated N-2 fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). N-2 fixation activity was measured from late April to mid November and 33 % of all N-2 was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of N-2 fixation in the cold period. Warming increased N-2 fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N-2 fixation outside the treatment (tents present) period. Litter alone did not alter N-2 fixation but in combination with warming N-2 fixation increased, probably because N-2 fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. In subarctic heath, the current N-2 fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N-2 fixation in different directions and thereby complicate predictions of future N cycling. Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen-and legume-associated N₂ fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N₂ to a subarctic heath with an altered climate. Methods We estimated N₂ fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long-vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). Results N₂ fixation activity was measured from late April to mid November and 33 % of all N₂ was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of N₂ fixation in the cold period. Wanning increased N₂ fixation two-to fivefold during late spring. However, longterm summer warming tended to decrease N₂ fixation outside the treatment (tents present) period. Litter alone did not alter N₂ fixation but in combination with warming N₂ fixation increased, probably because N₂ fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. Conclusion In subarctic heath, the current N₂ fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N₂ fixation in different directions and thereby complicate predictions of future N cycling. Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N2 fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N2 to a subarctic heath with an altered climate. We estimated N2 fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). N2 fixation activity was measured from late April to mid November and 33 % of all N2 was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of N2 fixation in the cold period. Warming increased N2 fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N2 fixation outside the treatment (tents present) period. Litter alone did not alter N2 fixation but in combination with warming N2 fixation increased, probably because N2 fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. In subarctic heath, the current N2 fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N2 fixation in different directions and thereby complicate predictions of future N cycling.[PUBLICATION ABSTRACT] Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and sub-arctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated [N.sub.2] fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric [N.sub.2] to a subarctic heath with an altered climate. Methods We estimated [N.sub.2] fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). Results [N.sub.2] fixation activity was measured from late April to mid November and 33 % of all [N.sub.2] was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of [N.sub.2] fixation in the cold period. Warming increased [N.sub.2] fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease [N.sub.2] fixation outside the treatment (tents present) period. Litter alone did not alter [N.sub.2] fixation but in combination with warming [N.sub.2] fixation increased, probably because [N.sub.2] fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. Conclusion In subarctic heath, the current [N.sub.2] fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of [N.sub.2] fixation in different directions and thereby complicate predictions of future N cycling. Keywords Bryophytes * Global change * Lichens * Litter addition * Long- vs. short-term warming * Nitrogen and phosphorus * Plant cover Background and aims: Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N sub(2) fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N sub(2) to a subarctic heath with an altered climate. Methods: We estimated N sub(2) fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). Results: N sub(2) fixation activity was measured from late April to mid November and 33 % of all N sub(2) was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of N sub(2) fixation in the cold period. Warming increased N sub(2) fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N sub(2) fixation outside the treatment (tents present) period. Litter alone did not alter N sub(2) fixation but in combination with warming N sub(2) fixation increased, probably because N sub(2) fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. Conclusion: In subarctic heath, the current N sub(2) fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N sub(2) fixation in different directions and thereby complicate predictions of future N cycling. |
Audience | Academic |
Author | Michelsen, Anders Lett, Signe |
Author_xml | – sequence: 1 givenname: Signe surname: Lett fullname: Lett, Signe – sequence: 2 givenname: Anders surname: Michelsen fullname: Michelsen, Anders |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28600521$$DView record in Pascal Francis https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-89455$$DView record from Swedish Publication Index |
BookMark | eNqFksuKFDEUhoOMYM_oA7gQCkRwYY25VqqWzXiFARcOIm7CqVTSnaY6aZOU2m9vymoHmcVIFuEcvv_cz9GZD94g9JTgS4KxfJ0IIZjXmPCaYkbq4wO0IkKyWmDWnKEVxozWWHZfH6HzlHZ4tkmzQt8-G0jBw1j9gOggu-Ar5yvvcgwb4yvrfi1O8ENlrDU6pyrYSo9uD9lUegt-Y2YJVGnqIersdLU1kLeP0UMLYzJPTv8Funn39ubqQ3396f3Hq_V1rQXBuYZBDLgVouksAdl1XDApe26gsaYhQKXmuhEt9F1LAEg_GAa6gUF2nLJiXKBXS9j00xymXh1iqSweVQCn3rgvaxXiRk37SbUltCj4ywU_xPB9MimrvUvajCN4E6akaBlNKYdg9l-UCMo5bmmDC_r8DroLUyxjnSnS8Q43sivU5UJtYDTKeRtyBF3eYPZOl4VaV_xrJikVjLC5ghensJA0jDaC1y7dtkjbBmNBSeHkwukYUorGKu3yn72VBG5UBKv5StRyJapciZqvRB2LktxR_g1-n4aeJl7Ysv34T7P3iJ4tol3KId5m4bQTtKWc_QYl8dms |
CODEN | PLSOA2 |
CitedBy_id | crossref_primary_10_1007_s10021_018_0239_z crossref_primary_10_1007_s11104_019_04282_9 crossref_primary_10_1088_1748_9326_ab57b1 crossref_primary_10_1007_s11104_014_2356_6 crossref_primary_10_1080_17429145_2021_2002955 crossref_primary_10_1111_gcb_13418 crossref_primary_10_1111_gcb_14705 crossref_primary_10_1007_s10021_018_0256_y crossref_primary_10_1002_ecy_70016 crossref_primary_10_1007_s10533_017_0393_y crossref_primary_10_1080_02757540_2017_1332188 crossref_primary_10_1007_s10533_018_0441_2 crossref_primary_10_1029_2021JG006688 crossref_primary_10_1186_s13568_018_0607_2 crossref_primary_10_1002_2017JG003782 crossref_primary_10_1139_as_2020_0057 crossref_primary_10_1038_s41467_022_32001_z crossref_primary_10_1007_s00253_019_10235_0 crossref_primary_10_1016_j_soilbio_2017_11_026 crossref_primary_10_1007_s11104_021_05245_9 crossref_primary_10_1111_gcb_12953 crossref_primary_10_1111_gcb_14935 crossref_primary_10_1111_1365_2435_13113 crossref_primary_10_1007_s11104_020_04695_x crossref_primary_10_1007_s10021_020_00534_3 crossref_primary_10_1016_j_scitotenv_2021_148676 crossref_primary_10_1657_1938_4246_46_4_829 crossref_primary_10_1139_as_2021_0053 crossref_primary_10_5194_bg_17_3643_2020 crossref_primary_10_1007_s10021_018_0323_4 crossref_primary_10_1657_AAAR0016_014 crossref_primary_10_1007_s00248_014_0534_y crossref_primary_10_1111_jac_12754 |
Cites_doi | 10.1007/BF02388733 10.2307/1551994 10.1111/j.1461-0248.2011.01716.x 10.1111/j.1365-2745.2001.00625.x 10.1139/m83-150 10.1007/s11104-010-0374-6 10.1657/1938-4246-41.2.164 10.1139/X09-160 10.2307/1552487 10.2307/1550250 10.1007/s11258-008-9527-6 10.1007/s10533-010-9426-5 10.1034/j.1600-0587.2001.240102.x 10.1007/s11258-012-0034-4 10.1111/j.1469-8137.2012.04071.x 10.1007/978-3-642-56475-8_19 10.1007/s11104-011-0750-x 10.1890/04-0461 10.1111/j.1365-2486.2007.01370.x 10.1126/science.1154836 10.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2 10.1890/09-0709.1 10.1098/rsbl.2012.0429 10.1139/w98-219 10.1007/s00442-009-1299-8 10.1093/jxb/eri309 10.2307/3565988 10.1657/1938-4246-43.2.267 10.1023/A:1019642007929 10.1016/S0929-1393(98)00145-0 10.1016/j.soilbio.2004.02.023 10.1093/oso/9780198542919.003.0003 10.1016/0038-0717(73)90093-X 10.1016/j.envexpbot.2012.12.006 10.1007/s10021-008-9204-6 10.1111/j.1365-2486.2006.01184.x 10.1093/aob/mcm030 10.1016/0038-0717(83)90071-8 10.1657/1523-0430(2006)38[263:NFDAEN]2.0.CO;2 10.1016/j.apsoil.2007.12.014 10.1038/nature01051 10.1111/j.1365-2435.2007.01331.x |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2014 Springer International Publishing Switzerland 2014 2015 INIST-CNRS COPYRIGHT 2014 Springer |
Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: Springer International Publishing Switzerland 2014 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2014 Springer |
DBID | AAYXX CITATION IQODW 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7U6 7S9 L.6 ADTPV AOWAS D93 |
DOI | 10.1007/s11104-014-2031-y |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Umeå universitet |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database Ecology Abstracts |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 204 |
ExternalDocumentID | oai_DiVA_org_umu_89455 3287720951 A372253133 28600521 10_1007_s11104_014_2031_y 42952824 |
Genre | Feature |
GeographicLocations | Denmark PN, Arctic |
GeographicLocations_xml | – name: Denmark – name: PN, Arctic |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~F 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEBTG AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PUEGO Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A AARHV ABQSL ACKIV ADINQ ADYPR AEFIE AFEXP AFFNX AGGDS AHAVH AIDBO BBWZM CAG COF EN4 GQ6 JSODD KOW M0L NDZJH OVD R4E RNI RZC RZE RZK S1Z S26 S28 SBY SCLPG T16 TEORI WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AFOHR CITATION IQODW AEIIB PMFND 7SN 7ST 7T7 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7U6 7S9 L.6 ADTPV AOWAS D93 |
ID | FETCH-LOGICAL-c510t-ad5d085569f1a79945377b4ea6fe61a27c4c658ab981aa1bde3ac6ad79423de3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X 1573-5036 |
IngestDate | Thu Aug 21 06:56:04 EDT 2025 Fri Jul 11 02:35:02 EDT 2025 Thu Jul 10 19:27:13 EDT 2025 Sat Aug 16 22:22:56 EDT 2025 Tue Jun 10 20:50:36 EDT 2025 Wed Apr 02 07:17:40 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Tue Jul 01 00:58:52 EDT 2025 Fri Feb 21 02:33:34 EST 2025 Sun Aug 24 12:10:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Lichens Long- vs. short-term warming Global change Nitrogen and phosphorus Plant cover Litter addition Bryophytes Short term Time variation Fungi Seasonal variation Nitrogen fixation Warming Heathland and moor Vegetals Addition Litter Bryophyta Phosphorus Subpolar zone Nitrogen Dynamical climatology Climate change Lichenes Soil plant relation |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c510t-ad5d085569f1a79945377b4ea6fe61a27c4c658ab981aa1bde3ac6ad79423de3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1519490679 |
PQPubID | 54098 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_DiVA_org_umu_89455 proquest_miscellaneous_2000085103 proquest_miscellaneous_1524408260 proquest_journals_1519490679 gale_infotracacademiconefile_A372253133 pascalfrancis_primary_28600521 crossref_citationtrail_10_1007_s11104_014_2031_y crossref_primary_10_1007_s11104_014_2031_y springer_journals_10_1007_s11104_014_2031_y jstor_primary_42952824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2014 |
Publisher | Springer Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer International Publishing – name: Springer Nature B.V |
References | CornelissenJHCLangSISoudzilovskaiaNADuringHJComparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistryAnn Bot20079998710011:CAS:528:DC%2BD2sXnt1altbo%3D28029181735320510.1093/aob/mcm030 HardyRWFBurnsRCHolstenRDApplications of the acetylene-ethylene assay for measurement of nitrogen fixationSoil Biol Biochem1973547811:CAS:528:DyaE3sXotFKjsQ%3D%3D10.1016/0038-0717(73)90093-X DeLucaTHZackrissonOGundaleMJNilssonM-CEcosystem feedbacks and nitrogen fixation in boreal forestsScience2008320118111811:CAS:528:DC%2BD1cXmt1Oju7k%3D1851168210.1126/science.1154836 Liengen T, Olsen RA (1997) Nitrogen fixation by free-living cyanobacteria from different coastal sites in a high arctic tundra. Spitsbergen Arct Alp Res 470–477 GragliaEJonassonSMichelsenAEffects of environmental perturbations on abundance of subarctic plants after three, seven and ten years of treatmentsEcography20012451210.1034/j.1600-0587.2001.240102.x LagerströmANilssonMCZackrissonOWardleDAEcosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogressionFunct Ecol2007211027103310.1111/j.1365-2435.2007.01331.x BelnapJFactors influencing nitrogen fixation and nitrogen release in biological soil crustsEcol Stud200115024126210.1007/978-3-642-56475-8_19 GundaleMJGustafssonHNilssonMCThe sensitivity of nitrogen fixation by a feathermoss-cyanobacteria association to litter and moisture variability in young and old boreal forestsCan J For Res200939254225491:CAS:528:DC%2BC3cXisVWnug%3D%3D10.1139/X09-160 AlexanderVSchellDMSeasonal and spatial variation of nitrogen fixation in the Barrow, Alaska, tundraArct Alp Res1973577881:CAS:528:DyaE3sXksFahtrk%3D10.2307/1550250 Longton RE (1997) The role of bryophytes and lichens in polar ecosystems. Ecol. Arct. Environ. 13th Spec. Symp. Br. Ecol. Soc. Cambridge University Press, pp 69–96. SorensenPLMichelsenAJonassonSNitrogen uptake during one year in subarctic plant functional groups and in microbes after long-term warming and fertilizationEcosystems200811122312331:CAS:528:DC%2BD1cXhtlOksLjL10.1007/s10021-008-9204-6 Karlsson GP, Karlsson PE, Kronnäs V, Hellsten S (2011) Krondroppsnätets övervakning av luftföroreningar i norra Sverige–mätningar och modellering. Svenska Miljöinstitut IVL rapport B. DeLucaTHZackrissonONilssonMCSellstedtAQuantifying nitrogen-fixation in feather moss carpets of boreal forestsNature20024199179201:CAS:528:DC%2BD38Xot1Kltb0%3D1241030810.1038/nature01051 SchmidtIKJonassonSShaverGMineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warmingPlant Soil2002242931061:CAS:528:DC%2BD38XlvFSqu70%3D10.1023/A:1019642007929 JonassonSCastroJMichelsenALitter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in arctic mesocosmsSoil Biol Biochem200436112911391:CAS:528:DC%2BD2cXltVKiu7k%3D10.1016/j.soilbio.2004.02.023 GundaleMJNilssonMBansalSJäderlundAThe interactive effects of temperature and light on biological nitrogen fixation in boreal forestsNew Phytol20121944534631:CAS:528:DC%2BC38XmsFChsbs%3D2232974610.1111/j.1469-8137.2012.04071.x RinnanRMichelsenAJonassonSEffects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystemAppl Soil Ecol20083927128110.1016/j.apsoil.2007.12.014 SorensenPLJonassonSMichelsenANitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the SubarcticArct Antarct Alp Res20063826327210.1657/1523-0430(2006)38[263:NFDAEN]2.0.CO;2 GundaleMJWardleDANilssonMCVascular plant removal effects on biological N fixation vary across a boreal forest island gradientEcology201091170417142058371210.1890/09-0709.1 SolheimBEndalAVigstadHNitrogen fixation in Arctic vegetation and soils from Svalbard, NorwayPolar Biol199616354010.1007/BF02388733 ZackrissonODeLucaTHNilssonMCNitrogen fixation increases with successional age in boreal forestsEcology2004853327333410.1890/04-0461 SorensenPLLettSMichelsenAMoss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer additionPlant Ecol201221369570610.1007/s11258-012-0034-4 CampioliMSamsonRMichelsenANonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing seasonPlant Ecol2009202415310.1007/s11258-008-9527-6 StewartKJLambEGCoxsonDSSicilianoSDBryophyte-cyanobacterial associations as a key factor in N2-fixation across the Canadian ArcticPlant Soil20113443353461:CAS:528:DC%2BC3MXnsVCjtLg%3D10.1007/s11104-011-0750-x GentiliFNilssonMCZackrissonOPhysiological and molecular diversity of feather moss associative N2-fixing cyanobacteriaJ Exp Bot20055631211:CAS:528:DC%2BD2MXht1GlsbbJ1626390810.1093/jxb/eri309 Sveinbjørnsson B, Oechel WC (1992) Controls on growth and productivity of bryophytes: environmental limitations under current and anticipated conditions, In: Bryophyt. Chang. Environ. Clarendon Press, pp 77–102 ZackrissonODeLucaTHGentiliFNitrogen fixation in mixed Hylocomium splendens moss communitiesOecologia20091603093191:STN:280:DC%2BD1MzjsFGhuw%3D%3D1925293210.1007/s00442-009-1299-8 ZielkeMSolheimBSpjelkavikSOlsenRANitrogen fixation in the high arctic: Role of vegetation and environmental conditionsArct Antarct Alp Res20053737237810.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2 JonassonSEvaluation of the point intercept method for the estimation of plant biomassOikos19885210110610.2307/3565988 CoxsonDSKershawKANitrogenase activity during chinook snowmelt sequences by Nostoc commune in Stipa–Bouteloa grasslandCan J Microbiol1983299389441:CAS:528:DyaL3sXlsFCqu7k%3D10.1139/m83-150 GavazovKSoudzilovskaiaNvan LogtestijnRIsotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte speciesPlant Soil20103335075171:CAS:528:DC%2BC3cXovFCjtbc%3D10.1007/s11104-010-0374-6 LeppänenSMSalemaaMSmolanderANitrogen fixation and methanotrophy in forest mosses along a N deposition gradientEnviron Exp Bot201390626910.1016/j.envexpbot.2012.12.006 ElmendorfSCHenryGHRHollisterRDGlobal assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and timeEcol Lett2012151641752213667010.1111/j.1461-0248.2011.01716.x ZielkeMEkkerASOlsenRAThe Influence of Abiotic Factors on Biological Nitrogen Fixation in Different Types of Vegetation in the High Arctic, SvalbardArct Antarct Alp Res20024329329910.2307/1552487 ArndalMFIllerisLMichelsenASeasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation typesArct Antarct Alp Res20094116417310.1657/1938-4246-41.2.164 JonassonSMichelsenASchmidtIKCoupling of nutrient cycling and carbon dynamics in the Arctic, integration of soil microbial and plant processesAppl Soil Ecol19991113514610.1016/S0929-1393(98)00145-0 BuckeridgeKMGroganPDeepened snow increases late thaw biogeochemical pulses in mesic low arctic tundraBiogeochemistry201010110512110.1007/s10533-010-9426-5 Christensen JH, Hewitson B, Busuioc A, et al. (2007) Regional climate projections. In: Clim. Change 2007 Phys. Sci. Basis Contrib. Work. Group Fourth Assess. Rep. Intergov. Panel Clim. Change Univ. Press Camb. Chapter 11. NohrstedtHÖConversion factor between acetylene reduction and nitrogen fixation in soil: effect of water content and nitrogenase activitySoil Biol Biochem1983152752791:CAS:528:DyaL28XoslGktw%3D%3D10.1016/0038-0717(83)90071-8 CornelissenJHCCallaghanTVAlataloJMGlobal change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?J Ecol20018998499410.1111/j.1365-2745.2001.00625.x Sorensen PL, Michelsen A (2011) Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Glob Change Biol 17 StewartKJCoxsonDGroganPNitrogen inputs by associative cyanobacteria across a low arctic tundra landscapeArct Antarct Alp Res20114326727810.1657/1938-4246-43.2.267 ACIAArctic climate impact assessment2005CambridgeCambridge University Press GroganPJonassonSEcosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation typeGlob Change Biol2006121479149510.1111/j.1365-2486.2006.01184.x LiengenTConversion factor between acetylene reduction and nitrogen fixation in free-living cyanobacteria from high arctic habitatsCan J Microbiol1999452232291:CAS:528:DyaK1MXktlGis7k%3D10.1139/w98-219 LindoZNilssonM-CGundaleMJBryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global changeGlob Change Biol2013 LarsenKSIbromAJonassonSSignificance of cold-season respiration and photosynthesis in a subarctic heath ecosystem in Northern SwedenGlob Change Biol2007131498150810.1111/j.1365-2486.2007.01370.x Gundale MJ, Wardle DA, Nilsson M-C (2012) The effect of altered macroclimate on N-fixation by boreal feather mosses. Biol. Lett. PL Sorensen (2031_CR41) 2008; 11 HÖ Nohrstedt (2031_CR34) 1983; 15 KJ Stewart (2031_CR42) 2011; 43 2031_CR40 A Lagerström (2031_CR27) 2007; 21 PL Sorensen (2031_CR39) 2012; 213 Z Lindo (2031_CR32) 2013 R Rinnan (2031_CR35) 2008; 39 K Gavazov (2031_CR14) 2010; 333 KM Buckeridge (2031_CR5) 2010; 101 2031_CR7 PL Sorensen (2031_CR38) 2006; 38 TH DeLuca (2031_CR11) 2008; 320 V Alexander (2031_CR2) 1973; 5 O Zackrisson (2031_CR46) 2004; 85 TH DeLuca (2031_CR12) 2002; 419 F Gentili (2031_CR15) 2005; 56 M Zielke (2031_CR47) 2002; 43 MJ Gundale (2031_CR19) 2012; 194 JHC Cornelissen (2031_CR8) 2001; 89 J Belnap (2031_CR4) 2001; 150 2031_CR44 2031_CR20 2031_CR26 E Graglia (2031_CR16) 2001; 24 KS Larsen (2031_CR28) 2007; 13 S Jonasson (2031_CR25) 1999; 11 T Liengen (2031_CR30) 1999; 45 SC Elmendorf (2031_CR13) 2012; 15 M Campioli (2031_CR6) 2009; 202 S Jonasson (2031_CR24) 2004; 36 B Solheim (2031_CR37) 1996; 16 KJ Stewart (2031_CR43) 2011; 344 MF Arndal (2031_CR3) 2009; 41 O Zackrisson (2031_CR45) 2009; 160 RWF Hardy (2031_CR22) 1973; 5 P Grogan (2031_CR17) 2006; 12 M Zielke (2031_CR48) 2005; 37 IK Schmidt (2031_CR36) 2002; 242 DS Coxson (2031_CR10) 1983; 29 S Jonasson (2031_CR23) 1988; 52 MJ Gundale (2031_CR21) 2010; 91 SM Leppänen (2031_CR29) 2013; 90 2031_CR33 JHC Cornelissen (2031_CR9) 2007; 99 2031_CR31 ACIA (2031_CR1) 2005 MJ Gundale (2031_CR18) 2009; 39 |
References_xml | – reference: GundaleMJWardleDANilssonMCVascular plant removal effects on biological N fixation vary across a boreal forest island gradientEcology201091170417142058371210.1890/09-0709.1 – reference: DeLucaTHZackrissonONilssonMCSellstedtAQuantifying nitrogen-fixation in feather moss carpets of boreal forestsNature20024199179201:CAS:528:DC%2BD38Xot1Kltb0%3D1241030810.1038/nature01051 – reference: SorensenPLMichelsenAJonassonSNitrogen uptake during one year in subarctic plant functional groups and in microbes after long-term warming and fertilizationEcosystems200811122312331:CAS:528:DC%2BD1cXhtlOksLjL10.1007/s10021-008-9204-6 – reference: HardyRWFBurnsRCHolstenRDApplications of the acetylene-ethylene assay for measurement of nitrogen fixationSoil Biol Biochem1973547811:CAS:528:DyaE3sXotFKjsQ%3D%3D10.1016/0038-0717(73)90093-X – reference: Sveinbjørnsson B, Oechel WC (1992) Controls on growth and productivity of bryophytes: environmental limitations under current and anticipated conditions, In: Bryophyt. Chang. Environ. Clarendon Press, pp 77–102 – reference: Sorensen PL, Michelsen A (2011) Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Glob Change Biol 17 – reference: LarsenKSIbromAJonassonSSignificance of cold-season respiration and photosynthesis in a subarctic heath ecosystem in Northern SwedenGlob Change Biol2007131498150810.1111/j.1365-2486.2007.01370.x – reference: GavazovKSoudzilovskaiaNvan LogtestijnRIsotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte speciesPlant Soil20103335075171:CAS:528:DC%2BC3cXovFCjtbc%3D10.1007/s11104-010-0374-6 – reference: GundaleMJGustafssonHNilssonMCThe sensitivity of nitrogen fixation by a feathermoss-cyanobacteria association to litter and moisture variability in young and old boreal forestsCan J For Res200939254225491:CAS:528:DC%2BC3cXisVWnug%3D%3D10.1139/X09-160 – reference: LindoZNilssonM-CGundaleMJBryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global changeGlob Change Biol2013 – reference: GragliaEJonassonSMichelsenAEffects of environmental perturbations on abundance of subarctic plants after three, seven and ten years of treatmentsEcography20012451210.1034/j.1600-0587.2001.240102.x – reference: CornelissenJHCCallaghanTVAlataloJMGlobal change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?J Ecol20018998499410.1111/j.1365-2745.2001.00625.x – reference: JonassonSEvaluation of the point intercept method for the estimation of plant biomassOikos19885210110610.2307/3565988 – reference: SolheimBEndalAVigstadHNitrogen fixation in Arctic vegetation and soils from Svalbard, NorwayPolar Biol199616354010.1007/BF02388733 – reference: JonassonSMichelsenASchmidtIKCoupling of nutrient cycling and carbon dynamics in the Arctic, integration of soil microbial and plant processesAppl Soil Ecol19991113514610.1016/S0929-1393(98)00145-0 – reference: SorensenPLLettSMichelsenAMoss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer additionPlant Ecol201221369570610.1007/s11258-012-0034-4 – reference: CampioliMSamsonRMichelsenANonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing seasonPlant Ecol2009202415310.1007/s11258-008-9527-6 – reference: Gundale MJ, Wardle DA, Nilsson M-C (2012) The effect of altered macroclimate on N-fixation by boreal feather mosses. Biol. Lett. – reference: BelnapJFactors influencing nitrogen fixation and nitrogen release in biological soil crustsEcol Stud200115024126210.1007/978-3-642-56475-8_19 – reference: ElmendorfSCHenryGHRHollisterRDGlobal assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and timeEcol Lett2012151641752213667010.1111/j.1461-0248.2011.01716.x – reference: JonassonSCastroJMichelsenALitter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in arctic mesocosmsSoil Biol Biochem200436112911391:CAS:528:DC%2BD2cXltVKiu7k%3D10.1016/j.soilbio.2004.02.023 – reference: SchmidtIKJonassonSShaverGMineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warmingPlant Soil2002242931061:CAS:528:DC%2BD38XlvFSqu70%3D10.1023/A:1019642007929 – reference: BuckeridgeKMGroganPDeepened snow increases late thaw biogeochemical pulses in mesic low arctic tundraBiogeochemistry201010110512110.1007/s10533-010-9426-5 – reference: Longton RE (1997) The role of bryophytes and lichens in polar ecosystems. Ecol. Arct. Environ. 13th Spec. Symp. Br. Ecol. Soc. Cambridge University Press, pp 69–96. – reference: GentiliFNilssonMCZackrissonOPhysiological and molecular diversity of feather moss associative N2-fixing cyanobacteriaJ Exp Bot20055631211:CAS:528:DC%2BD2MXht1GlsbbJ1626390810.1093/jxb/eri309 – reference: ArndalMFIllerisLMichelsenASeasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation typesArct Antarct Alp Res20094116417310.1657/1938-4246-41.2.164 – reference: ZackrissonODeLucaTHNilssonMCNitrogen fixation increases with successional age in boreal forestsEcology2004853327333410.1890/04-0461 – reference: ZackrissonODeLucaTHGentiliFNitrogen fixation in mixed Hylocomium splendens moss communitiesOecologia20091603093191:STN:280:DC%2BD1MzjsFGhuw%3D%3D1925293210.1007/s00442-009-1299-8 – reference: StewartKJCoxsonDGroganPNitrogen inputs by associative cyanobacteria across a low arctic tundra landscapeArct Antarct Alp Res20114326727810.1657/1938-4246-43.2.267 – reference: CornelissenJHCLangSISoudzilovskaiaNADuringHJComparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistryAnn Bot20079998710011:CAS:528:DC%2BD2sXnt1altbo%3D28029181735320510.1093/aob/mcm030 – reference: ZielkeMEkkerASOlsenRAThe Influence of Abiotic Factors on Biological Nitrogen Fixation in Different Types of Vegetation in the High Arctic, SvalbardArct Antarct Alp Res20024329329910.2307/1552487 – reference: GroganPJonassonSEcosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation typeGlob Change Biol2006121479149510.1111/j.1365-2486.2006.01184.x – reference: LeppänenSMSalemaaMSmolanderANitrogen fixation and methanotrophy in forest mosses along a N deposition gradientEnviron Exp Bot201390626910.1016/j.envexpbot.2012.12.006 – reference: ZielkeMSolheimBSpjelkavikSOlsenRANitrogen fixation in the high arctic: Role of vegetation and environmental conditionsArct Antarct Alp Res20053737237810.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2 – reference: Liengen T, Olsen RA (1997) Nitrogen fixation by free-living cyanobacteria from different coastal sites in a high arctic tundra. Spitsbergen Arct Alp Res 470–477 – reference: RinnanRMichelsenAJonassonSEffects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystemAppl Soil Ecol20083927128110.1016/j.apsoil.2007.12.014 – reference: Christensen JH, Hewitson B, Busuioc A, et al. (2007) Regional climate projections. In: Clim. Change 2007 Phys. Sci. Basis Contrib. Work. Group Fourth Assess. Rep. Intergov. Panel Clim. Change Univ. Press Camb. Chapter 11. – reference: DeLucaTHZackrissonOGundaleMJNilssonM-CEcosystem feedbacks and nitrogen fixation in boreal forestsScience2008320118111811:CAS:528:DC%2BD1cXmt1Oju7k%3D1851168210.1126/science.1154836 – reference: SorensenPLJonassonSMichelsenANitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the SubarcticArct Antarct Alp Res20063826327210.1657/1523-0430(2006)38[263:NFDAEN]2.0.CO;2 – reference: StewartKJLambEGCoxsonDSSicilianoSDBryophyte-cyanobacterial associations as a key factor in N2-fixation across the Canadian ArcticPlant Soil20113443353461:CAS:528:DC%2BC3MXnsVCjtLg%3D10.1007/s11104-011-0750-x – reference: CoxsonDSKershawKANitrogenase activity during chinook snowmelt sequences by Nostoc commune in Stipa–Bouteloa grasslandCan J Microbiol1983299389441:CAS:528:DyaL3sXlsFCqu7k%3D10.1139/m83-150 – reference: AlexanderVSchellDMSeasonal and spatial variation of nitrogen fixation in the Barrow, Alaska, tundraArct Alp Res1973577881:CAS:528:DyaE3sXksFahtrk%3D10.2307/1550250 – reference: LagerströmANilssonMCZackrissonOWardleDAEcosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogressionFunct Ecol2007211027103310.1111/j.1365-2435.2007.01331.x – reference: LiengenTConversion factor between acetylene reduction and nitrogen fixation in free-living cyanobacteria from high arctic habitatsCan J Microbiol1999452232291:CAS:528:DyaK1MXktlGis7k%3D10.1139/w98-219 – reference: ACIAArctic climate impact assessment2005CambridgeCambridge University Press – reference: GundaleMJNilssonMBansalSJäderlundAThe interactive effects of temperature and light on biological nitrogen fixation in boreal forestsNew Phytol20121944534631:CAS:528:DC%2BC38XmsFChsbs%3D2232974610.1111/j.1469-8137.2012.04071.x – reference: Karlsson GP, Karlsson PE, Kronnäs V, Hellsten S (2011) Krondroppsnätets övervakning av luftföroreningar i norra Sverige–mätningar och modellering. Svenska Miljöinstitut IVL rapport B. – reference: NohrstedtHÖConversion factor between acetylene reduction and nitrogen fixation in soil: effect of water content and nitrogenase activitySoil Biol Biochem1983152752791:CAS:528:DyaL28XoslGktw%3D%3D10.1016/0038-0717(83)90071-8 – volume: 16 start-page: 35 year: 1996 ident: 2031_CR37 publication-title: Polar Biol doi: 10.1007/BF02388733 – ident: 2031_CR31 doi: 10.2307/1551994 – ident: 2031_CR40 – volume: 15 start-page: 164 year: 2012 ident: 2031_CR13 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2011.01716.x – volume: 89 start-page: 984 year: 2001 ident: 2031_CR8 publication-title: J Ecol doi: 10.1111/j.1365-2745.2001.00625.x – volume: 29 start-page: 938 year: 1983 ident: 2031_CR10 publication-title: Can J Microbiol doi: 10.1139/m83-150 – volume: 333 start-page: 507 year: 2010 ident: 2031_CR14 publication-title: Plant Soil doi: 10.1007/s11104-010-0374-6 – volume: 41 start-page: 164 year: 2009 ident: 2031_CR3 publication-title: Arct Antarct Alp Res doi: 10.1657/1938-4246-41.2.164 – volume: 39 start-page: 2542 year: 2009 ident: 2031_CR18 publication-title: Can J For Res doi: 10.1139/X09-160 – volume: 43 start-page: 293 year: 2002 ident: 2031_CR47 publication-title: Arct Antarct Alp Res doi: 10.2307/1552487 – volume-title: Arctic climate impact assessment year: 2005 ident: 2031_CR1 – volume: 5 start-page: 77 year: 1973 ident: 2031_CR2 publication-title: Arct Alp Res doi: 10.2307/1550250 – volume: 202 start-page: 41 year: 2009 ident: 2031_CR6 publication-title: Plant Ecol doi: 10.1007/s11258-008-9527-6 – volume: 101 start-page: 105 year: 2010 ident: 2031_CR5 publication-title: Biogeochemistry doi: 10.1007/s10533-010-9426-5 – volume: 24 start-page: 5 year: 2001 ident: 2031_CR16 publication-title: Ecography doi: 10.1034/j.1600-0587.2001.240102.x – ident: 2031_CR7 – volume: 213 start-page: 695 year: 2012 ident: 2031_CR39 publication-title: Plant Ecol doi: 10.1007/s11258-012-0034-4 – volume: 194 start-page: 453 year: 2012 ident: 2031_CR19 publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04071.x – volume: 150 start-page: 241 year: 2001 ident: 2031_CR4 publication-title: Ecol Stud doi: 10.1007/978-3-642-56475-8_19 – volume: 344 start-page: 335 year: 2011 ident: 2031_CR43 publication-title: Plant Soil doi: 10.1007/s11104-011-0750-x – volume: 85 start-page: 3327 year: 2004 ident: 2031_CR46 publication-title: Ecology doi: 10.1890/04-0461 – ident: 2031_CR26 – volume: 13 start-page: 1498 year: 2007 ident: 2031_CR28 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2007.01370.x – volume: 320 start-page: 1181 year: 2008 ident: 2031_CR11 publication-title: Science doi: 10.1126/science.1154836 – volume: 37 start-page: 372 year: 2005 ident: 2031_CR48 publication-title: Arct Antarct Alp Res doi: 10.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2 – volume: 91 start-page: 1704 year: 2010 ident: 2031_CR21 publication-title: Ecology doi: 10.1890/09-0709.1 – year: 2013 ident: 2031_CR32 publication-title: Glob Change Biol – ident: 2031_CR20 doi: 10.1098/rsbl.2012.0429 – volume: 45 start-page: 223 year: 1999 ident: 2031_CR30 publication-title: Can J Microbiol doi: 10.1139/w98-219 – ident: 2031_CR33 – volume: 160 start-page: 309 year: 2009 ident: 2031_CR45 publication-title: Oecologia doi: 10.1007/s00442-009-1299-8 – volume: 56 start-page: 3121 year: 2005 ident: 2031_CR15 publication-title: J Exp Bot doi: 10.1093/jxb/eri309 – volume: 52 start-page: 101 year: 1988 ident: 2031_CR23 publication-title: Oikos doi: 10.2307/3565988 – volume: 43 start-page: 267 year: 2011 ident: 2031_CR42 publication-title: Arct Antarct Alp Res doi: 10.1657/1938-4246-43.2.267 – volume: 242 start-page: 93 year: 2002 ident: 2031_CR36 publication-title: Plant Soil doi: 10.1023/A:1019642007929 – volume: 11 start-page: 135 year: 1999 ident: 2031_CR25 publication-title: Appl Soil Ecol doi: 10.1016/S0929-1393(98)00145-0 – volume: 36 start-page: 1129 year: 2004 ident: 2031_CR24 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2004.02.023 – ident: 2031_CR44 doi: 10.1093/oso/9780198542919.003.0003 – volume: 5 start-page: 47 year: 1973 ident: 2031_CR22 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(73)90093-X – volume: 90 start-page: 62 year: 2013 ident: 2031_CR29 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2012.12.006 – volume: 11 start-page: 1223 year: 2008 ident: 2031_CR41 publication-title: Ecosystems doi: 10.1007/s10021-008-9204-6 – volume: 12 start-page: 1479 year: 2006 ident: 2031_CR17 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2006.01184.x – volume: 99 start-page: 987 year: 2007 ident: 2031_CR9 publication-title: Ann Bot doi: 10.1093/aob/mcm030 – volume: 15 start-page: 275 year: 1983 ident: 2031_CR34 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(83)90071-8 – volume: 38 start-page: 263 year: 2006 ident: 2031_CR38 publication-title: Arct Antarct Alp Res doi: 10.1657/1523-0430(2006)38[263:NFDAEN]2.0.CO;2 – volume: 39 start-page: 271 year: 2008 ident: 2031_CR35 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2007.12.014 – volume: 419 start-page: 917 year: 2002 ident: 2031_CR12 publication-title: Nature doi: 10.1038/nature01051 – volume: 21 start-page: 1027 year: 2007 ident: 2031_CR27 publication-title: Funct Ecol doi: 10.1111/j.1365-2435.2007.01331.x |
SSID | ssj0003216 |
Score | 2.2877657 |
Snippet | Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a... Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a... Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and sub-arctic terrestrial ecosystems, as it is a... Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen... Background and aims: Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a... BACKGROUND AND AIMS: Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a... |
SourceID | swepub proquest gale pascalfrancis crossref springer jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 193 |
SubjectTerms | Acetylene reduction Agronomy. Soil science and plant productions Animal, plant and microbial ecology Arctic regions autumn Betula Biogeochemistry Biological and medical sciences Biomedical and Life Sciences Botanical research Botany Bryophytes climate Climate change Climate effects Climatic changes Cryptogams Ecology Environmental aspects Ethylene production field experimentation Fixation Forest soils forests Fundamental and applied biological sciences. Psychology General agronomy. Plant production Global change Global warming Growing season Growing seasons High temperature Lichens Life Sciences Litter Litter addition Long-vs. short-term warming Nitrogen Nitrogen and phosphorus Nitrogen fixation phosphorus Plant cover Plant Physiology Plant Sciences Plants Regular Article seasonal variation Seasonal variations Seasons Soil heating Soil Science & Conservation Soil sciences Soil-plant relationships. Soil fertility Soil-plant relationships. Soil fertility. Fertilization. Amendments Spring Summer Taiga & tundra temperature Terrestrial ecosystems Vascular plants Vegetation Vegetation changes winter |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BAGk8IChMC2yTkUBIoEiJ4zjxY2CbJiR4YUMVL5bjOKPSSFDbIPrfc-d8jCKGhPrSps7Zye_ufLbvA-CFRT5AKyJFBEoXCmttmFeZCJUtJa-NFNJQvPOHj_LsQryfp_Mhjns1eruPR5JeU18Hu-FMRR4TAukmcbi5DXdSXLqTH9cFLyb1m3Bf75S-hFGm5uNR5t9IbE1Gg0ru3RLJR9Ks8DXVfX2LLQN0OjP9I7-on5NOH8KDwZhkRY_-I7jlmhncLy6XQ0INN4O7b1s0_zYzuHfi81NvHsOXT854A5z9wIWyR4YtGoayvWyRnVi9-NlfNE3FBn8P1tbMXi3QvHWsjxWmWwxbdSVKCnbPSKl_fQLnpyfn787CocRCaFEY16Gp0oo81aSqY5MpJdIky0rhjKydjA3PrLBoo5hS5bExcVm5xFiED6WYJ_hjD3aatnH7wFRtalkJh0rACmFS5VwiVF6ayOGH8wCi8VVrO6QfpyoYV_o6cTKhoxEdTejoTQCvp1u-97k3_tX4FeGnSS6RrjVDeAGOjjJc6SLJUHUluCQPYM9DPNHEKTnFlacI4GgL86kBzyVtn8cBHIxMoAdRX2k0mZRQtB8XwPPpbxRSOnkxjWs7asN9ZW8Z3dyG906DcYQDfDMy2G_d3PzgL3senIZLGcOPF58L3S4vdfet0znimj79L6rPYJeTnPj9pgPYWS87d4jm17o88uL2C0prJZ4 priority: 102 providerName: Springer Nature |
Title | Seasonal variation in nitrogen fixation and effects of climate change in a subarctic heath |
URI | https://www.jstor.org/stable/42952824 https://link.springer.com/article/10.1007/s11104-014-2031-y https://www.proquest.com/docview/1519490679 https://www.proquest.com/docview/1524408260 https://www.proquest.com/docview/2000085103 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-89455 |
Volume | 379 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xlgd4QDCYyBiVkUBIoIjGcT78hFLWMoGYEGyo8GI5jjMqjWTrB6L_PXeJm1GkTX1o0zrJNb_78vl8B_DcIB-gFxEhArn1hTHGT4tE-NLkMS91LGJN-50_HcdHp-LDNJq6gNvCpVVudGKjqIvaUIz8DVomKSSFPd5eXPrUNYpWV10LjR3oowpO0x70R-Pjz186XRzypvkpffCHiZxu1jWbzXNo-SgDQyCdYeCvtyyT089tjiIlTOoFPrOybXax5Y12C6j_FRttDNTkPtxzniXLWlZ4ALdstQt3s7O5q65hd-H2qEZfcP0Qfny1uvHB2W-cKzfgsFnFULznNXIUK2d_2i91VTCX8sHqkpnzGXq4lrXbhekUzRarHIUFb8pIr_98BCeT8cm7I991WfANyuPS10VUULJaLMtAJ1KKKEySXFgdlzYONE-MMOim6FymgdZBXthQG0QQBZmHeLAHvaqu7GNgstRlXAiLesAIoSNpbShkmuuhxRfnHgw3D1gZV4GcGmGcq6vayYSJQkwUYaLWHrzqTrloy2_cNPgloaZINPG6RrsdBkgdFblSWZig9gpxVu7BXgNsd020yhFOPoUHgy2kuwE8jSmCHnhwsIFeOWlfqCve9OBZ9zPKKS2-6MrWKxrDm-be8fD6MbzNGwyGSODrDVv9c5vr__iLlvM6cqlo-OHsW6bq-Zla_VqpFHGN9m8m_gnc4SQOTYzpAHrL-co-RZdrmQ-gn40ORxN6f__943jg5GwAO6c8-ws_xSs0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDgl4QDCYCIxhJCYkUETiOEn9gFDHNnVsqxCUqeLFchxnq7Qlox9A_yj-R-7yNYq0vU19SRvHufp3vjvb9wHwyiAfoBURIgKJdYUxxu2msXClSSKe6UhEmuKdjwZR_5v4NApHK_CniYUht8pGJpaCOi0M7ZG_Q80khaRtjw8XP1yqGkWnq00JjYotDuziFy7Zpu_3dxDfLc73docf-25dVcA1yH8zV6dhSs5Zkcx8HUspwiCOE2F1lNnI1zw2wqBa1ons-lr7SWoDbZBiZFwe4Bfs9hasiiDyeAdWt3cHn7-0oj_gZa1VunC9WI6aY9QyVg8VLTl8CByWwHcXS4qwVgeVSyT5Z-opQpRVtTWWjN_2vPa_3KalPtx7APdrQ5b1Ks57CCs2X4N7vZNJnczDrsHt7QJNz8Uj-P7V6tLkZz9xaV7yAhvnDKXJpEAGZtn4d_WjzlNWe5iwImPmbIwGtWVVdDI9otl0niAI-FJGauT0MQxvYvjXoZMXuX0CTGY6i1JhUewYIXQorQ2E7Cbas_jh3AGvGWBl6oTnVHfjTF2maiZMFGKiCBO1cOBN-8hFle3jusavCTVFkgD7NboOaEDqKKeW6gUxCsvADwIH1ktg2z7RCAhxrSsc2FxCum3AuxFt2PsObDTQq1q4TNXlVHDgZXsbxQKd9ejcFnNqw8ta4pF3dRteuSn6HhL4tmGrf15z9R_fqjivJZdylO-Mj3uqmJyo-flcdRHX8On1xL-AO_3h0aE63B8cPIO7nKZGub21AZ3ZZG6fo7U3SzbrOcZA3fCs_guOR2RI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiF4QDCYyBjDSExIoGiJ4yT1A0IdXbUxqCYYU8WL5TjOqLQlox9A_zT-O-7yNYq0vU19SRvHufp3vjvb9wHw0iAfoBURIgKJdYUxxu2msXClSSKe6UhEmuKdPw2j_a_iwygcrcCfJhaG3CobmVgK6rQwtEe-g5pJCknbHjtZ7RZx1B-8u_jhUgUpOmltymlULHJoF79w-TZ9e9BHrLc5H-wdv9936woDrkFenLk6DVNy1Ipk5utYShEGcZwIq6PMRr7msREGVbROZNfX2k9SG2iD1CMT8wC_YLe3YDWmRVEHVnf3hkefWzUQ8LLuKl24XixHzZFqGbeHSpecPwQOUeC7iyWlWKuGyj2SfDX1FOHKqjobS4Zwe3b7X57TUjcOHsD92qhlvYoLH8KKzdfgXu90Uif2sGtwe7dAM3TxCL59sbo0_9lPXKaXfMHGOUPJMimQmVk2_l39qPOU1d4mrMiYORujcW1ZFalMj2g2nScIAr6UkUr5_hiOb2L416GTF7l9AkxmOotSYVEEGSF0KK0NhOwm2rP44dwBrxlgZerk51SD40xdpm0mTBRioggTtXDgdfvIRZX547rGrwg1RVIB-zW6Dm5A6ii_luoFMQrOwA8CB9ZLYNs-0SAIcd0rHNhaQrptwLsRbd77Dmw20Kta0EzV5bRw4EV7G0UEnfvo3BZzasPLuuKRd3UbXrks-h4S-KZhq39ec_Uf3644ryWX8pX3xyc9VUxO1fx8rrqIa7hxPfHP4Q7OZvXxYHj4FO5ymhnlTtcmdGaTuX2Ght8s2aqnGAN1w5P6L1wGaH0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonal+variation+in+nitrogen+fixation+and+effects+of+climate+change+in+a+subarctic+heath&rft.jtitle=Plant+and+soil&rft.au=Lett%2C+Signe&rft.au=Michelsen%2C+Anders&rft.date=2014-06-01&rft.issn=0032-079X&rft.volume=379&rft.issue=1-2+p.193-204&rft.spage=193&rft.epage=204&rft_id=info:doi/10.1007%2Fs11104-014-2031-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |