Seasonal variation in nitrogen fixation and effects of climate change in a subarctic heath

Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen-and legume-associated N₂ fixation was studied with high frequency (e...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 379; no. 1/2; pp. 193 - 204
Main Authors Lett, Signe, Michelsen, Anders
Format Journal Article
LanguageEnglish
Published Cham Springer 01.06.2014
Springer International Publishing
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen-and legume-associated N₂ fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N₂ to a subarctic heath with an altered climate. Methods We estimated N₂ fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long-vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). Results N₂ fixation activity was measured from late April to mid November and 33 % of all N₂ was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of N₂ fixation in the cold period. Wanning increased N₂ fixation two-to fivefold during late spring. However, longterm summer warming tended to decrease N₂ fixation outside the treatment (tents present) period. Litter alone did not alter N₂ fixation but in combination with warming N₂ fixation increased, probably because N₂ fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. Conclusion In subarctic heath, the current N₂ fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N₂ fixation in different directions and thereby complicate predictions of future N cycling.
AbstractList BACKGROUND AND AIMS: Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N₂ fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N₂ to a subarctic heath with an altered climate. METHODS: We estimated N₂ fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). RESULTS: N₂ fixation activity was measured from late April to mid November and 33 % of all N₂ was fixed outside the vascular plant growing season (Jun–Aug). This substantial amount underlines the importance of N₂ fixation in the cold period. Warming increased N₂ fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N₂ fixation outside the treatment (tents present) period. Litter alone did not alter N₂ fixation but in combination with warming N₂ fixation increased, probably because N₂ fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. CONCLUSION: In subarctic heath, the current N₂ fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N₂ fixation in different directions and thereby complicate predictions of future N cycling.
Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N 2 fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N 2 to a subarctic heath with an altered climate. Methods We estimated N 2 fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). Results N 2 fixation activity was measured from late April to mid November and 33 % of all N 2 was fixed outside the vascular plant growing season (Jun–Aug). This substantial amount underlines the importance of N 2 fixation in the cold period. Warming increased N 2 fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N 2 fixation outside the treatment (tents present) period. Litter alone did not alter N 2 fixation but in combination with warming N 2 fixation increased, probably because N 2 fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. Conclusion In subarctic heath, the current N 2 fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N 2 fixation in different directions and thereby complicate predictions of future N cycling.
Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N-2 fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N-2 to a subarctic heath with an altered climate. We estimated N-2 fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). N-2 fixation activity was measured from late April to mid November and 33 % of all N-2 was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of N-2 fixation in the cold period. Warming increased N-2 fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N-2 fixation outside the treatment (tents present) period. Litter alone did not alter N-2 fixation but in combination with warming N-2 fixation increased, probably because N-2 fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. In subarctic heath, the current N-2 fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N-2 fixation in different directions and thereby complicate predictions of future N cycling.
Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen-and legume-associated N₂ fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N₂ to a subarctic heath with an altered climate. Methods We estimated N₂ fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long-vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). Results N₂ fixation activity was measured from late April to mid November and 33 % of all N₂ was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of N₂ fixation in the cold period. Wanning increased N₂ fixation two-to fivefold during late spring. However, longterm summer warming tended to decrease N₂ fixation outside the treatment (tents present) period. Litter alone did not alter N₂ fixation but in combination with warming N₂ fixation increased, probably because N₂ fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. Conclusion In subarctic heath, the current N₂ fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N₂ fixation in different directions and thereby complicate predictions of future N cycling.
Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N2 fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N2 to a subarctic heath with an altered climate. We estimated N2 fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). N2 fixation activity was measured from late April to mid November and 33 % of all N2 was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of N2 fixation in the cold period. Warming increased N2 fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N2 fixation outside the treatment (tents present) period. Litter alone did not alter N2 fixation but in combination with warming N2 fixation increased, probably because N2 fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. In subarctic heath, the current N2 fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N2 fixation in different directions and thereby complicate predictions of future N cycling.[PUBLICATION ABSTRACT]
Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and sub-arctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated [N.sub.2] fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric [N.sub.2] to a subarctic heath with an altered climate. Methods We estimated [N.sub.2] fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). Results [N.sub.2] fixation activity was measured from late April to mid November and 33 % of all [N.sub.2] was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of [N.sub.2] fixation in the cold period. Warming increased [N.sub.2] fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease [N.sub.2] fixation outside the treatment (tents present) period. Litter alone did not alter [N.sub.2] fixation but in combination with warming [N.sub.2] fixation increased, probably because [N.sub.2] fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. Conclusion In subarctic heath, the current [N.sub.2] fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of [N.sub.2] fixation in different directions and thereby complicate predictions of future N cycling. Keywords Bryophytes * Global change * Lichens * Litter addition * Long- vs. short-term warming * Nitrogen and phosphorus * Plant cover
Background and aims: Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen (N) into these highly N limited systems. Moss-, lichen- and legume-associated N sub(2) fixation was studied with high frequency (every second week) during spring, summer, autumn and early winter to uncover the seasonal variation in input of atmospheric N sub(2) to a subarctic heath with an altered climate. Methods: We estimated N sub(2) fixation from ethylene production by acetylene reduction assay in situ in a field experiment with the treatments: long- vs. short-term summer warming using plastic tents and litter addition (simulating expansion of the birch forest). Results: N sub(2) fixation activity was measured from late April to mid November and 33 % of all N sub(2) was fixed outside the vascular plant growing season (Jun-Aug). This substantial amount underlines the importance of N sub(2) fixation in the cold period. Warming increased N sub(2) fixation two- to fivefold during late spring. However, long-term summer warming tended to decrease N sub(2) fixation outside the treatment (tents present) period. Litter alone did not alter N sub(2) fixation but in combination with warming N sub(2) fixation increased, probably because N sub(2) fixation became phosphorus limited under higher temperatures, which was alleviated by the P supply from the litter. Conclusion: In subarctic heath, the current N sub(2) fixation period extends far beyond the vascular plant growing season. Climate warming and indirect effects such as vegetation changes affect the process of N sub(2) fixation in different directions and thereby complicate predictions of future N cycling.
Audience Academic
Author Michelsen, Anders
Lett, Signe
Author_xml – sequence: 1
  givenname: Signe
  surname: Lett
  fullname: Lett, Signe
– sequence: 2
  givenname: Anders
  surname: Michelsen
  fullname: Michelsen, Anders
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28600521$$DView record in Pascal Francis
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-89455$$DView record from Swedish Publication Index
BookMark eNqFksuKFDEUhoOMYM_oA7gQCkRwYY25VqqWzXiFARcOIm7CqVTSnaY6aZOU2m9vymoHmcVIFuEcvv_cz9GZD94g9JTgS4KxfJ0IIZjXmPCaYkbq4wO0IkKyWmDWnKEVxozWWHZfH6HzlHZ4tkmzQt8-G0jBw1j9gOggu-Ar5yvvcgwb4yvrfi1O8ENlrDU6pyrYSo9uD9lUegt-Y2YJVGnqIersdLU1kLeP0UMLYzJPTv8Funn39ubqQ3396f3Hq_V1rQXBuYZBDLgVouksAdl1XDApe26gsaYhQKXmuhEt9F1LAEg_GAa6gUF2nLJiXKBXS9j00xymXh1iqSweVQCn3rgvaxXiRk37SbUltCj4ywU_xPB9MimrvUvajCN4E6akaBlNKYdg9l-UCMo5bmmDC_r8DroLUyxjnSnS8Q43sivU5UJtYDTKeRtyBF3eYPZOl4VaV_xrJikVjLC5ghensJA0jDaC1y7dtkjbBmNBSeHkwukYUorGKu3yn72VBG5UBKv5StRyJapciZqvRB2LktxR_g1-n4aeJl7Ysv34T7P3iJ4tol3KId5m4bQTtKWc_QYl8dms
CODEN PLSOA2
CitedBy_id crossref_primary_10_1007_s10021_018_0239_z
crossref_primary_10_1007_s11104_019_04282_9
crossref_primary_10_1088_1748_9326_ab57b1
crossref_primary_10_1007_s11104_014_2356_6
crossref_primary_10_1080_17429145_2021_2002955
crossref_primary_10_1111_gcb_13418
crossref_primary_10_1111_gcb_14705
crossref_primary_10_1007_s10021_018_0256_y
crossref_primary_10_1002_ecy_70016
crossref_primary_10_1007_s10533_017_0393_y
crossref_primary_10_1080_02757540_2017_1332188
crossref_primary_10_1007_s10533_018_0441_2
crossref_primary_10_1029_2021JG006688
crossref_primary_10_1186_s13568_018_0607_2
crossref_primary_10_1002_2017JG003782
crossref_primary_10_1139_as_2020_0057
crossref_primary_10_1038_s41467_022_32001_z
crossref_primary_10_1007_s00253_019_10235_0
crossref_primary_10_1016_j_soilbio_2017_11_026
crossref_primary_10_1007_s11104_021_05245_9
crossref_primary_10_1111_gcb_12953
crossref_primary_10_1111_gcb_14935
crossref_primary_10_1111_1365_2435_13113
crossref_primary_10_1007_s11104_020_04695_x
crossref_primary_10_1007_s10021_020_00534_3
crossref_primary_10_1016_j_scitotenv_2021_148676
crossref_primary_10_1657_1938_4246_46_4_829
crossref_primary_10_1139_as_2021_0053
crossref_primary_10_5194_bg_17_3643_2020
crossref_primary_10_1007_s10021_018_0323_4
crossref_primary_10_1657_AAAR0016_014
crossref_primary_10_1007_s00248_014_0534_y
crossref_primary_10_1111_jac_12754
Cites_doi 10.1007/BF02388733
10.2307/1551994
10.1111/j.1461-0248.2011.01716.x
10.1111/j.1365-2745.2001.00625.x
10.1139/m83-150
10.1007/s11104-010-0374-6
10.1657/1938-4246-41.2.164
10.1139/X09-160
10.2307/1552487
10.2307/1550250
10.1007/s11258-008-9527-6
10.1007/s10533-010-9426-5
10.1034/j.1600-0587.2001.240102.x
10.1007/s11258-012-0034-4
10.1111/j.1469-8137.2012.04071.x
10.1007/978-3-642-56475-8_19
10.1007/s11104-011-0750-x
10.1890/04-0461
10.1111/j.1365-2486.2007.01370.x
10.1126/science.1154836
10.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2
10.1890/09-0709.1
10.1098/rsbl.2012.0429
10.1139/w98-219
10.1007/s00442-009-1299-8
10.1093/jxb/eri309
10.2307/3565988
10.1657/1938-4246-43.2.267
10.1023/A:1019642007929
10.1016/S0929-1393(98)00145-0
10.1016/j.soilbio.2004.02.023
10.1093/oso/9780198542919.003.0003
10.1016/0038-0717(73)90093-X
10.1016/j.envexpbot.2012.12.006
10.1007/s10021-008-9204-6
10.1111/j.1365-2486.2006.01184.x
10.1093/aob/mcm030
10.1016/0038-0717(83)90071-8
10.1657/1523-0430(2006)38[263:NFDAEN]2.0.CO;2
10.1016/j.apsoil.2007.12.014
10.1038/nature01051
10.1111/j.1365-2435.2007.01331.x
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
Springer International Publishing Switzerland 2014
2015 INIST-CNRS
COPYRIGHT 2014 Springer
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: Springer International Publishing Switzerland 2014
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2014 Springer
DBID AAYXX
CITATION
IQODW
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7U6
7S9
L.6
ADTPV
AOWAS
D93
DOI 10.1007/s11104-014-2031-y
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Umeå universitet
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA



Agricultural Science Database

Ecology Abstracts
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
Ecology
EISSN 1573-5036
EndPage 204
ExternalDocumentID oai_DiVA_org_umu_89455
3287720951
A372253133
28600521
10_1007_s11104_014_2031_y
42952824
Genre Feature
GeographicLocations Denmark
PN, Arctic
GeographicLocations_xml – name: Denmark
– name: PN, Arctic
GroupedDBID -~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2XV
2~F
2~H
30V
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEBTG
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
PF0
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
PT5
PUEGO
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SA0
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
Y6R
YLTOR
Z45
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
-4W
-56
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
3SX
3V.
53G
5QI
88A
AARHV
ABQSL
ACKIV
ADINQ
ADYPR
AEFIE
AFEXP
AFFNX
AGGDS
AHAVH
AIDBO
BBWZM
CAG
COF
EN4
GQ6
JSODD
KOW
M0L
NDZJH
OVD
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SBY
SCLPG
T16
TEORI
WK6
XOL
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
AAYXX
ADHKG
AFOHR
CITATION
IQODW
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7U6
7S9
L.6
ADTPV
AOWAS
D93
ID FETCH-LOGICAL-c510t-ad5d085569f1a79945377b4ea6fe61a27c4c658ab981aa1bde3ac6ad79423de3
IEDL.DBID BENPR
ISSN 0032-079X
1573-5036
IngestDate Thu Aug 21 06:56:04 EDT 2025
Fri Jul 11 02:35:02 EDT 2025
Thu Jul 10 19:27:13 EDT 2025
Sat Aug 16 22:22:56 EDT 2025
Tue Jun 10 20:50:36 EDT 2025
Wed Apr 02 07:17:40 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Tue Jul 01 00:58:52 EDT 2025
Fri Feb 21 02:33:34 EST 2025
Sun Aug 24 12:10:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1/2
Keywords Lichens
Long- vs. short-term warming
Global change
Nitrogen and phosphorus
Plant cover
Litter addition
Bryophytes
Short term
Time variation
Fungi
Seasonal variation
Nitrogen fixation
Warming
Heathland and moor
Vegetals
Addition
Litter
Bryophyta
Phosphorus
Subpolar zone
Nitrogen
Dynamical climatology
Climate change
Lichenes
Soil plant relation
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-ad5d085569f1a79945377b4ea6fe61a27c4c658ab981aa1bde3ac6ad79423de3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1519490679
PQPubID 54098
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_umu_89455
proquest_miscellaneous_2000085103
proquest_miscellaneous_1524408260
proquest_journals_1519490679
gale_infotracacademiconefile_A372253133
pascalfrancis_primary_28600521
crossref_citationtrail_10_1007_s11104_014_2031_y
crossref_primary_10_1007_s11104_014_2031_y
springer_journals_10_1007_s11104_014_2031_y
jstor_primary_42952824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2014
Publisher Springer
Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer International Publishing
– name: Springer Nature B.V
References CornelissenJHCLangSISoudzilovskaiaNADuringHJComparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistryAnn Bot20079998710011:CAS:528:DC%2BD2sXnt1altbo%3D28029181735320510.1093/aob/mcm030
HardyRWFBurnsRCHolstenRDApplications of the acetylene-ethylene assay for measurement of nitrogen fixationSoil Biol Biochem1973547811:CAS:528:DyaE3sXotFKjsQ%3D%3D10.1016/0038-0717(73)90093-X
DeLucaTHZackrissonOGundaleMJNilssonM-CEcosystem feedbacks and nitrogen fixation in boreal forestsScience2008320118111811:CAS:528:DC%2BD1cXmt1Oju7k%3D1851168210.1126/science.1154836
Liengen T, Olsen RA (1997) Nitrogen fixation by free-living cyanobacteria from different coastal sites in a high arctic tundra. Spitsbergen Arct Alp Res 470–477
GragliaEJonassonSMichelsenAEffects of environmental perturbations on abundance of subarctic plants after three, seven and ten years of treatmentsEcography20012451210.1034/j.1600-0587.2001.240102.x
LagerströmANilssonMCZackrissonOWardleDAEcosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogressionFunct Ecol2007211027103310.1111/j.1365-2435.2007.01331.x
BelnapJFactors influencing nitrogen fixation and nitrogen release in biological soil crustsEcol Stud200115024126210.1007/978-3-642-56475-8_19
GundaleMJGustafssonHNilssonMCThe sensitivity of nitrogen fixation by a feathermoss-cyanobacteria association to litter and moisture variability in young and old boreal forestsCan J For Res200939254225491:CAS:528:DC%2BC3cXisVWnug%3D%3D10.1139/X09-160
AlexanderVSchellDMSeasonal and spatial variation of nitrogen fixation in the Barrow, Alaska, tundraArct Alp Res1973577881:CAS:528:DyaE3sXksFahtrk%3D10.2307/1550250
Longton RE (1997) The role of bryophytes and lichens in polar ecosystems. Ecol. Arct. Environ. 13th Spec. Symp. Br. Ecol. Soc. Cambridge University Press, pp 69–96.
SorensenPLMichelsenAJonassonSNitrogen uptake during one year in subarctic plant functional groups and in microbes after long-term warming and fertilizationEcosystems200811122312331:CAS:528:DC%2BD1cXhtlOksLjL10.1007/s10021-008-9204-6
Karlsson GP, Karlsson PE, Kronnäs V, Hellsten S (2011) Krondroppsnätets övervakning av luftföroreningar i norra Sverige–mätningar och modellering. Svenska Miljöinstitut IVL rapport B.
DeLucaTHZackrissonONilssonMCSellstedtAQuantifying nitrogen-fixation in feather moss carpets of boreal forestsNature20024199179201:CAS:528:DC%2BD38Xot1Kltb0%3D1241030810.1038/nature01051
SchmidtIKJonassonSShaverGMineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warmingPlant Soil2002242931061:CAS:528:DC%2BD38XlvFSqu70%3D10.1023/A:1019642007929
JonassonSCastroJMichelsenALitter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in arctic mesocosmsSoil Biol Biochem200436112911391:CAS:528:DC%2BD2cXltVKiu7k%3D10.1016/j.soilbio.2004.02.023
GundaleMJNilssonMBansalSJäderlundAThe interactive effects of temperature and light on biological nitrogen fixation in boreal forestsNew Phytol20121944534631:CAS:528:DC%2BC38XmsFChsbs%3D2232974610.1111/j.1469-8137.2012.04071.x
RinnanRMichelsenAJonassonSEffects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystemAppl Soil Ecol20083927128110.1016/j.apsoil.2007.12.014
SorensenPLJonassonSMichelsenANitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the SubarcticArct Antarct Alp Res20063826327210.1657/1523-0430(2006)38[263:NFDAEN]2.0.CO;2
GundaleMJWardleDANilssonMCVascular plant removal effects on biological N fixation vary across a boreal forest island gradientEcology201091170417142058371210.1890/09-0709.1
SolheimBEndalAVigstadHNitrogen fixation in Arctic vegetation and soils from Svalbard, NorwayPolar Biol199616354010.1007/BF02388733
ZackrissonODeLucaTHNilssonMCNitrogen fixation increases with successional age in boreal forestsEcology2004853327333410.1890/04-0461
SorensenPLLettSMichelsenAMoss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer additionPlant Ecol201221369570610.1007/s11258-012-0034-4
CampioliMSamsonRMichelsenANonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing seasonPlant Ecol2009202415310.1007/s11258-008-9527-6
StewartKJLambEGCoxsonDSSicilianoSDBryophyte-cyanobacterial associations as a key factor in N2-fixation across the Canadian ArcticPlant Soil20113443353461:CAS:528:DC%2BC3MXnsVCjtLg%3D10.1007/s11104-011-0750-x
GentiliFNilssonMCZackrissonOPhysiological and molecular diversity of feather moss associative N2-fixing cyanobacteriaJ Exp Bot20055631211:CAS:528:DC%2BD2MXht1GlsbbJ1626390810.1093/jxb/eri309
Sveinbjørnsson B, Oechel WC (1992) Controls on growth and productivity of bryophytes: environmental limitations under current and anticipated conditions, In: Bryophyt. Chang. Environ. Clarendon Press, pp 77–102
ZackrissonODeLucaTHGentiliFNitrogen fixation in mixed Hylocomium splendens moss communitiesOecologia20091603093191:STN:280:DC%2BD1MzjsFGhuw%3D%3D1925293210.1007/s00442-009-1299-8
ZielkeMSolheimBSpjelkavikSOlsenRANitrogen fixation in the high arctic: Role of vegetation and environmental conditionsArct Antarct Alp Res20053737237810.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2
JonassonSEvaluation of the point intercept method for the estimation of plant biomassOikos19885210110610.2307/3565988
CoxsonDSKershawKANitrogenase activity during chinook snowmelt sequences by Nostoc commune in Stipa–Bouteloa grasslandCan J Microbiol1983299389441:CAS:528:DyaL3sXlsFCqu7k%3D10.1139/m83-150
GavazovKSoudzilovskaiaNvan LogtestijnRIsotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte speciesPlant Soil20103335075171:CAS:528:DC%2BC3cXovFCjtbc%3D10.1007/s11104-010-0374-6
LeppänenSMSalemaaMSmolanderANitrogen fixation and methanotrophy in forest mosses along a N deposition gradientEnviron Exp Bot201390626910.1016/j.envexpbot.2012.12.006
ElmendorfSCHenryGHRHollisterRDGlobal assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and timeEcol Lett2012151641752213667010.1111/j.1461-0248.2011.01716.x
ZielkeMEkkerASOlsenRAThe Influence of Abiotic Factors on Biological Nitrogen Fixation in Different Types of Vegetation in the High Arctic, SvalbardArct Antarct Alp Res20024329329910.2307/1552487
ArndalMFIllerisLMichelsenASeasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation typesArct Antarct Alp Res20094116417310.1657/1938-4246-41.2.164
JonassonSMichelsenASchmidtIKCoupling of nutrient cycling and carbon dynamics in the Arctic, integration of soil microbial and plant processesAppl Soil Ecol19991113514610.1016/S0929-1393(98)00145-0
BuckeridgeKMGroganPDeepened snow increases late thaw biogeochemical pulses in mesic low arctic tundraBiogeochemistry201010110512110.1007/s10533-010-9426-5
Christensen JH, Hewitson B, Busuioc A, et al. (2007) Regional climate projections. In: Clim. Change 2007 Phys. Sci. Basis Contrib. Work. Group Fourth Assess. Rep. Intergov. Panel Clim. Change Univ. Press Camb. Chapter 11.
NohrstedtHÖConversion factor between acetylene reduction and nitrogen fixation in soil: effect of water content and nitrogenase activitySoil Biol Biochem1983152752791:CAS:528:DyaL28XoslGktw%3D%3D10.1016/0038-0717(83)90071-8
CornelissenJHCCallaghanTVAlataloJMGlobal change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?J Ecol20018998499410.1111/j.1365-2745.2001.00625.x
Sorensen PL, Michelsen A (2011) Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Glob Change Biol 17
StewartKJCoxsonDGroganPNitrogen inputs by associative cyanobacteria across a low arctic tundra landscapeArct Antarct Alp Res20114326727810.1657/1938-4246-43.2.267
ACIAArctic climate impact assessment2005CambridgeCambridge University Press
GroganPJonassonSEcosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation typeGlob Change Biol2006121479149510.1111/j.1365-2486.2006.01184.x
LiengenTConversion factor between acetylene reduction and nitrogen fixation in free-living cyanobacteria from high arctic habitatsCan J Microbiol1999452232291:CAS:528:DyaK1MXktlGis7k%3D10.1139/w98-219
LindoZNilssonM-CGundaleMJBryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global changeGlob Change Biol2013
LarsenKSIbromAJonassonSSignificance of cold-season respiration and photosynthesis in a subarctic heath ecosystem in Northern SwedenGlob Change Biol2007131498150810.1111/j.1365-2486.2007.01370.x
Gundale MJ, Wardle DA, Nilsson M-C (2012) The effect of altered macroclimate on N-fixation by boreal feather mosses. Biol. Lett.
PL Sorensen (2031_CR41) 2008; 11
HÖ Nohrstedt (2031_CR34) 1983; 15
KJ Stewart (2031_CR42) 2011; 43
2031_CR40
A Lagerström (2031_CR27) 2007; 21
PL Sorensen (2031_CR39) 2012; 213
Z Lindo (2031_CR32) 2013
R Rinnan (2031_CR35) 2008; 39
K Gavazov (2031_CR14) 2010; 333
KM Buckeridge (2031_CR5) 2010; 101
2031_CR7
PL Sorensen (2031_CR38) 2006; 38
TH DeLuca (2031_CR11) 2008; 320
V Alexander (2031_CR2) 1973; 5
O Zackrisson (2031_CR46) 2004; 85
TH DeLuca (2031_CR12) 2002; 419
F Gentili (2031_CR15) 2005; 56
M Zielke (2031_CR47) 2002; 43
MJ Gundale (2031_CR19) 2012; 194
JHC Cornelissen (2031_CR8) 2001; 89
J Belnap (2031_CR4) 2001; 150
2031_CR44
2031_CR20
2031_CR26
E Graglia (2031_CR16) 2001; 24
KS Larsen (2031_CR28) 2007; 13
S Jonasson (2031_CR25) 1999; 11
T Liengen (2031_CR30) 1999; 45
SC Elmendorf (2031_CR13) 2012; 15
M Campioli (2031_CR6) 2009; 202
S Jonasson (2031_CR24) 2004; 36
B Solheim (2031_CR37) 1996; 16
KJ Stewart (2031_CR43) 2011; 344
MF Arndal (2031_CR3) 2009; 41
O Zackrisson (2031_CR45) 2009; 160
RWF Hardy (2031_CR22) 1973; 5
P Grogan (2031_CR17) 2006; 12
M Zielke (2031_CR48) 2005; 37
IK Schmidt (2031_CR36) 2002; 242
DS Coxson (2031_CR10) 1983; 29
S Jonasson (2031_CR23) 1988; 52
MJ Gundale (2031_CR21) 2010; 91
SM Leppänen (2031_CR29) 2013; 90
2031_CR33
JHC Cornelissen (2031_CR9) 2007; 99
2031_CR31
ACIA (2031_CR1) 2005
MJ Gundale (2031_CR18) 2009; 39
References_xml – reference: GundaleMJWardleDANilssonMCVascular plant removal effects on biological N fixation vary across a boreal forest island gradientEcology201091170417142058371210.1890/09-0709.1
– reference: DeLucaTHZackrissonONilssonMCSellstedtAQuantifying nitrogen-fixation in feather moss carpets of boreal forestsNature20024199179201:CAS:528:DC%2BD38Xot1Kltb0%3D1241030810.1038/nature01051
– reference: SorensenPLMichelsenAJonassonSNitrogen uptake during one year in subarctic plant functional groups and in microbes after long-term warming and fertilizationEcosystems200811122312331:CAS:528:DC%2BD1cXhtlOksLjL10.1007/s10021-008-9204-6
– reference: HardyRWFBurnsRCHolstenRDApplications of the acetylene-ethylene assay for measurement of nitrogen fixationSoil Biol Biochem1973547811:CAS:528:DyaE3sXotFKjsQ%3D%3D10.1016/0038-0717(73)90093-X
– reference: Sveinbjørnsson B, Oechel WC (1992) Controls on growth and productivity of bryophytes: environmental limitations under current and anticipated conditions, In: Bryophyt. Chang. Environ. Clarendon Press, pp 77–102
– reference: Sorensen PL, Michelsen A (2011) Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Glob Change Biol 17
– reference: LarsenKSIbromAJonassonSSignificance of cold-season respiration and photosynthesis in a subarctic heath ecosystem in Northern SwedenGlob Change Biol2007131498150810.1111/j.1365-2486.2007.01370.x
– reference: GavazovKSoudzilovskaiaNvan LogtestijnRIsotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte speciesPlant Soil20103335075171:CAS:528:DC%2BC3cXovFCjtbc%3D10.1007/s11104-010-0374-6
– reference: GundaleMJGustafssonHNilssonMCThe sensitivity of nitrogen fixation by a feathermoss-cyanobacteria association to litter and moisture variability in young and old boreal forestsCan J For Res200939254225491:CAS:528:DC%2BC3cXisVWnug%3D%3D10.1139/X09-160
– reference: LindoZNilssonM-CGundaleMJBryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global changeGlob Change Biol2013
– reference: GragliaEJonassonSMichelsenAEffects of environmental perturbations on abundance of subarctic plants after three, seven and ten years of treatmentsEcography20012451210.1034/j.1600-0587.2001.240102.x
– reference: CornelissenJHCCallaghanTVAlataloJMGlobal change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?J Ecol20018998499410.1111/j.1365-2745.2001.00625.x
– reference: JonassonSEvaluation of the point intercept method for the estimation of plant biomassOikos19885210110610.2307/3565988
– reference: SolheimBEndalAVigstadHNitrogen fixation in Arctic vegetation and soils from Svalbard, NorwayPolar Biol199616354010.1007/BF02388733
– reference: JonassonSMichelsenASchmidtIKCoupling of nutrient cycling and carbon dynamics in the Arctic, integration of soil microbial and plant processesAppl Soil Ecol19991113514610.1016/S0929-1393(98)00145-0
– reference: SorensenPLLettSMichelsenAMoss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer additionPlant Ecol201221369570610.1007/s11258-012-0034-4
– reference: CampioliMSamsonRMichelsenANonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing seasonPlant Ecol2009202415310.1007/s11258-008-9527-6
– reference: Gundale MJ, Wardle DA, Nilsson M-C (2012) The effect of altered macroclimate on N-fixation by boreal feather mosses. Biol. Lett.
– reference: BelnapJFactors influencing nitrogen fixation and nitrogen release in biological soil crustsEcol Stud200115024126210.1007/978-3-642-56475-8_19
– reference: ElmendorfSCHenryGHRHollisterRDGlobal assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and timeEcol Lett2012151641752213667010.1111/j.1461-0248.2011.01716.x
– reference: JonassonSCastroJMichelsenALitter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in arctic mesocosmsSoil Biol Biochem200436112911391:CAS:528:DC%2BD2cXltVKiu7k%3D10.1016/j.soilbio.2004.02.023
– reference: SchmidtIKJonassonSShaverGMineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warmingPlant Soil2002242931061:CAS:528:DC%2BD38XlvFSqu70%3D10.1023/A:1019642007929
– reference: BuckeridgeKMGroganPDeepened snow increases late thaw biogeochemical pulses in mesic low arctic tundraBiogeochemistry201010110512110.1007/s10533-010-9426-5
– reference: Longton RE (1997) The role of bryophytes and lichens in polar ecosystems. Ecol. Arct. Environ. 13th Spec. Symp. Br. Ecol. Soc. Cambridge University Press, pp 69–96.
– reference: GentiliFNilssonMCZackrissonOPhysiological and molecular diversity of feather moss associative N2-fixing cyanobacteriaJ Exp Bot20055631211:CAS:528:DC%2BD2MXht1GlsbbJ1626390810.1093/jxb/eri309
– reference: ArndalMFIllerisLMichelsenASeasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation typesArct Antarct Alp Res20094116417310.1657/1938-4246-41.2.164
– reference: ZackrissonODeLucaTHNilssonMCNitrogen fixation increases with successional age in boreal forestsEcology2004853327333410.1890/04-0461
– reference: ZackrissonODeLucaTHGentiliFNitrogen fixation in mixed Hylocomium splendens moss communitiesOecologia20091603093191:STN:280:DC%2BD1MzjsFGhuw%3D%3D1925293210.1007/s00442-009-1299-8
– reference: StewartKJCoxsonDGroganPNitrogen inputs by associative cyanobacteria across a low arctic tundra landscapeArct Antarct Alp Res20114326727810.1657/1938-4246-43.2.267
– reference: CornelissenJHCLangSISoudzilovskaiaNADuringHJComparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistryAnn Bot20079998710011:CAS:528:DC%2BD2sXnt1altbo%3D28029181735320510.1093/aob/mcm030
– reference: ZielkeMEkkerASOlsenRAThe Influence of Abiotic Factors on Biological Nitrogen Fixation in Different Types of Vegetation in the High Arctic, SvalbardArct Antarct Alp Res20024329329910.2307/1552487
– reference: GroganPJonassonSEcosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation typeGlob Change Biol2006121479149510.1111/j.1365-2486.2006.01184.x
– reference: LeppänenSMSalemaaMSmolanderANitrogen fixation and methanotrophy in forest mosses along a N deposition gradientEnviron Exp Bot201390626910.1016/j.envexpbot.2012.12.006
– reference: ZielkeMSolheimBSpjelkavikSOlsenRANitrogen fixation in the high arctic: Role of vegetation and environmental conditionsArct Antarct Alp Res20053737237810.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2
– reference: Liengen T, Olsen RA (1997) Nitrogen fixation by free-living cyanobacteria from different coastal sites in a high arctic tundra. Spitsbergen Arct Alp Res 470–477
– reference: RinnanRMichelsenAJonassonSEffects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystemAppl Soil Ecol20083927128110.1016/j.apsoil.2007.12.014
– reference: Christensen JH, Hewitson B, Busuioc A, et al. (2007) Regional climate projections. In: Clim. Change 2007 Phys. Sci. Basis Contrib. Work. Group Fourth Assess. Rep. Intergov. Panel Clim. Change Univ. Press Camb. Chapter 11.
– reference: DeLucaTHZackrissonOGundaleMJNilssonM-CEcosystem feedbacks and nitrogen fixation in boreal forestsScience2008320118111811:CAS:528:DC%2BD1cXmt1Oju7k%3D1851168210.1126/science.1154836
– reference: SorensenPLJonassonSMichelsenANitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the SubarcticArct Antarct Alp Res20063826327210.1657/1523-0430(2006)38[263:NFDAEN]2.0.CO;2
– reference: StewartKJLambEGCoxsonDSSicilianoSDBryophyte-cyanobacterial associations as a key factor in N2-fixation across the Canadian ArcticPlant Soil20113443353461:CAS:528:DC%2BC3MXnsVCjtLg%3D10.1007/s11104-011-0750-x
– reference: CoxsonDSKershawKANitrogenase activity during chinook snowmelt sequences by Nostoc commune in Stipa–Bouteloa grasslandCan J Microbiol1983299389441:CAS:528:DyaL3sXlsFCqu7k%3D10.1139/m83-150
– reference: AlexanderVSchellDMSeasonal and spatial variation of nitrogen fixation in the Barrow, Alaska, tundraArct Alp Res1973577881:CAS:528:DyaE3sXksFahtrk%3D10.2307/1550250
– reference: LagerströmANilssonMCZackrissonOWardleDAEcosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogressionFunct Ecol2007211027103310.1111/j.1365-2435.2007.01331.x
– reference: LiengenTConversion factor between acetylene reduction and nitrogen fixation in free-living cyanobacteria from high arctic habitatsCan J Microbiol1999452232291:CAS:528:DyaK1MXktlGis7k%3D10.1139/w98-219
– reference: ACIAArctic climate impact assessment2005CambridgeCambridge University Press
– reference: GundaleMJNilssonMBansalSJäderlundAThe interactive effects of temperature and light on biological nitrogen fixation in boreal forestsNew Phytol20121944534631:CAS:528:DC%2BC38XmsFChsbs%3D2232974610.1111/j.1469-8137.2012.04071.x
– reference: Karlsson GP, Karlsson PE, Kronnäs V, Hellsten S (2011) Krondroppsnätets övervakning av luftföroreningar i norra Sverige–mätningar och modellering. Svenska Miljöinstitut IVL rapport B.
– reference: NohrstedtHÖConversion factor between acetylene reduction and nitrogen fixation in soil: effect of water content and nitrogenase activitySoil Biol Biochem1983152752791:CAS:528:DyaL28XoslGktw%3D%3D10.1016/0038-0717(83)90071-8
– volume: 16
  start-page: 35
  year: 1996
  ident: 2031_CR37
  publication-title: Polar Biol
  doi: 10.1007/BF02388733
– ident: 2031_CR31
  doi: 10.2307/1551994
– ident: 2031_CR40
– volume: 15
  start-page: 164
  year: 2012
  ident: 2031_CR13
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2011.01716.x
– volume: 89
  start-page: 984
  year: 2001
  ident: 2031_CR8
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2001.00625.x
– volume: 29
  start-page: 938
  year: 1983
  ident: 2031_CR10
  publication-title: Can J Microbiol
  doi: 10.1139/m83-150
– volume: 333
  start-page: 507
  year: 2010
  ident: 2031_CR14
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0374-6
– volume: 41
  start-page: 164
  year: 2009
  ident: 2031_CR3
  publication-title: Arct Antarct Alp Res
  doi: 10.1657/1938-4246-41.2.164
– volume: 39
  start-page: 2542
  year: 2009
  ident: 2031_CR18
  publication-title: Can J For Res
  doi: 10.1139/X09-160
– volume: 43
  start-page: 293
  year: 2002
  ident: 2031_CR47
  publication-title: Arct Antarct Alp Res
  doi: 10.2307/1552487
– volume-title: Arctic climate impact assessment
  year: 2005
  ident: 2031_CR1
– volume: 5
  start-page: 77
  year: 1973
  ident: 2031_CR2
  publication-title: Arct Alp Res
  doi: 10.2307/1550250
– volume: 202
  start-page: 41
  year: 2009
  ident: 2031_CR6
  publication-title: Plant Ecol
  doi: 10.1007/s11258-008-9527-6
– volume: 101
  start-page: 105
  year: 2010
  ident: 2031_CR5
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-010-9426-5
– volume: 24
  start-page: 5
  year: 2001
  ident: 2031_CR16
  publication-title: Ecography
  doi: 10.1034/j.1600-0587.2001.240102.x
– ident: 2031_CR7
– volume: 213
  start-page: 695
  year: 2012
  ident: 2031_CR39
  publication-title: Plant Ecol
  doi: 10.1007/s11258-012-0034-4
– volume: 194
  start-page: 453
  year: 2012
  ident: 2031_CR19
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04071.x
– volume: 150
  start-page: 241
  year: 2001
  ident: 2031_CR4
  publication-title: Ecol Stud
  doi: 10.1007/978-3-642-56475-8_19
– volume: 344
  start-page: 335
  year: 2011
  ident: 2031_CR43
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0750-x
– volume: 85
  start-page: 3327
  year: 2004
  ident: 2031_CR46
  publication-title: Ecology
  doi: 10.1890/04-0461
– ident: 2031_CR26
– volume: 13
  start-page: 1498
  year: 2007
  ident: 2031_CR28
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2007.01370.x
– volume: 320
  start-page: 1181
  year: 2008
  ident: 2031_CR11
  publication-title: Science
  doi: 10.1126/science.1154836
– volume: 37
  start-page: 372
  year: 2005
  ident: 2031_CR48
  publication-title: Arct Antarct Alp Res
  doi: 10.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2
– volume: 91
  start-page: 1704
  year: 2010
  ident: 2031_CR21
  publication-title: Ecology
  doi: 10.1890/09-0709.1
– year: 2013
  ident: 2031_CR32
  publication-title: Glob Change Biol
– ident: 2031_CR20
  doi: 10.1098/rsbl.2012.0429
– volume: 45
  start-page: 223
  year: 1999
  ident: 2031_CR30
  publication-title: Can J Microbiol
  doi: 10.1139/w98-219
– ident: 2031_CR33
– volume: 160
  start-page: 309
  year: 2009
  ident: 2031_CR45
  publication-title: Oecologia
  doi: 10.1007/s00442-009-1299-8
– volume: 56
  start-page: 3121
  year: 2005
  ident: 2031_CR15
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eri309
– volume: 52
  start-page: 101
  year: 1988
  ident: 2031_CR23
  publication-title: Oikos
  doi: 10.2307/3565988
– volume: 43
  start-page: 267
  year: 2011
  ident: 2031_CR42
  publication-title: Arct Antarct Alp Res
  doi: 10.1657/1938-4246-43.2.267
– volume: 242
  start-page: 93
  year: 2002
  ident: 2031_CR36
  publication-title: Plant Soil
  doi: 10.1023/A:1019642007929
– volume: 11
  start-page: 135
  year: 1999
  ident: 2031_CR25
  publication-title: Appl Soil Ecol
  doi: 10.1016/S0929-1393(98)00145-0
– volume: 36
  start-page: 1129
  year: 2004
  ident: 2031_CR24
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2004.02.023
– ident: 2031_CR44
  doi: 10.1093/oso/9780198542919.003.0003
– volume: 5
  start-page: 47
  year: 1973
  ident: 2031_CR22
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(73)90093-X
– volume: 90
  start-page: 62
  year: 2013
  ident: 2031_CR29
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2012.12.006
– volume: 11
  start-page: 1223
  year: 2008
  ident: 2031_CR41
  publication-title: Ecosystems
  doi: 10.1007/s10021-008-9204-6
– volume: 12
  start-page: 1479
  year: 2006
  ident: 2031_CR17
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2006.01184.x
– volume: 99
  start-page: 987
  year: 2007
  ident: 2031_CR9
  publication-title: Ann Bot
  doi: 10.1093/aob/mcm030
– volume: 15
  start-page: 275
  year: 1983
  ident: 2031_CR34
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(83)90071-8
– volume: 38
  start-page: 263
  year: 2006
  ident: 2031_CR38
  publication-title: Arct Antarct Alp Res
  doi: 10.1657/1523-0430(2006)38[263:NFDAEN]2.0.CO;2
– volume: 39
  start-page: 271
  year: 2008
  ident: 2031_CR35
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2007.12.014
– volume: 419
  start-page: 917
  year: 2002
  ident: 2031_CR12
  publication-title: Nature
  doi: 10.1038/nature01051
– volume: 21
  start-page: 1027
  year: 2007
  ident: 2031_CR27
  publication-title: Funct Ecol
  doi: 10.1111/j.1365-2435.2007.01331.x
SSID ssj0003216
Score 2.2877657
Snippet Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a...
Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a...
Background and aims Nitrogen fixation associated with cryptogams is potentially very important in arctic and sub-arctic terrestrial ecosystems, as it is a...
Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a source of new nitrogen...
Background and aims: Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a...
BACKGROUND AND AIMS: Nitrogen fixation associated with cryptogams is potentially very important in arctic and subarctic terrestrial ecosystems, as it is a...
SourceID swepub
proquest
gale
pascalfrancis
crossref
springer
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 193
SubjectTerms Acetylene reduction
Agronomy. Soil science and plant productions
Animal, plant and microbial ecology
Arctic regions
autumn
Betula
Biogeochemistry
Biological and medical sciences
Biomedical and Life Sciences
Botanical research
Botany
Bryophytes
climate
Climate change
Climate effects
Climatic changes
Cryptogams
Ecology
Environmental aspects
Ethylene production
field experimentation
Fixation
Forest soils
forests
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Global change
Global warming
Growing season
Growing seasons
High temperature
Lichens
Life Sciences
Litter
Litter addition
Long-vs. short-term warming
Nitrogen
Nitrogen and phosphorus
Nitrogen fixation
phosphorus
Plant cover
Plant Physiology
Plant Sciences
Plants
Regular Article
seasonal variation
Seasonal variations
Seasons
Soil heating
Soil Science & Conservation
Soil sciences
Soil-plant relationships. Soil fertility
Soil-plant relationships. Soil fertility. Fertilization. Amendments
Spring
Summer
Taiga & tundra
temperature
Terrestrial ecosystems
Vascular plants
Vegetation
Vegetation changes
winter
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BAGk8IChMC2yTkUBIoEiJ4zjxY2CbJiR4YUMVL5bjOKPSSFDbIPrfc-d8jCKGhPrSps7Zye_ufLbvA-CFRT5AKyJFBEoXCmttmFeZCJUtJa-NFNJQvPOHj_LsQryfp_Mhjns1eruPR5JeU18Hu-FMRR4TAukmcbi5DXdSXLqTH9cFLyb1m3Bf75S-hFGm5uNR5t9IbE1Gg0ru3RLJR9Ks8DXVfX2LLQN0OjP9I7-on5NOH8KDwZhkRY_-I7jlmhncLy6XQ0INN4O7b1s0_zYzuHfi81NvHsOXT854A5z9wIWyR4YtGoayvWyRnVi9-NlfNE3FBn8P1tbMXi3QvHWsjxWmWwxbdSVKCnbPSKl_fQLnpyfn787CocRCaFEY16Gp0oo81aSqY5MpJdIky0rhjKydjA3PrLBoo5hS5bExcVm5xFiED6WYJ_hjD3aatnH7wFRtalkJh0rACmFS5VwiVF6ayOGH8wCi8VVrO6QfpyoYV_o6cTKhoxEdTejoTQCvp1u-97k3_tX4FeGnSS6RrjVDeAGOjjJc6SLJUHUluCQPYM9DPNHEKTnFlacI4GgL86kBzyVtn8cBHIxMoAdRX2k0mZRQtB8XwPPpbxRSOnkxjWs7asN9ZW8Z3dyG906DcYQDfDMy2G_d3PzgL3senIZLGcOPF58L3S4vdfet0znimj79L6rPYJeTnPj9pgPYWS87d4jm17o88uL2C0prJZ4
  priority: 102
  providerName: Springer Nature
Title Seasonal variation in nitrogen fixation and effects of climate change in a subarctic heath
URI https://www.jstor.org/stable/42952824
https://link.springer.com/article/10.1007/s11104-014-2031-y
https://www.proquest.com/docview/1519490679
https://www.proquest.com/docview/1524408260
https://www.proquest.com/docview/2000085103
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-89455
Volume 379
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xlgd4QDCYyBiVkUBIoIjGcT78hFLWMoGYEGyo8GI5jjMqjWTrB6L_PXeJm1GkTX1o0zrJNb_78vl8B_DcIB-gFxEhArn1hTHGT4tE-NLkMS91LGJN-50_HcdHp-LDNJq6gNvCpVVudGKjqIvaUIz8DVomKSSFPd5eXPrUNYpWV10LjR3oowpO0x70R-Pjz186XRzypvkpffCHiZxu1jWbzXNo-SgDQyCdYeCvtyyT089tjiIlTOoFPrOybXax5Y12C6j_FRttDNTkPtxzniXLWlZ4ALdstQt3s7O5q65hd-H2qEZfcP0Qfny1uvHB2W-cKzfgsFnFULznNXIUK2d_2i91VTCX8sHqkpnzGXq4lrXbhekUzRarHIUFb8pIr_98BCeT8cm7I991WfANyuPS10VUULJaLMtAJ1KKKEySXFgdlzYONE-MMOim6FymgdZBXthQG0QQBZmHeLAHvaqu7GNgstRlXAiLesAIoSNpbShkmuuhxRfnHgw3D1gZV4GcGmGcq6vayYSJQkwUYaLWHrzqTrloy2_cNPgloaZINPG6RrsdBkgdFblSWZig9gpxVu7BXgNsd020yhFOPoUHgy2kuwE8jSmCHnhwsIFeOWlfqCve9OBZ9zPKKS2-6MrWKxrDm-be8fD6MbzNGwyGSODrDVv9c5vr__iLlvM6cqlo-OHsW6bq-Zla_VqpFHGN9m8m_gnc4SQOTYzpAHrL-co-RZdrmQ-gn40ORxN6f__943jg5GwAO6c8-ws_xSs0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDgl4QDCYCIxhJCYkUETiOEn9gFDHNnVsqxCUqeLFchxnq7Qlox9A_yj-R-7yNYq0vU19SRvHufp3vjvb9wHwyiAfoBURIgKJdYUxxu2msXClSSKe6UhEmuKdjwZR_5v4NApHK_CniYUht8pGJpaCOi0M7ZG_Q80khaRtjw8XP1yqGkWnq00JjYotDuziFy7Zpu_3dxDfLc73docf-25dVcA1yH8zV6dhSs5Zkcx8HUspwiCOE2F1lNnI1zw2wqBa1ons-lr7SWoDbZBiZFwe4Bfs9hasiiDyeAdWt3cHn7-0oj_gZa1VunC9WI6aY9QyVg8VLTl8CByWwHcXS4qwVgeVSyT5Z-opQpRVtTWWjN_2vPa_3KalPtx7APdrQ5b1Ks57CCs2X4N7vZNJnczDrsHt7QJNz8Uj-P7V6tLkZz9xaV7yAhvnDKXJpEAGZtn4d_WjzlNWe5iwImPmbIwGtWVVdDI9otl0niAI-FJGauT0MQxvYvjXoZMXuX0CTGY6i1JhUewYIXQorQ2E7Cbas_jh3AGvGWBl6oTnVHfjTF2maiZMFGKiCBO1cOBN-8hFle3jusavCTVFkgD7NboOaEDqKKeW6gUxCsvADwIH1ktg2z7RCAhxrSsc2FxCum3AuxFt2PsObDTQq1q4TNXlVHDgZXsbxQKd9ejcFnNqw8ta4pF3dRteuSn6HhL4tmGrf15z9R_fqjivJZdylO-Mj3uqmJyo-flcdRHX8On1xL-AO_3h0aE63B8cPIO7nKZGub21AZ3ZZG6fo7U3SzbrOcZA3fCs_guOR2RI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiF4QDCYyBjDSExIoGiJ4yT1A0IdXbUxqCYYU8WL5TjOqLQlox9A_zT-O-7yNYq0vU19SRvHufp3vjvb9wHw0iAfoBURIgKJdYUxxu2msXClSSKe6UhEmuKdPw2j_a_iwygcrcCfJhaG3CobmVgK6rQwtEe-g5pJCknbHjtZ7RZx1B-8u_jhUgUpOmltymlULHJoF79w-TZ9e9BHrLc5H-wdv9936woDrkFenLk6DVNy1Ipk5utYShEGcZwIq6PMRr7msREGVbROZNfX2k9SG2iD1CMT8wC_YLe3YDWmRVEHVnf3hkefWzUQ8LLuKl24XixHzZFqGbeHSpecPwQOUeC7iyWlWKuGyj2SfDX1FOHKqjobS4Zwe3b7X57TUjcOHsD92qhlvYoLH8KKzdfgXu90Uif2sGtwe7dAM3TxCL59sbo0_9lPXKaXfMHGOUPJMimQmVk2_l39qPOU1d4mrMiYORujcW1ZFalMj2g2nScIAr6UkUr5_hiOb2L416GTF7l9AkxmOotSYVEEGSF0KK0NhOwm2rP44dwBrxlgZerk51SD40xdpm0mTBRioggTtXDgdfvIRZX547rGrwg1RVIB-zW6Dm5A6ii_luoFMQrOwA8CB9ZLYNs-0SAIcd0rHNhaQrptwLsRbd77Dmw20Kta0EzV5bRw4EV7G0UEnfvo3BZzasPLuuKRd3UbXrks-h4S-KZhq39ec_Uf3644ryWX8pX3xyc9VUxO1fx8rrqIa7hxPfHP4Q7OZvXxYHj4FO5ymhnlTtcmdGaTuX2Ght8s2aqnGAN1w5P6L1wGaH0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonal+variation+in+nitrogen+fixation+and+effects+of+climate+change+in+a+subarctic+heath&rft.jtitle=Plant+and+soil&rft.au=Lett%2C+Signe&rft.au=Michelsen%2C+Anders&rft.date=2014-06-01&rft.issn=0032-079X&rft.volume=379&rft.issue=1-2+p.193-204&rft.spage=193&rft.epage=204&rft_id=info:doi/10.1007%2Fs11104-014-2031-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon