A User’s Guide to Cell-Free Protein Synthesis

Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on livi...

Full description

Saved in:
Bibliographic Details
Published inMethods and protocols Vol. 2; no. 1; p. 24
Main Authors Gregorio, Nicole E., Levine, Max Z., Oza, Javin P.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 12.03.2019
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.
AbstractList Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.
Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.
Author Gregorio, Nicole E.
Levine, Max Z.
Oza, Javin P.
AuthorAffiliation 2 Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
3 Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
1 Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA; negregor@calpoly.edu (N.E.G.); mzlevine@calpoly.edu (M.Z.L.)
AuthorAffiliation_xml – name: 3 Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
– name: 1 Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA; negregor@calpoly.edu (N.E.G.); mzlevine@calpoly.edu (M.Z.L.)
– name: 2 Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
Author_xml – sequence: 1
  givenname: Nicole E.
  orcidid: 0000-0002-7287-209X
  surname: Gregorio
  fullname: Gregorio, Nicole E.
– sequence: 2
  givenname: Max Z.
  orcidid: 0000-0001-8896-6632
  surname: Levine
  fullname: Levine, Max Z.
– sequence: 3
  givenname: Javin P.
  orcidid: 0000-0002-2902-6939
  surname: Oza
  fullname: Oza, Javin P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31164605$$D View this record in MEDLINE/PubMed
BookMark eNptkd9KHTEQh0NRqlVv-gBlL0XYOvm3SW4EOagVhArqdchmZzWyZ3NMcgTvfI2-Xp-ka4-2Kl4lJN98v2HmC1kb44iEfKXwnXMD-_NFZkABmPhENpkAUxumzNqr-wbZyfkWJoQKUEJ-Jhuc0kY0IDfJ_mF1lTH9fvyVq5Nl6LAqsZrhMNTHCbE6T7FgGKuLh7HcYA55m6z3bsi483xukcvjo8vZj_rs58np7PCs9pJCqZ1rtGn7hioDhvdaKsN91zqH3FPRql5JyTvXNlyzqafeoHRGe2EYU72mfIucrrRddLd2kcLcpQcbXbB_H2K6ti6V4Ae0LUchARC91MLL1shWM-F75SUzHeOT62DlWizbOXYex5Lc8Eb69mcMN_Y63ttGaAraTILdZ0GKd0vMxc5D9tOM3IhxmS3jAoArqcSEfnud9S_kZeATACvAp5hzwt76UFwJ8Sk6DJaCfVqr_b_WqWTvXcmL9QP4D6lJoYg
CitedBy_id crossref_primary_10_1002_pro_4098
crossref_primary_10_1038_s41598_020_76715_w
crossref_primary_10_3389_fclim_2024_1516823
crossref_primary_10_3389_fbioe_2022_895069
crossref_primary_10_1186_s40643_023_00653_4
crossref_primary_10_1186_s12915_024_01936_8
crossref_primary_10_1002_fbe2_12003
crossref_primary_10_3389_fbioe_2020_00213
crossref_primary_10_1021_acssynbio_4c00697
crossref_primary_10_3390_antiox11020284
crossref_primary_10_1021_acs_chemrev_4c00116
crossref_primary_10_1261_rna_079825_123
crossref_primary_10_1021_acssynbio_3c00114
crossref_primary_10_3389_fbioe_2022_832176
crossref_primary_10_1021_acssynbio_3c00111
crossref_primary_10_1002_adhm_202300404
crossref_primary_10_1016_j_cjche_2020_05_037
crossref_primary_10_1016_j_trac_2023_117015
crossref_primary_10_1016_j_synbio_2020_07_006
crossref_primary_10_1007_s10528_024_10911_5
crossref_primary_10_1246_cl_200764
crossref_primary_10_1021_acssynbio_0c00256
crossref_primary_10_1038_s41467_021_27854_9
crossref_primary_10_3390_membranes12090863
crossref_primary_10_3390_ijms232213697
crossref_primary_10_1016_j_cherd_2021_11_025
crossref_primary_10_3389_fimmu_2023_1088852
crossref_primary_10_1016_j_biotechadv_2022_107968
crossref_primary_10_1016_j_bej_2021_108158
crossref_primary_10_1021_acssynbio_4c00729
crossref_primary_10_3390_molecules27154684
crossref_primary_10_1016_j_mimet_2023_106814
crossref_primary_10_3390_molecules26030651
crossref_primary_10_1039_D4CB00004H
crossref_primary_10_1038_s41598_022_19681_9
crossref_primary_10_34133_2022_9847014
crossref_primary_10_1002_pro_70065
crossref_primary_10_1186_s40643_023_00626_7
crossref_primary_10_1038_s41598_024_58588_5
crossref_primary_10_1111_jre_13088
crossref_primary_10_15406_jabb_2021_08_00264
crossref_primary_10_1002_bab_2514
crossref_primary_10_1093_synbio_ysac008
crossref_primary_10_1016_j_fmre_2024_06_011
crossref_primary_10_1038_s41467_023_37752_x
crossref_primary_10_1038_s41579_024_01141_y
crossref_primary_10_21769_BioProtoc_4714
crossref_primary_10_1039_D0SM01644F
crossref_primary_10_3389_fbioe_2023_1200729
crossref_primary_10_1049_enb2_12004
crossref_primary_10_3389_fntpr_2024_1353362
crossref_primary_10_3389_fbioe_2020_00399
crossref_primary_10_3390_ijms252413293
crossref_primary_10_1093_nar_gkad1152
crossref_primary_10_3762_bjoc_20_192
crossref_primary_10_3389_fbioe_2022_964396
crossref_primary_10_3390_mps2040080
crossref_primary_10_1021_acssynbio_3c00132
crossref_primary_10_1007_s00232_024_00333_0
crossref_primary_10_1002_tcr_201900094
crossref_primary_10_1038_s41541_025_01082_4
crossref_primary_10_1042_BST20210175
crossref_primary_10_1091_mbc_E22_07_0248
crossref_primary_10_1016_j_addr_2020_10_001
crossref_primary_10_1038_s41467_021_25233_y
crossref_primary_10_1021_acs_chemrev_3c00855
crossref_primary_10_1021_acssynbio_9b00433
crossref_primary_10_3389_fbioe_2020_604091
crossref_primary_10_1093_synbio_ysab029
crossref_primary_10_3389_fbioe_2022_992708
crossref_primary_10_1021_acsbiomaterials_1c00894
crossref_primary_10_1021_acssynbio_2c00658
crossref_primary_10_3390_mps6020036
crossref_primary_10_3390_toxins14040233
crossref_primary_10_3389_fmolb_2021_639587
crossref_primary_10_1111_1541_4337_13077
crossref_primary_10_1016_j_synbio_2019_10_003
crossref_primary_10_1016_j_ijbiomac_2023_125075
crossref_primary_10_1186_s13036_023_00323_1
crossref_primary_10_1093_synbio_ysab017
crossref_primary_10_1038_s42003_024_06690_9
crossref_primary_10_1002_bit_28461
crossref_primary_10_1002_pro_5148
crossref_primary_10_1021_acssynbio_0c00283
crossref_primary_10_3390_mps2030068
crossref_primary_10_1002_biot_202000187
crossref_primary_10_1016_j_ymben_2020_05_009
crossref_primary_10_21769_BioProtoc_4093
crossref_primary_10_3389_fmicb_2024_1370826
crossref_primary_10_1016_j_enzmictec_2025_110588
crossref_primary_10_1002_psc_3560
crossref_primary_10_1186_s12863_022_01075_5
crossref_primary_10_3390_vaccines12121344
crossref_primary_10_1021_acssynbio_4c00361
crossref_primary_10_3389_fbioe_2022_896763
crossref_primary_10_1128_msystems_00196_20
crossref_primary_10_3389_fbioe_2020_00941
crossref_primary_10_3389_fbioe_2020_584178
crossref_primary_10_3389_fbioe_2020_00788
crossref_primary_10_3390_mi12010098
crossref_primary_10_1002_adma_202203433
crossref_primary_10_1021_acssynbio_3c00428
crossref_primary_10_1021_acssynbio_2c00355
crossref_primary_10_3389_fmolb_2022_795212
crossref_primary_10_1038_s41598_024_56190_3
crossref_primary_10_1021_acssynbio_4c00403
crossref_primary_10_1002_cjoc_202300496
crossref_primary_10_1002_cbic_202000452
crossref_primary_10_1021_acs_biomac_3c00879
crossref_primary_10_3390_life11060551
crossref_primary_10_3390_membranes13110854
crossref_primary_10_1016_j_enzmictec_2022_110110
crossref_primary_10_1021_acssynbio_2c00075
crossref_primary_10_1007_s00253_021_11424_6
crossref_primary_10_1016_j_tibs_2023_03_006
crossref_primary_10_1093_synbio_ysad017
crossref_primary_10_1021_acssynbio_0c00501
crossref_primary_10_3390_ijms21010105
crossref_primary_10_1128_aem_01566_24
crossref_primary_10_47612_2226_3136_2021_13_266_286
crossref_primary_10_3390_pr8060675
crossref_primary_10_1002_ange_202013296
crossref_primary_10_1021_acssynbio_0c00581
crossref_primary_10_1371_journal_pone_0304331
crossref_primary_10_1021_acssynbio_1c00195
crossref_primary_10_1134_S0006350922050232
crossref_primary_10_1073_pnas_2423858122
crossref_primary_10_1016_j_bej_2020_107790
crossref_primary_10_1016_j_ymben_2020_06_004
crossref_primary_10_1093_nar_gkab121
crossref_primary_10_1007_s40259_020_00417_y
crossref_primary_10_1016_j_biotno_2022_12_002
crossref_primary_10_1021_acssynbio_1c00505
crossref_primary_10_1038_s43586_021_00046_x
crossref_primary_10_1039_D4CS01198H
crossref_primary_10_1021_acssynbio_2c00339
crossref_primary_10_3390_biom11050754
crossref_primary_10_3390_biology11020157
crossref_primary_10_1002_anie_202013296
crossref_primary_10_1016_j_copbio_2022_102888
crossref_primary_10_1186_s40643_021_00413_2
crossref_primary_10_1128_spectrum_02457_22
crossref_primary_10_1016_j_biotno_2025_02_001
crossref_primary_10_1016_j_procbio_2024_04_035
crossref_primary_10_1021_acssynbio_1c00342
crossref_primary_10_1128_spectrum_01466_24
crossref_primary_10_3389_fsybi_2024_1397533
crossref_primary_10_1021_acssynbio_1c00587
Cites_doi 10.1038/srep08663
10.1021/sb200016s
10.1080/21655979.2016.1241925
10.1038/nmeth.1273
10.1093/pcp/pcm150
10.1186/1472-6750-8-58
10.1002/elsc.201400036
10.1016/S0076-6879(83)96008-1
10.1007/BF02932309
10.1016/S0014-5793(02)02383-9
10.1128/jb.135.3.1149-1150.1978
10.1021/acssynbio.7b00001
10.1371/journal.pone.0165137
10.1016/0167-4781(85)90055-7
10.1371/journal.pone.0163670
10.1093/oxfordjournals.jbchem.a124203
10.1038/newbio230172a0
10.1093/nar/gkt226
10.1016/j.febslet.2014.05.061
10.1006/abio.1993.1490
10.1016/j.ymeth.2011.06.006
10.1074/jbc.M303978200
10.1073/pnas.0307131101
10.1002/biot.201300545
10.1021/bc100367u
10.1038/nbt.1556
10.1016/j.jbiotec.2006.06.018
10.1128/jvi.70.11.8187-8194.1996
10.1002/pmic.200600126
10.1016/j.nbt.2010.07.003
10.1016/j.jbiotec.2012.11.001
10.1021/acssynbio.6b00154
10.1002/bit.25502
10.1016/j.tibtech.2004.08.012
10.1371/journal.pone.0106232
10.1002/j.1460-2075.1993.tb05803.x
10.1016/j.ymben.2015.09.015
10.1007/978-1-62703-794-5_5
10.1038/s41598-017-12188-8
10.1016/j.cell.2014.10.004
10.1016/j.jbiotec.2006.03.002
10.1073/pnas.58.3.1189
10.1007/BF00365661
10.1002/biot.201500030
10.1021/acssynbio.6b00160
10.1006/bbrc.2000.4188
10.1007/BF00332721
10.1016/j.jbiotec.2009.10.009
10.1038/srep30399
10.1016/j.cell.2016.04.059
10.1002/bit.20528
10.1007/BF00333006
10.1111/j.1432-1033.1981.tb06445.x
10.1093/pcp/pcr080
10.1016/j.virol.2009.05.009
10.1016/0042-6822(91)90974-G
10.1002/pmic.200700237
10.1038/ncomms9168
10.1093/nar/gkp1182
10.1016/0168-1656(92)90157-5
10.1073/pnas.47.10.1588
10.3791/58882
10.1021/bc400490z
10.1016/j.febslet.2012.05.042
10.1016/S0022-2836(66)80157-2
10.1046/j.1365-2958.1999.01615.x
10.2144/000114158
10.1038/90802
10.1021/acssynbio.7b00376
10.1002/bit.20026
10.1002/cbic.201402708
10.1046/j.1432-1033.2003.03880.x
10.1016/j.nbt.2010.07.002
10.1111/j.1574-6968.1993.tb06009.x
10.1128/jb.169.10.4822-4829.1987
10.1074/jbc.M000567200
10.1002/biot.201300383
10.1016/0092-8674(86)90271-0
10.1021/acssynbio.6b00301
10.1007/s002530000534
10.3791/52772
10.1073/pnas.2135496100
10.1074/jbc.C300330200
10.3109/09687688.2013.807362
10.1002/bit.26502
10.1021/bi00895a019
10.1016/j.pep.2005.09.021
10.1002/pmic.200700774
10.1002/pmic.200900783
10.1128/JVI.78.17.9257-9269.2004
10.1021/acssynbio.7b00280
10.1007/BF00028775
10.1021/sb400028c
10.1016/j.biotechadv.2018.12.006
10.1007/978-1-61779-117-8_16
10.1039/C5LC00700C
10.3390/mps2010016
10.1002/bit.26253
10.1073/pnas.1715806115
10.1002/pmic.200700471
10.1039/c4mb00003j
10.1016/j.ymben.2016.09.008
10.1038/s41467-018-03469-5
10.1186/1479-5876-4-39
10.1104/pp.42.8.1161
10.3389/fmicb.2018.01146
10.1002/bit.21511
10.1002/btpr.744
10.1109/ACC.2013.6580053
10.1038/msb.2013.31
10.1371/journal.pone.0096635
10.1002/9783527688104.ch15
10.1016/j.ymeth.2017.12.003
10.1128/JVI.79.10.6358-6367.2005
10.1016/j.jbiotec.2012.08.020
10.1016/j.synbio.2018.02.003
10.1016/S1097-2765(00)00048-4
10.1073/pnas.94.23.12297
10.1016/j.jbiotec.2011.04.011
10.1016/0031-9422(95)00868-3
10.1038/nbt0197-79
10.1103/PhysRevLett.106.048104
10.1371/journal.pone.0082234
10.1021/acssynbio.7b00383
10.1016/j.nbt.2010.08.009
10.3390/genes9030144
10.1263/jbb.106.8
10.1002/bit.23103
10.1016/S0021-9258(18)31584-9
10.1006/abbi.1994.1015
10.1002/bit.24942
10.1093/nar/gky365
10.1093/oxfordjournals.jbchem.a022290
10.1038/nmeth.1289
10.1016/j.biotechadv.2011.09.016
10.1126/sciadv.aat5107
10.1128/MCB.00136-12
10.1016/j.pep.2008.08.002
10.1016/0014-5793(79)80452-4
10.1093/synbio/ysy003
10.1038/35070613
10.1093/femsle/fny174
10.1007/978-3-642-59337-6_25
10.1016/j.bej.2017.11.013
10.1002/smll.201502764
10.2144/000114125
10.1021/acssynbio.8b00222
10.2144/0000113924
10.1093/synbio/ysy002
10.1002/bit.21716
10.1016/S0021-9258(17)34748-8
10.1101/cshperspect.a023853
10.1016/j.procbio.2013.12.019
10.1016/j.molcel.2015.07.018
10.4161/mabs.4.2.19202
10.1016/j.febslet.2015.04.041
10.1016/j.bej.2018.06.021
10.1002/cbic.201500340
10.1016/S0021-9258(19)39229-4
10.1016/j.ymeth.2005.04.006
10.1021/acs.biochem.6b00488
10.1007/978-1-4939-8730-6_19
10.1016/j.cell.2016.09.013
10.1016/j.jbiotec.2006.04.010
10.1016/S0021-9258(18)53533-X
10.2174/138920110791111997
10.1038/nmeth.2926
10.1016/j.jbiotec.2015.03.015
10.1016/S1046-2023(02)00013-0
10.1021/acssynbio.6b00010
10.1038/nprot.2007.426
10.1007/10_2013_185
10.1016/j.febslet.2013.10.016
10.1038/mt.2008.200
10.1016/j.jbiosc.2010.01.011
10.1002/bit.25013
10.3390/inventions3030060
10.1038/s41467-018-05110-x
10.1016/j.febslet.2014.06.007
10.1590/S0100-879X2002000700001
10.1093/oxfordjournals.jbchem.a003174
10.1186/1754-1611-4-8
10.4161/mabs.28172
10.1002/elsc.201100235
10.1016/j.nbt.2014.07.001
10.1126/sciadv.aat5105
10.1016/j.bios.2014.03.004
10.1002/bit.26226
10.1016/j.bej.2018.07.001
10.1007/BF00180142
10.1073/pnas.97.2.559
10.1093/glycob/cwr151
10.1016/j.jmb.2011.12.064
10.1016/S0021-9258(17)33616-5
10.1021/bp060110v
10.1016/S0021-9258(18)92858-9
10.2174/138920110791111889
10.1110/ps.0241203
10.1016/j.pep.2008.09.002
10.1021/acssynbio.8b00252
10.1016/j.biochi.2013.11.025
10.1021/acsami.8b09324
ContentType Journal Article
Copyright 2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/mps2010024
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2409-9279
ExternalDocumentID oai_doaj_org_article_b3e4500eec584c5b95b824cf7c529d23
PMC6481089
31164605
10_3390_mps2010024
Genre Journal Article
Review
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1708919
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
GROUPED_DOAJ
HYE
IAO
MODMG
M~E
OK1
PGMZT
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c510t-aa689bf6179093f85793cdbaae3c14b7f7553dab6382074f9e5a98c49227f813
IEDL.DBID DOA
ISSN 2409-9279
IngestDate Wed Aug 27 01:31:49 EDT 2025
Thu Aug 21 17:49:05 EDT 2025
Fri Jul 11 03:51:58 EDT 2025
Thu Jan 02 23:03:36 EST 2025
Thu Apr 24 23:05:21 EDT 2025
Tue Jul 01 01:20:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords in vitro protein synthesis
in vitro transcription-translation (TX-TL)
cell-free protein synthesis (CFPS)
cell-free synthetic biology
cell-free metabolic engineering (CFME)
cell-free protein expression (CFPE)
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-aa689bf6179093f85793cdbaae3c14b7f7553dab6382074f9e5a98c49227f813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7287-209X
0000-0001-8896-6632
0000-0002-2902-6939
OpenAccessLink https://doaj.org/article/b3e4500eec584c5b95b824cf7c529d23
PMID 31164605
PQID 2340037574
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b3e4500eec584c5b95b824cf7c529d23
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6481089
proquest_miscellaneous_2340037574
pubmed_primary_31164605
crossref_citationtrail_10_3390_mps2010024
crossref_primary_10_3390_mps2010024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190312
PublicationDateYYYYMMDD 2019-03-12
PublicationDate_xml – month: 3
  year: 2019
  text: 20190312
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Methods and protocols
PublicationTitleAlternate Methods Protoc
PublicationYear 2019
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Hillebrecht (ref_26) 2008; 8
Endo (ref_32) 1992; 25
Spencer (ref_175) 1964; 3
ref_90
Brophy (ref_138) 2014; 11
Halleran (ref_146) 2018; 7
Bundy (ref_87) 2008; 100
Smith (ref_42) 2014; 56
Thompson (ref_169) 1984; 195
Goshima (ref_80) 2008; 5
Martin (ref_154) 2018; 9
Mikami (ref_13) 2006; 46
Li (ref_15) 2018; 130
Bryan (ref_81) 2000; 6
Komoda (ref_182) 2004; 101
Madin (ref_194) 2000; 97
Elhardt (ref_187) 1982; 188
Harbers (ref_9) 2014; 588
Patel (ref_89) 2011; 22
Kay (ref_151) 2015; 32
Mikami (ref_127) 2008; 62
Voloshin (ref_102) 2005; 91
Sanford (ref_55) 1991; 266
ref_158
Buntru (ref_12) 2015; 112
Villafane (ref_174) 1987; 169
Jiao (ref_51) 2018; 10
Quast (ref_152) 2015; 589
Suzuki (ref_66) 2010; 145
Ozer (ref_155) 2017; 114
Quast (ref_159) 2015; 203
Thoring (ref_34) 2018; Volume 1850
Jiang (ref_121) 2002; 514
Raymond (ref_129) 2013; 163
Jackson (ref_98) 1983; 96
Gursinsky (ref_183) 2009; 390
Hansen (ref_28) 2016; 5
Gan (ref_19) 2014; 9
Stark (ref_46) 2018; 4
ref_142
Shao (ref_82) 2003; 278
Dondapati (ref_108) 2014; 59
ref_141
ref_85
Goren (ref_110) 2008; 62
Zimmerman (ref_119) 2014; 25
Wu (ref_165) 2012; 416
Ryabova (ref_117) 1997; 15
Jiang (ref_149) 2018; 3
Woodrow (ref_3) 2007; 7
Rosenblum (ref_6) 2014; 588
Georgi (ref_52) 2016; 16
Shrestha (ref_7) 2012; 53
Anastasina (ref_204) 2014; 56
Quast (ref_38) 2016; 6
Yu (ref_167) 2015; 59
Wei (ref_166) 2012; 32
Rigaud (ref_105) 2002; 35
ref_203
Hao (ref_181) 1996; 42
ref_207
Uzawa (ref_188) 2002; 131
Pardee (ref_44) 2014; 159
Llarena (ref_156) 2018; 7
Dudley (ref_148) 2016; 5
Li (ref_168) 2017; 114
Klein (ref_94) 2004; 78
Hodgman (ref_205) 2014; 31
Schoborg (ref_35) 2014; 9
Wiegand (ref_170) 2018; 7
Boyer (ref_131) 2008; 99
Sachs (ref_164) 2002; 26
Sachse (ref_73) 2013; 13
Stech (ref_125) 2014; 14
Suzuki (ref_72) 2010; 10
Noireaux (ref_145) 2014; 4
Cooke (ref_179) 1990; 14
ref_113
Pardee (ref_47) 2016; 167
Ruggero (ref_186) 1993; 107
Novelli (ref_93) 1991; 266
Goering (ref_126) 2017; 6
Guarino (ref_74) 2012; 22
ref_107
Caschera (ref_8) 2014; 99
Yokogawa (ref_134) 2010; 38
Morita (ref_79) 2003; 12
ref_100
Roberts (ref_84) 1997; 94
Franco (ref_91) 2005; 79
Mureev (ref_11) 2009; 27
Gerber (ref_50) 2009; 6
Merk (ref_118) 1999; 125
Perez (ref_192) 2016; 8
Matsumura (ref_128) 2011; 741
Kelwick (ref_16) 2016; 38
Uzawa (ref_189) 1993; 486
Pardee (ref_45) 2016; 165
Stech (ref_124) 2012; 164
Timm (ref_137) 2016; 12
ref_14
Sachse (ref_106) 2014; 588
Yin (ref_2) 2012; 4
Rothblatt (ref_76) 1986; 44
Stech (ref_160) 2013; Volume 137
Cui (ref_157) 2018; 46
Murota (ref_184) 2011; 52
Spirin (ref_29) 2004; 22
Zhang (ref_208) 2018; 138
Carlson (ref_4) 2014; 30
Thoring (ref_39) 2017; 7
Curle (ref_163) 1988; 13
Ruehrer (ref_193) 2013; 30
ref_22
ref_21
Tarui (ref_63) 2001; 55
Noireaux (ref_139) 2003; 100
Mikami (ref_78) 2006; 127
Phelps (ref_177) 1967; 42
Lee (ref_201) 2018; 365
Shimizu (ref_25) 2001; 19
Ciammaruconi (ref_202) 1999; 34
Spearman (ref_92) 1996; 70
Panthu (ref_135) 2018; 7
Kuchenreuther (ref_132) 2014; Volume 1122
Maerkl (ref_144) 2015; 4
Zawada (ref_97) 2011; 108
Shimizu (ref_24) 2005; 36
Sen (ref_147) 2017; 6
Schwarz (ref_36) 2007; 2
Kwon (ref_197) 2015; 5
Nozawa (ref_111) 2007; 48
Katzen (ref_67) 2006; 125
Chekulayeva (ref_37) 2001; 280
Hodgman (ref_195) 2013; 110
Starr (ref_60) 1990; 265
Guo (ref_178) 1994; 308
Junge (ref_112) 2011; 28
Kawasaki (ref_123) 2003; 270
Sonnabend (ref_17) 2014; 111
Shields (ref_77) 1977; 74
Davidson (ref_10) 2018; 7
Wang (ref_96) 2010; 110
Focke (ref_5) 2016; 55
Gibbs (ref_58) 1985; 824
Smith (ref_88) 2012; 28
Bundy (ref_86) 2011; 154
Zampatis (ref_68) 2012; 586
Stallcup (ref_173) 1976; 251
Ezure (ref_18) 2006; 22
Keefe (ref_83) 2001; 410
Wilson (ref_109) 2000; 275
Muramatsu (ref_27) 2008; 16
Gusdon (ref_116) 1967; 58
ref_54
Suzuki (ref_65) 2007; 7
ref_53
Kovtun (ref_190) 2011; 55
Schoborg (ref_75) 2018; 115
Volyanik (ref_33) 1993; 214
Nishimura (ref_200) 1993; 15
Shields (ref_61) 1978; 253
Martin (ref_103) 2017; 6
Hunt (ref_40) 2017; 8
Tominaga (ref_172) 1978; 135
Boardman (ref_176) 1966; 17
ref_69
Jewett (ref_136) 2013; 9
Dopp (ref_43) 2018; 138
Jewett (ref_104) 2004; 86
Ezure (ref_62) 2010; 11
Li (ref_130) 2016; 11
Madono (ref_41) 2011; 28
Khattak (ref_150) 2014; 49
ref_171
Endoh (ref_20) 2006; 126
John (ref_57) 1993; 12
Hong (ref_31) 2015; 16
Wang (ref_95) 2008; 106
Chen (ref_180) 1979; 107
Dopp (ref_206) 2019; 37
Ezure (ref_71) 2007; 7
Shin (ref_143) 2012; 1
ref_196
ref_198
ref_30
Beebe (ref_99) 2011; 28
Nicholls (ref_115) 1993; 268
Groff (ref_122) 2014; 6
Shin (ref_199) 2010; 4
Oza (ref_101) 2015; 6
Ahn (ref_133) 2006; 11
Nirenberg (ref_1) 1961; 47
Bhide (ref_191) 2014; 10
Zemella (ref_64) 2015; 16
Wu (ref_161) 2018; 137
Galeffi (ref_120) 2006; 4
Stavnezer (ref_114) 1971; 230
ref_185
Dalley (ref_56) 2003; 278
Dougherty (ref_59) 1991; 183
ref_49
ref_48
Suzuki (ref_70) 2006; 6
Filipowicz (ref_162) 1981; 121
Albayrak (ref_153) 2013; 41
Ohashi (ref_23) 2010; 11
Karig (ref_140) 2013; 2
References_xml – volume: 5
  start-page: 8663
  year: 2015
  ident: ref_197
  article-title: High-throughput preparation methods of crude extract for robust cell-free protein synthesis
  publication-title: Sci. Rep.
  doi: 10.1038/srep08663
– volume: 1
  start-page: 29
  year: 2012
  ident: ref_143
  article-title: An E. coli cell-free expression toolbox: Application to synthetic gene circuits and artificial cells
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb200016s
– volume: 8
  start-page: 325
  year: 2017
  ident: ref_40
  article-title: The growing impact of lyophilized cell-free protein expression systems
  publication-title: Bioengineered
  doi: 10.1080/21655979.2016.1241925
– volume: 5
  start-page: 1011
  year: 2008
  ident: ref_80
  article-title: Human protein factory for converting the transcriptome into an in vitro-expressed proteome
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1273
– volume: 48
  start-page: 1815
  year: 2007
  ident: ref_111
  article-title: A cell-free translation and proteoliposome reconstitution system for functional analysis of plant solute transporters
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcm150
– volume: 8
  start-page: 1
  year: 2008
  ident: ref_26
  article-title: A comparative study of protein synthesis in in vitro systems: From the prokaryotic reconstituted to the eukaryotic extract-based
  publication-title: BMC Biotechnol.
  doi: 10.1186/1472-6750-8-58
– volume: 14
  start-page: 387
  year: 2014
  ident: ref_125
  article-title: Cell-free eukaryotic systems for the production, engineering, and modification of scFv antibody fragments
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201400036
– volume: 96
  start-page: 50
  year: 1983
  ident: ref_98
  article-title: Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(83)96008-1
– volume: 11
  start-page: 420
  year: 2006
  ident: ref_133
  article-title: Preparation method forEscherichia coli S30 extracts completely dependent upon tRNA addition to catalyze cell-free protein synthesis
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/BF02932309
– volume: 514
  start-page: 290
  year: 2002
  ident: ref_121
  article-title: Expression of Fab fragment of catalytic antibody 6D9 in an Escherichia coli in vitro coupled transcription/translation system
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(02)02383-9
– volume: 74
  start-page: 2059
  year: 1977
  ident: ref_77
  article-title: Cell-free synthesis of fish preproinsulin, and processing by heterologous mammalian microsomal membranes (mRNA from islets of Langerhans/wheat germ system/canine pancreatic microsomal membranes/amino-terminal sequences/ sequence homologies)
  publication-title: Cell Biol.
– volume: 135
  start-page: 1149
  year: 1978
  ident: ref_172
  article-title: Kasugamycin-resistant mutants of Bacillus subtilis
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.135.3.1149-1150.1978
– volume: 6
  start-page: 1370
  year: 2017
  ident: ref_103
  article-title: Development of a CHO-Based Cell-Free Platform for Synthesis of Active Monoclonal Antibodies
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.7b00001
– ident: ref_198
  doi: 10.1371/journal.pone.0165137
– volume: 824
  start-page: 247
  year: 1985
  ident: ref_58
  article-title: Differential post-translational modification of human type I keratins synthesized in a rabbit reticulocyte cell-free system
  publication-title: Biochim. Biophys. Acta - Gene Struct. Expr.
  doi: 10.1016/0167-4781(85)90055-7
– ident: ref_85
  doi: 10.1371/journal.pone.0163670
– volume: 486
  start-page: 478
  year: 1993
  ident: ref_189
  article-title: Effects of Novel Polyamines on Cell-Free Polypeptide Catalyzed by Thermus thermophilus HB8 Extract
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a124203
– volume: 230
  start-page: 172
  year: 1971
  ident: ref_114
  article-title: Synthesis of a Mouse Immunoglobulin Light Chain in a Rabbit Reticulocyte Cell-free System
  publication-title: Nat. New Biol.
  doi: 10.1038/newbio230172a0
– volume: 41
  start-page: 5949
  year: 2013
  ident: ref_153
  article-title: Cell-free co-production of an orthogonal transfer RNA activates efficient site-specific non-natural amino acid incorporation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt226
– volume: 588
  start-page: 2762
  year: 2014
  ident: ref_9
  article-title: Wheat germ systems for cell-free protein expression
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2014.05.061
– volume: 214
  start-page: 289
  year: 1993
  ident: ref_33
  article-title: Synthesis of Preparative Amounts of Biologically Active Interleukin-6 Using a Continuous-Flow Cell-Free Translation System
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1993.1490
– volume: 55
  start-page: 58
  year: 2011
  ident: ref_190
  article-title: Leishmania cell-free protein expression system
  publication-title: Methods
  doi: 10.1016/j.ymeth.2011.06.006
– volume: 278
  start-page: 51749
  year: 2003
  ident: ref_56
  article-title: The Endoplasmic Reticulum (ER) Translocon can Differentiate between Hydrophobic Sequences Allowing Signals for Glycosylphosphatidylinositol Anchor Addition to be Fully Translocated into the ER Lumen
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M303978200
– volume: 101
  start-page: 1863
  year: 2004
  ident: ref_182
  article-title: Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0307131101
– volume: 9
  start-page: 641
  year: 2014
  ident: ref_19
  article-title: A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthesis
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201300545
– volume: 22
  start-page: 376
  year: 2011
  ident: ref_89
  article-title: Surface Functionalization of Virus-Like Particles by Direct Conjugation Using Azide−Alkyne Click Chemistry
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc100367u
– volume: 27
  start-page: 747
  year: 2009
  ident: ref_11
  article-title: Species-independent translational leaders facilitate cell-free expression
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1556
– volume: 127
  start-page: 65
  year: 2006
  ident: ref_78
  article-title: A hybridoma-based in vitro translation system that efficiently synthesizes glycoproteins
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2006.06.018
– volume: 70
  start-page: 8187
  year: 1996
  ident: ref_92
  article-title: Human immunodeficiency virus type 1 capsid formation in reticulocyte lysates
  publication-title: J. Virol.
  doi: 10.1128/jvi.70.11.8187-8194.1996
– volume: 6
  start-page: 4486
  year: 2006
  ident: ref_70
  article-title: N-Terminal protein modifications in an insect cell-free protein synthesis system and their identification by mass spectrometry
  publication-title: Proteomics
  doi: 10.1002/pmic.200600126
– volume: 28
  start-page: 239
  year: 2011
  ident: ref_99
  article-title: Robotic large-scale application of wheat cell-free translation to structural studies including membrane proteins
  publication-title: N. Biotechnol.
  doi: 10.1016/j.nbt.2010.07.003
– volume: 163
  start-page: 301
  year: 2013
  ident: ref_129
  article-title: Functional evaluation of candidate ice structuring proteins using cell-free expression systems
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2012.11.001
– volume: 5
  start-page: 1578
  year: 2016
  ident: ref_148
  article-title: Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00154
– volume: 112
  start-page: 867
  year: 2015
  ident: ref_12
  article-title: A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25502
– volume: 22
  start-page: 538
  year: 2004
  ident: ref_29
  article-title: High-throughput cell-free systems for synthesis of functionally active proteins
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2004.08.012
– ident: ref_207
  doi: 10.1371/journal.pone.0106232
– volume: 12
  start-page: 1587
  year: 1993
  ident: ref_57
  article-title: Cell-free synthesis and assembly of prolyl 4-hydroxylase: the role of the beta-subunit (PDI) in preventing misfolding and aggregation of the alpha-subunit
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1993.tb05803.x
– volume: 32
  start-page: 133
  year: 2015
  ident: ref_151
  article-title: Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.09.015
– volume: Volume 1122
  start-page: 49
  year: 2014
  ident: ref_132
  article-title: Cell-Free Synthesis of the H-Cluster: A Model for the In Vitro Assembly of Metalloprotein Metal Centers
  publication-title: Methods in molecular biology (Clifton, N.J.)
  doi: 10.1007/978-1-62703-794-5_5
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_39
  article-title: High-yield production of difficult-to-express proteins in a continuous exchange cell-free system based on CHO cell lysates
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12188-8
– volume: 4
  start-page: 503
  year: 2014
  ident: ref_145
  article-title: Rapidly Characterizing the Fast Dynamics of RNA Genetic Circuitry with Cell-Free Transcription–Translation (TX-TL) Systems
  publication-title: ACS Synth. Biol.
– volume: 159
  start-page: 940
  year: 2014
  ident: ref_44
  article-title: Paper-based synthetic gene networks
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.004
– volume: 125
  start-page: 194
  year: 2006
  ident: ref_67
  article-title: Efficient generation of insect-based cell-free translation extracts active in glycosylation and signal sequence processing
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2006.03.002
– volume: 58
  start-page: 1189
  year: 1967
  ident: ref_116
  article-title: Synthesis of gamma G antibody and immunoglobulin on polyribosomes in a cell-free system
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.58.3.1189
– volume: 13
  start-page: 401
  year: 1988
  ident: ref_163
  article-title: A Neurospora crassa heat-shocked cell lysate translates homologous and heterologous messenger RNA efficiently, without preference for heat shock messages
  publication-title: Curr. Genet.
  doi: 10.1007/BF00365661
– volume: 11
  start-page: 212
  year: 2016
  ident: ref_130
  article-title: Cell-free protein synthesis enables high yielding synthesis of an active multicopper oxidase
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201500030
– volume: 6
  start-page: 39
  year: 2017
  ident: ref_126
  article-title: In vitro reconstruction of nonribosomal peptide biosynthesis directly from DNA using cell-free protein synthesis
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00160
– volume: 280
  start-page: 914
  year: 2001
  ident: ref_37
  article-title: Continuous-Exchange Cell-Free Protein-Synthesizing System: Synthesis of HIV-1 Antigen Nef
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.4188
– volume: 195
  start-page: 39
  year: 1984
  ident: ref_169
  article-title: Coupled transcription--translation in extracts of Streptomyces lividans
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00332721
– volume: 145
  start-page: 73
  year: 2010
  ident: ref_66
  article-title: Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2009.10.009
– volume: 6
  start-page: 30399
  year: 2016
  ident: ref_38
  article-title: High-yield cell-free synthesis of human EGFR by IRES-mediated protein translation in a continuous exchange cell-free reaction format
  publication-title: Sci. Rep.
  doi: 10.1038/srep30399
– volume: 165
  start-page: 1255
  year: 2016
  ident: ref_45
  article-title: Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.059
– volume: 91
  start-page: 516
  year: 2005
  ident: ref_102
  article-title: Efficient and scalable method for scaling up cell free protein synthesis in batch mode
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20528
– volume: 188
  start-page: 128
  year: 1982
  ident: ref_187
  article-title: An in vitro polypeptide synthesizing system from methanogenic bacteria: Sensitivity to antibiotics
  publication-title: MGG Mol. Gen. Genet.
  doi: 10.1007/BF00333006
– volume: 121
  start-page: 163
  year: 1981
  ident: ref_162
  article-title: The cell-free protein synthesis system from the “slime” mutant of Neurospora crassa. Preparation and characterisation of importance of 7-methylguanosine for translation of viral and cellular mRNAs
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1981.tb06445.x
– volume: 52
  start-page: 1443
  year: 2011
  ident: ref_184
  article-title: Arabidopsis cell-free extract, ACE, a new in vitro translation system derived from arabidopsis callus cultures
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcr080
– volume: 390
  start-page: 250
  year: 2009
  ident: ref_183
  article-title: Replication of Tomato bushy stunt virus RNA in a plant in vitro system
  publication-title: Virology
  doi: 10.1016/j.virol.2009.05.009
– volume: 183
  start-page: 449
  year: 1991
  ident: ref_59
  article-title: Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: Identification of an internal cleavage site and delimitation of VPg and proteinase domains
  publication-title: Virology
  doi: 10.1016/0042-6822(91)90974-G
– volume: 7
  start-page: 1942
  year: 2007
  ident: ref_65
  article-title: Protein prenylation in an insect cell-free protein synthesis system and identification of products by mass spectrometry
  publication-title: Proteomics
  doi: 10.1002/pmic.200700237
– volume: 6
  start-page: 8168
  year: 2015
  ident: ref_101
  article-title: Robust production of recombinant phosphoproteins using cell-free protein synthesis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9168
– volume: 38
  start-page: e89
  year: 2010
  ident: ref_134
  article-title: Optimization of the hybridization-based method for purification of thermostable tRNAs in the presence of tetraalkylammonium salts
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp1182
– volume: 25
  start-page: 221
  year: 1992
  ident: ref_32
  article-title: Production of an enzymatic active protein using a continuous flow cell-free translation system
  publication-title: J. Biotechnol.
  doi: 10.1016/0168-1656(92)90157-5
– volume: 47
  start-page: 1588
  year: 1961
  ident: ref_1
  article-title: The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.47.10.1588
– ident: ref_22
  doi: 10.3791/58882
– volume: 25
  start-page: 351
  year: 2014
  ident: ref_119
  article-title: Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc400490z
– volume: 586
  start-page: 2351
  year: 2012
  ident: ref_68
  article-title: The protease-activated receptor 1 possesses a functional and cleavable signal peptide which is necessary for receptor expression
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.05.042
– volume: 17
  start-page: 470
  year: 1966
  ident: ref_176
  article-title: Protein synthesis by cell-free extracts of tobacco leaves: III. Comparison of the physical properties and protein synthesizing activities of 70 s chloroplast and 80 s cytoplasmic ribosomes
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(66)80157-2
– volume: 34
  start-page: 377
  year: 1999
  ident: ref_202
  article-title: Cis-acting signals controlling translational initiation in the thermophilic archaeon Sulfolobus solfataricus
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1999.01615.x
– volume: 56
  start-page: 186
  year: 2014
  ident: ref_42
  article-title: Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage
  publication-title: Biotechniques
  doi: 10.2144/000114158
– volume: 19
  start-page: 751
  year: 2001
  ident: ref_25
  article-title: Cell-free translation reconstituted with purified components
  publication-title: Nat. Biotechnol.
  doi: 10.1038/90802
– volume: 7
  start-page: 752
  year: 2018
  ident: ref_146
  article-title: Cell-Free and in Vivo Characterization of Lux, Las, and Rpa Quorum Activation Systems in E. coli
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.7b00376
– volume: 86
  start-page: 19
  year: 2004
  ident: ref_104
  article-title: Mimicking the Escherichia coli Cytoplasmic Environment Activates Long-Lived and Efficient Cell-Free Protein Synthesis
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20026
– volume: 16
  start-page: 844
  year: 2015
  ident: ref_31
  article-title: Improving cell-free protein synthesis through genome engineering of Escherichia coli lacking release factor 1
  publication-title: Chembiochem
  doi: 10.1002/cbic.201402708
– volume: 270
  start-page: 4780
  year: 2003
  ident: ref_123
  article-title: Efficient synthesis of a disulfide-containing protein through a batch cell-free system from wheat germ
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1033.2003.03880.x
– volume: 28
  start-page: 262
  year: 2011
  ident: ref_112
  article-title: Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins
  publication-title: N. Biotechnol.
  doi: 10.1016/j.nbt.2010.07.002
– volume: 107
  start-page: 89
  year: 1993
  ident: ref_186
  article-title: In vitro translation of archaeal natural mRNAs at high temperature
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1993.tb06009.x
– volume: 169
  start-page: 4822
  year: 1987
  ident: ref_174
  article-title: Replication control genes of plasmid pE194
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.169.10.4822-4829.1987
– volume: 275
  start-page: 21224
  year: 2000
  ident: ref_109
  article-title: Pivotal role of calnexin and mannose trimming in regulating the endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M000567200
– volume: 9
  start-page: 630
  year: 2014
  ident: ref_35
  article-title: Substrate replenishment and byproduct removal improve yeast cell-free protein synthesis
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201300383
– volume: 44
  start-page: 619
  year: 1986
  ident: ref_76
  article-title: Secretion in Yeast: Reconstitution of the Translocation and Glycosylation of a-Factor and lnvertase in a Homologous Cell-Free System
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90271-0
– volume: 6
  start-page: 1461
  year: 2017
  ident: ref_147
  article-title: Design of a Toolbox of RNA Thermometers
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00301
– volume: 55
  start-page: 446
  year: 2001
  ident: ref_63
  article-title: Establishment and characterization of cell-free translation/glycosylation in insect cell ( Spodoptera frugiperda 21) extract prepared with high pressure treatment
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530000534
– ident: ref_107
  doi: 10.3791/52772
– volume: 100
  start-page: 12672
  year: 2003
  ident: ref_139
  article-title: Principles of cell-free genetic circuit assembly
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2135496100
– volume: 278
  start-page: 38117
  year: 2003
  ident: ref_82
  article-title: Phosphorylation of Serine 13 Is Required for the Proper Function of the Hsp90 Co-chaperone, Cdc37
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C300330200
– volume: 30
  start-page: 288
  year: 2013
  ident: ref_193
  article-title: Exploiting Leishmania tarentolae cell-free extracts for the synthesis of human solute carriers
  publication-title: Mol. Membr. Biol.
  doi: 10.3109/09687688.2013.807362
– volume: 115
  start-page: 739
  year: 2018
  ident: ref_75
  article-title: A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26502
– volume: 3
  start-page: 954
  year: 1964
  ident: ref_175
  article-title: The Incorporation of Amino Acids into Protein by Cell-free Extracts from Tobacco Leaves
  publication-title: Biochemistry
  doi: 10.1021/bi00895a019
– volume: 46
  start-page: 348
  year: 2006
  ident: ref_13
  article-title: An efficient mammalian cell-free translation system supplemented with translation factors
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2005.09.021
– volume: 7
  start-page: 4424
  year: 2007
  ident: ref_71
  article-title: Expression of proteins containing disulfide bonds in an insect cell-free system and confirmation of their arrangements by MALDI-TOF MS
  publication-title: Proteomics
  doi: 10.1002/pmic.200700774
– volume: 10
  start-page: 1780
  year: 2010
  ident: ref_72
  article-title: Strategy for comprehensive identification of human N-myristoylated proteins using an insect cell-free protein synthesis system
  publication-title: Proteomics
  doi: 10.1002/pmic.200900783
– volume: 78
  start-page: 9257
  year: 2004
  ident: ref_94
  article-title: Unique Features of Hepatitis C Virus Capsid Formation Revealed by De Novo Cell-Free Assembly
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.17.9257-9269.2004
– volume: 7
  start-page: 218
  year: 2018
  ident: ref_135
  article-title: Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.7b00280
– volume: 14
  start-page: 391
  year: 1990
  ident: ref_179
  article-title: In vitro transcription from cauliflower mosaic virus promoters by a cell-free extract from tobacco cells
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00028775
– volume: 2
  start-page: 497
  year: 2013
  ident: ref_140
  article-title: Probing Cell-Free Gene Expression Noise in Femtoliter Volumes
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb400028c
– volume: 37
  start-page: 246
  year: 2019
  ident: ref_206
  article-title: Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.12.006
– volume: 741
  start-page: 233
  year: 2011
  ident: ref_128
  article-title: In vitro methods for CFTR biogenesis
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-117-8_16
– volume: 16
  start-page: 269
  year: 2016
  ident: ref_52
  article-title: On-chip automation of cell-free protein synthesis: New opportunities due to a novel reaction mode
  publication-title: Lab Chip
  doi: 10.1039/C5LC00700C
– ident: ref_158
  doi: 10.3390/mps2010016
– volume: 114
  start-page: 1343
  year: 2017
  ident: ref_168
  article-title: Establishing a high yielding streptomyces-based cell-free protein synthesis system
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26253
– ident: ref_185
  doi: 10.1073/pnas.1715806115
– ident: ref_21
– volume: 7
  start-page: 3870
  year: 2007
  ident: ref_3
  article-title: A sequential expression system for high-throughput functional genomic analysis
  publication-title: Proteomics
  doi: 10.1002/pmic.200700471
– volume: 10
  start-page: 1236
  year: 2014
  ident: ref_191
  article-title: Rapid in vitro protein synthesis pipeline: A promising tool for cost-effective protein array design
  publication-title: Mol. Biosyst.
  doi: 10.1039/c4mb00003j
– volume: 38
  start-page: 370
  year: 2016
  ident: ref_16
  article-title: Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2016.09.008
– volume: 9
  start-page: 1203
  year: 2018
  ident: ref_154
  article-title: Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03469-5
– volume: 4
  start-page: 39
  year: 2006
  ident: ref_120
  article-title: Functional expression of a single-chain antibody to ErbB-2 in plants and cell-free systems
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-4-39
– volume: 42
  start-page: 1161
  year: 1967
  ident: ref_177
  article-title: Synthesis of Indoleacetic Acid via Tryptamine by a Cell-free System from Tobacco Terminal Buds
  publication-title: Plant Physiol.
  doi: 10.1104/pp.42.8.1161
– ident: ref_171
  doi: 10.3389/fmicb.2018.01146
– volume: 99
  start-page: 59
  year: 2008
  ident: ref_131
  article-title: Cell-free synthesis and maturation of [FeFe] hydrogenases
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21511
– volume: 28
  start-page: 549
  year: 2012
  ident: ref_88
  article-title: The incorporation of the A2 protein to produce novel Qβ virus-like particles using cell-free protein synthesis
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.744
– ident: ref_141
  doi: 10.1109/ACC.2013.6580053
– volume: 9
  start-page: 1
  year: 2013
  ident: ref_136
  article-title: In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2013.31
– ident: ref_30
  doi: 10.1371/journal.pone.0096635
– ident: ref_100
  doi: 10.1002/9783527688104.ch15
– volume: 137
  start-page: 11
  year: 2018
  ident: ref_161
  article-title: The cell free protein synthesis system from the model filamentous fungus Neurospora crassa
  publication-title: Methods
  doi: 10.1016/j.ymeth.2017.12.003
– volume: 79
  start-page: 6358
  year: 2005
  ident: ref_91
  article-title: Stimulation of Poliovirus Synthesis in a HeLa Cell-Free In Vitro Translation-RNA Replication System by Viral Protein 3CDpro
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.10.6358-6367.2005
– volume: 164
  start-page: 220
  year: 2012
  ident: ref_124
  article-title: Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2012.08.020
– volume: 3
  start-page: 90
  year: 2018
  ident: ref_149
  article-title: Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology
  publication-title: Synth. Syst. Biotechnol.
  doi: 10.1016/j.synbio.2018.02.003
– volume: 6
  start-page: 493
  year: 2000
  ident: ref_81
  article-title: Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)00048-4
– volume: 94
  start-page: 12297
  year: 1997
  ident: ref_84
  article-title: RNA-peptide fusions for the in vitro selection of peptides and proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.23.12297
– volume: 154
  start-page: 230
  year: 2011
  ident: ref_86
  article-title: Efficient disulfide bond formation in virus-like particles
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2011.04.011
– volume: 42
  start-page: 325
  year: 1996
  ident: ref_181
  article-title: Nicotine N-demethylase in cell-free preparations from tobacco cell cultures
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(95)00868-3
– volume: 15
  start-page: 79
  year: 1997
  ident: ref_117
  article-title: Functional antibody production using cell-free translation: Effects of protein disulfide isomerase and chaperones
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0197-79
– ident: ref_142
  doi: 10.1103/PhysRevLett.106.048104
– ident: ref_203
  doi: 10.1371/journal.pone.0082234
– volume: 7
  start-page: 875
  year: 2018
  ident: ref_156
  article-title: Expanding One-Pot Cell-Free Protein Synthesis and Immobilization for On-Demand Manufacturing of Biomaterials
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.7b00383
– volume: 28
  start-page: 211
  year: 2011
  ident: ref_41
  article-title: Wheat germ cell-free protein production system for post-genomic research
  publication-title: N. Biotechnol.
  doi: 10.1016/j.nbt.2010.08.009
– ident: ref_49
  doi: 10.3390/genes9030144
– volume: 106
  start-page: 8
  year: 2008
  ident: ref_95
  article-title: An optimized yeast cell-free system: Sufficient for translation of human papillomavirus 58 L1 mRNA and assembly of virus-like particles
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.106.8
– volume: 108
  start-page: 1570
  year: 2011
  ident: ref_97
  article-title: Microscale to manufacturing scale-up of cell-free cytokine production-a new approach for shortening protein production development timelines
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.23103
– volume: 266
  start-page: 9299
  year: 1991
  ident: ref_93
  article-title: Assembly of adenovirus type 2 fiber synthesized in cell-free translation system
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)31584-9
– volume: 308
  start-page: 103
  year: 1994
  ident: ref_178
  article-title: Biosynthesis of the Diterpene cis-Abienol in Cell-Free Extracts of Tobacco Trichomes
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1994.1015
– volume: 110
  start-page: 2643
  year: 2013
  ident: ref_195
  article-title: Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24942
– volume: 46
  start-page: 6387
  year: 2018
  ident: ref_157
  article-title: Oligonucleotide-mediated tRNA sequestration enables one-pot sense codon reassignment in vitro
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky365
– volume: 125
  start-page: 328
  year: 1999
  ident: ref_118
  article-title: Cell-free expression of two single-chain monoclonal antibodies against lysozyme: effect of domain arrangement on the expression
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a022290
– volume: 6
  start-page: 71
  year: 2009
  ident: ref_50
  article-title: An in vitro microfluidic approach to generating protein-interaction networks
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1289
– volume: 30
  start-page: 1185
  year: 2014
  ident: ref_4
  article-title: Cell-Free Protein Synthesis: Applications Come of Age
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2011.09.016
– volume: 4
  start-page: 1
  year: 2018
  ident: ref_46
  article-title: BioBitsTM Bright: A fluorescent synthetic biology education kit
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat5107
– volume: 32
  start-page: 2396
  year: 2012
  ident: ref_166
  article-title: The Arginine Attenuator Peptide Interferes with the Ribosome Peptidyl Transferase Center
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00136-12
– volume: 62
  start-page: 171
  year: 2008
  ident: ref_110
  article-title: Wheat germ cell-free translation, purification, and assembly of a functional human stearoyl-CoA desaturase complex
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2008.08.002
– volume: 107
  start-page: 15
  year: 1979
  ident: ref_180
  article-title: Cytokinin biosynthesis in a cell-free system from cytokinin-autotrophic tobacco tissue cultures
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(79)80452-4
– ident: ref_14
  doi: 10.1093/synbio/ysy003
– volume: 410
  start-page: 715
  year: 2001
  ident: ref_83
  article-title: Functional proteins from a random-sequence library
  publication-title: Nature
  doi: 10.1038/35070613
– volume: 365
  start-page: 1
  year: 2018
  ident: ref_201
  article-title: Recent advances in development of cell-free protein synthesis systems for fast and efficient production of recombinant proteins
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1093/femsle/fny174
– ident: ref_196
  doi: 10.1007/978-3-642-59337-6_25
– volume: 130
  start-page: 29
  year: 2018
  ident: ref_15
  article-title: Expanding the palette of Streptomyces-based cell-free protein synthesis systems with enhanced yields
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2017.11.013
– volume: 12
  start-page: 810
  year: 2016
  ident: ref_137
  article-title: Toward Microfluidic Reactors for Cell-Free Protein Synthesis at the Point-of-Care
  publication-title: Small
  doi: 10.1002/smll.201502764
– volume: 56
  start-page: 36
  year: 2014
  ident: ref_204
  article-title: A technique to increase protein yield in a rabbit reticulocyte lysate translation system
  publication-title: Biotechniques
  doi: 10.2144/000114125
– volume: 7
  start-page: 2475
  year: 2018
  ident: ref_170
  article-title: Establishing a Cell-Free Vibrio natriegens Expression System
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00222
– volume: 53
  start-page: 163
  year: 2012
  ident: ref_7
  article-title: Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing
  publication-title: Biotechniques
  doi: 10.2144/0000113924
– ident: ref_90
  doi: 10.1093/synbio/ysy002
– volume: 100
  start-page: 28
  year: 2008
  ident: ref_87
  article-title: Escherichia coli-based cell-free synthesis of virus-like particles
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21716
– volume: 253
  start-page: 3573
  year: 1978
  ident: ref_61
  article-title: Efficient Cleavage and Segregation of Nascent Presecretory Proteins in a Reticuloqyte Lysate Supplemented with Microsomal Membranes
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)34748-8
– volume: 8
  start-page: 1
  year: 2016
  ident: ref_192
  article-title: Cell-Free Synthetic Biology: Engineering Beyond the Cell
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a023853
– volume: 49
  start-page: 357
  year: 2014
  ident: ref_150
  article-title: Yeast cell-free enzyme system for bio-ethanol production at elevated temperatures
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2013.12.019
– volume: 59
  start-page: 744
  year: 2015
  ident: ref_167
  article-title: Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.018
– volume: 4
  start-page: 217
  year: 2012
  ident: ref_2
  article-title: Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system
  publication-title: MAbs
  doi: 10.4161/mabs.4.2.19202
– volume: 589
  start-page: 1703
  year: 2015
  ident: ref_152
  article-title: Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2015.04.041
– volume: 138
  start-page: 21
  year: 2018
  ident: ref_43
  article-title: Process optimization for scalable E. coli extract preparation for cell-free protein synthesis
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2018.06.021
– volume: 16
  start-page: 2420
  year: 2015
  ident: ref_64
  article-title: Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201500340
– volume: 265
  start-page: 6868
  year: 1990
  ident: ref_60
  article-title: Glycosylation of nuclear pore protein p62. Reticulocyte lysate catalyzes O-linked N-acetylglucosamine addition in vitro
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)39229-4
– volume: 36
  start-page: 299
  year: 2005
  ident: ref_24
  article-title: Protein synthesis by pure translation systems
  publication-title: Methods
  doi: 10.1016/j.ymeth.2005.04.006
– volume: 55
  start-page: 4212
  year: 2016
  ident: ref_5
  article-title: Combining in Vitro Folding with Cell Free Protein Synthesis for Membrane Protein Expression
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.6b00488
– ident: ref_113
– volume: Volume 1850
  start-page: 289
  year: 2018
  ident: ref_34
  article-title: Versatile cell-free protein synthesis systems based on chinese hamster ovary cells
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-4939-8730-6_19
– volume: 167
  start-page: 248
  year: 2016
  ident: ref_47
  article-title: Portable, On-Demand Biomolecular Manufacturing
  publication-title: Cell
  doi: 10.1016/j.cell.2016.09.013
– volume: 126
  start-page: 186
  year: 2006
  ident: ref_20
  article-title: Cell-free protein synthesis at high temperatures using the lysate of a hyperthermophile
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2006.04.010
– volume: 268
  start-page: 5302
  year: 1993
  ident: ref_115
  article-title: Characterization of single-chain antibody (sFv)-toxin fusion proteins produced in vitro in rabbit reticulocyte lysate
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)53533-X
– volume: 11
  start-page: 279
  year: 2010
  ident: ref_62
  article-title: Development of an insect cell-free system
  publication-title: Curr Pharm Biotechnol
  doi: 10.2174/138920110791111997
– volume: 11
  start-page: 508
  year: 2014
  ident: ref_138
  article-title: Principles of genetic circuit design
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2926
– volume: 203
  start-page: 45
  year: 2015
  ident: ref_159
  article-title: Automated production of functional membrane proteins using eukaryotic cell-free translation systems
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2015.03.015
– volume: 26
  start-page: 105
  year: 2002
  ident: ref_164
  article-title: Toeprint analysis of the positioning of translation apparatus components at initiation and termination codons of fungal mRNAs
  publication-title: Methods
  doi: 10.1016/S1046-2023(02)00013-0
– volume: 5
  start-page: 1433
  year: 2016
  ident: ref_28
  article-title: Protein Synthesis in Coupled and Uncoupled Cell-Free Prokaryotic Gene Expression Systems
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00010
– volume: 2
  start-page: 2945
  year: 2007
  ident: ref_36
  article-title: Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.426
– volume: Volume 137
  start-page: 67
  year: 2013
  ident: ref_160
  article-title: Cell-Free Systems: Functional Modules for Synthetic and Chemical Biology
  publication-title: Advances in Biochemical Engineering/Biotechnology
  doi: 10.1007/10_2013_185
– ident: ref_69
– volume: 588
  start-page: 261
  year: 2014
  ident: ref_6
  article-title: Engine out of the chassis: Cell-free protein synthesis and its uses
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2013.10.016
– volume: 16
  start-page: 1833
  year: 2008
  ident: ref_27
  article-title: Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.200
– volume: 110
  start-page: 58
  year: 2010
  ident: ref_96
  article-title: Translational comparison of HPV58 long and short L1 mRNAs in yeast (Saccharomyces cerevisiae) cell-free system
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2010.01.011
– volume: 111
  start-page: 25
  year: 2014
  ident: ref_17
  article-title: Cell-free protein expression based on extracts from CHO cells
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25013
– ident: ref_48
  doi: 10.3390/inventions3030060
– ident: ref_54
  doi: 10.1038/s41467-018-05110-x
– volume: 588
  start-page: 2774
  year: 2014
  ident: ref_106
  article-title: Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2014.06.007
– volume: 35
  start-page: 753
  year: 2002
  ident: ref_105
  article-title: Membrane proteins: Functional and structural studies using reconstituted proteoliposomes and 2-D crystals
  publication-title: Brazilian J. Med. Biol. Res.
  doi: 10.1590/S0100-879X2002000700001
– volume: 131
  start-page: 849
  year: 2002
  ident: ref_188
  article-title: Polypeptide synthesis directed by DNA as a messenger in cell-free polypeptide synthesis by extreme thermophiles, Thermus thermophilus HB27 and sulfolobus tokodaii strain 7
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a003174
– volume: 4
  start-page: 8
  year: 2010
  ident: ref_199
  article-title: Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70
  publication-title: J. Biol. Eng.
  doi: 10.1186/1754-1611-4-8
– volume: 4
  start-page: 1
  year: 2015
  ident: ref_144
  article-title: Rapid cell-free forward engineering of novel genetic ring oscillators
  publication-title: Elife
– volume: 6
  start-page: 671
  year: 2014
  ident: ref_122
  article-title: Engineering toward a bacterial “endoplasmic reticulum” for the rapid expression of immunoglobulin proteins
  publication-title: MAbs
  doi: 10.4161/mabs.28172
– volume: 13
  start-page: 39
  year: 2013
  ident: ref_73
  article-title: Synthesis of membrane proteins in eukaryotic cell-free systems
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201100235
– volume: 31
  start-page: 499
  year: 2014
  ident: ref_205
  article-title: Characterizing IGR IRES-mediated translation initiation for use in yeast cell-free protein synthesis
  publication-title: N. Biotechnol.
  doi: 10.1016/j.nbt.2014.07.001
– ident: ref_53
  doi: 10.1126/sciadv.aat5105
– volume: 59
  start-page: 174
  year: 2014
  ident: ref_108
  article-title: Membrane assembly of the functional KcsA potassium channel in a vesicle-based eukaryotic cell-free translation system
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.03.004
– volume: 114
  start-page: 1065
  year: 2017
  ident: ref_155
  article-title: In vitro suppression of two different stop codons
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26226
– volume: 138
  start-page: 47
  year: 2018
  ident: ref_208
  article-title: Enhancing the efficiency of cell-free protein synthesis system by systematic titration of transcription and translation components
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2018.07.001
– volume: 15
  start-page: 785
  year: 1993
  ident: ref_200
  article-title: Continuous protein synthesis system with Escherichia coli S30 extract containing endogenous T7 RNA polymerase
  publication-title: Biotechnol. Lett.
  doi: 10.1007/BF00180142
– volume: 97
  start-page: 559
  year: 2000
  ident: ref_194
  article-title: A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.2.559
– volume: 22
  start-page: 596
  year: 2012
  ident: ref_74
  article-title: A prokaryote-based cell-free translation system that efficiently synthesizes glycoproteins
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwr151
– volume: 416
  start-page: 518
  year: 2012
  ident: ref_165
  article-title: Arginine Changes the Conformation of the Arginine Attenuator Peptide Relative to the Ribosome Tunnel
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.12.064
– volume: 251
  start-page: 2499
  year: 1976
  ident: ref_173
  article-title: Specificity of bacterial ribosomes and messenger ribonucleic acids in protein synthesis reactions in vitro
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)33616-5
– volume: 22
  start-page: 1570
  year: 2006
  ident: ref_18
  article-title: Cell-Free Protein Synthesis System Prepared from Hi5 Insect Cells by Freeze-Thawing
  publication-title: Biotechnol. Prog
  doi: 10.1021/bp060110v
– volume: 266
  start-page: 9570
  year: 1991
  ident: ref_55
  article-title: Gamma subunits of G Proteins, but not their alpha or beta subunits, are polyisoprenylated
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)92858-9
– volume: 11
  start-page: 267
  year: 2010
  ident: ref_23
  article-title: A Highly Controllable Reconstituted Cell-Free System -a Breakthrough in Protein Synthesis Research
  publication-title: Curr. Pharm. Biotechnol.
  doi: 10.2174/138920110791111889
– volume: 12
  start-page: 1216
  year: 2003
  ident: ref_79
  article-title: A wheat germ cell-free system is a novel way to screen protein folding and function
  publication-title: Protein Sci.
  doi: 10.1110/ps.0241203
– volume: 62
  start-page: 190
  year: 2008
  ident: ref_127
  article-title: A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2008.09.002
– volume: 7
  start-page: 2245
  year: 2018
  ident: ref_10
  article-title: Establishing a High-Yielding Cell-Free Protein Synthesis Platform Derived from Vibrio natriegens
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00252
– volume: 99
  start-page: 162
  year: 2014
  ident: ref_8
  article-title: Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2013.11.025
– volume: 10
  start-page: 29308
  year: 2018
  ident: ref_51
  article-title: Microfluidic-Assisted Fabrication of Clay Microgels for Cell-Free Protein Synthesis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09324
SSID ssj0002140745
Score 2.485141
SecondaryResourceType review_article
Snippet Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 24
SubjectTerms cell-free metabolic engineering (CFME)
cell-free protein expression (CFPE)
cell-free protein synthesis (CFPS)
cell-free synthetic biology
in vitro protein synthesis
in vitro transcription-translation (TX-TL)
Review
Title A User’s Guide to Cell-Free Protein Synthesis
URI https://www.ncbi.nlm.nih.gov/pubmed/31164605
https://www.proquest.com/docview/2340037574
https://pubmed.ncbi.nlm.nih.gov/PMC6481089
https://doaj.org/article/b3e4500eec584c5b95b824cf7c529d23
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdRfNUXK3rxsHQ3j01yrMVaBEWwhd6WJJtgoW5Ltz1482_49_wlTnbb2krBi9fdsJmdR74ZMnyD0DUxkIQzK8IIWxfSTMI5SDAJpRCxEQDRrqRSenxKOj360Gf9lVFfviesogeuFNfQxFIWRdYagErDtGRaYGocNwzLDJc8n4B5K8WUP4Mx1A2csoqPlEBd33gbF_7iN8J0DYFKov5N2eXvJskV1Gnvop15uhg0KzH30JbN91GjGfTAc74-PovgfjbIbDAdBS07HIbtibXBs6deGOTBy3sO2V0xKA5Qt33XbXXC-eCD0ECITEOlEiG1Szx7liROMAgik2mlLDEx1dxxxkimNMQOht900jIlhaESY-5ETA5RLR_l9hgFHOBHJ9qZjAFUw0eZ5pkiTJAYK6gN6-hmoYvUzEnB_WyKYQrFgddb-qO3Orparh1XVBgbV916lS5XePrq8gEYNZ0bNf3LqHV0uTBICu7u7zBUbkezIsWElmN7OWx0VBlouRWJPVlaxOqIr5luTZb1N_ngtaTUTqiIIyFP_kP4U7QNupC-US3GZ6g2nczsOWQuU31ROuk3mH7rJw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+User%27s+Guide+to+Cell-Free+Protein+Synthesis&rft.jtitle=Methods+and+protocols&rft.au=Gregorio%2C+Nicole+E&rft.au=Levine%2C+Max+Z&rft.au=Oza%2C+Javin+P&rft.date=2019-03-12&rft.eissn=2409-9279&rft.volume=2&rft.issue=1&rft_id=info:doi/10.3390%2Fmps2010024&rft_id=info%3Apmid%2F31164605&rft.externalDocID=31164605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2409-9279&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2409-9279&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2409-9279&client=summon