A User’s Guide to Cell-Free Protein Synthesis
Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on livi...
Saved in:
Published in | Methods and protocols Vol. 2; no. 1; p. 24 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
12.03.2019
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables. |
---|---|
AbstractList | Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables. Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables. |
Author | Gregorio, Nicole E. Levine, Max Z. Oza, Javin P. |
AuthorAffiliation | 2 Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA 3 Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA 1 Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA; negregor@calpoly.edu (N.E.G.); mzlevine@calpoly.edu (M.Z.L.) |
AuthorAffiliation_xml | – name: 3 Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA – name: 1 Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA; negregor@calpoly.edu (N.E.G.); mzlevine@calpoly.edu (M.Z.L.) – name: 2 Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA |
Author_xml | – sequence: 1 givenname: Nicole E. orcidid: 0000-0002-7287-209X surname: Gregorio fullname: Gregorio, Nicole E. – sequence: 2 givenname: Max Z. orcidid: 0000-0001-8896-6632 surname: Levine fullname: Levine, Max Z. – sequence: 3 givenname: Javin P. orcidid: 0000-0002-2902-6939 surname: Oza fullname: Oza, Javin P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31164605$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd9KHTEQh0NRqlVv-gBlL0XYOvm3SW4EOagVhArqdchmZzWyZ3NMcgTvfI2-Xp-ka4-2Kl4lJN98v2HmC1kb44iEfKXwnXMD-_NFZkABmPhENpkAUxumzNqr-wbZyfkWJoQKUEJ-Jhuc0kY0IDfJ_mF1lTH9fvyVq5Nl6LAqsZrhMNTHCbE6T7FgGKuLh7HcYA55m6z3bsi483xukcvjo8vZj_rs58np7PCs9pJCqZ1rtGn7hioDhvdaKsN91zqH3FPRql5JyTvXNlyzqafeoHRGe2EYU72mfIucrrRddLd2kcLcpQcbXbB_H2K6ti6V4Ae0LUchARC91MLL1shWM-F75SUzHeOT62DlWizbOXYex5Lc8Eb69mcMN_Y63ttGaAraTILdZ0GKd0vMxc5D9tOM3IhxmS3jAoArqcSEfnud9S_kZeATACvAp5hzwt76UFwJ8Sk6DJaCfVqr_b_WqWTvXcmL9QP4D6lJoYg |
CitedBy_id | crossref_primary_10_1002_pro_4098 crossref_primary_10_1038_s41598_020_76715_w crossref_primary_10_3389_fclim_2024_1516823 crossref_primary_10_3389_fbioe_2022_895069 crossref_primary_10_1186_s40643_023_00653_4 crossref_primary_10_1186_s12915_024_01936_8 crossref_primary_10_1002_fbe2_12003 crossref_primary_10_3389_fbioe_2020_00213 crossref_primary_10_1021_acssynbio_4c00697 crossref_primary_10_3390_antiox11020284 crossref_primary_10_1021_acs_chemrev_4c00116 crossref_primary_10_1261_rna_079825_123 crossref_primary_10_1021_acssynbio_3c00114 crossref_primary_10_3389_fbioe_2022_832176 crossref_primary_10_1021_acssynbio_3c00111 crossref_primary_10_1002_adhm_202300404 crossref_primary_10_1016_j_cjche_2020_05_037 crossref_primary_10_1016_j_trac_2023_117015 crossref_primary_10_1016_j_synbio_2020_07_006 crossref_primary_10_1007_s10528_024_10911_5 crossref_primary_10_1246_cl_200764 crossref_primary_10_1021_acssynbio_0c00256 crossref_primary_10_1038_s41467_021_27854_9 crossref_primary_10_3390_membranes12090863 crossref_primary_10_3390_ijms232213697 crossref_primary_10_1016_j_cherd_2021_11_025 crossref_primary_10_3389_fimmu_2023_1088852 crossref_primary_10_1016_j_biotechadv_2022_107968 crossref_primary_10_1016_j_bej_2021_108158 crossref_primary_10_1021_acssynbio_4c00729 crossref_primary_10_3390_molecules27154684 crossref_primary_10_1016_j_mimet_2023_106814 crossref_primary_10_3390_molecules26030651 crossref_primary_10_1039_D4CB00004H crossref_primary_10_1038_s41598_022_19681_9 crossref_primary_10_34133_2022_9847014 crossref_primary_10_1002_pro_70065 crossref_primary_10_1186_s40643_023_00626_7 crossref_primary_10_1038_s41598_024_58588_5 crossref_primary_10_1111_jre_13088 crossref_primary_10_15406_jabb_2021_08_00264 crossref_primary_10_1002_bab_2514 crossref_primary_10_1093_synbio_ysac008 crossref_primary_10_1016_j_fmre_2024_06_011 crossref_primary_10_1038_s41467_023_37752_x crossref_primary_10_1038_s41579_024_01141_y crossref_primary_10_21769_BioProtoc_4714 crossref_primary_10_1039_D0SM01644F crossref_primary_10_3389_fbioe_2023_1200729 crossref_primary_10_1049_enb2_12004 crossref_primary_10_3389_fntpr_2024_1353362 crossref_primary_10_3389_fbioe_2020_00399 crossref_primary_10_3390_ijms252413293 crossref_primary_10_1093_nar_gkad1152 crossref_primary_10_3762_bjoc_20_192 crossref_primary_10_3389_fbioe_2022_964396 crossref_primary_10_3390_mps2040080 crossref_primary_10_1021_acssynbio_3c00132 crossref_primary_10_1007_s00232_024_00333_0 crossref_primary_10_1002_tcr_201900094 crossref_primary_10_1038_s41541_025_01082_4 crossref_primary_10_1042_BST20210175 crossref_primary_10_1091_mbc_E22_07_0248 crossref_primary_10_1016_j_addr_2020_10_001 crossref_primary_10_1038_s41467_021_25233_y crossref_primary_10_1021_acs_chemrev_3c00855 crossref_primary_10_1021_acssynbio_9b00433 crossref_primary_10_3389_fbioe_2020_604091 crossref_primary_10_1093_synbio_ysab029 crossref_primary_10_3389_fbioe_2022_992708 crossref_primary_10_1021_acsbiomaterials_1c00894 crossref_primary_10_1021_acssynbio_2c00658 crossref_primary_10_3390_mps6020036 crossref_primary_10_3390_toxins14040233 crossref_primary_10_3389_fmolb_2021_639587 crossref_primary_10_1111_1541_4337_13077 crossref_primary_10_1016_j_synbio_2019_10_003 crossref_primary_10_1016_j_ijbiomac_2023_125075 crossref_primary_10_1186_s13036_023_00323_1 crossref_primary_10_1093_synbio_ysab017 crossref_primary_10_1038_s42003_024_06690_9 crossref_primary_10_1002_bit_28461 crossref_primary_10_1002_pro_5148 crossref_primary_10_1021_acssynbio_0c00283 crossref_primary_10_3390_mps2030068 crossref_primary_10_1002_biot_202000187 crossref_primary_10_1016_j_ymben_2020_05_009 crossref_primary_10_21769_BioProtoc_4093 crossref_primary_10_3389_fmicb_2024_1370826 crossref_primary_10_1016_j_enzmictec_2025_110588 crossref_primary_10_1002_psc_3560 crossref_primary_10_1186_s12863_022_01075_5 crossref_primary_10_3390_vaccines12121344 crossref_primary_10_1021_acssynbio_4c00361 crossref_primary_10_3389_fbioe_2022_896763 crossref_primary_10_1128_msystems_00196_20 crossref_primary_10_3389_fbioe_2020_00941 crossref_primary_10_3389_fbioe_2020_584178 crossref_primary_10_3389_fbioe_2020_00788 crossref_primary_10_3390_mi12010098 crossref_primary_10_1002_adma_202203433 crossref_primary_10_1021_acssynbio_3c00428 crossref_primary_10_1021_acssynbio_2c00355 crossref_primary_10_3389_fmolb_2022_795212 crossref_primary_10_1038_s41598_024_56190_3 crossref_primary_10_1021_acssynbio_4c00403 crossref_primary_10_1002_cjoc_202300496 crossref_primary_10_1002_cbic_202000452 crossref_primary_10_1021_acs_biomac_3c00879 crossref_primary_10_3390_life11060551 crossref_primary_10_3390_membranes13110854 crossref_primary_10_1016_j_enzmictec_2022_110110 crossref_primary_10_1021_acssynbio_2c00075 crossref_primary_10_1007_s00253_021_11424_6 crossref_primary_10_1016_j_tibs_2023_03_006 crossref_primary_10_1093_synbio_ysad017 crossref_primary_10_1021_acssynbio_0c00501 crossref_primary_10_3390_ijms21010105 crossref_primary_10_1128_aem_01566_24 crossref_primary_10_47612_2226_3136_2021_13_266_286 crossref_primary_10_3390_pr8060675 crossref_primary_10_1002_ange_202013296 crossref_primary_10_1021_acssynbio_0c00581 crossref_primary_10_1371_journal_pone_0304331 crossref_primary_10_1021_acssynbio_1c00195 crossref_primary_10_1134_S0006350922050232 crossref_primary_10_1073_pnas_2423858122 crossref_primary_10_1016_j_bej_2020_107790 crossref_primary_10_1016_j_ymben_2020_06_004 crossref_primary_10_1093_nar_gkab121 crossref_primary_10_1007_s40259_020_00417_y crossref_primary_10_1016_j_biotno_2022_12_002 crossref_primary_10_1021_acssynbio_1c00505 crossref_primary_10_1038_s43586_021_00046_x crossref_primary_10_1039_D4CS01198H crossref_primary_10_1021_acssynbio_2c00339 crossref_primary_10_3390_biom11050754 crossref_primary_10_3390_biology11020157 crossref_primary_10_1002_anie_202013296 crossref_primary_10_1016_j_copbio_2022_102888 crossref_primary_10_1186_s40643_021_00413_2 crossref_primary_10_1128_spectrum_02457_22 crossref_primary_10_1016_j_biotno_2025_02_001 crossref_primary_10_1016_j_procbio_2024_04_035 crossref_primary_10_1021_acssynbio_1c00342 crossref_primary_10_1128_spectrum_01466_24 crossref_primary_10_3389_fsybi_2024_1397533 crossref_primary_10_1021_acssynbio_1c00587 |
Cites_doi | 10.1038/srep08663 10.1021/sb200016s 10.1080/21655979.2016.1241925 10.1038/nmeth.1273 10.1093/pcp/pcm150 10.1186/1472-6750-8-58 10.1002/elsc.201400036 10.1016/S0076-6879(83)96008-1 10.1007/BF02932309 10.1016/S0014-5793(02)02383-9 10.1128/jb.135.3.1149-1150.1978 10.1021/acssynbio.7b00001 10.1371/journal.pone.0165137 10.1016/0167-4781(85)90055-7 10.1371/journal.pone.0163670 10.1093/oxfordjournals.jbchem.a124203 10.1038/newbio230172a0 10.1093/nar/gkt226 10.1016/j.febslet.2014.05.061 10.1006/abio.1993.1490 10.1016/j.ymeth.2011.06.006 10.1074/jbc.M303978200 10.1073/pnas.0307131101 10.1002/biot.201300545 10.1021/bc100367u 10.1038/nbt.1556 10.1016/j.jbiotec.2006.06.018 10.1128/jvi.70.11.8187-8194.1996 10.1002/pmic.200600126 10.1016/j.nbt.2010.07.003 10.1016/j.jbiotec.2012.11.001 10.1021/acssynbio.6b00154 10.1002/bit.25502 10.1016/j.tibtech.2004.08.012 10.1371/journal.pone.0106232 10.1002/j.1460-2075.1993.tb05803.x 10.1016/j.ymben.2015.09.015 10.1007/978-1-62703-794-5_5 10.1038/s41598-017-12188-8 10.1016/j.cell.2014.10.004 10.1016/j.jbiotec.2006.03.002 10.1073/pnas.58.3.1189 10.1007/BF00365661 10.1002/biot.201500030 10.1021/acssynbio.6b00160 10.1006/bbrc.2000.4188 10.1007/BF00332721 10.1016/j.jbiotec.2009.10.009 10.1038/srep30399 10.1016/j.cell.2016.04.059 10.1002/bit.20528 10.1007/BF00333006 10.1111/j.1432-1033.1981.tb06445.x 10.1093/pcp/pcr080 10.1016/j.virol.2009.05.009 10.1016/0042-6822(91)90974-G 10.1002/pmic.200700237 10.1038/ncomms9168 10.1093/nar/gkp1182 10.1016/0168-1656(92)90157-5 10.1073/pnas.47.10.1588 10.3791/58882 10.1021/bc400490z 10.1016/j.febslet.2012.05.042 10.1016/S0022-2836(66)80157-2 10.1046/j.1365-2958.1999.01615.x 10.2144/000114158 10.1038/90802 10.1021/acssynbio.7b00376 10.1002/bit.20026 10.1002/cbic.201402708 10.1046/j.1432-1033.2003.03880.x 10.1016/j.nbt.2010.07.002 10.1111/j.1574-6968.1993.tb06009.x 10.1128/jb.169.10.4822-4829.1987 10.1074/jbc.M000567200 10.1002/biot.201300383 10.1016/0092-8674(86)90271-0 10.1021/acssynbio.6b00301 10.1007/s002530000534 10.3791/52772 10.1073/pnas.2135496100 10.1074/jbc.C300330200 10.3109/09687688.2013.807362 10.1002/bit.26502 10.1021/bi00895a019 10.1016/j.pep.2005.09.021 10.1002/pmic.200700774 10.1002/pmic.200900783 10.1128/JVI.78.17.9257-9269.2004 10.1021/acssynbio.7b00280 10.1007/BF00028775 10.1021/sb400028c 10.1016/j.biotechadv.2018.12.006 10.1007/978-1-61779-117-8_16 10.1039/C5LC00700C 10.3390/mps2010016 10.1002/bit.26253 10.1073/pnas.1715806115 10.1002/pmic.200700471 10.1039/c4mb00003j 10.1016/j.ymben.2016.09.008 10.1038/s41467-018-03469-5 10.1186/1479-5876-4-39 10.1104/pp.42.8.1161 10.3389/fmicb.2018.01146 10.1002/bit.21511 10.1002/btpr.744 10.1109/ACC.2013.6580053 10.1038/msb.2013.31 10.1371/journal.pone.0096635 10.1002/9783527688104.ch15 10.1016/j.ymeth.2017.12.003 10.1128/JVI.79.10.6358-6367.2005 10.1016/j.jbiotec.2012.08.020 10.1016/j.synbio.2018.02.003 10.1016/S1097-2765(00)00048-4 10.1073/pnas.94.23.12297 10.1016/j.jbiotec.2011.04.011 10.1016/0031-9422(95)00868-3 10.1038/nbt0197-79 10.1103/PhysRevLett.106.048104 10.1371/journal.pone.0082234 10.1021/acssynbio.7b00383 10.1016/j.nbt.2010.08.009 10.3390/genes9030144 10.1263/jbb.106.8 10.1002/bit.23103 10.1016/S0021-9258(18)31584-9 10.1006/abbi.1994.1015 10.1002/bit.24942 10.1093/nar/gky365 10.1093/oxfordjournals.jbchem.a022290 10.1038/nmeth.1289 10.1016/j.biotechadv.2011.09.016 10.1126/sciadv.aat5107 10.1128/MCB.00136-12 10.1016/j.pep.2008.08.002 10.1016/0014-5793(79)80452-4 10.1093/synbio/ysy003 10.1038/35070613 10.1093/femsle/fny174 10.1007/978-3-642-59337-6_25 10.1016/j.bej.2017.11.013 10.1002/smll.201502764 10.2144/000114125 10.1021/acssynbio.8b00222 10.2144/0000113924 10.1093/synbio/ysy002 10.1002/bit.21716 10.1016/S0021-9258(17)34748-8 10.1101/cshperspect.a023853 10.1016/j.procbio.2013.12.019 10.1016/j.molcel.2015.07.018 10.4161/mabs.4.2.19202 10.1016/j.febslet.2015.04.041 10.1016/j.bej.2018.06.021 10.1002/cbic.201500340 10.1016/S0021-9258(19)39229-4 10.1016/j.ymeth.2005.04.006 10.1021/acs.biochem.6b00488 10.1007/978-1-4939-8730-6_19 10.1016/j.cell.2016.09.013 10.1016/j.jbiotec.2006.04.010 10.1016/S0021-9258(18)53533-X 10.2174/138920110791111997 10.1038/nmeth.2926 10.1016/j.jbiotec.2015.03.015 10.1016/S1046-2023(02)00013-0 10.1021/acssynbio.6b00010 10.1038/nprot.2007.426 10.1007/10_2013_185 10.1016/j.febslet.2013.10.016 10.1038/mt.2008.200 10.1016/j.jbiosc.2010.01.011 10.1002/bit.25013 10.3390/inventions3030060 10.1038/s41467-018-05110-x 10.1016/j.febslet.2014.06.007 10.1590/S0100-879X2002000700001 10.1093/oxfordjournals.jbchem.a003174 10.1186/1754-1611-4-8 10.4161/mabs.28172 10.1002/elsc.201100235 10.1016/j.nbt.2014.07.001 10.1126/sciadv.aat5105 10.1016/j.bios.2014.03.004 10.1002/bit.26226 10.1016/j.bej.2018.07.001 10.1007/BF00180142 10.1073/pnas.97.2.559 10.1093/glycob/cwr151 10.1016/j.jmb.2011.12.064 10.1016/S0021-9258(17)33616-5 10.1021/bp060110v 10.1016/S0021-9258(18)92858-9 10.2174/138920110791111889 10.1110/ps.0241203 10.1016/j.pep.2008.09.002 10.1021/acssynbio.8b00252 10.1016/j.biochi.2013.11.025 10.1021/acsami.8b09324 |
ContentType | Journal Article |
Copyright | 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/mps2010024 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2409-9279 |
ExternalDocumentID | oai_doaj_org_article_b3e4500eec584c5b95b824cf7c529d23 PMC6481089 31164605 10_3390_mps2010024 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1708919 |
GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION GROUPED_DOAJ HYE IAO MODMG M~E OK1 PGMZT RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c510t-aa689bf6179093f85793cdbaae3c14b7f7553dab6382074f9e5a98c49227f813 |
IEDL.DBID | DOA |
ISSN | 2409-9279 |
IngestDate | Wed Aug 27 01:31:49 EDT 2025 Thu Aug 21 17:49:05 EDT 2025 Fri Jul 11 03:51:58 EDT 2025 Thu Jan 02 23:03:36 EST 2025 Thu Apr 24 23:05:21 EDT 2025 Tue Jul 01 01:20:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | in vitro protein synthesis in vitro transcription-translation (TX-TL) cell-free protein synthesis (CFPS) cell-free synthetic biology cell-free metabolic engineering (CFME) cell-free protein expression (CFPE) |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c510t-aa689bf6179093f85793cdbaae3c14b7f7553dab6382074f9e5a98c49227f813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7287-209X 0000-0001-8896-6632 0000-0002-2902-6939 |
OpenAccessLink | https://doaj.org/article/b3e4500eec584c5b95b824cf7c529d23 |
PMID | 31164605 |
PQID | 2340037574 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b3e4500eec584c5b95b824cf7c529d23 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6481089 proquest_miscellaneous_2340037574 pubmed_primary_31164605 crossref_citationtrail_10_3390_mps2010024 crossref_primary_10_3390_mps2010024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190312 |
PublicationDateYYYYMMDD | 2019-03-12 |
PublicationDate_xml | – month: 3 year: 2019 text: 20190312 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Methods and protocols |
PublicationTitleAlternate | Methods Protoc |
PublicationYear | 2019 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Hillebrecht (ref_26) 2008; 8 Endo (ref_32) 1992; 25 Spencer (ref_175) 1964; 3 ref_90 Brophy (ref_138) 2014; 11 Halleran (ref_146) 2018; 7 Bundy (ref_87) 2008; 100 Smith (ref_42) 2014; 56 Thompson (ref_169) 1984; 195 Goshima (ref_80) 2008; 5 Martin (ref_154) 2018; 9 Mikami (ref_13) 2006; 46 Li (ref_15) 2018; 130 Bryan (ref_81) 2000; 6 Komoda (ref_182) 2004; 101 Madin (ref_194) 2000; 97 Elhardt (ref_187) 1982; 188 Harbers (ref_9) 2014; 588 Patel (ref_89) 2011; 22 Kay (ref_151) 2015; 32 Mikami (ref_127) 2008; 62 Voloshin (ref_102) 2005; 91 Sanford (ref_55) 1991; 266 ref_158 Buntru (ref_12) 2015; 112 Villafane (ref_174) 1987; 169 Jiao (ref_51) 2018; 10 Quast (ref_152) 2015; 589 Suzuki (ref_66) 2010; 145 Ozer (ref_155) 2017; 114 Quast (ref_159) 2015; 203 Thoring (ref_34) 2018; Volume 1850 Jiang (ref_121) 2002; 514 Raymond (ref_129) 2013; 163 Jackson (ref_98) 1983; 96 Gursinsky (ref_183) 2009; 390 Hansen (ref_28) 2016; 5 Gan (ref_19) 2014; 9 Stark (ref_46) 2018; 4 ref_142 Shao (ref_82) 2003; 278 Dondapati (ref_108) 2014; 59 ref_141 ref_85 Goren (ref_110) 2008; 62 Zimmerman (ref_119) 2014; 25 Wu (ref_165) 2012; 416 Ryabova (ref_117) 1997; 15 Jiang (ref_149) 2018; 3 Woodrow (ref_3) 2007; 7 Rosenblum (ref_6) 2014; 588 Georgi (ref_52) 2016; 16 Shrestha (ref_7) 2012; 53 Anastasina (ref_204) 2014; 56 Quast (ref_38) 2016; 6 Yu (ref_167) 2015; 59 Wei (ref_166) 2012; 32 Rigaud (ref_105) 2002; 35 ref_203 Hao (ref_181) 1996; 42 ref_207 Uzawa (ref_188) 2002; 131 Pardee (ref_44) 2014; 159 Llarena (ref_156) 2018; 7 Dudley (ref_148) 2016; 5 Li (ref_168) 2017; 114 Klein (ref_94) 2004; 78 Hodgman (ref_205) 2014; 31 Schoborg (ref_35) 2014; 9 Wiegand (ref_170) 2018; 7 Boyer (ref_131) 2008; 99 Sachs (ref_164) 2002; 26 Sachse (ref_73) 2013; 13 Stech (ref_125) 2014; 14 Suzuki (ref_72) 2010; 10 Noireaux (ref_145) 2014; 4 Cooke (ref_179) 1990; 14 ref_113 Pardee (ref_47) 2016; 167 Ruggero (ref_186) 1993; 107 Novelli (ref_93) 1991; 266 Goering (ref_126) 2017; 6 Guarino (ref_74) 2012; 22 ref_107 Caschera (ref_8) 2014; 99 Yokogawa (ref_134) 2010; 38 Morita (ref_79) 2003; 12 ref_100 Roberts (ref_84) 1997; 94 Franco (ref_91) 2005; 79 Mureev (ref_11) 2009; 27 Gerber (ref_50) 2009; 6 Merk (ref_118) 1999; 125 Perez (ref_192) 2016; 8 Matsumura (ref_128) 2011; 741 Kelwick (ref_16) 2016; 38 Uzawa (ref_189) 1993; 486 Pardee (ref_45) 2016; 165 Stech (ref_124) 2012; 164 Timm (ref_137) 2016; 12 ref_14 Sachse (ref_106) 2014; 588 Yin (ref_2) 2012; 4 Rothblatt (ref_76) 1986; 44 Stech (ref_160) 2013; Volume 137 Cui (ref_157) 2018; 46 Murota (ref_184) 2011; 52 Spirin (ref_29) 2004; 22 Zhang (ref_208) 2018; 138 Carlson (ref_4) 2014; 30 Thoring (ref_39) 2017; 7 Curle (ref_163) 1988; 13 Ruehrer (ref_193) 2013; 30 ref_22 ref_21 Tarui (ref_63) 2001; 55 Noireaux (ref_139) 2003; 100 Mikami (ref_78) 2006; 127 Phelps (ref_177) 1967; 42 Lee (ref_201) 2018; 365 Shimizu (ref_25) 2001; 19 Ciammaruconi (ref_202) 1999; 34 Spearman (ref_92) 1996; 70 Panthu (ref_135) 2018; 7 Kuchenreuther (ref_132) 2014; Volume 1122 Maerkl (ref_144) 2015; 4 Zawada (ref_97) 2011; 108 Shimizu (ref_24) 2005; 36 Sen (ref_147) 2017; 6 Schwarz (ref_36) 2007; 2 Kwon (ref_197) 2015; 5 Nozawa (ref_111) 2007; 48 Katzen (ref_67) 2006; 125 Chekulayeva (ref_37) 2001; 280 Hodgman (ref_195) 2013; 110 Starr (ref_60) 1990; 265 Guo (ref_178) 1994; 308 Junge (ref_112) 2011; 28 Kawasaki (ref_123) 2003; 270 Sonnabend (ref_17) 2014; 111 Shields (ref_77) 1977; 74 Davidson (ref_10) 2018; 7 Wang (ref_96) 2010; 110 Focke (ref_5) 2016; 55 Gibbs (ref_58) 1985; 824 Smith (ref_88) 2012; 28 Bundy (ref_86) 2011; 154 Zampatis (ref_68) 2012; 586 Stallcup (ref_173) 1976; 251 Ezure (ref_18) 2006; 22 Keefe (ref_83) 2001; 410 Wilson (ref_109) 2000; 275 Muramatsu (ref_27) 2008; 16 Gusdon (ref_116) 1967; 58 ref_54 Suzuki (ref_65) 2007; 7 ref_53 Kovtun (ref_190) 2011; 55 Schoborg (ref_75) 2018; 115 Volyanik (ref_33) 1993; 214 Nishimura (ref_200) 1993; 15 Shields (ref_61) 1978; 253 Martin (ref_103) 2017; 6 Hunt (ref_40) 2017; 8 Tominaga (ref_172) 1978; 135 Boardman (ref_176) 1966; 17 ref_69 Jewett (ref_136) 2013; 9 Dopp (ref_43) 2018; 138 Jewett (ref_104) 2004; 86 Ezure (ref_62) 2010; 11 Li (ref_130) 2016; 11 Madono (ref_41) 2011; 28 Khattak (ref_150) 2014; 49 ref_171 Endoh (ref_20) 2006; 126 John (ref_57) 1993; 12 Hong (ref_31) 2015; 16 Wang (ref_95) 2008; 106 Chen (ref_180) 1979; 107 Dopp (ref_206) 2019; 37 Ezure (ref_71) 2007; 7 Shin (ref_143) 2012; 1 ref_196 ref_198 ref_30 Beebe (ref_99) 2011; 28 Nicholls (ref_115) 1993; 268 Groff (ref_122) 2014; 6 Shin (ref_199) 2010; 4 Oza (ref_101) 2015; 6 Ahn (ref_133) 2006; 11 Nirenberg (ref_1) 1961; 47 Bhide (ref_191) 2014; 10 Zemella (ref_64) 2015; 16 Wu (ref_161) 2018; 137 Galeffi (ref_120) 2006; 4 Stavnezer (ref_114) 1971; 230 ref_185 Dalley (ref_56) 2003; 278 Dougherty (ref_59) 1991; 183 ref_49 ref_48 Suzuki (ref_70) 2006; 6 Filipowicz (ref_162) 1981; 121 Albayrak (ref_153) 2013; 41 Ohashi (ref_23) 2010; 11 Karig (ref_140) 2013; 2 |
References_xml | – volume: 5 start-page: 8663 year: 2015 ident: ref_197 article-title: High-throughput preparation methods of crude extract for robust cell-free protein synthesis publication-title: Sci. Rep. doi: 10.1038/srep08663 – volume: 1 start-page: 29 year: 2012 ident: ref_143 article-title: An E. coli cell-free expression toolbox: Application to synthetic gene circuits and artificial cells publication-title: ACS Synth. Biol. doi: 10.1021/sb200016s – volume: 8 start-page: 325 year: 2017 ident: ref_40 article-title: The growing impact of lyophilized cell-free protein expression systems publication-title: Bioengineered doi: 10.1080/21655979.2016.1241925 – volume: 5 start-page: 1011 year: 2008 ident: ref_80 article-title: Human protein factory for converting the transcriptome into an in vitro-expressed proteome publication-title: Nat. Methods doi: 10.1038/nmeth.1273 – volume: 48 start-page: 1815 year: 2007 ident: ref_111 article-title: A cell-free translation and proteoliposome reconstitution system for functional analysis of plant solute transporters publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcm150 – volume: 8 start-page: 1 year: 2008 ident: ref_26 article-title: A comparative study of protein synthesis in in vitro systems: From the prokaryotic reconstituted to the eukaryotic extract-based publication-title: BMC Biotechnol. doi: 10.1186/1472-6750-8-58 – volume: 14 start-page: 387 year: 2014 ident: ref_125 article-title: Cell-free eukaryotic systems for the production, engineering, and modification of scFv antibody fragments publication-title: Eng. Life Sci. doi: 10.1002/elsc.201400036 – volume: 96 start-page: 50 year: 1983 ident: ref_98 article-title: Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(83)96008-1 – volume: 11 start-page: 420 year: 2006 ident: ref_133 article-title: Preparation method forEscherichia coli S30 extracts completely dependent upon tRNA addition to catalyze cell-free protein synthesis publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/BF02932309 – volume: 514 start-page: 290 year: 2002 ident: ref_121 article-title: Expression of Fab fragment of catalytic antibody 6D9 in an Escherichia coli in vitro coupled transcription/translation system publication-title: FEBS Lett. doi: 10.1016/S0014-5793(02)02383-9 – volume: 74 start-page: 2059 year: 1977 ident: ref_77 article-title: Cell-free synthesis of fish preproinsulin, and processing by heterologous mammalian microsomal membranes (mRNA from islets of Langerhans/wheat germ system/canine pancreatic microsomal membranes/amino-terminal sequences/ sequence homologies) publication-title: Cell Biol. – volume: 135 start-page: 1149 year: 1978 ident: ref_172 article-title: Kasugamycin-resistant mutants of Bacillus subtilis publication-title: J. Bacteriol. doi: 10.1128/jb.135.3.1149-1150.1978 – volume: 6 start-page: 1370 year: 2017 ident: ref_103 article-title: Development of a CHO-Based Cell-Free Platform for Synthesis of Active Monoclonal Antibodies publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00001 – ident: ref_198 doi: 10.1371/journal.pone.0165137 – volume: 824 start-page: 247 year: 1985 ident: ref_58 article-title: Differential post-translational modification of human type I keratins synthesized in a rabbit reticulocyte cell-free system publication-title: Biochim. Biophys. Acta - Gene Struct. Expr. doi: 10.1016/0167-4781(85)90055-7 – ident: ref_85 doi: 10.1371/journal.pone.0163670 – volume: 486 start-page: 478 year: 1993 ident: ref_189 article-title: Effects of Novel Polyamines on Cell-Free Polypeptide Catalyzed by Thermus thermophilus HB8 Extract publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a124203 – volume: 230 start-page: 172 year: 1971 ident: ref_114 article-title: Synthesis of a Mouse Immunoglobulin Light Chain in a Rabbit Reticulocyte Cell-free System publication-title: Nat. New Biol. doi: 10.1038/newbio230172a0 – volume: 41 start-page: 5949 year: 2013 ident: ref_153 article-title: Cell-free co-production of an orthogonal transfer RNA activates efficient site-specific non-natural amino acid incorporation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt226 – volume: 588 start-page: 2762 year: 2014 ident: ref_9 article-title: Wheat germ systems for cell-free protein expression publication-title: FEBS Lett. doi: 10.1016/j.febslet.2014.05.061 – volume: 214 start-page: 289 year: 1993 ident: ref_33 article-title: Synthesis of Preparative Amounts of Biologically Active Interleukin-6 Using a Continuous-Flow Cell-Free Translation System publication-title: Anal. Biochem. doi: 10.1006/abio.1993.1490 – volume: 55 start-page: 58 year: 2011 ident: ref_190 article-title: Leishmania cell-free protein expression system publication-title: Methods doi: 10.1016/j.ymeth.2011.06.006 – volume: 278 start-page: 51749 year: 2003 ident: ref_56 article-title: The Endoplasmic Reticulum (ER) Translocon can Differentiate between Hydrophobic Sequences Allowing Signals for Glycosylphosphatidylinositol Anchor Addition to be Fully Translocated into the ER Lumen publication-title: J. Biol. Chem. doi: 10.1074/jbc.M303978200 – volume: 101 start-page: 1863 year: 2004 ident: ref_182 article-title: Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0307131101 – volume: 9 start-page: 641 year: 2014 ident: ref_19 article-title: A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthesis publication-title: Biotechnol. J. doi: 10.1002/biot.201300545 – volume: 22 start-page: 376 year: 2011 ident: ref_89 article-title: Surface Functionalization of Virus-Like Particles by Direct Conjugation Using Azide−Alkyne Click Chemistry publication-title: Bioconjug. Chem. doi: 10.1021/bc100367u – volume: 27 start-page: 747 year: 2009 ident: ref_11 article-title: Species-independent translational leaders facilitate cell-free expression publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1556 – volume: 127 start-page: 65 year: 2006 ident: ref_78 article-title: A hybridoma-based in vitro translation system that efficiently synthesizes glycoproteins publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2006.06.018 – volume: 70 start-page: 8187 year: 1996 ident: ref_92 article-title: Human immunodeficiency virus type 1 capsid formation in reticulocyte lysates publication-title: J. Virol. doi: 10.1128/jvi.70.11.8187-8194.1996 – volume: 6 start-page: 4486 year: 2006 ident: ref_70 article-title: N-Terminal protein modifications in an insect cell-free protein synthesis system and their identification by mass spectrometry publication-title: Proteomics doi: 10.1002/pmic.200600126 – volume: 28 start-page: 239 year: 2011 ident: ref_99 article-title: Robotic large-scale application of wheat cell-free translation to structural studies including membrane proteins publication-title: N. Biotechnol. doi: 10.1016/j.nbt.2010.07.003 – volume: 163 start-page: 301 year: 2013 ident: ref_129 article-title: Functional evaluation of candidate ice structuring proteins using cell-free expression systems publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2012.11.001 – volume: 5 start-page: 1578 year: 2016 ident: ref_148 article-title: Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00154 – volume: 112 start-page: 867 year: 2015 ident: ref_12 article-title: A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25502 – volume: 22 start-page: 538 year: 2004 ident: ref_29 article-title: High-throughput cell-free systems for synthesis of functionally active proteins publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2004.08.012 – ident: ref_207 doi: 10.1371/journal.pone.0106232 – volume: 12 start-page: 1587 year: 1993 ident: ref_57 article-title: Cell-free synthesis and assembly of prolyl 4-hydroxylase: the role of the beta-subunit (PDI) in preventing misfolding and aggregation of the alpha-subunit publication-title: EMBO J. doi: 10.1002/j.1460-2075.1993.tb05803.x – volume: 32 start-page: 133 year: 2015 ident: ref_151 article-title: Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol publication-title: Metab. Eng. doi: 10.1016/j.ymben.2015.09.015 – volume: Volume 1122 start-page: 49 year: 2014 ident: ref_132 article-title: Cell-Free Synthesis of the H-Cluster: A Model for the In Vitro Assembly of Metalloprotein Metal Centers publication-title: Methods in molecular biology (Clifton, N.J.) doi: 10.1007/978-1-62703-794-5_5 – volume: 7 start-page: 1 year: 2017 ident: ref_39 article-title: High-yield production of difficult-to-express proteins in a continuous exchange cell-free system based on CHO cell lysates publication-title: Sci. Rep. doi: 10.1038/s41598-017-12188-8 – volume: 4 start-page: 503 year: 2014 ident: ref_145 article-title: Rapidly Characterizing the Fast Dynamics of RNA Genetic Circuitry with Cell-Free Transcription–Translation (TX-TL) Systems publication-title: ACS Synth. Biol. – volume: 159 start-page: 940 year: 2014 ident: ref_44 article-title: Paper-based synthetic gene networks publication-title: Cell doi: 10.1016/j.cell.2014.10.004 – volume: 125 start-page: 194 year: 2006 ident: ref_67 article-title: Efficient generation of insect-based cell-free translation extracts active in glycosylation and signal sequence processing publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2006.03.002 – volume: 58 start-page: 1189 year: 1967 ident: ref_116 article-title: Synthesis of gamma G antibody and immunoglobulin on polyribosomes in a cell-free system publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.58.3.1189 – volume: 13 start-page: 401 year: 1988 ident: ref_163 article-title: A Neurospora crassa heat-shocked cell lysate translates homologous and heterologous messenger RNA efficiently, without preference for heat shock messages publication-title: Curr. Genet. doi: 10.1007/BF00365661 – volume: 11 start-page: 212 year: 2016 ident: ref_130 article-title: Cell-free protein synthesis enables high yielding synthesis of an active multicopper oxidase publication-title: Biotechnol. J. doi: 10.1002/biot.201500030 – volume: 6 start-page: 39 year: 2017 ident: ref_126 article-title: In vitro reconstruction of nonribosomal peptide biosynthesis directly from DNA using cell-free protein synthesis publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00160 – volume: 280 start-page: 914 year: 2001 ident: ref_37 article-title: Continuous-Exchange Cell-Free Protein-Synthesizing System: Synthesis of HIV-1 Antigen Nef publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.4188 – volume: 195 start-page: 39 year: 1984 ident: ref_169 article-title: Coupled transcription--translation in extracts of Streptomyces lividans publication-title: Mol. Gen. Genet. doi: 10.1007/BF00332721 – volume: 145 start-page: 73 year: 2010 ident: ref_66 article-title: Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2009.10.009 – volume: 6 start-page: 30399 year: 2016 ident: ref_38 article-title: High-yield cell-free synthesis of human EGFR by IRES-mediated protein translation in a continuous exchange cell-free reaction format publication-title: Sci. Rep. doi: 10.1038/srep30399 – volume: 165 start-page: 1255 year: 2016 ident: ref_45 article-title: Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components publication-title: Cell doi: 10.1016/j.cell.2016.04.059 – volume: 91 start-page: 516 year: 2005 ident: ref_102 article-title: Efficient and scalable method for scaling up cell free protein synthesis in batch mode publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20528 – volume: 188 start-page: 128 year: 1982 ident: ref_187 article-title: An in vitro polypeptide synthesizing system from methanogenic bacteria: Sensitivity to antibiotics publication-title: MGG Mol. Gen. Genet. doi: 10.1007/BF00333006 – volume: 121 start-page: 163 year: 1981 ident: ref_162 article-title: The cell-free protein synthesis system from the “slime” mutant of Neurospora crassa. Preparation and characterisation of importance of 7-methylguanosine for translation of viral and cellular mRNAs publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1981.tb06445.x – volume: 52 start-page: 1443 year: 2011 ident: ref_184 article-title: Arabidopsis cell-free extract, ACE, a new in vitro translation system derived from arabidopsis callus cultures publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcr080 – volume: 390 start-page: 250 year: 2009 ident: ref_183 article-title: Replication of Tomato bushy stunt virus RNA in a plant in vitro system publication-title: Virology doi: 10.1016/j.virol.2009.05.009 – volume: 183 start-page: 449 year: 1991 ident: ref_59 article-title: Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: Identification of an internal cleavage site and delimitation of VPg and proteinase domains publication-title: Virology doi: 10.1016/0042-6822(91)90974-G – volume: 7 start-page: 1942 year: 2007 ident: ref_65 article-title: Protein prenylation in an insect cell-free protein synthesis system and identification of products by mass spectrometry publication-title: Proteomics doi: 10.1002/pmic.200700237 – volume: 6 start-page: 8168 year: 2015 ident: ref_101 article-title: Robust production of recombinant phosphoproteins using cell-free protein synthesis publication-title: Nat. Commun. doi: 10.1038/ncomms9168 – volume: 38 start-page: e89 year: 2010 ident: ref_134 article-title: Optimization of the hybridization-based method for purification of thermostable tRNAs in the presence of tetraalkylammonium salts publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp1182 – volume: 25 start-page: 221 year: 1992 ident: ref_32 article-title: Production of an enzymatic active protein using a continuous flow cell-free translation system publication-title: J. Biotechnol. doi: 10.1016/0168-1656(92)90157-5 – volume: 47 start-page: 1588 year: 1961 ident: ref_1 article-title: The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.47.10.1588 – ident: ref_22 doi: 10.3791/58882 – volume: 25 start-page: 351 year: 2014 ident: ref_119 article-title: Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system publication-title: Bioconjug. Chem. doi: 10.1021/bc400490z – volume: 586 start-page: 2351 year: 2012 ident: ref_68 article-title: The protease-activated receptor 1 possesses a functional and cleavable signal peptide which is necessary for receptor expression publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.05.042 – volume: 17 start-page: 470 year: 1966 ident: ref_176 article-title: Protein synthesis by cell-free extracts of tobacco leaves: III. Comparison of the physical properties and protein synthesizing activities of 70 s chloroplast and 80 s cytoplasmic ribosomes publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(66)80157-2 – volume: 34 start-page: 377 year: 1999 ident: ref_202 article-title: Cis-acting signals controlling translational initiation in the thermophilic archaeon Sulfolobus solfataricus publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1999.01615.x – volume: 56 start-page: 186 year: 2014 ident: ref_42 article-title: Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage publication-title: Biotechniques doi: 10.2144/000114158 – volume: 19 start-page: 751 year: 2001 ident: ref_25 article-title: Cell-free translation reconstituted with purified components publication-title: Nat. Biotechnol. doi: 10.1038/90802 – volume: 7 start-page: 752 year: 2018 ident: ref_146 article-title: Cell-Free and in Vivo Characterization of Lux, Las, and Rpa Quorum Activation Systems in E. coli publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00376 – volume: 86 start-page: 19 year: 2004 ident: ref_104 article-title: Mimicking the Escherichia coli Cytoplasmic Environment Activates Long-Lived and Efficient Cell-Free Protein Synthesis publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20026 – volume: 16 start-page: 844 year: 2015 ident: ref_31 article-title: Improving cell-free protein synthesis through genome engineering of Escherichia coli lacking release factor 1 publication-title: Chembiochem doi: 10.1002/cbic.201402708 – volume: 270 start-page: 4780 year: 2003 ident: ref_123 article-title: Efficient synthesis of a disulfide-containing protein through a batch cell-free system from wheat germ publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1033.2003.03880.x – volume: 28 start-page: 262 year: 2011 ident: ref_112 article-title: Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins publication-title: N. Biotechnol. doi: 10.1016/j.nbt.2010.07.002 – volume: 107 start-page: 89 year: 1993 ident: ref_186 article-title: In vitro translation of archaeal natural mRNAs at high temperature publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1993.tb06009.x – volume: 169 start-page: 4822 year: 1987 ident: ref_174 article-title: Replication control genes of plasmid pE194 publication-title: J. Bacteriol. doi: 10.1128/jb.169.10.4822-4829.1987 – volume: 275 start-page: 21224 year: 2000 ident: ref_109 article-title: Pivotal role of calnexin and mannose trimming in regulating the endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain publication-title: J. Biol. Chem. doi: 10.1074/jbc.M000567200 – volume: 9 start-page: 630 year: 2014 ident: ref_35 article-title: Substrate replenishment and byproduct removal improve yeast cell-free protein synthesis publication-title: Biotechnol. J. doi: 10.1002/biot.201300383 – volume: 44 start-page: 619 year: 1986 ident: ref_76 article-title: Secretion in Yeast: Reconstitution of the Translocation and Glycosylation of a-Factor and lnvertase in a Homologous Cell-Free System publication-title: Cell doi: 10.1016/0092-8674(86)90271-0 – volume: 6 start-page: 1461 year: 2017 ident: ref_147 article-title: Design of a Toolbox of RNA Thermometers publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00301 – volume: 55 start-page: 446 year: 2001 ident: ref_63 article-title: Establishment and characterization of cell-free translation/glycosylation in insect cell ( Spodoptera frugiperda 21) extract prepared with high pressure treatment publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530000534 – ident: ref_107 doi: 10.3791/52772 – volume: 100 start-page: 12672 year: 2003 ident: ref_139 article-title: Principles of cell-free genetic circuit assembly publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2135496100 – volume: 278 start-page: 38117 year: 2003 ident: ref_82 article-title: Phosphorylation of Serine 13 Is Required for the Proper Function of the Hsp90 Co-chaperone, Cdc37 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C300330200 – volume: 30 start-page: 288 year: 2013 ident: ref_193 article-title: Exploiting Leishmania tarentolae cell-free extracts for the synthesis of human solute carriers publication-title: Mol. Membr. Biol. doi: 10.3109/09687688.2013.807362 – volume: 115 start-page: 739 year: 2018 ident: ref_75 article-title: A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26502 – volume: 3 start-page: 954 year: 1964 ident: ref_175 article-title: The Incorporation of Amino Acids into Protein by Cell-free Extracts from Tobacco Leaves publication-title: Biochemistry doi: 10.1021/bi00895a019 – volume: 46 start-page: 348 year: 2006 ident: ref_13 article-title: An efficient mammalian cell-free translation system supplemented with translation factors publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2005.09.021 – volume: 7 start-page: 4424 year: 2007 ident: ref_71 article-title: Expression of proteins containing disulfide bonds in an insect cell-free system and confirmation of their arrangements by MALDI-TOF MS publication-title: Proteomics doi: 10.1002/pmic.200700774 – volume: 10 start-page: 1780 year: 2010 ident: ref_72 article-title: Strategy for comprehensive identification of human N-myristoylated proteins using an insect cell-free protein synthesis system publication-title: Proteomics doi: 10.1002/pmic.200900783 – volume: 78 start-page: 9257 year: 2004 ident: ref_94 article-title: Unique Features of Hepatitis C Virus Capsid Formation Revealed by De Novo Cell-Free Assembly publication-title: J. Virol. doi: 10.1128/JVI.78.17.9257-9269.2004 – volume: 7 start-page: 218 year: 2018 ident: ref_135 article-title: Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00280 – volume: 14 start-page: 391 year: 1990 ident: ref_179 article-title: In vitro transcription from cauliflower mosaic virus promoters by a cell-free extract from tobacco cells publication-title: Plant Mol. Biol. doi: 10.1007/BF00028775 – volume: 2 start-page: 497 year: 2013 ident: ref_140 article-title: Probing Cell-Free Gene Expression Noise in Femtoliter Volumes publication-title: ACS Synth. Biol. doi: 10.1021/sb400028c – volume: 37 start-page: 246 year: 2019 ident: ref_206 article-title: Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.12.006 – volume: 741 start-page: 233 year: 2011 ident: ref_128 article-title: In vitro methods for CFTR biogenesis publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-117-8_16 – volume: 16 start-page: 269 year: 2016 ident: ref_52 article-title: On-chip automation of cell-free protein synthesis: New opportunities due to a novel reaction mode publication-title: Lab Chip doi: 10.1039/C5LC00700C – ident: ref_158 doi: 10.3390/mps2010016 – volume: 114 start-page: 1343 year: 2017 ident: ref_168 article-title: Establishing a high yielding streptomyces-based cell-free protein synthesis system publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26253 – ident: ref_185 doi: 10.1073/pnas.1715806115 – ident: ref_21 – volume: 7 start-page: 3870 year: 2007 ident: ref_3 article-title: A sequential expression system for high-throughput functional genomic analysis publication-title: Proteomics doi: 10.1002/pmic.200700471 – volume: 10 start-page: 1236 year: 2014 ident: ref_191 article-title: Rapid in vitro protein synthesis pipeline: A promising tool for cost-effective protein array design publication-title: Mol. Biosyst. doi: 10.1039/c4mb00003j – volume: 38 start-page: 370 year: 2016 ident: ref_16 article-title: Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements publication-title: Metab. Eng. doi: 10.1016/j.ymben.2016.09.008 – volume: 9 start-page: 1203 year: 2018 ident: ref_154 article-title: Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids publication-title: Nat. Commun. doi: 10.1038/s41467-018-03469-5 – volume: 4 start-page: 39 year: 2006 ident: ref_120 article-title: Functional expression of a single-chain antibody to ErbB-2 in plants and cell-free systems publication-title: J. Transl. Med. doi: 10.1186/1479-5876-4-39 – volume: 42 start-page: 1161 year: 1967 ident: ref_177 article-title: Synthesis of Indoleacetic Acid via Tryptamine by a Cell-free System from Tobacco Terminal Buds publication-title: Plant Physiol. doi: 10.1104/pp.42.8.1161 – ident: ref_171 doi: 10.3389/fmicb.2018.01146 – volume: 99 start-page: 59 year: 2008 ident: ref_131 article-title: Cell-free synthesis and maturation of [FeFe] hydrogenases publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21511 – volume: 28 start-page: 549 year: 2012 ident: ref_88 article-title: The incorporation of the A2 protein to produce novel Qβ virus-like particles using cell-free protein synthesis publication-title: Biotechnol. Prog. doi: 10.1002/btpr.744 – ident: ref_141 doi: 10.1109/ACC.2013.6580053 – volume: 9 start-page: 1 year: 2013 ident: ref_136 article-title: In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2013.31 – ident: ref_30 doi: 10.1371/journal.pone.0096635 – ident: ref_100 doi: 10.1002/9783527688104.ch15 – volume: 137 start-page: 11 year: 2018 ident: ref_161 article-title: The cell free protein synthesis system from the model filamentous fungus Neurospora crassa publication-title: Methods doi: 10.1016/j.ymeth.2017.12.003 – volume: 79 start-page: 6358 year: 2005 ident: ref_91 article-title: Stimulation of Poliovirus Synthesis in a HeLa Cell-Free In Vitro Translation-RNA Replication System by Viral Protein 3CDpro publication-title: J. Virol. doi: 10.1128/JVI.79.10.6358-6367.2005 – volume: 164 start-page: 220 year: 2012 ident: ref_124 article-title: Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2012.08.020 – volume: 3 start-page: 90 year: 2018 ident: ref_149 article-title: Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology publication-title: Synth. Syst. Biotechnol. doi: 10.1016/j.synbio.2018.02.003 – volume: 6 start-page: 493 year: 2000 ident: ref_81 article-title: Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)00048-4 – volume: 94 start-page: 12297 year: 1997 ident: ref_84 article-title: RNA-peptide fusions for the in vitro selection of peptides and proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.23.12297 – volume: 154 start-page: 230 year: 2011 ident: ref_86 article-title: Efficient disulfide bond formation in virus-like particles publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2011.04.011 – volume: 42 start-page: 325 year: 1996 ident: ref_181 article-title: Nicotine N-demethylase in cell-free preparations from tobacco cell cultures publication-title: Phytochemistry doi: 10.1016/0031-9422(95)00868-3 – volume: 15 start-page: 79 year: 1997 ident: ref_117 article-title: Functional antibody production using cell-free translation: Effects of protein disulfide isomerase and chaperones publication-title: Nat. Biotechnol. doi: 10.1038/nbt0197-79 – ident: ref_142 doi: 10.1103/PhysRevLett.106.048104 – ident: ref_203 doi: 10.1371/journal.pone.0082234 – volume: 7 start-page: 875 year: 2018 ident: ref_156 article-title: Expanding One-Pot Cell-Free Protein Synthesis and Immobilization for On-Demand Manufacturing of Biomaterials publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00383 – volume: 28 start-page: 211 year: 2011 ident: ref_41 article-title: Wheat germ cell-free protein production system for post-genomic research publication-title: N. Biotechnol. doi: 10.1016/j.nbt.2010.08.009 – ident: ref_49 doi: 10.3390/genes9030144 – volume: 106 start-page: 8 year: 2008 ident: ref_95 article-title: An optimized yeast cell-free system: Sufficient for translation of human papillomavirus 58 L1 mRNA and assembly of virus-like particles publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.106.8 – volume: 108 start-page: 1570 year: 2011 ident: ref_97 article-title: Microscale to manufacturing scale-up of cell-free cytokine production-a new approach for shortening protein production development timelines publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.23103 – volume: 266 start-page: 9299 year: 1991 ident: ref_93 article-title: Assembly of adenovirus type 2 fiber synthesized in cell-free translation system publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)31584-9 – volume: 308 start-page: 103 year: 1994 ident: ref_178 article-title: Biosynthesis of the Diterpene cis-Abienol in Cell-Free Extracts of Tobacco Trichomes publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1994.1015 – volume: 110 start-page: 2643 year: 2013 ident: ref_195 article-title: Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24942 – volume: 46 start-page: 6387 year: 2018 ident: ref_157 article-title: Oligonucleotide-mediated tRNA sequestration enables one-pot sense codon reassignment in vitro publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky365 – volume: 125 start-page: 328 year: 1999 ident: ref_118 article-title: Cell-free expression of two single-chain monoclonal antibodies against lysozyme: effect of domain arrangement on the expression publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a022290 – volume: 6 start-page: 71 year: 2009 ident: ref_50 article-title: An in vitro microfluidic approach to generating protein-interaction networks publication-title: Nat. Methods doi: 10.1038/nmeth.1289 – volume: 30 start-page: 1185 year: 2014 ident: ref_4 article-title: Cell-Free Protein Synthesis: Applications Come of Age publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.09.016 – volume: 4 start-page: 1 year: 2018 ident: ref_46 article-title: BioBitsTM Bright: A fluorescent synthetic biology education kit publication-title: Sci. Adv. doi: 10.1126/sciadv.aat5107 – volume: 32 start-page: 2396 year: 2012 ident: ref_166 article-title: The Arginine Attenuator Peptide Interferes with the Ribosome Peptidyl Transferase Center publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00136-12 – volume: 62 start-page: 171 year: 2008 ident: ref_110 article-title: Wheat germ cell-free translation, purification, and assembly of a functional human stearoyl-CoA desaturase complex publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2008.08.002 – volume: 107 start-page: 15 year: 1979 ident: ref_180 article-title: Cytokinin biosynthesis in a cell-free system from cytokinin-autotrophic tobacco tissue cultures publication-title: FEBS Lett. doi: 10.1016/0014-5793(79)80452-4 – ident: ref_14 doi: 10.1093/synbio/ysy003 – volume: 410 start-page: 715 year: 2001 ident: ref_83 article-title: Functional proteins from a random-sequence library publication-title: Nature doi: 10.1038/35070613 – volume: 365 start-page: 1 year: 2018 ident: ref_201 article-title: Recent advances in development of cell-free protein synthesis systems for fast and efficient production of recombinant proteins publication-title: FEMS Microbiol. Lett. doi: 10.1093/femsle/fny174 – ident: ref_196 doi: 10.1007/978-3-642-59337-6_25 – volume: 130 start-page: 29 year: 2018 ident: ref_15 article-title: Expanding the palette of Streptomyces-based cell-free protein synthesis systems with enhanced yields publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2017.11.013 – volume: 12 start-page: 810 year: 2016 ident: ref_137 article-title: Toward Microfluidic Reactors for Cell-Free Protein Synthesis at the Point-of-Care publication-title: Small doi: 10.1002/smll.201502764 – volume: 56 start-page: 36 year: 2014 ident: ref_204 article-title: A technique to increase protein yield in a rabbit reticulocyte lysate translation system publication-title: Biotechniques doi: 10.2144/000114125 – volume: 7 start-page: 2475 year: 2018 ident: ref_170 article-title: Establishing a Cell-Free Vibrio natriegens Expression System publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.8b00222 – volume: 53 start-page: 163 year: 2012 ident: ref_7 article-title: Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing publication-title: Biotechniques doi: 10.2144/0000113924 – ident: ref_90 doi: 10.1093/synbio/ysy002 – volume: 100 start-page: 28 year: 2008 ident: ref_87 article-title: Escherichia coli-based cell-free synthesis of virus-like particles publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21716 – volume: 253 start-page: 3573 year: 1978 ident: ref_61 article-title: Efficient Cleavage and Segregation of Nascent Presecretory Proteins in a Reticuloqyte Lysate Supplemented with Microsomal Membranes publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)34748-8 – volume: 8 start-page: 1 year: 2016 ident: ref_192 article-title: Cell-Free Synthetic Biology: Engineering Beyond the Cell publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a023853 – volume: 49 start-page: 357 year: 2014 ident: ref_150 article-title: Yeast cell-free enzyme system for bio-ethanol production at elevated temperatures publication-title: Process Biochem. doi: 10.1016/j.procbio.2013.12.019 – volume: 59 start-page: 744 year: 2015 ident: ref_167 article-title: Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.07.018 – volume: 4 start-page: 217 year: 2012 ident: ref_2 article-title: Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system publication-title: MAbs doi: 10.4161/mabs.4.2.19202 – volume: 589 start-page: 1703 year: 2015 ident: ref_152 article-title: Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis publication-title: FEBS Lett. doi: 10.1016/j.febslet.2015.04.041 – volume: 138 start-page: 21 year: 2018 ident: ref_43 article-title: Process optimization for scalable E. coli extract preparation for cell-free protein synthesis publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2018.06.021 – volume: 16 start-page: 2420 year: 2015 ident: ref_64 article-title: Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems publication-title: ChemBioChem doi: 10.1002/cbic.201500340 – volume: 265 start-page: 6868 year: 1990 ident: ref_60 article-title: Glycosylation of nuclear pore protein p62. Reticulocyte lysate catalyzes O-linked N-acetylglucosamine addition in vitro publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)39229-4 – volume: 36 start-page: 299 year: 2005 ident: ref_24 article-title: Protein synthesis by pure translation systems publication-title: Methods doi: 10.1016/j.ymeth.2005.04.006 – volume: 55 start-page: 4212 year: 2016 ident: ref_5 article-title: Combining in Vitro Folding with Cell Free Protein Synthesis for Membrane Protein Expression publication-title: Biochemistry doi: 10.1021/acs.biochem.6b00488 – ident: ref_113 – volume: Volume 1850 start-page: 289 year: 2018 ident: ref_34 article-title: Versatile cell-free protein synthesis systems based on chinese hamster ovary cells publication-title: Methods in Molecular Biology doi: 10.1007/978-1-4939-8730-6_19 – volume: 167 start-page: 248 year: 2016 ident: ref_47 article-title: Portable, On-Demand Biomolecular Manufacturing publication-title: Cell doi: 10.1016/j.cell.2016.09.013 – volume: 126 start-page: 186 year: 2006 ident: ref_20 article-title: Cell-free protein synthesis at high temperatures using the lysate of a hyperthermophile publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2006.04.010 – volume: 268 start-page: 5302 year: 1993 ident: ref_115 article-title: Characterization of single-chain antibody (sFv)-toxin fusion proteins produced in vitro in rabbit reticulocyte lysate publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)53533-X – volume: 11 start-page: 279 year: 2010 ident: ref_62 article-title: Development of an insect cell-free system publication-title: Curr Pharm Biotechnol doi: 10.2174/138920110791111997 – volume: 11 start-page: 508 year: 2014 ident: ref_138 article-title: Principles of genetic circuit design publication-title: Nat. Methods doi: 10.1038/nmeth.2926 – volume: 203 start-page: 45 year: 2015 ident: ref_159 article-title: Automated production of functional membrane proteins using eukaryotic cell-free translation systems publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2015.03.015 – volume: 26 start-page: 105 year: 2002 ident: ref_164 article-title: Toeprint analysis of the positioning of translation apparatus components at initiation and termination codons of fungal mRNAs publication-title: Methods doi: 10.1016/S1046-2023(02)00013-0 – volume: 5 start-page: 1433 year: 2016 ident: ref_28 article-title: Protein Synthesis in Coupled and Uncoupled Cell-Free Prokaryotic Gene Expression Systems publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00010 – volume: 2 start-page: 2945 year: 2007 ident: ref_36 article-title: Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.426 – volume: Volume 137 start-page: 67 year: 2013 ident: ref_160 article-title: Cell-Free Systems: Functional Modules for Synthetic and Chemical Biology publication-title: Advances in Biochemical Engineering/Biotechnology doi: 10.1007/10_2013_185 – ident: ref_69 – volume: 588 start-page: 261 year: 2014 ident: ref_6 article-title: Engine out of the chassis: Cell-free protein synthesis and its uses publication-title: FEBS Lett. doi: 10.1016/j.febslet.2013.10.016 – volume: 16 start-page: 1833 year: 2008 ident: ref_27 article-title: Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability publication-title: Mol. Ther. doi: 10.1038/mt.2008.200 – volume: 110 start-page: 58 year: 2010 ident: ref_96 article-title: Translational comparison of HPV58 long and short L1 mRNAs in yeast (Saccharomyces cerevisiae) cell-free system publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2010.01.011 – volume: 111 start-page: 25 year: 2014 ident: ref_17 article-title: Cell-free protein expression based on extracts from CHO cells publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25013 – ident: ref_48 doi: 10.3390/inventions3030060 – ident: ref_54 doi: 10.1038/s41467-018-05110-x – volume: 588 start-page: 2774 year: 2014 ident: ref_106 article-title: Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes publication-title: FEBS Lett. doi: 10.1016/j.febslet.2014.06.007 – volume: 35 start-page: 753 year: 2002 ident: ref_105 article-title: Membrane proteins: Functional and structural studies using reconstituted proteoliposomes and 2-D crystals publication-title: Brazilian J. Med. Biol. Res. doi: 10.1590/S0100-879X2002000700001 – volume: 131 start-page: 849 year: 2002 ident: ref_188 article-title: Polypeptide synthesis directed by DNA as a messenger in cell-free polypeptide synthesis by extreme thermophiles, Thermus thermophilus HB27 and sulfolobus tokodaii strain 7 publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a003174 – volume: 4 start-page: 8 year: 2010 ident: ref_199 article-title: Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70 publication-title: J. Biol. Eng. doi: 10.1186/1754-1611-4-8 – volume: 4 start-page: 1 year: 2015 ident: ref_144 article-title: Rapid cell-free forward engineering of novel genetic ring oscillators publication-title: Elife – volume: 6 start-page: 671 year: 2014 ident: ref_122 article-title: Engineering toward a bacterial “endoplasmic reticulum” for the rapid expression of immunoglobulin proteins publication-title: MAbs doi: 10.4161/mabs.28172 – volume: 13 start-page: 39 year: 2013 ident: ref_73 article-title: Synthesis of membrane proteins in eukaryotic cell-free systems publication-title: Eng. Life Sci. doi: 10.1002/elsc.201100235 – volume: 31 start-page: 499 year: 2014 ident: ref_205 article-title: Characterizing IGR IRES-mediated translation initiation for use in yeast cell-free protein synthesis publication-title: N. Biotechnol. doi: 10.1016/j.nbt.2014.07.001 – ident: ref_53 doi: 10.1126/sciadv.aat5105 – volume: 59 start-page: 174 year: 2014 ident: ref_108 article-title: Membrane assembly of the functional KcsA potassium channel in a vesicle-based eukaryotic cell-free translation system publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.03.004 – volume: 114 start-page: 1065 year: 2017 ident: ref_155 article-title: In vitro suppression of two different stop codons publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26226 – volume: 138 start-page: 47 year: 2018 ident: ref_208 article-title: Enhancing the efficiency of cell-free protein synthesis system by systematic titration of transcription and translation components publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2018.07.001 – volume: 15 start-page: 785 year: 1993 ident: ref_200 article-title: Continuous protein synthesis system with Escherichia coli S30 extract containing endogenous T7 RNA polymerase publication-title: Biotechnol. Lett. doi: 10.1007/BF00180142 – volume: 97 start-page: 559 year: 2000 ident: ref_194 article-title: A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.2.559 – volume: 22 start-page: 596 year: 2012 ident: ref_74 article-title: A prokaryote-based cell-free translation system that efficiently synthesizes glycoproteins publication-title: Glycobiology doi: 10.1093/glycob/cwr151 – volume: 416 start-page: 518 year: 2012 ident: ref_165 article-title: Arginine Changes the Conformation of the Arginine Attenuator Peptide Relative to the Ribosome Tunnel publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.12.064 – volume: 251 start-page: 2499 year: 1976 ident: ref_173 article-title: Specificity of bacterial ribosomes and messenger ribonucleic acids in protein synthesis reactions in vitro publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)33616-5 – volume: 22 start-page: 1570 year: 2006 ident: ref_18 article-title: Cell-Free Protein Synthesis System Prepared from Hi5 Insect Cells by Freeze-Thawing publication-title: Biotechnol. Prog doi: 10.1021/bp060110v – volume: 266 start-page: 9570 year: 1991 ident: ref_55 article-title: Gamma subunits of G Proteins, but not their alpha or beta subunits, are polyisoprenylated publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)92858-9 – volume: 11 start-page: 267 year: 2010 ident: ref_23 article-title: A Highly Controllable Reconstituted Cell-Free System -a Breakthrough in Protein Synthesis Research publication-title: Curr. Pharm. Biotechnol. doi: 10.2174/138920110791111889 – volume: 12 start-page: 1216 year: 2003 ident: ref_79 article-title: A wheat germ cell-free system is a novel way to screen protein folding and function publication-title: Protein Sci. doi: 10.1110/ps.0241203 – volume: 62 start-page: 190 year: 2008 ident: ref_127 article-title: A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2008.09.002 – volume: 7 start-page: 2245 year: 2018 ident: ref_10 article-title: Establishing a High-Yielding Cell-Free Protein Synthesis Platform Derived from Vibrio natriegens publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.8b00252 – volume: 99 start-page: 162 year: 2014 ident: ref_8 article-title: Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system publication-title: Biochimie doi: 10.1016/j.biochi.2013.11.025 – volume: 10 start-page: 29308 year: 2018 ident: ref_51 article-title: Microfluidic-Assisted Fabrication of Clay Microgels for Cell-Free Protein Synthesis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09324 |
SSID | ssj0002140745 |
Score | 2.485141 |
SecondaryResourceType | review_article |
Snippet | Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 24 |
SubjectTerms | cell-free metabolic engineering (CFME) cell-free protein expression (CFPE) cell-free protein synthesis (CFPS) cell-free synthetic biology in vitro protein synthesis in vitro transcription-translation (TX-TL) Review |
Title | A User’s Guide to Cell-Free Protein Synthesis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31164605 https://www.proquest.com/docview/2340037574 https://pubmed.ncbi.nlm.nih.gov/PMC6481089 https://doaj.org/article/b3e4500eec584c5b95b824cf7c529d23 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdRfNUXK3rxsHQ3j01yrMVaBEWwhd6WJJtgoW5Ltz1482_49_wlTnbb2krBi9fdsJmdR74ZMnyD0DUxkIQzK8IIWxfSTMI5SDAJpRCxEQDRrqRSenxKOj360Gf9lVFfviesogeuFNfQxFIWRdYagErDtGRaYGocNwzLDJc8n4B5K8WUP4Mx1A2csoqPlEBd33gbF_7iN8J0DYFKov5N2eXvJskV1Gnvop15uhg0KzH30JbN91GjGfTAc74-PovgfjbIbDAdBS07HIbtibXBs6deGOTBy3sO2V0xKA5Qt33XbXXC-eCD0ECITEOlEiG1Szx7liROMAgik2mlLDEx1dxxxkimNMQOht900jIlhaESY-5ETA5RLR_l9hgFHOBHJ9qZjAFUw0eZ5pkiTJAYK6gN6-hmoYvUzEnB_WyKYQrFgddb-qO3Orparh1XVBgbV916lS5XePrq8gEYNZ0bNf3LqHV0uTBICu7u7zBUbkezIsWElmN7OWx0VBlouRWJPVlaxOqIr5luTZb1N_ngtaTUTqiIIyFP_kP4U7QNupC-US3GZ6g2nczsOWQuU31ROuk3mH7rJw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+User%27s+Guide+to+Cell-Free+Protein+Synthesis&rft.jtitle=Methods+and+protocols&rft.au=Gregorio%2C+Nicole+E&rft.au=Levine%2C+Max+Z&rft.au=Oza%2C+Javin+P&rft.date=2019-03-12&rft.eissn=2409-9279&rft.volume=2&rft.issue=1&rft_id=info:doi/10.3390%2Fmps2010024&rft_id=info%3Apmid%2F31164605&rft.externalDocID=31164605 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2409-9279&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2409-9279&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2409-9279&client=summon |