The Markov gap for geometric reflected entropy
A bstract The reflected entropy S R ( A : B ) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I ( A : B ). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the enta...
Saved in:
Published in | The journal of high energy physics Vol. 2021; no. 10; pp. 1 - 58 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
06.10.2021
Springer Nature B.V Springer Nature SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
The reflected entropy
S
R
(
A
:
B
) of a density matrix
ρ
AB
is a bipartite correlation measure lower-bounded by the quantum mutual information
I
(
A
:
B
). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order-
N
2
gap between
S
R
and
I
. We provide an information-theoretic interpretation of this gap by observing that
S
R
− I
is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity
S
R
− I
the
Markov gap
. We then prove that for time-symmetric states in pure AdS
3
gravity, the Markov gap is universally lower bounded by log(2)
ℓ
AdS
/
2
G
N
times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling
S
R
− I
using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography. |
---|---|
AbstractList | The reflected entropy
S
R
(
A
:
B
) of a density matrix
ρ
AB
is a bipartite correlation measure lower-bounded by the quantum mutual information
I
(
A
:
B
). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order-
N
2
gap between
S
R
and
I
. We provide an information-theoretic interpretation of this gap by observing that
S
R
− I
is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity
S
R
− I
the
Markov gap
. We then prove that for time-symmetric states in pure AdS
3
gravity, the Markov gap is universally lower bounded by log(2)
ℓ
AdS
/
2
G
N
times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling
S
R
− I
using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography. The reflected entropy SR(A : B) of a density matrix ρAB is a bipartite correlation measure lower-bounded by the quantum mutual information I(A : B). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order-N2 gap between SR and I. We provide an information-theoretic interpretation of this gap by observing that SR− I is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity SR− I the Markov gap. We then prove that for time-symmetric states in pure AdS3 gravity, the Markov gap is universally lower bounded by log(2)ℓAdS/2GN times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling SR− I using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography. A bstract The reflected entropy S R ( A : B ) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I ( A : B ). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order- N 2 gap between S R and I . We provide an information-theoretic interpretation of this gap by observing that S R − I is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity S R − I the Markov gap . We then prove that for time-symmetric states in pure AdS 3 gravity, the Markov gap is universally lower bounded by log(2) ℓ AdS / 2 G N times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling S R − I using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography. Abstract The reflected entropy S R (A : B) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I(A : B). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order-N 2 gap between S R and I. We provide an information-theoretic interpretation of this gap by observing that S R − I is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity S R − I the Markov gap. We then prove that for time-symmetric states in pure AdS3 gravity, the Markov gap is universally lower bounded by log(2)ℓ AdS /2G N times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling S R − I using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography. The reflected entropy SR(A : B) of a density matrix ρAB is a bipartite correlation measure lower-bounded by the quantum mutual information I(A : B). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order-N2 gap between SR and I. We provide an information-theoretic interpretation of this gap by observing that SR - I is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity SR - I the Markov gap. We then prove that for time-symmetric states in pure AdS3 gravity, the Markov gap is universally lower bounded by log(2)ℓAdS/2GN times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling SR - I using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography. |
ArticleNumber | 47 |
Author | Hayden, Patrick Parrikar, Onkar Sorce, Jonathan |
Author_xml | – sequence: 1 givenname: Patrick surname: Hayden fullname: Hayden, Patrick organization: Stanford Institute for Theoretical Physics, Stanford University – sequence: 2 givenname: Onkar surname: Parrikar fullname: Parrikar, Onkar organization: Stanford Institute for Theoretical Physics, Stanford University – sequence: 3 givenname: Jonathan orcidid: 0000-0003-2756-8299 surname: Sorce fullname: Sorce, Jonathan email: jsorce@stanford.edu organization: Stanford Institute for Theoretical Physics, Stanford University |
BackLink | https://www.osti.gov/servlets/purl/1976554$$D View this record in Osti.gov |
BookMark | eNp1kc1P3DAQxa0KJD7ac69RucBhYSaxY-eIEC1UVHCAszVxxku2S7zYphL_PaYpalWJky3r_Z7nzdsTW1OYWIjPCMcIoE--X5zfIBzWUOMRSP1B7CLU3cJI3W39c98ReymtAFBhB7vi-Paeqx8Uf4Zf1ZI2lQ-xWnJ44BxHV0X2a3aZh4qnHMPm-aPY9rRO_OnPuS_uvp7fnl0srq6_XZ6dXi2cQsgLalztpWq0lOzRtSwNtD3VtRmo7ZreDIitMgoG6lTduVa2vR4MKm-IUVOzLy5n3yHQym7i-EDx2QYa7e-HEJeWYh7dmi0V3jeeemW0dMaQdoDlHwOee9S-eH2ZvULKo01uzOzuXZimksxip1ulZBEdzKJNDI9PnLJdhac4lYy2VqYYKsSuqNSscjGkVLZjixvlMZTt0Li2CPa1Czt3YV-7sKWLwp38x71Fep-AmUhFOS05_p3nPeQFJ9iZvw |
CitedBy_id | crossref_primary_10_1007_JHEP03_2025_167 crossref_primary_10_1103_PhysRevD_108_125009 crossref_primary_10_1007_JHEP11_2024_105 crossref_primary_10_21468_SciPostPhys_12_1_003 crossref_primary_10_1007_JHEP05_2024_143 crossref_primary_10_1103_PhysRevB_105_115107 crossref_primary_10_1103_PhysRevB_109_L041104 crossref_primary_10_1007_JHEP09_2023_160 crossref_primary_10_1140_epjc_s10052_022_11129_8 crossref_primary_10_1103_PhysRevD_108_106005 crossref_primary_10_1140_epjc_s10052_024_12461_x crossref_primary_10_21468_SciPostPhys_13_3_056 crossref_primary_10_1007_JHEP05_2022_127 crossref_primary_10_1007_s00220_024_05053_z crossref_primary_10_1007_JHEP08_2023_155 crossref_primary_10_1007_JHEP03_2023_102 crossref_primary_10_1007_JHEP09_2022_239 crossref_primary_10_21468_SciPostPhysCore_5_1_013 crossref_primary_10_1007_JHEP05_2024_284 crossref_primary_10_1103_PhysRevD_107_106014 crossref_primary_10_21468_SciPostPhys_12_4_137 crossref_primary_10_1007_JHEP02_2023_223 crossref_primary_10_1088_1751_8121_acfb52 crossref_primary_10_1007_JHEP12_2024_209 crossref_primary_10_1007_JHEP01_2024_091 crossref_primary_10_1142_S0217751X24501409 crossref_primary_10_1007_JHEP02_2024_009 crossref_primary_10_21468_SciPostPhys_15_2_066 crossref_primary_10_1103_PhysRevD_106_066009 crossref_primary_10_1103_PhysRevB_106_L041107 crossref_primary_10_21468_SciPostPhys_16_5_125 crossref_primary_10_1007_JHEP01_2023_067 crossref_primary_10_1103_PhysRevD_108_076016 crossref_primary_10_1007_JHEP05_2022_162 crossref_primary_10_1007_JHEP05_2024_054 crossref_primary_10_1007_JHEP06_2024_017 crossref_primary_10_1103_PhysRevD_105_086013 crossref_primary_10_1007_JHEP07_2024_069 crossref_primary_10_1007_JHEP12_2021_091 crossref_primary_10_1103_PhysRevD_108_054508 crossref_primary_10_1007_JHEP12_2022_008 crossref_primary_10_1007_JHEP07_2024_043 crossref_primary_10_1103_PhysRevB_108_045104 crossref_primary_10_1007_JHEP02_2024_079 crossref_primary_10_1007_JHEP03_2023_043 crossref_primary_10_1007_JHEP06_2022_089 crossref_primary_10_1103_PhysRevB_110_195107 crossref_primary_10_1007_JHEP02_2024_111 crossref_primary_10_3390_universe10030125 crossref_primary_10_1103_PhysRevD_110_046009 crossref_primary_10_1007_JHEP06_2024_195 crossref_primary_10_1103_PhysRevD_107_026012 crossref_primary_10_1007_JHEP02_2024_040 crossref_primary_10_21468_SciPostPhys_15_6_227 crossref_primary_10_1103_PhysRevB_109_085108 crossref_primary_10_1007_JHEP02_2023_203 crossref_primary_10_1103_PhysRevA_107_L050401 crossref_primary_10_1103_PhysRevD_107_126026 |
Cites_doi | 10.1007/JHEP04(2021)301 10.1007/JHEP03(2020)149 10.1103/PhysRevD.99.046010 10.1007/JHEP08(2013)090 10.1002/prop.201800067 10.1103/PhysRevD.87.046003 10.1007/JHEP11(2020)007 10.1007/JHEP04(2015)163 10.1007/JHEP12(2019)063 10.1002/prop.201300020 10.1088/1126-6708/2007/07/062 10.1007/JHEP12(2019)007 10.1103/PhysRevLett.117.021601 10.1088/1126-6708/2006/08/045 10.1007/JHEP05(2019)052 10.1103/PhysRevLett.126.120501 10.1088/0264-9381/29/15/155009 10.1103/PhysRevD.99.106014 10.1007/JHEP04(2020)173 10.1103/PhysRevLett.126.171603 10.1007/s00220-004-1049-z 10.1007/JHEP01(2018)098 10.1103/PhysRevD.100.126006 10.1155/S1073792804133023 10.1017/CBO9780511618918 10.1007/JHEP03(2021)178 10.1103/PhysRevD.93.064044 10.1103/PhysRevLett.127.141604 10.1103/PhysRevD.76.106013 10.1088/0264-9381/31/18/185015 10.1007/s00023-018-0716-0 10.1007/JHEP10(2019)015 10.1103/PhysRevLett.125.241602 10.1103/PhysRevLett.96.181602 10.1103/PhysRevD.102.086009 10.1007/JHEP04(2021)062 10.1038/s41567-018-0075-2 10.1007/s00220-014-2122-x 10.1007/JHEP11(2013)074 10.1007/JHEP02(2019)110 10.1007/JHEP12(2014)162 10.1007/JHEP01(2015)073 10.1007/JHEP07(2021)113 10.1007/JHEP11(2016)028 10.1007/JHEP04(2020)208 10.1007/JHEP11(2019)069 10.1007/JHEP10(2019)102 10.1007/s10714-010-1034-0 10.1103/PhysRevLett.123.131603 10.1007/JHEP11(2020)148 10.1119/1.1463744 10.1007/JHEP05(2020)103 10.1007/s00220-019-03510-8 10.1007/JHEP08(2020)140 10.1007/s00220-015-2466-x 10.1007/JHEP06(2016)004 10.1103/PhysRevD.87.126012 10.1007/JHEP01(2018)081 10.1007/JHEP09(2020)002 10.1007/JHEP12(2020)084 10.1007/JHEP10(2019)240 10.1063/1.4838856 10.1088/0264-9381/31/22/225007 10.1007/JHEP09(2015)130 10.1007/BF01212345 10.1515/9781400839049 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Univ. of California, Oakland, CA (United States) Stanford Univ., CA (United States) |
CorporateAuthor_xml | – name: Stanford Univ., CA (United States) – name: Univ. of California, Oakland, CA (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI DOA |
DOI | 10.1007/JHEP10(2021)047 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 58 |
ExternalDocumentID | oai_doaj_org_article_a29cf3fab5874c88a7c018da80feb17f 1976554 10_1007_JHEP10_2021_047 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS AAYZJ AFNRJ AHBXF OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c510t-a3c2f453744ef1c6e4806ba228da693b8d1165850da9529c646b7d815f8ae17a3 |
IEDL.DBID | C6C |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:25:44 EDT 2025 Mon Jan 15 05:23:14 EST 2024 Fri Jul 25 23:07:07 EDT 2025 Tue Jul 01 00:59:34 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Fri Feb 21 02:46:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | AdS-CFT Correspondence Gauge-gravity correspondence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c510t-a3c2f453744ef1c6e4806ba228da693b8d1165850da9529c646b7d815f8ae17a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 Simons Foundation USDOE Office of Science (SC) US Air Force Office of Scientific Research (AFOSR) Canadian Institute for Advanced Research (CIFAR) SC0019380; FA9550-19-1-0369 |
ORCID | 0000-0003-2756-8299 0000000327568299 |
OpenAccessLink | https://doi.org/10.1007/JHEP10(2021)047 |
PQID | 2580185119 |
PQPubID | 2034718 |
PageCount | 58 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a29cf3fab5874c88a7c018da80feb17f osti_scitechconnect_1976554 proquest_journals_2580185119 crossref_citationtrail_10_1007_JHEP10_2021_047 crossref_primary_10_1007_JHEP10_2021_047 springer_journals_10_1007_JHEP10_2021_047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-06 |
PublicationDateYYYYMMDD | 2021-10-06 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Nature SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Nature – name: SpringerOpen |
References | AccardiLFrigerioAMarkovian cocyclesProc. Roy. Irish Acad. A1983832517365000534.46045 PeningtonGEntanglement Wedge Reconstruction and the Information ParadoxJHEP2020090022020JHEP...09..002P42032571454.81039[arXiv:1905.08255] [INSPIRE] RyuSTakayanagiTAspects of Holographic Entanglement EntropyJHEP2006080452006JHEP...08..045R22499251228.83110[hep-th/0605073] [INSPIRE] DongXWangHEnhanced corrections near holographic entanglement transitions: a chaotic case studyJHEP2020110072020JHEP...11..007D42042781456.83074[arXiv:2006.10051] [INSPIRE] JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP2016060042016JHEP...06..004J35381651388.83268[arXiv:1512.06431] [INSPIRE] AkersCPeningtonGLeading order corrections to the quantum extremal surface prescriptionJHEP2021040622021JHEP...04..062A4276904[arXiv:2008.03319] [INSPIRE] FawziORennerRQuantum conditional mutual information and approximate Markov chainsCommun. Math. Phys.20153405752015CMaPh.340..575F33970271442.81014[arXiv:1410.0664] BaoNNezamiSOoguriHStoicaBSullyJWalterMThe Holographic Entropy ConeJHEP2015091302015JHEP...09..130B34306351388.83177[arXiv:1505.07839] [INSPIRE] BaoNChatwin-DaviesARemmenGNEntanglement of Purification and Multiboundary Wormhole GeometriesJHEP2019021102019JHEP...02..110B39252061411.81169[arXiv:1811.01983] [INSPIRE] AkersCRathPEntanglement Wedge Cross Sections Require Tripartite EntanglementJHEP2020042082020JHEP...04..208A40968421436.81108[arXiv:1911.07852] [INSPIRE] FischlerWKunduAKunduSHolographic Mutual Information at Finite TemperaturePhys. Rev. D2013871260122013PhRvD..87l6012F[arXiv:1212.4764] [INSPIRE] FaulknerTLewkowyczAMaldacenaJQuantum corrections to holographic entanglement entropyJHEP2013110742013JHEP...11..074F1392.81021[arXiv:1307.2892] [INSPIRE] AlmheiriAMahajanRMaldacenaJZhaoYThe Page curve of Hawking radiation from semiclassical geometryJHEP2020031492020JHEP...03..149A40899731435.83110[arXiv:1908.10996] [INSPIRE] WildeMMWinterAYangDStrong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Renyi Relative EntropyCommun. Math. Phys.20143315932014CMaPh.331..593W1303.81042[arXiv:1306.1586] [INSPIRE] A. Hatcher, Algebraic topology, https://pi.math.cornell.edu/~hatcher/AT/AT.pdf (2001). BoussoRFisherZLeichenauerSWallACQuantum focusing conjecturePhys. Rev. D2016932016PhRvD..93f4044B3527519[arXiv:1506.02669] [INSPIRE] AkersCRathPHolographic Renyi Entropy from Quantum Error CorrectionJHEP2019050522019JHEP...05..052A39768351416.83095[arXiv:1811.05171] [INSPIRE] B. Farb and D. Margalit, A primer on mapping class groups, Princeton University Press (2011). BaoNPeningtonGSorceJWallACBeyond Toy Models: Distilling Tensor Networks in Full AdS/CFTJHEP2019110692019JHEP...11..069B40694941429.81063[arXiv:1812.01171] [INSPIRE] J. A. Mingo and A. Nica, Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices, Int. Math. Res. Not.2004 (2004) 1413 [math/0303312]. WallACMaximin Surfaces, and the Strong Subadditivity of the Covariant Holographic Entanglement EntropyClass. Quant. Grav.2014312250072014CQGra..31v5007W32770181304.81139[arXiv:1211.3494] [INSPIRE] KusukiYKudler-FlamJRyuSDerivation of Holographic Negativity in AdS3/CFT2Phys. Rev. Lett.20191231316032019PhRvL.123m1603K4016265[arXiv:1907.07824] [INSPIRE] C. Akers, T. Faulkner, S. Lin and P. Rath, Reflected entropy in random tensor networks, to appear. L. Anderson, O. Parrikar and R. M. Soni, Islands with Gravitating Baths: Towards ER = EP R, arXiv:2103.14746 [INSPIRE]. WenQBalanced Partial Entanglement and the Entanglement Wedge Cross SectionJHEP2021043012021JHEP...04..301W4276149[arXiv:2103.00415] [INSPIRE] G. Penington, S. H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE]. HeadrickMHubenyVELawrenceARangamaniMCausality & holographic entanglement entropyJHEP2014121622014JHEP...12..162H[arXiv:1408.6300] [INSPIRE] ZouYSivaKSoejimaTMongRSKZaletelMPUniversal tripartite entanglement in one-dimensional many-body systemsPhys. Rev. Lett.20211261205012021PhRvL.126l0501Z4238663[arXiv:2011.11864] [INSPIRE] AlmheiriADongXHarlowDBulk Locality and Quantum Error Correction in AdS/CFTJHEP2015041632015JHEP...04..163A33512061388.81095[arXiv:1411.7041] [INSPIRE] HeadrickMTakayanagiTA Holographic proof of the strong subadditivity of entanglement entropyPhys. Rev. D2007761060132007PhRvD..76j6013H2379595[arXiv:0704.3719] [INSPIRE] BuenoPCasiniHReflected entropy, symmetries and free fermionsJHEP2020051032020JHEP...05..103B41123401437.83106[arXiv:2003.09546] [INSPIRE] Van RaamsdonkMBuilding up spacetime with quantum entanglementGen. Rel. Grav.20104223232010GReGr..42.2323V27216671200.83052[arXiv:1005.3035] [INSPIRE] MaldacenaJSusskindLCool horizons for entangled black holesFortsch. Phys.2013617812013ForPh..61..781M31044581338.83057[arXiv:1306.0533] [INSPIRE] HubenyVERangamaniMRotaMHolographic entropy relationsFortsch. Phys.20186618000672018ForPh..6600067H3886088[arXiv:1808.07871] [INSPIRE] DongXLewkowyczARangamaniMDeriving covariant holographic entanglementJHEP2016110282016JHEP...11..028D35844611390.83103[arXiv:1607.07506] [INSPIRE] P. Hayden, R. Jozsa, D. Petz and A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality, Commun. Math. Phys.246 (2004) 359 [quant-ph/0304007]. HaydenPHeadrickMMaloneyAHolographic Mutual Information is MonogamousPhys. Rev. D2013872013PhRvD..87d6003H[arXiv:1107.2940] [INSPIRE] M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE]. TakayanagiTUmemotoKEntanglement of purification through holographic dualityNature Phys.2018145732018NatPh..14..573U[arXiv:1708.09393] [INSPIRE] PetzDSufficient subalgebras and the relative entropy of states of a von Neumann algebraCommun. Math. Phys.19861051231986CMaPh.105..123P8471310597.46067[INSPIRE] W. Fenchel, Elementary geometry in hyperbolic space, De Gruyter (2011). DongXHarlowDMarolfDFlat entanglement spectra in fixed-area states of quantum gravityJHEP2019102402019JHEP...10..240D40510861427.83020[arXiv:1811.05382] [INSPIRE] RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001] [INSPIRE] MarolfDWangSWangZProbing phase transitions of holographic entanglement entropy with fixed area statesJHEP2020120842020JHEP...12..084M42393691457.83060[arXiv:2006.10089] [INSPIRE] AkersCEngelhardtNPeningtonGUsatyukMQuantum Maximin SurfacesJHEP2020081402020JHEP...08..140A41764541454.83029[arXiv:1912.02799] [INSPIRE] BalasubramanianVHaydenPMaloneyAMarolfDRossSFMultiboundary Wormholes and Holographic EntanglementClass. Quant. Grav.2014311850152014CQGra..31r5009B1300.81067[arXiv:1406.2663] [INSPIRE] AlmheiriAEngelhardtNMarolfDMaxfieldHThe entropy of bulk quantum fields and the entanglement wedge of an evaporating black holeJHEP2019120632019JHEP...12..063A40757121431.83123[arXiv:1905.08762] [INSPIRE] AkersCLeichenauerSLevineALarge Breakdowns of Entanglement Wedge ReconstructionPhys. Rev. D20191001260062019PhRvD.100l6006A4053429[arXiv:1908.03975] [INSPIRE] EngelhardtNWallACQuantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical RegimeJHEP2015010732015JHEP...01..073E[arXiv:1408.3203] [INSPIRE] Colin-EllerinSHubenyVENiehoffBESorceJLarge-d phase transitions in holographic mutual informationJHEP2020041732020JHEP...04..173C40968771436.83069[arXiv:1911.06339] [INSPIRE] CotlerJHaydenPPeningtonGSaltonGSwingleBWalterMEntanglement Wedge Reconstruction via Universal Recovery ChannelsPhys. Rev. X20199[arXiv:1704.05839] [INSPIRE] JungeMRennerRSutterDWildeMMWinterAUniversal Recovery Maps and Approximate Sufficiency of Quantum Relative EntropyAnnales Henri Poincaré20181929552018AnHP...19.2955J38517771401.81025[arXiv:1509.07127] [INSPIRE] SorceJHolographic entanglement entropy is cutoff-covariantJHEP2019100152019JHEP...10..015S40596791427.81150[arXiv:1908.02297] [INSPIRE] DongXLewkowyczAEntropy, Extremality, Euclidean Variations, and the Equations of MotionJHEP2018010812018JHEP...01..081D37625651384.81097[arXiv:1705.08453] [INSPIRE] Kudler-FlamJRelative Entropy of Random States and Black HolesPhys. Rev. Lett.20211261716032021PhRvL.126q1603K4264686[arXiv:2102.05053] [INSPIRE] M. M. Wilde, From Classical to Quantum Shannon Theory, arXiv:1106.1445 [INSPIRE]. A. Marden, Outer Circles: An introduction to hyperbolic 3-manifolds, Cambridge University Press (2007). CzechBKarczmarekJLNogueiraFVan RaamsdonkMThe Gravity Dual of a Density MatrixClass. Quant. Grav.2012291550092012CQGra..29o5009C29609711248.83029[arXiv:1204.1330] [INSPIRE] NguyenPDevakulTHalbaschMGZaletelMPSwingleBEntanglement of purification: from spin chains to holographyJHEP2018010982018JHEP...01..098N37625481384.81117[arXiv:1709.07424] [INSPIRE] LewkowyczAMaldacenaJGeneralized gravitational entropyJHEP2013080902013JHEP...08..090L31063481342.83185[arXiv:1304.4926] [INSPIRE] BaoNChatwin-DaviesARemmenGNEntanglement Wedge Cross Section Inequalities from Replicated GeometriesJHEP2021071132021JHEP...07..113B43169841468.81018[arXiv:2106.02640] [INSPIRE] M. M uller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On quantum Renyi entropies: a new generalization and some properties, J. Math. Phys.54 (2013) 122203 [arXiv:1306.3142]. Kudler-FlamJRyuSEntanglement negativity and minimal entanglement wedge cross sections in holographic theoriesPhys. Rev. D2019991060142019PhRvD..99j6014K4010024[arXiv:1808.00446] [INSPIRE] DongXHarlowDWallACReconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity DualityPhys. Rev. Lett.20161172016PhRvL.117b1601D3626959[arXiv:1601.05416] [INSPIRE] BaoNChengNMultipartite Reflected EntropyJHEP2019101022019JHEP...10..102B40557891427.81113[arXiv:1909.03154] [INSPIRE] ChandrasekaranVMiyajiMRathPIncluding contributions from entanglement islands to the reflected entropyPhys. Rev. D20201022020PhRvD.102h6009C4178721[arXiv:2006.10754] [INSPIRE] BaoNHalpernIFConditional and Multipartite Entangle N Bao (16841_CR35) 2019; 99 C Akers (16841_CR32) 2020; 04 A Lewkowycz (16841_CR9) 2013; 08 N Engelhardt (16841_CR15) 2015; 01 C Akers (16841_CR65) 2019; 100 C Akers (16841_CR28) 2020; 08 16841_CR76 S Ryu (16841_CR2) 2006; 96 S Colin-Ellerin (16841_CR67) 2020; 04 HA Camargo (16841_CR73) 2021; 127 P Hayden (16841_CR19) 2019; 12 16841_CR70 B Czech (16841_CR7) 2012; 29 J Sorce (16841_CR61) 2019; 10 C Akers (16841_CR41) 2019; 05 M Headrick (16841_CR4) 2007; 76 X Dong (16841_CR18) 2018; 01 J Maldacena (16841_CR52) 2013; 61 P Nguyen (16841_CR22) 2018; 01 X Dong (16841_CR42) 2019; 10 16841_CR68 X Dong (16841_CR14) 2016; 11 16841_CR63 16841_CR62 V Chandrasekaran (16841_CR26) 2020; 102 R Bousso (16841_CR27) 2016; 93 D Petz (16841_CR47) 1986; 105 16841_CR60 P Hayden (16841_CR29) 2013; 87 16841_CR64 N Bao (16841_CR74) 2019; 11 M Headrick (16841_CR11) 2014; 12 M Van Raamsdonk (16841_CR40) 2010; 42 VE Hubeny (16841_CR5) 2007; 07 N Bao (16841_CR38) 2021; 07 Y Kusuki (16841_CR24) 2019; 123 J Kudler-Flam (16841_CR23) 2019; 99 16841_CR57 T Takayanagi (16841_CR21) 2018; 14 16841_CR50 X Dong (16841_CR58) 2020; 11 Y Zou (16841_CR39) 2021; 126 16841_CR55 P Bueno (16841_CR72) 2020; 11 N Bao (16841_CR36) 2019; 02 16841_CR6 S Ryu (16841_CR3) 2006; 08 D Marolf (16841_CR59) 2020; 12 N Bao (16841_CR37) 2019; 10 X Dong (16841_CR16) 2016; 117 A Almheiri (16841_CR54) 2019; 12 DL Jafferis (16841_CR13) 2016; 06 16841_CR45 L Accardi (16841_CR46) 1983; 83 O Fawzi (16841_CR48) 2015; 340 A Almheiri (16841_CR56) 2020; 03 S Nezami (16841_CR75) 2020; 125 SX Cui (16841_CR33) 2019; 376 16841_CR43 G Penington (16841_CR53) 2020; 09 MA Nielsen (16841_CR51) 2002; 70 MM Wilde (16841_CR44) 2014; 331 Q Wen (16841_CR25) 2021; 04 T Faulkner (16841_CR10) 2013; 11 N Bao (16841_CR30) 2015; 09 M Junge (16841_CR49) 2018; 19 V Balasubramanian (16841_CR34) 2014; 31 W Fischler (16841_CR66) 2013; 87 P Bueno (16841_CR71) 2020; 05 AC Wall (16841_CR8) 2014; 31 A Almheiri (16841_CR12) 2015; 04 C Akers (16841_CR20) 2021; 04 S Dutta (16841_CR1) 2021; 03 J Cotler (16841_CR17) 2019; 9 VE Hubeny (16841_CR31) 2018; 66 J Kudler-Flam (16841_CR69) 2021; 126 |
References_xml | – reference: W. Fenchel, Elementary geometry in hyperbolic space, De Gruyter (2011). – reference: PeningtonGEntanglement Wedge Reconstruction and the Information ParadoxJHEP2020090022020JHEP...09..002P42032571454.81039[arXiv:1905.08255] [INSPIRE] – reference: BaoNChatwin-DaviesARemmenGNEntanglement Wedge Cross Section Inequalities from Replicated GeometriesJHEP2021071132021JHEP...07..113B43169841468.81018[arXiv:2106.02640] [INSPIRE] – reference: M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE]. – reference: HaydenPPeningtonGLearning the Alpha-bits of Black HolesJHEP2019120072019JHEP...12..007H40756561431.83095[arXiv:1807.06041] [INSPIRE] – reference: ChandrasekaranVMiyajiMRathPIncluding contributions from entanglement islands to the reflected entropyPhys. Rev. D20201022020PhRvD.102h6009C4178721[arXiv:2006.10754] [INSPIRE] – reference: MarolfDWangSWangZProbing phase transitions of holographic entanglement entropy with fixed area statesJHEP2020120842020JHEP...12..084M42393691457.83060[arXiv:2006.10089] [INSPIRE] – reference: KusukiYKudler-FlamJRyuSDerivation of Holographic Negativity in AdS3/CFT2Phys. Rev. Lett.20191231316032019PhRvL.123m1603K4016265[arXiv:1907.07824] [INSPIRE] – reference: Kudler-FlamJRelative Entropy of Random States and Black HolesPhys. Rev. Lett.20211261716032021PhRvL.126q1603K4264686[arXiv:2102.05053] [INSPIRE] – reference: C. Akers, T. Faulkner, S. Lin and P. Rath, Reflected entropy in random tensor networks, to appear. – reference: A. Marden, Outer Circles: An introduction to hyperbolic 3-manifolds, Cambridge University Press (2007). – reference: WildeMMWinterAYangDStrong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Renyi Relative EntropyCommun. Math. Phys.20143315932014CMaPh.331..593W1303.81042[arXiv:1306.1586] [INSPIRE] – reference: AkersCLeichenauerSLevineALarge Breakdowns of Entanglement Wedge ReconstructionPhys. Rev. D20191001260062019PhRvD.100l6006A4053429[arXiv:1908.03975] [INSPIRE] – reference: AlmheiriADongXHarlowDBulk Locality and Quantum Error Correction in AdS/CFTJHEP2015041632015JHEP...04..163A33512061388.81095[arXiv:1411.7041] [INSPIRE] – reference: HubenyVERangamaniMTakayanagiTA Covariant holographic entanglement entropy proposalJHEP2007070622007JHEP...07..062H2326725[arXiv:0705.0016] [INSPIRE] – reference: BuenoPCasiniHReflected entropy for free scalarsJHEP2020111482020JHEP...11..148B42041301437.83106[arXiv:2008.11373] [INSPIRE] – reference: BaoNChengNMultipartite Reflected EntropyJHEP2019101022019JHEP...10..102B40557891427.81113[arXiv:1909.03154] [INSPIRE] – reference: JungeMRennerRSutterDWildeMMWinterAUniversal Recovery Maps and Approximate Sufficiency of Quantum Relative EntropyAnnales Henri Poincaré20181929552018AnHP...19.2955J38517771401.81025[arXiv:1509.07127] [INSPIRE] – reference: BuenoPCasiniHReflected entropy, symmetries and free fermionsJHEP2020051032020JHEP...05..103B41123401437.83106[arXiv:2003.09546] [INSPIRE] – reference: DongXLewkowyczAEntropy, Extremality, Euclidean Variations, and the Equations of MotionJHEP2018010812018JHEP...01..081D37625651384.81097[arXiv:1705.08453] [INSPIRE] – reference: DuttaSFaulknerTA canonical purification for the entanglement wedge cross-sectionJHEP2021031782021JHEP...03..178D42626371461.81104[arXiv:1905.00577] [INSPIRE] – reference: MaldacenaJSusskindLCool horizons for entangled black holesFortsch. Phys.2013617812013ForPh..61..781M31044581338.83057[arXiv:1306.0533] [INSPIRE] – reference: M. M. Wilde, From Classical to Quantum Shannon Theory, arXiv:1106.1445 [INSPIRE]. – reference: DongXHarlowDWallACReconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity DualityPhys. Rev. Lett.20161172016PhRvL.117b1601D3626959[arXiv:1601.05416] [INSPIRE] – reference: HeadrickMHubenyVELawrenceARangamaniMCausality & holographic entanglement entropyJHEP2014121622014JHEP...12..162H[arXiv:1408.6300] [INSPIRE] – reference: AkersCPeningtonGLeading order corrections to the quantum extremal surface prescriptionJHEP2021040622021JHEP...04..062A4276904[arXiv:2008.03319] [INSPIRE] – reference: CzechBKarczmarekJLNogueiraFVan RaamsdonkMThe Gravity Dual of a Density MatrixClass. Quant. Grav.2012291550092012CQGra..29o5009C29609711248.83029[arXiv:1204.1330] [INSPIRE] – reference: WenQBalanced Partial Entanglement and the Entanglement Wedge Cross SectionJHEP2021043012021JHEP...04..301W4276149[arXiv:2103.00415] [INSPIRE] – reference: NielsenMAChuangIQuantum computation and quantum informationAm. J. Phys.2002705582002AmJPh..70..558N – reference: B. Farb and D. Margalit, A primer on mapping class groups, Princeton University Press (2011). – reference: AlmheiriAMahajanRMaldacenaJZhaoYThe Page curve of Hawking radiation from semiclassical geometryJHEP2020031492020JHEP...03..149A40899731435.83110[arXiv:1908.10996] [INSPIRE] – reference: FawziORennerRQuantum conditional mutual information and approximate Markov chainsCommun. Math. Phys.20153405752015CMaPh.340..575F33970271442.81014[arXiv:1410.0664] – reference: AkersCRathPEntanglement Wedge Cross Sections Require Tripartite EntanglementJHEP2020042082020JHEP...04..208A40968421436.81108[arXiv:1911.07852] [INSPIRE] – reference: BaoNHalpernIFConditional and Multipartite Entanglements of Purification and HolographyPhys. Rev. D2019992019PhRvD..99d6010B3988452[arXiv:1805.00476] [INSPIRE] – reference: FaulknerTLewkowyczAMaldacenaJQuantum corrections to holographic entanglement entropyJHEP2013110742013JHEP...11..074F1392.81021[arXiv:1307.2892] [INSPIRE] – reference: DongXHarlowDMarolfDFlat entanglement spectra in fixed-area states of quantum gravityJHEP2019102402019JHEP...10..240D40510861427.83020[arXiv:1811.05382] [INSPIRE] – reference: CotlerJHaydenPPeningtonGSaltonGSwingleBWalterMEntanglement Wedge Reconstruction via Universal Recovery ChannelsPhys. Rev. X20199[arXiv:1704.05839] [INSPIRE] – reference: AccardiLFrigerioAMarkovian cocyclesProc. Roy. Irish Acad. A1983832517365000534.46045 – reference: CamargoHAHacklLHellerMPJahnAWindtBLong Distance Entanglement of Purification and Reflected Entropy in Conformal Field TheoryPhys. Rev. Lett.20211271416042021PhRvL.127n1604C4337629[arXiv:2102.00013] [INSPIRE] – reference: L. Anderson, O. Parrikar and R. M. Soni, Islands with Gravitating Baths: Towards ER = EP R, arXiv:2103.14746 [INSPIRE]. – reference: Kudler-FlamJRyuSEntanglement negativity and minimal entanglement wedge cross sections in holographic theoriesPhys. Rev. D2019991060142019PhRvD..99j6014K4010024[arXiv:1808.00446] [INSPIRE] – reference: BaoNChatwin-DaviesARemmenGNEntanglement of Purification and Multiboundary Wormhole GeometriesJHEP2019021102019JHEP...02..110B39252061411.81169[arXiv:1811.01983] [INSPIRE] – reference: J. A. Mingo and A. Nica, Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices, Int. Math. Res. Not.2004 (2004) 1413 [math/0303312]. – reference: HubenyVERangamaniMRotaMHolographic entropy relationsFortsch. Phys.20186618000672018ForPh..6600067H3886088[arXiv:1808.07871] [INSPIRE] – reference: FischlerWKunduAKunduSHolographic Mutual Information at Finite TemperaturePhys. Rev. D2013871260122013PhRvD..87l6012F[arXiv:1212.4764] [INSPIRE] – reference: A. Hatcher, Algebraic topology, https://pi.math.cornell.edu/~hatcher/AT/AT.pdf (2001). – reference: RyuSTakayanagiTAspects of Holographic Entanglement EntropyJHEP2006080452006JHEP...08..045R22499251228.83110[hep-th/0605073] [INSPIRE] – reference: BaoNNezamiSOoguriHStoicaBSullyJWalterMThe Holographic Entropy ConeJHEP2015091302015JHEP...09..130B34306351388.83177[arXiv:1505.07839] [INSPIRE] – reference: AkersCEngelhardtNPeningtonGUsatyukMQuantum Maximin SurfacesJHEP2020081402020JHEP...08..140A41764541454.83029[arXiv:1912.02799] [INSPIRE] – reference: BalasubramanianVHaydenPMaloneyAMarolfDRossSFMultiboundary Wormholes and Holographic EntanglementClass. Quant. Grav.2014311850152014CQGra..31r5009B1300.81067[arXiv:1406.2663] [INSPIRE] – reference: Van RaamsdonkMBuilding up spacetime with quantum entanglementGen. Rel. Grav.20104223232010GReGr..42.2323V27216671200.83052[arXiv:1005.3035] [INSPIRE] – reference: WallACMaximin Surfaces, and the Strong Subadditivity of the Covariant Holographic Entanglement EntropyClass. Quant. Grav.2014312250072014CQGra..31v5007W32770181304.81139[arXiv:1211.3494] [INSPIRE] – reference: TakayanagiTUmemotoKEntanglement of purification through holographic dualityNature Phys.2018145732018NatPh..14..573U[arXiv:1708.09393] [INSPIRE] – reference: NezamiSWalterMMultipartite Entanglement in Stabilizer Tensor NetworksPhys. Rev. Lett.20201252416022020PhRvL.125x1602N4191160[arXiv:1608.02595] [INSPIRE] – reference: HaydenPHeadrickMMaloneyAHolographic Mutual Information is MonogamousPhys. Rev. D2013872013PhRvD..87d6003H[arXiv:1107.2940] [INSPIRE] – reference: AkersCRathPHolographic Renyi Entropy from Quantum Error CorrectionJHEP2019050522019JHEP...05..052A39768351416.83095[arXiv:1811.05171] [INSPIRE] – reference: P. Hayden, R. Jozsa, D. Petz and A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality, Commun. Math. Phys.246 (2004) 359 [quant-ph/0304007]. – reference: G. Penington, S. H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE]. – reference: NguyenPDevakulTHalbaschMGZaletelMPSwingleBEntanglement of purification: from spin chains to holographyJHEP2018010982018JHEP...01..098N37625481384.81117[arXiv:1709.07424] [INSPIRE] – reference: LewkowyczAMaldacenaJGeneralized gravitational entropyJHEP2013080902013JHEP...08..090L31063481342.83185[arXiv:1304.4926] [INSPIRE] – reference: SorceJHolographic entanglement entropy is cutoff-covariantJHEP2019100152019JHEP...10..015S40596791427.81150[arXiv:1908.02297] [INSPIRE] – reference: JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP2016060042016JHEP...06..004J35381651388.83268[arXiv:1512.06431] [INSPIRE] – reference: BaoNPeningtonGSorceJWallACBeyond Toy Models: Distilling Tensor Networks in Full AdS/CFTJHEP2019110692019JHEP...11..069B40694941429.81063[arXiv:1812.01171] [INSPIRE] – reference: HeadrickMTakayanagiTA Holographic proof of the strong subadditivity of entanglement entropyPhys. Rev. D2007761060132007PhRvD..76j6013H2379595[arXiv:0704.3719] [INSPIRE] – reference: DongXWangHEnhanced corrections near holographic entanglement transitions: a chaotic case studyJHEP2020110072020JHEP...11..007D42042781456.83074[arXiv:2006.10051] [INSPIRE] – reference: RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001] [INSPIRE] – reference: H. Bateman, Higher transcendental functions [volumes I-III], vol. I, McGraw-Hill Book Company (1953). – reference: AlmheiriAEngelhardtNMarolfDMaxfieldHThe entropy of bulk quantum fields and the entanglement wedge of an evaporating black holeJHEP2019120632019JHEP...12..063A40757121431.83123[arXiv:1905.08762] [INSPIRE] – reference: Colin-EllerinSHubenyVENiehoffBESorceJLarge-d phase transitions in holographic mutual informationJHEP2020041732020JHEP...04..173C40968771436.83069[arXiv:1911.06339] [INSPIRE] – reference: EngelhardtNWallACQuantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical RegimeJHEP2015010732015JHEP...01..073E[arXiv:1408.3203] [INSPIRE] – reference: CuiSXHaydenPHeTHeadrickMStoicaBWalterMBit Threads and Holographic MonogamyCommun. Math. Phys.20193766092019CMaPh.376..609C409385607202528[arXiv:1808.05234] [INSPIRE] – reference: ZouYSivaKSoejimaTMongRSKZaletelMPUniversal tripartite entanglement in one-dimensional many-body systemsPhys. Rev. Lett.20211261205012021PhRvL.126l0501Z4238663[arXiv:2011.11864] [INSPIRE] – reference: BoussoRFisherZLeichenauerSWallACQuantum focusing conjecturePhys. Rev. D2016932016PhRvD..93f4044B3527519[arXiv:1506.02669] [INSPIRE] – reference: PetzDSufficient subalgebras and the relative entropy of states of a von Neumann algebraCommun. Math. Phys.19861051231986CMaPh.105..123P8471310597.46067[INSPIRE] – reference: M. M uller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On quantum Renyi entropies: a new generalization and some properties, J. Math. Phys.54 (2013) 122203 [arXiv:1306.3142]. – reference: DongXLewkowyczARangamaniMDeriving covariant holographic entanglementJHEP2016110282016JHEP...11..028D35844611390.83103[arXiv:1607.07506] [INSPIRE] – volume: 04 start-page: 301 year: 2021 ident: 16841_CR25 publication-title: JHEP doi: 10.1007/JHEP04(2021)301 – volume: 03 start-page: 149 year: 2020 ident: 16841_CR56 publication-title: JHEP doi: 10.1007/JHEP03(2020)149 – volume: 99 year: 2019 ident: 16841_CR35 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.046010 – ident: 16841_CR76 – volume: 08 start-page: 090 year: 2013 ident: 16841_CR9 publication-title: JHEP doi: 10.1007/JHEP08(2013)090 – volume: 66 start-page: 1800067 year: 2018 ident: 16841_CR31 publication-title: Fortsch. Phys. doi: 10.1002/prop.201800067 – volume: 87 year: 2013 ident: 16841_CR29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.046003 – volume: 11 start-page: 007 year: 2020 ident: 16841_CR58 publication-title: JHEP doi: 10.1007/JHEP11(2020)007 – volume: 04 start-page: 163 year: 2015 ident: 16841_CR12 publication-title: JHEP doi: 10.1007/JHEP04(2015)163 – volume: 12 start-page: 063 year: 2019 ident: 16841_CR54 publication-title: JHEP doi: 10.1007/JHEP12(2019)063 – ident: 16841_CR57 – volume: 61 start-page: 781 year: 2013 ident: 16841_CR52 publication-title: Fortsch. Phys. doi: 10.1002/prop.201300020 – volume: 07 start-page: 062 year: 2007 ident: 16841_CR5 publication-title: JHEP doi: 10.1088/1126-6708/2007/07/062 – volume: 12 start-page: 007 year: 2019 ident: 16841_CR19 publication-title: JHEP doi: 10.1007/JHEP12(2019)007 – volume: 117 year: 2016 ident: 16841_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.021601 – volume: 08 start-page: 045 year: 2006 ident: 16841_CR3 publication-title: JHEP doi: 10.1088/1126-6708/2006/08/045 – volume: 05 start-page: 052 year: 2019 ident: 16841_CR41 publication-title: JHEP doi: 10.1007/JHEP05(2019)052 – volume: 126 start-page: 120501 year: 2021 ident: 16841_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.120501 – volume: 29 start-page: 155009 year: 2012 ident: 16841_CR7 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/29/15/155009 – volume: 99 start-page: 106014 year: 2019 ident: 16841_CR23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.106014 – volume: 04 start-page: 173 year: 2020 ident: 16841_CR67 publication-title: JHEP doi: 10.1007/JHEP04(2020)173 – volume: 126 start-page: 171603 year: 2021 ident: 16841_CR69 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.171603 – ident: 16841_CR50 – ident: 16841_CR45 doi: 10.1007/s00220-004-1049-z – volume: 83 start-page: 251 year: 1983 ident: 16841_CR46 publication-title: Proc. Roy. Irish Acad. A – ident: 16841_CR6 – volume: 01 start-page: 098 year: 2018 ident: 16841_CR22 publication-title: JHEP doi: 10.1007/JHEP01(2018)098 – volume: 100 start-page: 126006 year: 2019 ident: 16841_CR65 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.126006 – ident: 16841_CR68 doi: 10.1155/S1073792804133023 – ident: 16841_CR64 doi: 10.1017/CBO9780511618918 – volume: 03 start-page: 178 year: 2021 ident: 16841_CR1 publication-title: JHEP doi: 10.1007/JHEP03(2021)178 – volume: 93 year: 2016 ident: 16841_CR27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.064044 – volume: 127 start-page: 141604 year: 2021 ident: 16841_CR73 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.141604 – volume: 76 start-page: 106013 year: 2007 ident: 16841_CR4 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.76.106013 – volume: 31 start-page: 185015 year: 2014 ident: 16841_CR34 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/18/185015 – volume: 19 start-page: 2955 year: 2018 ident: 16841_CR49 publication-title: Annales Henri Poincaré doi: 10.1007/s00023-018-0716-0 – volume: 10 start-page: 015 year: 2019 ident: 16841_CR61 publication-title: JHEP doi: 10.1007/JHEP10(2019)015 – volume: 125 start-page: 241602 year: 2020 ident: 16841_CR75 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.241602 – volume: 96 start-page: 181602 year: 2006 ident: 16841_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – volume: 102 year: 2020 ident: 16841_CR26 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.086009 – volume: 04 start-page: 062 year: 2021 ident: 16841_CR20 publication-title: JHEP doi: 10.1007/JHEP04(2021)062 – volume: 14 start-page: 573 year: 2018 ident: 16841_CR21 publication-title: Nature Phys. doi: 10.1038/s41567-018-0075-2 – ident: 16841_CR70 – volume: 331 start-page: 593 year: 2014 ident: 16841_CR44 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-014-2122-x – volume: 11 start-page: 074 year: 2013 ident: 16841_CR10 publication-title: JHEP doi: 10.1007/JHEP11(2013)074 – volume: 02 start-page: 110 year: 2019 ident: 16841_CR36 publication-title: JHEP doi: 10.1007/JHEP02(2019)110 – volume: 12 start-page: 162 year: 2014 ident: 16841_CR11 publication-title: JHEP doi: 10.1007/JHEP12(2014)162 – ident: 16841_CR60 – volume: 01 start-page: 073 year: 2015 ident: 16841_CR15 publication-title: JHEP doi: 10.1007/JHEP01(2015)073 – volume: 07 start-page: 113 year: 2021 ident: 16841_CR38 publication-title: JHEP doi: 10.1007/JHEP07(2021)113 – volume: 11 start-page: 028 year: 2016 ident: 16841_CR14 publication-title: JHEP doi: 10.1007/JHEP11(2016)028 – volume: 04 start-page: 208 year: 2020 ident: 16841_CR32 publication-title: JHEP doi: 10.1007/JHEP04(2020)208 – ident: 16841_CR55 – volume: 11 start-page: 069 year: 2019 ident: 16841_CR74 publication-title: JHEP doi: 10.1007/JHEP11(2019)069 – volume: 10 start-page: 102 year: 2019 ident: 16841_CR37 publication-title: JHEP doi: 10.1007/JHEP10(2019)102 – volume: 42 start-page: 2323 year: 2010 ident: 16841_CR40 publication-title: Gen. Rel. Grav. doi: 10.1007/s10714-010-1034-0 – volume: 123 start-page: 131603 year: 2019 ident: 16841_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.131603 – volume: 9 year: 2019 ident: 16841_CR17 publication-title: Phys. Rev. X – volume: 11 start-page: 148 year: 2020 ident: 16841_CR72 publication-title: JHEP doi: 10.1007/JHEP11(2020)148 – volume: 70 start-page: 558 year: 2002 ident: 16841_CR51 publication-title: Am. J. Phys. doi: 10.1119/1.1463744 – volume: 05 start-page: 103 year: 2020 ident: 16841_CR71 publication-title: JHEP doi: 10.1007/JHEP05(2020)103 – volume: 376 start-page: 609 year: 2019 ident: 16841_CR33 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-019-03510-8 – volume: 08 start-page: 140 year: 2020 ident: 16841_CR28 publication-title: JHEP doi: 10.1007/JHEP08(2020)140 – volume: 340 start-page: 575 year: 2015 ident: 16841_CR48 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-015-2466-x – volume: 06 start-page: 004 year: 2016 ident: 16841_CR13 publication-title: JHEP doi: 10.1007/JHEP06(2016)004 – volume: 87 start-page: 126012 year: 2013 ident: 16841_CR66 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.126012 – volume: 01 start-page: 081 year: 2018 ident: 16841_CR18 publication-title: JHEP doi: 10.1007/JHEP01(2018)081 – ident: 16841_CR63 – volume: 09 start-page: 002 year: 2020 ident: 16841_CR53 publication-title: JHEP doi: 10.1007/JHEP09(2020)002 – volume: 12 start-page: 084 year: 2020 ident: 16841_CR59 publication-title: JHEP doi: 10.1007/JHEP12(2020)084 – volume: 10 start-page: 240 year: 2019 ident: 16841_CR42 publication-title: JHEP doi: 10.1007/JHEP10(2019)240 – ident: 16841_CR43 doi: 10.1063/1.4838856 – volume: 31 start-page: 225007 year: 2014 ident: 16841_CR8 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/22/225007 – volume: 09 start-page: 130 year: 2015 ident: 16841_CR30 publication-title: JHEP doi: 10.1007/JHEP09(2015)130 – volume: 105 start-page: 123 year: 1986 ident: 16841_CR47 publication-title: Commun. Math. Phys. doi: 10.1007/BF01212345 – ident: 16841_CR62 doi: 10.1515/9781400839049 |
SSID | ssj0015190 |
Score | 2.5939949 |
Snippet | A
bstract
The reflected entropy
S
R
(
A
:
B
) of a density matrix
ρ
AB
is a bipartite correlation measure lower-bounded by the quantum mutual information
I
(
A... The reflected entropy S R ( A : B ) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I ( A : B ). In... The reflected entropy SR(A : B) of a density matrix ρAB is a bipartite correlation measure lower-bounded by the quantum mutual information I(A : B). In... Abstract The reflected entropy S R (A : B) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I(A :... |
SourceID | doaj osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy AdS-CFT Correspondence AdS-CFT correspondenceg gauge-gravity correspondence Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Cross-sections Elementary Particles Entanglement Entropy Gauge-gravity correspondence High energy physics Holography Information theory Lower bounds Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Recovery Regular Article - Theoretical Physics Relativity Theory String Theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7ET6y7Sg8e1kM1bdM0Paooi6B4UPAWptPEi24XdxX89870Q1dBvHgqtGmazms6L8nkjRCHJaIrZYIRuV4TqcoXETgTRzz2UMh79hqd2esbPb5XVw_Zw0KqL44Ja-WBW8OdQFKgTz2UmckVGgM5ythUYKSn30zu-e9LPq8fTHXrB8RLZC_kI_OTq_HFbSxHNNCPjyRnUlnwQY1UPx1q6lLfaOaPldHG4Vyui7WOKYanbQs3xJKbbIqVJmITZ1vimAAOeadN_RY-wjQk8hk-uvqZM2RhSM_k-XhXhTx7W0_ft8X95cXd-Tjqkh9ESN1kHkGKiVdZmivlfIzaKSN1CUlC766LtDQVC-eYTFZQZGQjrXSZVybOvAEX55DuiOVJPXG7IiQYHHitMyR-VqgclAModFV6qhwAA3Hcm8NipwzOCSqebK9p3NrPsv0s2S8Qo88bpq0oxu9Fz9i-n8VYzbo5QRjbDmP7F8aBGDA6lkgBK9sihwDh3MZEpYgNBWLYg2a7DjizSUaul9lkEYijHsivy7-0du8_WjsQq1xfE_Gnh2J5_vLq9om5zMuD5iP9ANLv5-g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aDYVeStMHdZMGH3pIDk78kGX5VJqyYQkkhNJAbmI8kvbSrjfZbaH_vjNeedMWkpPBlm0xoxl9Go2-AfjYEfkuLynjqddkyoU2Q2-KTNYeiuTM3sAze3GpZ9fq_Ka-iQG3VUyrHH3i4KhdTxIjPylr9qUCD9pPy9tMqkbJ7mosofEUdtgFGzOBndPp5dXX7T4C45N8JPTJm5Pz2fSqyA95wV8c5VJR5a-5aKDs50vPpvUP3Pxvh3SYeM5ewouIGNPPGxXvwhO_eAXPhsxNWr2GY1Z0Kidu-l_pHJcpg9B07vsfUimLUv6nxOW9SyWK2y9_v4Hrs-m3L7MsFkHIiM1lnWFFZVB11SjlQ0HaK5PrDsvSONRt1RknBDqmzh22ddmSVrprnCnqYNAXDVZvYbLoF_4dpKwOj0HrmhintapB5RFb7brAH0ekBI5HcViKDOFSqOK7HbmNN_KzIj_L8kvgcPvCckOO8XDTU5HvtpmwWg83-ru5jUZikfsfqoBdbRpFxmBDrHOHJg88pTQhgT3RjmVwIAy3JKlAtLYFQypGRQnsj0qz0RBX9n7YJHA0KvL-8QO9ff_4p_bgubQccvr0PkzWdz_9B8Ym6-4gDsA_Fzffhg priority: 102 providerName: ProQuest |
Title | The Markov gap for geometric reflected entropy |
URI | https://link.springer.com/article/10.1007/JHEP10(2021)047 https://www.proquest.com/docview/2580185119 https://www.osti.gov/servlets/purl/1976554 https://doaj.org/article/a29cf3fab5874c88a7c018da80feb17f |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VUKVeUKGtaqCRDxzgYOq19-UjRAkREghVjcRttR7vcmnjCNJK_fedcexUUHHg4ueuvZ7xaL59zDcAxzViqPMCM3K9NpNNrDIfrMi47yGRY_Y6ntnrGz2by6s7ddeTJHEszLP5-69Xs8mtyE-oiy5Oc2m2YEeJ0nCOhrEeb6YLCIbkA2_P_5WeuJyOmZ92LVnQE1T5bCK08y_T97DbA8P0fK3JPXgTFvvwtlugiY8f4Iz0mXJgTfs7vffLlLBmeh_an5wQC1N6Jw-_hyblwdp2-ecjzKeT7-NZ1uc6yJCsYpX5EosoVWmkDFGgDtLmuvZFYRuvq7K2DfPkWJU3vlJFhVrq2jRWqGh9EMaXn2B70S7CZ0hJ6sFHrRUSHKuk8TJ4X-mmjvRw7zGBs0EcDnsicM5H8cMNFMZr-TmWnyP5JXCyqbBcc2C8XPSC5bspxuTV3QXSqettwXlqfyyjr5U1Eq31BnNB32nzSJ7DxAQOWTuOMAAT2SKv-MGVE4ScCPwkcDQozfX29ugKRZ6WwWOVwOmgyH-3X2jtwSvKHsI7PuzW8ekj2F49_ApfCI-s6hFs2enlCHYuJje33-hsXMhR93-Ouh4-befF-V_YENrI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFOkLZADSO0hbeI4jnOoKh5dtk9xaKXezMSPvcBm211A_VP9jZ3JJltAKreeIiW2Y82MPZ89L4B3tbW-ToVNSPXqRLpQJeh1lvDZQ1qO2WvzzB4dq-Gp3D8rzpbgqo-FYbfKfk9sN2rXWL4j3xIF7aUMD6qdyXnCVaPYutqX0JiLxYG__E1Htun23mfi73shBrsnn4ZJV1UgsSR_swRzK4Is8lJKHzKrvNSpqlEI7VBVea0dZ6TRReqwKkRllVR16XRWBI0-KzGnce_BfZmTJufI9MGXhdWC0FDapw9Ky6394e7XLF0XpEY3Uq7f8ofmawsE0KOhhfwXuP3HHtuqucETeNzh0_jDXKCewpIfP4MHrZ-onT6HTRKrmON7ml_xCCcxQd545JsfXJfLxvRPtgJ4F_OdcTO5fAGnd0Kcl7A8bsb-FcTEfI9BqcISKqxkidIjVsrVgQZHtBFs9uQwtstHzmUxvps-k_KcfobpZ4h-EawvOkzmqThub_qR6btoxjm02xfNxch0S9IgzT_kAetCl9JqjaUlCXOo00AKrAwRrDJ3DEERzqdr2fHIzkxGAI4wWARrPdNMt-yn5kZII9joGXnz-ZbZrvx_qLfwcHhydGgO944PVuER92q9CdUaLM8ufvrXhIpm9ZtWFGP4dteyfw3S5xof |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKp5qaAEfQGoP6SaO4zgHhCjd1baF1QpRqTfj-LEX2Gy7C6h_jV_HTDbZAlK59RQpsR1r_Nnz2TOeAXhVWeurhNsYVa-KhQtlbLxKY9p7CEt39po4sx_HcnQmTs7z8w341d2FIbfKbk1sFmpXWzoj7_Mc11KiB2U_tG4Rk6Ph2_lFTBmkyNLapdNYQeTUX_3E7dvizfERjvVrzoeDz-9HcZthILaIxWVsMsuDyLNCCB9SK71QiawM58oZWWaVchSdRuWJM2XOSyuFrAqn0jwo49PCZNjuHdgsaFfUg83DwXjyaW3DQG6UdMGEkqJ_MhpM0mSPo1LdTyibyx96sEkXgI8ap_VfVPcf62yj9IYPYKtlq-zdCl4PYcPPHsHdxmvULh7DAYKM0W2f-gebmjlDAsymvv5GWbosw3-STcA7RifI9fzqCZzdinieQm9Wz_w2MISCN0HK3CJHLEVhhDemlK4K2LgxNoKDThzattHJKUnGV93FVV7JT5P8NMovgr11hfkqMMfNRQ9JvutiFFG7eVFfTnU7QbXB_ocsmCpXhbBKmcIi3pxRSUB1VoQIdmh0NBITiq5ryQ3JLnWKdA4ZWQS73aDpdhFY6GvIRrDfDeT15xt6--z_Tb2Ee4h7_eF4fLoD96lS41ood6G3vPzunyNFWlYvWiwy-HLb8P8N2VwfsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Markov+gap+for+geometric+reflected+entropy&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Hayden%2C+Patrick&rft.au=Parrikar%2C+Onkar&rft.au=Sorce%2C+Jonathan&rft.date=2021-10-06&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2021&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282021%29047&rft.externalDocID=10_1007_JHEP10_2021_047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |