The Markov gap for geometric reflected entropy

A bstract The reflected entropy S R ( A : B ) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I ( A : B ). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the enta...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2021; no. 10; pp. 1 - 58
Main Authors Hayden, Patrick, Parrikar, Onkar, Sorce, Jonathan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 06.10.2021
Springer Nature B.V
Springer Nature
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract The reflected entropy S R ( A : B ) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I ( A : B ). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order- N 2 gap between S R and I . We provide an information-theoretic interpretation of this gap by observing that S R − I is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity S R − I the Markov gap . We then prove that for time-symmetric states in pure AdS 3 gravity, the Markov gap is universally lower bounded by log(2) ℓ AdS / 2 G N times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling S R − I using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography.
AbstractList The reflected entropy S R ( A : B ) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I ( A : B ). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order- N 2 gap between S R and I . We provide an information-theoretic interpretation of this gap by observing that S R − I is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity S R − I the Markov gap . We then prove that for time-symmetric states in pure AdS 3 gravity, the Markov gap is universally lower bounded by log(2) ℓ AdS / 2 G N times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling S R − I using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography.
The reflected entropy SR(A : B) of a density matrix ρAB is a bipartite correlation measure lower-bounded by the quantum mutual information I(A : B). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order-N2 gap between SR and I. We provide an information-theoretic interpretation of this gap by observing that SR− I is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity SR− I the Markov gap. We then prove that for time-symmetric states in pure AdS3 gravity, the Markov gap is universally lower bounded by log(2)ℓAdS/2GN times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling SR− I using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography.
A bstract The reflected entropy S R ( A : B ) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I ( A : B ). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order- N 2 gap between S R and I . We provide an information-theoretic interpretation of this gap by observing that S R − I is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity S R − I the Markov gap . We then prove that for time-symmetric states in pure AdS 3 gravity, the Markov gap is universally lower bounded by log(2) ℓ AdS / 2 G N times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling S R − I using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography.
Abstract The reflected entropy S R (A : B) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I(A : B). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order-N 2 gap between S R and I. We provide an information-theoretic interpretation of this gap by observing that S R − I is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity S R − I the Markov gap. We then prove that for time-symmetric states in pure AdS3 gravity, the Markov gap is universally lower bounded by log(2)ℓ AdS /2G N times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling S R − I using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography.
The reflected entropy SR(A : B) of a density matrix ρAB is a bipartite correlation measure lower-bounded by the quantum mutual information I(A : B). In holographic states satisfying the quantum extremal surface formula, where the reflected entropy is related to the area of the entanglement wedge cross-section, there is often an order-N2 gap between SR and I. We provide an information-theoretic interpretation of this gap by observing that SR - I is related to the fidelity of a particular Markov recovery problem that is impossible in any state whose entanglement wedge cross-section has a nonempty boundary; for this reason, we call the quantity SR - I the Markov gap. We then prove that for time-symmetric states in pure AdS3 gravity, the Markov gap is universally lower bounded by log(2)ℓAdS/2GN times the number of endpoints of the cross-section. We provide evidence that this lower bound continues to hold in the presence of bulk matter, and comment on how it might generalize above three bulk dimensions. Finally, we explore the Markov recovery problem controlling SR - I using fixed area states. This analysis involves deriving a formula for the quantum fidelity — in fact, for all the sandwiched Rényi relative entropies — between fixed area states with one versus two fixed areas, which may be of independent interest. We discuss, throughout the paper, connections to the general theory of multipartite entanglement in holography.
ArticleNumber 47
Author Hayden, Patrick
Parrikar, Onkar
Sorce, Jonathan
Author_xml – sequence: 1
  givenname: Patrick
  surname: Hayden
  fullname: Hayden, Patrick
  organization: Stanford Institute for Theoretical Physics, Stanford University
– sequence: 2
  givenname: Onkar
  surname: Parrikar
  fullname: Parrikar, Onkar
  organization: Stanford Institute for Theoretical Physics, Stanford University
– sequence: 3
  givenname: Jonathan
  orcidid: 0000-0003-2756-8299
  surname: Sorce
  fullname: Sorce, Jonathan
  email: jsorce@stanford.edu
  organization: Stanford Institute for Theoretical Physics, Stanford University
BackLink https://www.osti.gov/servlets/purl/1976554$$D View this record in Osti.gov
BookMark eNp1kc1P3DAQxa0KJD7ac69RucBhYSaxY-eIEC1UVHCAszVxxku2S7zYphL_PaYpalWJky3r_Z7nzdsTW1OYWIjPCMcIoE--X5zfIBzWUOMRSP1B7CLU3cJI3W39c98ReymtAFBhB7vi-Paeqx8Uf4Zf1ZI2lQ-xWnJ44BxHV0X2a3aZh4qnHMPm-aPY9rRO_OnPuS_uvp7fnl0srq6_XZ6dXi2cQsgLalztpWq0lOzRtSwNtD3VtRmo7ZreDIitMgoG6lTduVa2vR4MKm-IUVOzLy5n3yHQym7i-EDx2QYa7e-HEJeWYh7dmi0V3jeeemW0dMaQdoDlHwOee9S-eH2ZvULKo01uzOzuXZimksxip1ulZBEdzKJNDI9PnLJdhac4lYy2VqYYKsSuqNSscjGkVLZjixvlMZTt0Li2CPa1Czt3YV-7sKWLwp38x71Fep-AmUhFOS05_p3nPeQFJ9iZvw
CitedBy_id crossref_primary_10_1007_JHEP03_2025_167
crossref_primary_10_1103_PhysRevD_108_125009
crossref_primary_10_1007_JHEP11_2024_105
crossref_primary_10_21468_SciPostPhys_12_1_003
crossref_primary_10_1007_JHEP05_2024_143
crossref_primary_10_1103_PhysRevB_105_115107
crossref_primary_10_1103_PhysRevB_109_L041104
crossref_primary_10_1007_JHEP09_2023_160
crossref_primary_10_1140_epjc_s10052_022_11129_8
crossref_primary_10_1103_PhysRevD_108_106005
crossref_primary_10_1140_epjc_s10052_024_12461_x
crossref_primary_10_21468_SciPostPhys_13_3_056
crossref_primary_10_1007_JHEP05_2022_127
crossref_primary_10_1007_s00220_024_05053_z
crossref_primary_10_1007_JHEP08_2023_155
crossref_primary_10_1007_JHEP03_2023_102
crossref_primary_10_1007_JHEP09_2022_239
crossref_primary_10_21468_SciPostPhysCore_5_1_013
crossref_primary_10_1007_JHEP05_2024_284
crossref_primary_10_1103_PhysRevD_107_106014
crossref_primary_10_21468_SciPostPhys_12_4_137
crossref_primary_10_1007_JHEP02_2023_223
crossref_primary_10_1088_1751_8121_acfb52
crossref_primary_10_1007_JHEP12_2024_209
crossref_primary_10_1007_JHEP01_2024_091
crossref_primary_10_1142_S0217751X24501409
crossref_primary_10_1007_JHEP02_2024_009
crossref_primary_10_21468_SciPostPhys_15_2_066
crossref_primary_10_1103_PhysRevD_106_066009
crossref_primary_10_1103_PhysRevB_106_L041107
crossref_primary_10_21468_SciPostPhys_16_5_125
crossref_primary_10_1007_JHEP01_2023_067
crossref_primary_10_1103_PhysRevD_108_076016
crossref_primary_10_1007_JHEP05_2022_162
crossref_primary_10_1007_JHEP05_2024_054
crossref_primary_10_1007_JHEP06_2024_017
crossref_primary_10_1103_PhysRevD_105_086013
crossref_primary_10_1007_JHEP07_2024_069
crossref_primary_10_1007_JHEP12_2021_091
crossref_primary_10_1103_PhysRevD_108_054508
crossref_primary_10_1007_JHEP12_2022_008
crossref_primary_10_1007_JHEP07_2024_043
crossref_primary_10_1103_PhysRevB_108_045104
crossref_primary_10_1007_JHEP02_2024_079
crossref_primary_10_1007_JHEP03_2023_043
crossref_primary_10_1007_JHEP06_2022_089
crossref_primary_10_1103_PhysRevB_110_195107
crossref_primary_10_1007_JHEP02_2024_111
crossref_primary_10_3390_universe10030125
crossref_primary_10_1103_PhysRevD_110_046009
crossref_primary_10_1007_JHEP06_2024_195
crossref_primary_10_1103_PhysRevD_107_026012
crossref_primary_10_1007_JHEP02_2024_040
crossref_primary_10_21468_SciPostPhys_15_6_227
crossref_primary_10_1103_PhysRevB_109_085108
crossref_primary_10_1007_JHEP02_2023_203
crossref_primary_10_1103_PhysRevA_107_L050401
crossref_primary_10_1103_PhysRevD_107_126026
Cites_doi 10.1007/JHEP04(2021)301
10.1007/JHEP03(2020)149
10.1103/PhysRevD.99.046010
10.1007/JHEP08(2013)090
10.1002/prop.201800067
10.1103/PhysRevD.87.046003
10.1007/JHEP11(2020)007
10.1007/JHEP04(2015)163
10.1007/JHEP12(2019)063
10.1002/prop.201300020
10.1088/1126-6708/2007/07/062
10.1007/JHEP12(2019)007
10.1103/PhysRevLett.117.021601
10.1088/1126-6708/2006/08/045
10.1007/JHEP05(2019)052
10.1103/PhysRevLett.126.120501
10.1088/0264-9381/29/15/155009
10.1103/PhysRevD.99.106014
10.1007/JHEP04(2020)173
10.1103/PhysRevLett.126.171603
10.1007/s00220-004-1049-z
10.1007/JHEP01(2018)098
10.1103/PhysRevD.100.126006
10.1155/S1073792804133023
10.1017/CBO9780511618918
10.1007/JHEP03(2021)178
10.1103/PhysRevD.93.064044
10.1103/PhysRevLett.127.141604
10.1103/PhysRevD.76.106013
10.1088/0264-9381/31/18/185015
10.1007/s00023-018-0716-0
10.1007/JHEP10(2019)015
10.1103/PhysRevLett.125.241602
10.1103/PhysRevLett.96.181602
10.1103/PhysRevD.102.086009
10.1007/JHEP04(2021)062
10.1038/s41567-018-0075-2
10.1007/s00220-014-2122-x
10.1007/JHEP11(2013)074
10.1007/JHEP02(2019)110
10.1007/JHEP12(2014)162
10.1007/JHEP01(2015)073
10.1007/JHEP07(2021)113
10.1007/JHEP11(2016)028
10.1007/JHEP04(2020)208
10.1007/JHEP11(2019)069
10.1007/JHEP10(2019)102
10.1007/s10714-010-1034-0
10.1103/PhysRevLett.123.131603
10.1007/JHEP11(2020)148
10.1119/1.1463744
10.1007/JHEP05(2020)103
10.1007/s00220-019-03510-8
10.1007/JHEP08(2020)140
10.1007/s00220-015-2466-x
10.1007/JHEP06(2016)004
10.1103/PhysRevD.87.126012
10.1007/JHEP01(2018)081
10.1007/JHEP09(2020)002
10.1007/JHEP12(2020)084
10.1007/JHEP10(2019)240
10.1063/1.4838856
10.1088/0264-9381/31/22/225007
10.1007/JHEP09(2015)130
10.1007/BF01212345
10.1515/9781400839049
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Univ. of California, Oakland, CA (United States)
Stanford Univ., CA (United States)
CorporateAuthor_xml – name: Stanford Univ., CA (United States)
– name: Univ. of California, Oakland, CA (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP10(2021)047
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 58
ExternalDocumentID oai_doaj_org_article_a29cf3fab5874c88a7c018da80feb17f
1976554
10_1007_JHEP10_2021_047
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
AAYZJ
AFNRJ
AHBXF
OIOZB
OTOTI
PUEGO
ID FETCH-LOGICAL-c510t-a3c2f453744ef1c6e4806ba228da693b8d1165850da9529c646b7d815f8ae17a3
IEDL.DBID C6C
ISSN 1029-8479
IngestDate Wed Aug 27 01:25:44 EDT 2025
Mon Jan 15 05:23:14 EST 2024
Fri Jul 25 23:07:07 EDT 2025
Tue Jul 01 00:59:34 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Fri Feb 21 02:46:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords AdS-CFT Correspondence
Gauge-gravity correspondence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-a3c2f453744ef1c6e4806ba228da693b8d1165850da9529c646b7d815f8ae17a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Simons Foundation
USDOE Office of Science (SC)
US Air Force Office of Scientific Research (AFOSR)
Canadian Institute for Advanced Research (CIFAR)
SC0019380; FA9550-19-1-0369
ORCID 0000-0003-2756-8299
0000000327568299
OpenAccessLink https://doi.org/10.1007/JHEP10(2021)047
PQID 2580185119
PQPubID 2034718
PageCount 58
ParticipantIDs doaj_primary_oai_doaj_org_article_a29cf3fab5874c88a7c018da80feb17f
osti_scitechconnect_1976554
proquest_journals_2580185119
crossref_citationtrail_10_1007_JHEP10_2021_047
crossref_primary_10_1007_JHEP10_2021_047
springer_journals_10_1007_JHEP10_2021_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-06
PublicationDateYYYYMMDD 2021-10-06
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-06
  day: 06
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Nature
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Nature
– name: SpringerOpen
References AccardiLFrigerioAMarkovian cocyclesProc. Roy. Irish Acad. A1983832517365000534.46045
PeningtonGEntanglement Wedge Reconstruction and the Information ParadoxJHEP2020090022020JHEP...09..002P42032571454.81039[arXiv:1905.08255] [INSPIRE]
RyuSTakayanagiTAspects of Holographic Entanglement EntropyJHEP2006080452006JHEP...08..045R22499251228.83110[hep-th/0605073] [INSPIRE]
DongXWangHEnhanced corrections near holographic entanglement transitions: a chaotic case studyJHEP2020110072020JHEP...11..007D42042781456.83074[arXiv:2006.10051] [INSPIRE]
JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP2016060042016JHEP...06..004J35381651388.83268[arXiv:1512.06431] [INSPIRE]
AkersCPeningtonGLeading order corrections to the quantum extremal surface prescriptionJHEP2021040622021JHEP...04..062A4276904[arXiv:2008.03319] [INSPIRE]
FawziORennerRQuantum conditional mutual information and approximate Markov chainsCommun. Math. Phys.20153405752015CMaPh.340..575F33970271442.81014[arXiv:1410.0664]
BaoNNezamiSOoguriHStoicaBSullyJWalterMThe Holographic Entropy ConeJHEP2015091302015JHEP...09..130B34306351388.83177[arXiv:1505.07839] [INSPIRE]
BaoNChatwin-DaviesARemmenGNEntanglement of Purification and Multiboundary Wormhole GeometriesJHEP2019021102019JHEP...02..110B39252061411.81169[arXiv:1811.01983] [INSPIRE]
AkersCRathPEntanglement Wedge Cross Sections Require Tripartite EntanglementJHEP2020042082020JHEP...04..208A40968421436.81108[arXiv:1911.07852] [INSPIRE]
FischlerWKunduAKunduSHolographic Mutual Information at Finite TemperaturePhys. Rev. D2013871260122013PhRvD..87l6012F[arXiv:1212.4764] [INSPIRE]
FaulknerTLewkowyczAMaldacenaJQuantum corrections to holographic entanglement entropyJHEP2013110742013JHEP...11..074F1392.81021[arXiv:1307.2892] [INSPIRE]
AlmheiriAMahajanRMaldacenaJZhaoYThe Page curve of Hawking radiation from semiclassical geometryJHEP2020031492020JHEP...03..149A40899731435.83110[arXiv:1908.10996] [INSPIRE]
WildeMMWinterAYangDStrong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Renyi Relative EntropyCommun. Math. Phys.20143315932014CMaPh.331..593W1303.81042[arXiv:1306.1586] [INSPIRE]
A. Hatcher, Algebraic topology, https://pi.math.cornell.edu/~hatcher/AT/AT.pdf (2001).
BoussoRFisherZLeichenauerSWallACQuantum focusing conjecturePhys. Rev. D2016932016PhRvD..93f4044B3527519[arXiv:1506.02669] [INSPIRE]
AkersCRathPHolographic Renyi Entropy from Quantum Error CorrectionJHEP2019050522019JHEP...05..052A39768351416.83095[arXiv:1811.05171] [INSPIRE]
B. Farb and D. Margalit, A primer on mapping class groups, Princeton University Press (2011).
BaoNPeningtonGSorceJWallACBeyond Toy Models: Distilling Tensor Networks in Full AdS/CFTJHEP2019110692019JHEP...11..069B40694941429.81063[arXiv:1812.01171] [INSPIRE]
J. A. Mingo and A. Nica, Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices, Int. Math. Res. Not.2004 (2004) 1413 [math/0303312].
WallACMaximin Surfaces, and the Strong Subadditivity of the Covariant Holographic Entanglement EntropyClass. Quant. Grav.2014312250072014CQGra..31v5007W32770181304.81139[arXiv:1211.3494] [INSPIRE]
KusukiYKudler-FlamJRyuSDerivation of Holographic Negativity in AdS3/CFT2Phys. Rev. Lett.20191231316032019PhRvL.123m1603K4016265[arXiv:1907.07824] [INSPIRE]
C. Akers, T. Faulkner, S. Lin and P. Rath, Reflected entropy in random tensor networks, to appear.
L. Anderson, O. Parrikar and R. M. Soni, Islands with Gravitating Baths: Towards ER = EP R, arXiv:2103.14746 [INSPIRE].
WenQBalanced Partial Entanglement and the Entanglement Wedge Cross SectionJHEP2021043012021JHEP...04..301W4276149[arXiv:2103.00415] [INSPIRE]
G. Penington, S. H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
HeadrickMHubenyVELawrenceARangamaniMCausality & holographic entanglement entropyJHEP2014121622014JHEP...12..162H[arXiv:1408.6300] [INSPIRE]
ZouYSivaKSoejimaTMongRSKZaletelMPUniversal tripartite entanglement in one-dimensional many-body systemsPhys. Rev. Lett.20211261205012021PhRvL.126l0501Z4238663[arXiv:2011.11864] [INSPIRE]
AlmheiriADongXHarlowDBulk Locality and Quantum Error Correction in AdS/CFTJHEP2015041632015JHEP...04..163A33512061388.81095[arXiv:1411.7041] [INSPIRE]
HeadrickMTakayanagiTA Holographic proof of the strong subadditivity of entanglement entropyPhys. Rev. D2007761060132007PhRvD..76j6013H2379595[arXiv:0704.3719] [INSPIRE]
BuenoPCasiniHReflected entropy, symmetries and free fermionsJHEP2020051032020JHEP...05..103B41123401437.83106[arXiv:2003.09546] [INSPIRE]
Van RaamsdonkMBuilding up spacetime with quantum entanglementGen. Rel. Grav.20104223232010GReGr..42.2323V27216671200.83052[arXiv:1005.3035] [INSPIRE]
MaldacenaJSusskindLCool horizons for entangled black holesFortsch. Phys.2013617812013ForPh..61..781M31044581338.83057[arXiv:1306.0533] [INSPIRE]
HubenyVERangamaniMRotaMHolographic entropy relationsFortsch. Phys.20186618000672018ForPh..6600067H3886088[arXiv:1808.07871] [INSPIRE]
DongXLewkowyczARangamaniMDeriving covariant holographic entanglementJHEP2016110282016JHEP...11..028D35844611390.83103[arXiv:1607.07506] [INSPIRE]
P. Hayden, R. Jozsa, D. Petz and A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality, Commun. Math. Phys.246 (2004) 359 [quant-ph/0304007].
HaydenPHeadrickMMaloneyAHolographic Mutual Information is MonogamousPhys. Rev. D2013872013PhRvD..87d6003H[arXiv:1107.2940] [INSPIRE]
M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].
TakayanagiTUmemotoKEntanglement of purification through holographic dualityNature Phys.2018145732018NatPh..14..573U[arXiv:1708.09393] [INSPIRE]
PetzDSufficient subalgebras and the relative entropy of states of a von Neumann algebraCommun. Math. Phys.19861051231986CMaPh.105..123P8471310597.46067[INSPIRE]
W. Fenchel, Elementary geometry in hyperbolic space, De Gruyter (2011).
DongXHarlowDMarolfDFlat entanglement spectra in fixed-area states of quantum gravityJHEP2019102402019JHEP...10..240D40510861427.83020[arXiv:1811.05382] [INSPIRE]
RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001] [INSPIRE]
MarolfDWangSWangZProbing phase transitions of holographic entanglement entropy with fixed area statesJHEP2020120842020JHEP...12..084M42393691457.83060[arXiv:2006.10089] [INSPIRE]
AkersCEngelhardtNPeningtonGUsatyukMQuantum Maximin SurfacesJHEP2020081402020JHEP...08..140A41764541454.83029[arXiv:1912.02799] [INSPIRE]
BalasubramanianVHaydenPMaloneyAMarolfDRossSFMultiboundary Wormholes and Holographic EntanglementClass. Quant. Grav.2014311850152014CQGra..31r5009B1300.81067[arXiv:1406.2663] [INSPIRE]
AlmheiriAEngelhardtNMarolfDMaxfieldHThe entropy of bulk quantum fields and the entanglement wedge of an evaporating black holeJHEP2019120632019JHEP...12..063A40757121431.83123[arXiv:1905.08762] [INSPIRE]
AkersCLeichenauerSLevineALarge Breakdowns of Entanglement Wedge ReconstructionPhys. Rev. D20191001260062019PhRvD.100l6006A4053429[arXiv:1908.03975] [INSPIRE]
EngelhardtNWallACQuantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical RegimeJHEP2015010732015JHEP...01..073E[arXiv:1408.3203] [INSPIRE]
Colin-EllerinSHubenyVENiehoffBESorceJLarge-d phase transitions in holographic mutual informationJHEP2020041732020JHEP...04..173C40968771436.83069[arXiv:1911.06339] [INSPIRE]
CotlerJHaydenPPeningtonGSaltonGSwingleBWalterMEntanglement Wedge Reconstruction via Universal Recovery ChannelsPhys. Rev. X20199[arXiv:1704.05839] [INSPIRE]
JungeMRennerRSutterDWildeMMWinterAUniversal Recovery Maps and Approximate Sufficiency of Quantum Relative EntropyAnnales Henri Poincaré20181929552018AnHP...19.2955J38517771401.81025[arXiv:1509.07127] [INSPIRE]
SorceJHolographic entanglement entropy is cutoff-covariantJHEP2019100152019JHEP...10..015S40596791427.81150[arXiv:1908.02297] [INSPIRE]
DongXLewkowyczAEntropy, Extremality, Euclidean Variations, and the Equations of MotionJHEP2018010812018JHEP...01..081D37625651384.81097[arXiv:1705.08453] [INSPIRE]
Kudler-FlamJRelative Entropy of Random States and Black HolesPhys. Rev. Lett.20211261716032021PhRvL.126q1603K4264686[arXiv:2102.05053] [INSPIRE]
M. M. Wilde, From Classical to Quantum Shannon Theory, arXiv:1106.1445 [INSPIRE].
A. Marden, Outer Circles: An introduction to hyperbolic 3-manifolds, Cambridge University Press (2007).
CzechBKarczmarekJLNogueiraFVan RaamsdonkMThe Gravity Dual of a Density MatrixClass. Quant. Grav.2012291550092012CQGra..29o5009C29609711248.83029[arXiv:1204.1330] [INSPIRE]
NguyenPDevakulTHalbaschMGZaletelMPSwingleBEntanglement of purification: from spin chains to holographyJHEP2018010982018JHEP...01..098N37625481384.81117[arXiv:1709.07424] [INSPIRE]
LewkowyczAMaldacenaJGeneralized gravitational entropyJHEP2013080902013JHEP...08..090L31063481342.83185[arXiv:1304.4926] [INSPIRE]
BaoNChatwin-DaviesARemmenGNEntanglement Wedge Cross Section Inequalities from Replicated GeometriesJHEP2021071132021JHEP...07..113B43169841468.81018[arXiv:2106.02640] [INSPIRE]
M. M uller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On quantum Renyi entropies: a new generalization and some properties, J. Math. Phys.54 (2013) 122203 [arXiv:1306.3142].
Kudler-FlamJRyuSEntanglement negativity and minimal entanglement wedge cross sections in holographic theoriesPhys. Rev. D2019991060142019PhRvD..99j6014K4010024[arXiv:1808.00446] [INSPIRE]
DongXHarlowDWallACReconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity DualityPhys. Rev. Lett.20161172016PhRvL.117b1601D3626959[arXiv:1601.05416] [INSPIRE]
BaoNChengNMultipartite Reflected EntropyJHEP2019101022019JHEP...10..102B40557891427.81113[arXiv:1909.03154] [INSPIRE]
ChandrasekaranVMiyajiMRathPIncluding contributions from entanglement islands to the reflected entropyPhys. Rev. D20201022020PhRvD.102h6009C4178721[arXiv:2006.10754] [INSPIRE]
BaoNHalpernIFConditional and Multipartite Entangle
N Bao (16841_CR35) 2019; 99
C Akers (16841_CR32) 2020; 04
A Lewkowycz (16841_CR9) 2013; 08
N Engelhardt (16841_CR15) 2015; 01
C Akers (16841_CR65) 2019; 100
C Akers (16841_CR28) 2020; 08
16841_CR76
S Ryu (16841_CR2) 2006; 96
S Colin-Ellerin (16841_CR67) 2020; 04
HA Camargo (16841_CR73) 2021; 127
P Hayden (16841_CR19) 2019; 12
16841_CR70
B Czech (16841_CR7) 2012; 29
J Sorce (16841_CR61) 2019; 10
C Akers (16841_CR41) 2019; 05
M Headrick (16841_CR4) 2007; 76
X Dong (16841_CR18) 2018; 01
J Maldacena (16841_CR52) 2013; 61
P Nguyen (16841_CR22) 2018; 01
X Dong (16841_CR42) 2019; 10
16841_CR68
X Dong (16841_CR14) 2016; 11
16841_CR63
16841_CR62
V Chandrasekaran (16841_CR26) 2020; 102
R Bousso (16841_CR27) 2016; 93
D Petz (16841_CR47) 1986; 105
16841_CR60
P Hayden (16841_CR29) 2013; 87
16841_CR64
N Bao (16841_CR74) 2019; 11
M Headrick (16841_CR11) 2014; 12
M Van Raamsdonk (16841_CR40) 2010; 42
VE Hubeny (16841_CR5) 2007; 07
N Bao (16841_CR38) 2021; 07
Y Kusuki (16841_CR24) 2019; 123
J Kudler-Flam (16841_CR23) 2019; 99
16841_CR57
T Takayanagi (16841_CR21) 2018; 14
16841_CR50
X Dong (16841_CR58) 2020; 11
Y Zou (16841_CR39) 2021; 126
16841_CR55
P Bueno (16841_CR72) 2020; 11
N Bao (16841_CR36) 2019; 02
16841_CR6
S Ryu (16841_CR3) 2006; 08
D Marolf (16841_CR59) 2020; 12
N Bao (16841_CR37) 2019; 10
X Dong (16841_CR16) 2016; 117
A Almheiri (16841_CR54) 2019; 12
DL Jafferis (16841_CR13) 2016; 06
16841_CR45
L Accardi (16841_CR46) 1983; 83
O Fawzi (16841_CR48) 2015; 340
A Almheiri (16841_CR56) 2020; 03
S Nezami (16841_CR75) 2020; 125
SX Cui (16841_CR33) 2019; 376
16841_CR43
G Penington (16841_CR53) 2020; 09
MA Nielsen (16841_CR51) 2002; 70
MM Wilde (16841_CR44) 2014; 331
Q Wen (16841_CR25) 2021; 04
T Faulkner (16841_CR10) 2013; 11
N Bao (16841_CR30) 2015; 09
M Junge (16841_CR49) 2018; 19
V Balasubramanian (16841_CR34) 2014; 31
W Fischler (16841_CR66) 2013; 87
P Bueno (16841_CR71) 2020; 05
AC Wall (16841_CR8) 2014; 31
A Almheiri (16841_CR12) 2015; 04
C Akers (16841_CR20) 2021; 04
S Dutta (16841_CR1) 2021; 03
J Cotler (16841_CR17) 2019; 9
VE Hubeny (16841_CR31) 2018; 66
J Kudler-Flam (16841_CR69) 2021; 126
References_xml – reference: W. Fenchel, Elementary geometry in hyperbolic space, De Gruyter (2011).
– reference: PeningtonGEntanglement Wedge Reconstruction and the Information ParadoxJHEP2020090022020JHEP...09..002P42032571454.81039[arXiv:1905.08255] [INSPIRE]
– reference: BaoNChatwin-DaviesARemmenGNEntanglement Wedge Cross Section Inequalities from Replicated GeometriesJHEP2021071132021JHEP...07..113B43169841468.81018[arXiv:2106.02640] [INSPIRE]
– reference: M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].
– reference: HaydenPPeningtonGLearning the Alpha-bits of Black HolesJHEP2019120072019JHEP...12..007H40756561431.83095[arXiv:1807.06041] [INSPIRE]
– reference: ChandrasekaranVMiyajiMRathPIncluding contributions from entanglement islands to the reflected entropyPhys. Rev. D20201022020PhRvD.102h6009C4178721[arXiv:2006.10754] [INSPIRE]
– reference: MarolfDWangSWangZProbing phase transitions of holographic entanglement entropy with fixed area statesJHEP2020120842020JHEP...12..084M42393691457.83060[arXiv:2006.10089] [INSPIRE]
– reference: KusukiYKudler-FlamJRyuSDerivation of Holographic Negativity in AdS3/CFT2Phys. Rev. Lett.20191231316032019PhRvL.123m1603K4016265[arXiv:1907.07824] [INSPIRE]
– reference: Kudler-FlamJRelative Entropy of Random States and Black HolesPhys. Rev. Lett.20211261716032021PhRvL.126q1603K4264686[arXiv:2102.05053] [INSPIRE]
– reference: C. Akers, T. Faulkner, S. Lin and P. Rath, Reflected entropy in random tensor networks, to appear.
– reference: A. Marden, Outer Circles: An introduction to hyperbolic 3-manifolds, Cambridge University Press (2007).
– reference: WildeMMWinterAYangDStrong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Renyi Relative EntropyCommun. Math. Phys.20143315932014CMaPh.331..593W1303.81042[arXiv:1306.1586] [INSPIRE]
– reference: AkersCLeichenauerSLevineALarge Breakdowns of Entanglement Wedge ReconstructionPhys. Rev. D20191001260062019PhRvD.100l6006A4053429[arXiv:1908.03975] [INSPIRE]
– reference: AlmheiriADongXHarlowDBulk Locality and Quantum Error Correction in AdS/CFTJHEP2015041632015JHEP...04..163A33512061388.81095[arXiv:1411.7041] [INSPIRE]
– reference: HubenyVERangamaniMTakayanagiTA Covariant holographic entanglement entropy proposalJHEP2007070622007JHEP...07..062H2326725[arXiv:0705.0016] [INSPIRE]
– reference: BuenoPCasiniHReflected entropy for free scalarsJHEP2020111482020JHEP...11..148B42041301437.83106[arXiv:2008.11373] [INSPIRE]
– reference: BaoNChengNMultipartite Reflected EntropyJHEP2019101022019JHEP...10..102B40557891427.81113[arXiv:1909.03154] [INSPIRE]
– reference: JungeMRennerRSutterDWildeMMWinterAUniversal Recovery Maps and Approximate Sufficiency of Quantum Relative EntropyAnnales Henri Poincaré20181929552018AnHP...19.2955J38517771401.81025[arXiv:1509.07127] [INSPIRE]
– reference: BuenoPCasiniHReflected entropy, symmetries and free fermionsJHEP2020051032020JHEP...05..103B41123401437.83106[arXiv:2003.09546] [INSPIRE]
– reference: DongXLewkowyczAEntropy, Extremality, Euclidean Variations, and the Equations of MotionJHEP2018010812018JHEP...01..081D37625651384.81097[arXiv:1705.08453] [INSPIRE]
– reference: DuttaSFaulknerTA canonical purification for the entanglement wedge cross-sectionJHEP2021031782021JHEP...03..178D42626371461.81104[arXiv:1905.00577] [INSPIRE]
– reference: MaldacenaJSusskindLCool horizons for entangled black holesFortsch. Phys.2013617812013ForPh..61..781M31044581338.83057[arXiv:1306.0533] [INSPIRE]
– reference: M. M. Wilde, From Classical to Quantum Shannon Theory, arXiv:1106.1445 [INSPIRE].
– reference: DongXHarlowDWallACReconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity DualityPhys. Rev. Lett.20161172016PhRvL.117b1601D3626959[arXiv:1601.05416] [INSPIRE]
– reference: HeadrickMHubenyVELawrenceARangamaniMCausality & holographic entanglement entropyJHEP2014121622014JHEP...12..162H[arXiv:1408.6300] [INSPIRE]
– reference: AkersCPeningtonGLeading order corrections to the quantum extremal surface prescriptionJHEP2021040622021JHEP...04..062A4276904[arXiv:2008.03319] [INSPIRE]
– reference: CzechBKarczmarekJLNogueiraFVan RaamsdonkMThe Gravity Dual of a Density MatrixClass. Quant. Grav.2012291550092012CQGra..29o5009C29609711248.83029[arXiv:1204.1330] [INSPIRE]
– reference: WenQBalanced Partial Entanglement and the Entanglement Wedge Cross SectionJHEP2021043012021JHEP...04..301W4276149[arXiv:2103.00415] [INSPIRE]
– reference: NielsenMAChuangIQuantum computation and quantum informationAm. J. Phys.2002705582002AmJPh..70..558N
– reference: B. Farb and D. Margalit, A primer on mapping class groups, Princeton University Press (2011).
– reference: AlmheiriAMahajanRMaldacenaJZhaoYThe Page curve of Hawking radiation from semiclassical geometryJHEP2020031492020JHEP...03..149A40899731435.83110[arXiv:1908.10996] [INSPIRE]
– reference: FawziORennerRQuantum conditional mutual information and approximate Markov chainsCommun. Math. Phys.20153405752015CMaPh.340..575F33970271442.81014[arXiv:1410.0664]
– reference: AkersCRathPEntanglement Wedge Cross Sections Require Tripartite EntanglementJHEP2020042082020JHEP...04..208A40968421436.81108[arXiv:1911.07852] [INSPIRE]
– reference: BaoNHalpernIFConditional and Multipartite Entanglements of Purification and HolographyPhys. Rev. D2019992019PhRvD..99d6010B3988452[arXiv:1805.00476] [INSPIRE]
– reference: FaulknerTLewkowyczAMaldacenaJQuantum corrections to holographic entanglement entropyJHEP2013110742013JHEP...11..074F1392.81021[arXiv:1307.2892] [INSPIRE]
– reference: DongXHarlowDMarolfDFlat entanglement spectra in fixed-area states of quantum gravityJHEP2019102402019JHEP...10..240D40510861427.83020[arXiv:1811.05382] [INSPIRE]
– reference: CotlerJHaydenPPeningtonGSaltonGSwingleBWalterMEntanglement Wedge Reconstruction via Universal Recovery ChannelsPhys. Rev. X20199[arXiv:1704.05839] [INSPIRE]
– reference: AccardiLFrigerioAMarkovian cocyclesProc. Roy. Irish Acad. A1983832517365000534.46045
– reference: CamargoHAHacklLHellerMPJahnAWindtBLong Distance Entanglement of Purification and Reflected Entropy in Conformal Field TheoryPhys. Rev. Lett.20211271416042021PhRvL.127n1604C4337629[arXiv:2102.00013] [INSPIRE]
– reference: L. Anderson, O. Parrikar and R. M. Soni, Islands with Gravitating Baths: Towards ER = EP R, arXiv:2103.14746 [INSPIRE].
– reference: Kudler-FlamJRyuSEntanglement negativity and minimal entanglement wedge cross sections in holographic theoriesPhys. Rev. D2019991060142019PhRvD..99j6014K4010024[arXiv:1808.00446] [INSPIRE]
– reference: BaoNChatwin-DaviesARemmenGNEntanglement of Purification and Multiboundary Wormhole GeometriesJHEP2019021102019JHEP...02..110B39252061411.81169[arXiv:1811.01983] [INSPIRE]
– reference: J. A. Mingo and A. Nica, Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices, Int. Math. Res. Not.2004 (2004) 1413 [math/0303312].
– reference: HubenyVERangamaniMRotaMHolographic entropy relationsFortsch. Phys.20186618000672018ForPh..6600067H3886088[arXiv:1808.07871] [INSPIRE]
– reference: FischlerWKunduAKunduSHolographic Mutual Information at Finite TemperaturePhys. Rev. D2013871260122013PhRvD..87l6012F[arXiv:1212.4764] [INSPIRE]
– reference: A. Hatcher, Algebraic topology, https://pi.math.cornell.edu/~hatcher/AT/AT.pdf (2001).
– reference: RyuSTakayanagiTAspects of Holographic Entanglement EntropyJHEP2006080452006JHEP...08..045R22499251228.83110[hep-th/0605073] [INSPIRE]
– reference: BaoNNezamiSOoguriHStoicaBSullyJWalterMThe Holographic Entropy ConeJHEP2015091302015JHEP...09..130B34306351388.83177[arXiv:1505.07839] [INSPIRE]
– reference: AkersCEngelhardtNPeningtonGUsatyukMQuantum Maximin SurfacesJHEP2020081402020JHEP...08..140A41764541454.83029[arXiv:1912.02799] [INSPIRE]
– reference: BalasubramanianVHaydenPMaloneyAMarolfDRossSFMultiboundary Wormholes and Holographic EntanglementClass. Quant. Grav.2014311850152014CQGra..31r5009B1300.81067[arXiv:1406.2663] [INSPIRE]
– reference: Van RaamsdonkMBuilding up spacetime with quantum entanglementGen. Rel. Grav.20104223232010GReGr..42.2323V27216671200.83052[arXiv:1005.3035] [INSPIRE]
– reference: WallACMaximin Surfaces, and the Strong Subadditivity of the Covariant Holographic Entanglement EntropyClass. Quant. Grav.2014312250072014CQGra..31v5007W32770181304.81139[arXiv:1211.3494] [INSPIRE]
– reference: TakayanagiTUmemotoKEntanglement of purification through holographic dualityNature Phys.2018145732018NatPh..14..573U[arXiv:1708.09393] [INSPIRE]
– reference: NezamiSWalterMMultipartite Entanglement in Stabilizer Tensor NetworksPhys. Rev. Lett.20201252416022020PhRvL.125x1602N4191160[arXiv:1608.02595] [INSPIRE]
– reference: HaydenPHeadrickMMaloneyAHolographic Mutual Information is MonogamousPhys. Rev. D2013872013PhRvD..87d6003H[arXiv:1107.2940] [INSPIRE]
– reference: AkersCRathPHolographic Renyi Entropy from Quantum Error CorrectionJHEP2019050522019JHEP...05..052A39768351416.83095[arXiv:1811.05171] [INSPIRE]
– reference: P. Hayden, R. Jozsa, D. Petz and A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality, Commun. Math. Phys.246 (2004) 359 [quant-ph/0304007].
– reference: G. Penington, S. H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
– reference: NguyenPDevakulTHalbaschMGZaletelMPSwingleBEntanglement of purification: from spin chains to holographyJHEP2018010982018JHEP...01..098N37625481384.81117[arXiv:1709.07424] [INSPIRE]
– reference: LewkowyczAMaldacenaJGeneralized gravitational entropyJHEP2013080902013JHEP...08..090L31063481342.83185[arXiv:1304.4926] [INSPIRE]
– reference: SorceJHolographic entanglement entropy is cutoff-covariantJHEP2019100152019JHEP...10..015S40596791427.81150[arXiv:1908.02297] [INSPIRE]
– reference: JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP2016060042016JHEP...06..004J35381651388.83268[arXiv:1512.06431] [INSPIRE]
– reference: BaoNPeningtonGSorceJWallACBeyond Toy Models: Distilling Tensor Networks in Full AdS/CFTJHEP2019110692019JHEP...11..069B40694941429.81063[arXiv:1812.01171] [INSPIRE]
– reference: HeadrickMTakayanagiTA Holographic proof of the strong subadditivity of entanglement entropyPhys. Rev. D2007761060132007PhRvD..76j6013H2379595[arXiv:0704.3719] [INSPIRE]
– reference: DongXWangHEnhanced corrections near holographic entanglement transitions: a chaotic case studyJHEP2020110072020JHEP...11..007D42042781456.83074[arXiv:2006.10051] [INSPIRE]
– reference: RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R22210501228.83110[hep-th/0603001] [INSPIRE]
– reference: H. Bateman, Higher transcendental functions [volumes I-III], vol. I, McGraw-Hill Book Company (1953).
– reference: AlmheiriAEngelhardtNMarolfDMaxfieldHThe entropy of bulk quantum fields and the entanglement wedge of an evaporating black holeJHEP2019120632019JHEP...12..063A40757121431.83123[arXiv:1905.08762] [INSPIRE]
– reference: Colin-EllerinSHubenyVENiehoffBESorceJLarge-d phase transitions in holographic mutual informationJHEP2020041732020JHEP...04..173C40968771436.83069[arXiv:1911.06339] [INSPIRE]
– reference: EngelhardtNWallACQuantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical RegimeJHEP2015010732015JHEP...01..073E[arXiv:1408.3203] [INSPIRE]
– reference: CuiSXHaydenPHeTHeadrickMStoicaBWalterMBit Threads and Holographic MonogamyCommun. Math. Phys.20193766092019CMaPh.376..609C409385607202528[arXiv:1808.05234] [INSPIRE]
– reference: ZouYSivaKSoejimaTMongRSKZaletelMPUniversal tripartite entanglement in one-dimensional many-body systemsPhys. Rev. Lett.20211261205012021PhRvL.126l0501Z4238663[arXiv:2011.11864] [INSPIRE]
– reference: BoussoRFisherZLeichenauerSWallACQuantum focusing conjecturePhys. Rev. D2016932016PhRvD..93f4044B3527519[arXiv:1506.02669] [INSPIRE]
– reference: PetzDSufficient subalgebras and the relative entropy of states of a von Neumann algebraCommun. Math. Phys.19861051231986CMaPh.105..123P8471310597.46067[INSPIRE]
– reference: M. M uller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On quantum Renyi entropies: a new generalization and some properties, J. Math. Phys.54 (2013) 122203 [arXiv:1306.3142].
– reference: DongXLewkowyczARangamaniMDeriving covariant holographic entanglementJHEP2016110282016JHEP...11..028D35844611390.83103[arXiv:1607.07506] [INSPIRE]
– volume: 04
  start-page: 301
  year: 2021
  ident: 16841_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)301
– volume: 03
  start-page: 149
  year: 2020
  ident: 16841_CR56
  publication-title: JHEP
  doi: 10.1007/JHEP03(2020)149
– volume: 99
  year: 2019
  ident: 16841_CR35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.046010
– ident: 16841_CR76
– volume: 08
  start-page: 090
  year: 2013
  ident: 16841_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP08(2013)090
– volume: 66
  start-page: 1800067
  year: 2018
  ident: 16841_CR31
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201800067
– volume: 87
  year: 2013
  ident: 16841_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.046003
– volume: 11
  start-page: 007
  year: 2020
  ident: 16841_CR58
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)007
– volume: 04
  start-page: 163
  year: 2015
  ident: 16841_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)163
– volume: 12
  start-page: 063
  year: 2019
  ident: 16841_CR54
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)063
– ident: 16841_CR57
– volume: 61
  start-page: 781
  year: 2013
  ident: 16841_CR52
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201300020
– volume: 07
  start-page: 062
  year: 2007
  ident: 16841_CR5
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/07/062
– volume: 12
  start-page: 007
  year: 2019
  ident: 16841_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)007
– volume: 117
  year: 2016
  ident: 16841_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.021601
– volume: 08
  start-page: 045
  year: 2006
  ident: 16841_CR3
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/08/045
– volume: 05
  start-page: 052
  year: 2019
  ident: 16841_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP05(2019)052
– volume: 126
  start-page: 120501
  year: 2021
  ident: 16841_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.120501
– volume: 29
  start-page: 155009
  year: 2012
  ident: 16841_CR7
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/29/15/155009
– volume: 99
  start-page: 106014
  year: 2019
  ident: 16841_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.106014
– volume: 04
  start-page: 173
  year: 2020
  ident: 16841_CR67
  publication-title: JHEP
  doi: 10.1007/JHEP04(2020)173
– volume: 126
  start-page: 171603
  year: 2021
  ident: 16841_CR69
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.171603
– ident: 16841_CR50
– ident: 16841_CR45
  doi: 10.1007/s00220-004-1049-z
– volume: 83
  start-page: 251
  year: 1983
  ident: 16841_CR46
  publication-title: Proc. Roy. Irish Acad. A
– ident: 16841_CR6
– volume: 01
  start-page: 098
  year: 2018
  ident: 16841_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP01(2018)098
– volume: 100
  start-page: 126006
  year: 2019
  ident: 16841_CR65
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.126006
– ident: 16841_CR68
  doi: 10.1155/S1073792804133023
– ident: 16841_CR64
  doi: 10.1017/CBO9780511618918
– volume: 03
  start-page: 178
  year: 2021
  ident: 16841_CR1
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)178
– volume: 93
  year: 2016
  ident: 16841_CR27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.064044
– volume: 127
  start-page: 141604
  year: 2021
  ident: 16841_CR73
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.141604
– volume: 76
  start-page: 106013
  year: 2007
  ident: 16841_CR4
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.76.106013
– volume: 31
  start-page: 185015
  year: 2014
  ident: 16841_CR34
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/31/18/185015
– volume: 19
  start-page: 2955
  year: 2018
  ident: 16841_CR49
  publication-title: Annales Henri Poincaré
  doi: 10.1007/s00023-018-0716-0
– volume: 10
  start-page: 015
  year: 2019
  ident: 16841_CR61
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)015
– volume: 125
  start-page: 241602
  year: 2020
  ident: 16841_CR75
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.241602
– volume: 96
  start-page: 181602
  year: 2006
  ident: 16841_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.181602
– volume: 102
  year: 2020
  ident: 16841_CR26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.086009
– volume: 04
  start-page: 062
  year: 2021
  ident: 16841_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)062
– volume: 14
  start-page: 573
  year: 2018
  ident: 16841_CR21
  publication-title: Nature Phys.
  doi: 10.1038/s41567-018-0075-2
– ident: 16841_CR70
– volume: 331
  start-page: 593
  year: 2014
  ident: 16841_CR44
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-2122-x
– volume: 11
  start-page: 074
  year: 2013
  ident: 16841_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)074
– volume: 02
  start-page: 110
  year: 2019
  ident: 16841_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)110
– volume: 12
  start-page: 162
  year: 2014
  ident: 16841_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP12(2014)162
– ident: 16841_CR60
– volume: 01
  start-page: 073
  year: 2015
  ident: 16841_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP01(2015)073
– volume: 07
  start-page: 113
  year: 2021
  ident: 16841_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)113
– volume: 11
  start-page: 028
  year: 2016
  ident: 16841_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP11(2016)028
– volume: 04
  start-page: 208
  year: 2020
  ident: 16841_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP04(2020)208
– ident: 16841_CR55
– volume: 11
  start-page: 069
  year: 2019
  ident: 16841_CR74
  publication-title: JHEP
  doi: 10.1007/JHEP11(2019)069
– volume: 10
  start-page: 102
  year: 2019
  ident: 16841_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)102
– volume: 42
  start-page: 2323
  year: 2010
  ident: 16841_CR40
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/s10714-010-1034-0
– volume: 123
  start-page: 131603
  year: 2019
  ident: 16841_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.131603
– volume: 9
  year: 2019
  ident: 16841_CR17
  publication-title: Phys. Rev. X
– volume: 11
  start-page: 148
  year: 2020
  ident: 16841_CR72
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)148
– volume: 70
  start-page: 558
  year: 2002
  ident: 16841_CR51
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1463744
– volume: 05
  start-page: 103
  year: 2020
  ident: 16841_CR71
  publication-title: JHEP
  doi: 10.1007/JHEP05(2020)103
– volume: 376
  start-page: 609
  year: 2019
  ident: 16841_CR33
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-019-03510-8
– volume: 08
  start-page: 140
  year: 2020
  ident: 16841_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP08(2020)140
– volume: 340
  start-page: 575
  year: 2015
  ident: 16841_CR48
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-015-2466-x
– volume: 06
  start-page: 004
  year: 2016
  ident: 16841_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP06(2016)004
– volume: 87
  start-page: 126012
  year: 2013
  ident: 16841_CR66
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.126012
– volume: 01
  start-page: 081
  year: 2018
  ident: 16841_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP01(2018)081
– ident: 16841_CR63
– volume: 09
  start-page: 002
  year: 2020
  ident: 16841_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)002
– volume: 12
  start-page: 084
  year: 2020
  ident: 16841_CR59
  publication-title: JHEP
  doi: 10.1007/JHEP12(2020)084
– volume: 10
  start-page: 240
  year: 2019
  ident: 16841_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)240
– ident: 16841_CR43
  doi: 10.1063/1.4838856
– volume: 31
  start-page: 225007
  year: 2014
  ident: 16841_CR8
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/31/22/225007
– volume: 09
  start-page: 130
  year: 2015
  ident: 16841_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)130
– volume: 105
  start-page: 123
  year: 1986
  ident: 16841_CR47
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01212345
– ident: 16841_CR62
  doi: 10.1515/9781400839049
SSID ssj0015190
Score 2.5939949
Snippet A bstract The reflected entropy S R ( A : B ) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I ( A...
The reflected entropy S R ( A : B ) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I ( A : B ). In...
The reflected entropy SR(A : B) of a density matrix ρAB is a bipartite correlation measure lower-bounded by the quantum mutual information I(A : B). In...
Abstract The reflected entropy S R (A : B) of a density matrix ρ AB is a bipartite correlation measure lower-bounded by the quantum mutual information I(A :...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
AdS-CFT Correspondence
AdS-CFT correspondenceg gauge-gravity correspondence
Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Cross-sections
Elementary Particles
Entanglement
Entropy
Gauge-gravity correspondence
High energy physics
Holography
Information theory
Lower bounds
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Recovery
Regular Article - Theoretical Physics
Relativity Theory
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7ET6y7Sg8e1kM1bdM0Paooi6B4UPAWptPEi24XdxX89870Q1dBvHgqtGmazms6L8nkjRCHJaIrZYIRuV4TqcoXETgTRzz2UMh79hqd2esbPb5XVw_Zw0KqL44Ja-WBW8OdQFKgTz2UmckVGgM5ythUYKSn30zu-e9LPq8fTHXrB8RLZC_kI_OTq_HFbSxHNNCPjyRnUlnwQY1UPx1q6lLfaOaPldHG4Vyui7WOKYanbQs3xJKbbIqVJmITZ1vimAAOeadN_RY-wjQk8hk-uvqZM2RhSM_k-XhXhTx7W0_ft8X95cXd-Tjqkh9ESN1kHkGKiVdZmivlfIzaKSN1CUlC766LtDQVC-eYTFZQZGQjrXSZVybOvAEX55DuiOVJPXG7IiQYHHitMyR-VqgclAModFV6qhwAA3Hcm8NipwzOCSqebK9p3NrPsv0s2S8Qo88bpq0oxu9Fz9i-n8VYzbo5QRjbDmP7F8aBGDA6lkgBK9sihwDh3MZEpYgNBWLYg2a7DjizSUaul9lkEYijHsivy7-0du8_WjsQq1xfE_Gnh2J5_vLq9om5zMuD5iP9ANLv5-g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aDYVeStMHdZMGH3pIDk78kGX5VJqyYQkkhNJAbmI8kvbSrjfZbaH_vjNeedMWkpPBlm0xoxl9Go2-AfjYEfkuLynjqddkyoU2Q2-KTNYeiuTM3sAze3GpZ9fq_Ka-iQG3VUyrHH3i4KhdTxIjPylr9qUCD9pPy9tMqkbJ7mosofEUdtgFGzOBndPp5dXX7T4C45N8JPTJm5Pz2fSqyA95wV8c5VJR5a-5aKDs50vPpvUP3Pxvh3SYeM5ewouIGNPPGxXvwhO_eAXPhsxNWr2GY1Z0Kidu-l_pHJcpg9B07vsfUimLUv6nxOW9SyWK2y9_v4Hrs-m3L7MsFkHIiM1lnWFFZVB11SjlQ0HaK5PrDsvSONRt1RknBDqmzh22ddmSVrprnCnqYNAXDVZvYbLoF_4dpKwOj0HrmhintapB5RFb7brAH0ekBI5HcViKDOFSqOK7HbmNN_KzIj_L8kvgcPvCckOO8XDTU5HvtpmwWg83-ru5jUZikfsfqoBdbRpFxmBDrHOHJg88pTQhgT3RjmVwIAy3JKlAtLYFQypGRQnsj0qz0RBX9n7YJHA0KvL-8QO9ff_4p_bgubQccvr0PkzWdz_9B8Ym6-4gDsA_Fzffhg
  priority: 102
  providerName: ProQuest
Title The Markov gap for geometric reflected entropy
URI https://link.springer.com/article/10.1007/JHEP10(2021)047
https://www.proquest.com/docview/2580185119
https://www.osti.gov/servlets/purl/1976554
https://doaj.org/article/a29cf3fab5874c88a7c018da80feb17f
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VUKVeUKGtaqCRDxzgYOq19-UjRAkREghVjcRttR7vcmnjCNJK_fedcexUUHHg4ueuvZ7xaL59zDcAxzViqPMCM3K9NpNNrDIfrMi47yGRY_Y6ntnrGz2by6s7ddeTJHEszLP5-69Xs8mtyE-oiy5Oc2m2YEeJ0nCOhrEeb6YLCIbkA2_P_5WeuJyOmZ92LVnQE1T5bCK08y_T97DbA8P0fK3JPXgTFvvwtlugiY8f4Iz0mXJgTfs7vffLlLBmeh_an5wQC1N6Jw-_hyblwdp2-ecjzKeT7-NZ1uc6yJCsYpX5EosoVWmkDFGgDtLmuvZFYRuvq7K2DfPkWJU3vlJFhVrq2jRWqGh9EMaXn2B70S7CZ0hJ6sFHrRUSHKuk8TJ4X-mmjvRw7zGBs0EcDnsicM5H8cMNFMZr-TmWnyP5JXCyqbBcc2C8XPSC5bspxuTV3QXSqettwXlqfyyjr5U1Eq31BnNB32nzSJ7DxAQOWTuOMAAT2SKv-MGVE4ScCPwkcDQozfX29ugKRZ6WwWOVwOmgyH-3X2jtwSvKHsI7PuzW8ekj2F49_ApfCI-s6hFs2enlCHYuJje33-hsXMhR93-Ouh4-befF-V_YENrI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFOkLZADSO0hbeI4jnOoKh5dtk9xaKXezMSPvcBm211A_VP9jZ3JJltAKreeIiW2Y82MPZ89L4B3tbW-ToVNSPXqRLpQJeh1lvDZQ1qO2WvzzB4dq-Gp3D8rzpbgqo-FYbfKfk9sN2rXWL4j3xIF7aUMD6qdyXnCVaPYutqX0JiLxYG__E1Htun23mfi73shBrsnn4ZJV1UgsSR_swRzK4Is8lJKHzKrvNSpqlEI7VBVea0dZ6TRReqwKkRllVR16XRWBI0-KzGnce_BfZmTJufI9MGXhdWC0FDapw9Ky6394e7XLF0XpEY3Uq7f8ofmawsE0KOhhfwXuP3HHtuqucETeNzh0_jDXKCewpIfP4MHrZ-onT6HTRKrmON7ml_xCCcxQd545JsfXJfLxvRPtgJ4F_OdcTO5fAGnd0Kcl7A8bsb-FcTEfI9BqcISKqxkidIjVsrVgQZHtBFs9uQwtstHzmUxvps-k_KcfobpZ4h-EawvOkzmqThub_qR6btoxjm02xfNxch0S9IgzT_kAetCl9JqjaUlCXOo00AKrAwRrDJ3DEERzqdr2fHIzkxGAI4wWARrPdNMt-yn5kZII9joGXnz-ZbZrvx_qLfwcHhydGgO944PVuER92q9CdUaLM8ufvrXhIpm9ZtWFGP4dteyfw3S5xof
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKp5qaAEfQGoP6SaO4zgHhCjd1baF1QpRqTfj-LEX2Gy7C6h_jV_HTDbZAlK59RQpsR1r_Nnz2TOeAXhVWeurhNsYVa-KhQtlbLxKY9p7CEt39po4sx_HcnQmTs7z8w341d2FIbfKbk1sFmpXWzoj7_Mc11KiB2U_tG4Rk6Ph2_lFTBmkyNLapdNYQeTUX_3E7dvizfERjvVrzoeDz-9HcZthILaIxWVsMsuDyLNCCB9SK71QiawM58oZWWaVchSdRuWJM2XOSyuFrAqn0jwo49PCZNjuHdgsaFfUg83DwXjyaW3DQG6UdMGEkqJ_MhpM0mSPo1LdTyibyx96sEkXgI8ap_VfVPcf62yj9IYPYKtlq-zdCl4PYcPPHsHdxmvULh7DAYKM0W2f-gebmjlDAsymvv5GWbosw3-STcA7RifI9fzqCZzdinieQm9Wz_w2MISCN0HK3CJHLEVhhDemlK4K2LgxNoKDThzattHJKUnGV93FVV7JT5P8NMovgr11hfkqMMfNRQ9JvutiFFG7eVFfTnU7QbXB_ocsmCpXhbBKmcIi3pxRSUB1VoQIdmh0NBITiq5ryQ3JLnWKdA4ZWQS73aDpdhFY6GvIRrDfDeT15xt6--z_Tb2Ee4h7_eF4fLoD96lS41ood6G3vPzunyNFWlYvWiwy-HLb8P8N2VwfsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Markov+gap+for+geometric+reflected+entropy&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Hayden%2C+Patrick&rft.au=Parrikar%2C+Onkar&rft.au=Sorce%2C+Jonathan&rft.date=2021-10-06&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2021&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282021%29047&rft.externalDocID=10_1007_JHEP10_2021_047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon