Optical Coherence Tomography Machine Learning Classifiers for Glaucoma Detection: A Preliminary Study
Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection....
Saved in:
Published in | Investigative ophthalmology & visual science Vol. 46; no. 11; pp. 4147 - 4152 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
ARVO
01.11.2005
Association for Research in Vision and Ophtalmology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection.
Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] > or = -6 dB) and 20 had advanced glaucoma (MD < -6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated.
The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854).
Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality. |
---|---|
AbstractList | Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection.
Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] > or = -6 dB) and 20 had advanced glaucoma (MD < -6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated.
The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854).
Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality. Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection.PURPOSEMachine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection.Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] > or = -6 dB) and 20 had advanced glaucoma (MD < -6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated.METHODSForty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] > or = -6 dB) and 20 had advanced glaucoma (MD < -6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated.The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854).RESULTSThe largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854).Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality.CONCLUSIONSAutomated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality. |
Author | Noecker, Robert J Burgansky-Eliash, Zvia Chu, Tianjiao Schuman, Joel S Wollstein, Gadi Ramsey, Joseph D Ishikawa, Hiroshi Glymour, Clark |
AuthorAffiliation | 3 Institute for Human and Machine Cognition, Pensacola, Florida 4 Department of Philosophy, Carnegie Mellon University, Pittsburgh, Pennsylvania 1 UPMC Eye Center, Ophthalmology and Visual Science Research Center, Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania |
AuthorAffiliation_xml | – name: 1 UPMC Eye Center, Ophthalmology and Visual Science Research Center, Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania – name: 3 Institute for Human and Machine Cognition, Pensacola, Florida – name: 4 Department of Philosophy, Carnegie Mellon University, Pittsburgh, Pennsylvania |
Author_xml | – sequence: 1 fullname: Burgansky-Eliash, Zvia – sequence: 2 fullname: Wollstein, Gadi – sequence: 3 fullname: Chu, Tianjiao – sequence: 4 fullname: Ramsey, Joseph D – sequence: 5 fullname: Glymour, Clark – sequence: 6 fullname: Noecker, Robert J – sequence: 7 fullname: Ishikawa, Hiroshi – sequence: 8 fullname: Schuman, Joel S |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17223082$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16249492$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9vFCEcxYmpsdvqzbPhol6cCgzMDw8mzbZWkzU1sZ4Jw37ZwTCwwkw3-9_LZFerJp4I4fPe98t7Z-jEBw8IPafkgtKqfmvDfbogoiBlVT1CCyoEK0TdlCdoQSivCsIJP0VnKX0nhFHKyBN0SivGW96yBYLb7Wi1cngZeojgNeC7MIRNVNt-jz8r3VsPeAUqeus3eOlUStZYiAmbEPGNU5MOg8JXMIIebfDv8CX-EsHZwXoV9_jrOK33T9Fjo1yCZ8fzHH37cH23_Fisbm8-LS9XhRaUjEVr2rZet0KsO64bxYTq8sUIwQ1X3NREk4Y0De863QloG8Yr07JaAJCurDgpz9H7g-926gZYa_BjVE5uox3yLjIoK_9-8baXm3AvactpXYls8OpoEMOPCdIoB5s0OKc8hCnJqqlLQWqawRd_Tvo94leyGXh5BFTK-ZqovLbpgasZK0kzc28OnI4hpQjmASFyLljOBUsi5Fxwxtk_uLajmoPP_7Huf6LXB1FvN_3ORpBpUM7l1anc7Xa8yhrJKa_Ln0_0uKo |
CODEN | IOVSDA |
CitedBy_id | crossref_primary_10_1146_annurev_vision_100419_111350 crossref_primary_10_1016_j_preteyeres_2020_100900 crossref_primary_10_18502_jovr_v18i1_12730 crossref_primary_10_1016_j_ophtha_2007_07_005 crossref_primary_10_1016_j_artmed_2019_02_006 crossref_primary_10_3389_fopht_2024_1368081 crossref_primary_10_1038_s41598_018_38136_8 crossref_primary_10_4274_tjo_galenos_2021_29726 crossref_primary_10_1142_S0219519408002504 crossref_primary_10_1097_IJG_0b013e318237c878 crossref_primary_10_1016_j_media_2021_102130 crossref_primary_10_1016_j_ajo_2016_11_001 crossref_primary_10_1136_bjophthalmol_2015_307313 crossref_primary_10_3129_i09_020 crossref_primary_10_1097_OPX_0b013e31822f4b82 crossref_primary_10_1097_01_opx_0000225893_38212_07 crossref_primary_10_1007_s00521_022_06920_3 crossref_primary_10_1371_journal_pone_0190621 crossref_primary_10_5301_ejo_5000183 crossref_primary_10_1371_journal_pone_0085941 crossref_primary_10_1016_j_ajo_2020_03_024 crossref_primary_10_3341_jkos_2014_55_6_860 crossref_primary_10_1088_0967_3334_31_6_004 crossref_primary_10_1016_j_compmedimag_2020_101818 crossref_primary_10_3109_08820538_2013_810277 crossref_primary_10_1155_2018_6581846 crossref_primary_10_1016_j_jfo_2018_11_013 crossref_primary_10_1167_iovs_65_8_15 crossref_primary_10_1186_s12938_023_01187_8 crossref_primary_10_1097_IJG_0b013e3182594f42 crossref_primary_10_1016_j_heares_2019_07_003 crossref_primary_10_1007_s10462_024_11067_9 crossref_primary_10_1016_j_ajo_2020_04_037 crossref_primary_10_1007_s11042_023_16129_8 crossref_primary_10_1038_s41598_020_79494_6 crossref_primary_10_3341_jkos_2010_51_1_63 crossref_primary_10_4015_S1016237222500429 crossref_primary_10_3341_kjo_2016_30_6_451 crossref_primary_10_1016_j_ogla_2022_03_001 crossref_primary_10_3341_jkos_2010_51_9_1250 crossref_primary_10_3390_diagnostics14040349 crossref_primary_10_1016_j_bspc_2021_103192 crossref_primary_10_1371_journal_pone_0106117 crossref_primary_10_1016_j_ajo_2021_11_008 crossref_primary_10_1038_s41598_023_27783_1 crossref_primary_10_1016_j_aopr_2022_100078 crossref_primary_10_1016_j_jfo_2021_11_002 crossref_primary_10_1167_tvst_9_2_55 crossref_primary_10_1086_715518 crossref_primary_10_1167_tvst_10_13_28 crossref_primary_10_1364_BOE_5_000348 crossref_primary_10_1080_03772063_2022_2043783 crossref_primary_10_1038_s41433_024_03026_z crossref_primary_10_1016_j_jbi_2015_09_019 crossref_primary_10_1016_j_preteyeres_2006_03_001 crossref_primary_10_1186_1471_2415_11_20 crossref_primary_10_1097_IJG_0b013e31802b34e4 crossref_primary_10_3389_fnagi_2020_572337 crossref_primary_10_1016_j_ajo_2009_05_030 crossref_primary_10_1097_IAE_0000000000000028 crossref_primary_10_1097_ICU_0000000000000552 crossref_primary_10_1088_1361_6560_ad0520 crossref_primary_10_1167_tvst_9_2_42 crossref_primary_10_1016_j_ophtha_2011_12_014 crossref_primary_10_1016_j_ophtha_2012_01_046 crossref_primary_10_3390_diagnostics12020391 crossref_primary_10_4018_IJSIR_309940 crossref_primary_10_1117_1_JMI_4_4_041306 crossref_primary_10_3341_jkos_2009_50_3_418 crossref_primary_10_1016_j_ophtha_2012_12_014 crossref_primary_10_1097_OPX_0b013e3181783ab6 crossref_primary_10_1016_j_ophtha_2008_01_011 crossref_primary_10_1136_bjophthalmol_2019_315016 crossref_primary_10_1117_1_JMI_6_1_014002 crossref_primary_10_1016_j_ajo_2018_10_007 crossref_primary_10_1080_08820538_2018_1551496 crossref_primary_10_1364_AO_455626 crossref_primary_10_1016_j_xops_2023_100300 crossref_primary_10_1142_S0219519419500659 crossref_primary_10_1142_S0219519419400116 crossref_primary_10_1016_j_ophtha_2006_11_036 crossref_primary_10_1016_j_acra_2019_06_018 crossref_primary_10_1136_bmjopen_2013_003114 crossref_primary_10_1155_2022_5212128 crossref_primary_10_1097_OPX_0000000000000241 crossref_primary_10_1016_j_cmpb_2016_03_011 crossref_primary_10_1016_j_ophtha_2017_06_002 crossref_primary_10_1111_cxo_12847 crossref_primary_10_1136_bjophthalmol_2019_315600 crossref_primary_10_1177_112067210801800610 crossref_primary_10_1002_jemt_23094 crossref_primary_10_1097_IJG_0b013e318220dbb7 crossref_primary_10_1097_IJG_0b013e318032e4d4 crossref_primary_10_3390_bioengineering11060577 crossref_primary_10_1155_2013_789129 crossref_primary_10_3233_JIFS_219400 crossref_primary_10_1159_000525929 crossref_primary_10_1016_j_cmpb_2016_03_018 crossref_primary_10_1080_08820538_2017_1332233 crossref_primary_10_1155_2016_8503859 crossref_primary_10_1136_bjophthalmol_2020_316274 crossref_primary_10_1586_eop_10_33 crossref_primary_10_3390_diagnostics11091718 crossref_primary_10_3390_bioengineering11020122 crossref_primary_10_1016_j_survophthal_2008_08_003 crossref_primary_10_1007_s10792_021_01931_w crossref_primary_10_3341_kjo_2012_26_1_32 crossref_primary_10_1016_j_ophtha_2008_12_045 crossref_primary_10_5301_ejo_5000167 crossref_primary_10_1016_j_exer_2011_05_004 crossref_primary_10_1016_j_ogla_2020_08_002 crossref_primary_10_1111_j_1444_0938_2011_00654_x crossref_primary_10_1093_bmb_ldaa012 crossref_primary_10_1038_s41598_022_12147_y crossref_primary_10_1111_j_1755_3768_2009_01784_x crossref_primary_10_1097_IJG_0000000000000046 crossref_primary_10_1167_iovs_65_11_16 crossref_primary_10_3390_app9142789 crossref_primary_10_1016_j_ajo_2021_12_008 crossref_primary_10_1016_j_compbiomed_2022_105471 crossref_primary_10_1001_jamaophthalmol_2023_1717 crossref_primary_10_1038_s42003_023_04918_8 crossref_primary_10_1111_aos_12156 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1167/iovs.05-0366 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1552-5783 |
EndPage | 4152 |
ExternalDocumentID | PMC1941765 16249492 17223082 10_1167_iovs_05_0366 www46_11_4147 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY013178 – fundername: NEI NIH HHS grantid: P30-EY13078 – fundername: NEI NIH HHS grantid: R01-EY13178 – fundername: NEI NIH HHS grantid: P30 EY013078 |
GroupedDBID | - 2WC 34G 39C 53G 55 5GY 5RE ABFLS ACNCT ADACO ADBBV AENEX AFFNX AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GJ GROUPED_DOAJ GX1 H13 N9A OK1 P2P RHF SJN TRV WH7 WOQ WOW X7M ZA5 ZGI ZXP --- .55 .GJ 18M AAYXX ACGFO AFOSN CITATION TR2 W8F AI. IQODW RPM VH1 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c510t-9f997d955db4c8a25ab955f554f4a4f70c080884bbcb5e98246f9275ee0b36403 |
ISSN | 0146-0404 1552-5783 |
IngestDate | Thu Aug 21 17:42:36 EDT 2025 Fri Jul 11 09:46:51 EDT 2025 Fri May 30 11:00:31 EDT 2025 Wed Apr 02 07:26:03 EDT 2025 Tue Jul 01 02:53:00 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Tue Nov 10 19:47:51 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Learning Glaucoma Protozoa Eye disease Optical coherence tomography Glaucoma (eye) Ciliata Ophthalmology Medical screening Detection |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c510t-9f997d955db4c8a25ab955f554f4a4f70c080884bbcb5e98246f9275ee0b36403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors shared in equal part in preparation of the manuscript. |
OpenAccessLink | http://doi.org/10.1167/iovs.05-0366 |
PMID | 16249492 |
PQID | 68735071 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1941765 proquest_miscellaneous_68735071 pubmed_primary_16249492 pascalfrancis_primary_17223082 crossref_primary_10_1167_iovs_05_0366 crossref_citationtrail_10_1167_iovs_05_0366 highwire_smallpub1_www46_11_4147 |
ProviderPackageCode | RHF CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-11-01 |
PublicationDateYYYYMMDD | 2005-11-01 |
PublicationDate_xml | – month: 11 year: 2005 text: 2005-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Investigative ophthalmology & visual science |
PublicationTitleAlternate | Invest Ophthalmol Vis Sci |
PublicationYear | 2005 |
Publisher | ARVO Association for Research in Vision and Ophtalmology |
Publisher_xml | – name: ARVO – name: Association for Research in Vision and Ophtalmology |
SSID | ssj0021120 |
Score | 2.2606974 |
Snippet | Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis.... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4147 |
SubjectTerms | Adult Aged Aged, 80 and over Biological and medical sciences Cross-Sectional Studies Diagnostic Techniques, Ophthalmological - classification Eye and associated structures. Visual pathways and centers. Vision Female Fundamental and applied biological sciences. Psychology Glaucoma and intraocular pressure Glaucoma, Open-Angle - classification Glaucoma, Open-Angle - diagnosis Humans Intraocular Pressure Male Medical sciences Middle Aged Nerve Fibers - parasitology Neural Networks, Computer Ophthalmology Optic Nerve Diseases - diagnosis Pilot Projects Reproducibility of Results Retinal Ganglion Cells - parasitology ROC Curve Sensitivity and Specificity Tomography, Optical Coherence - classification Vertebrates: nervous system and sense organs |
Title | Optical Coherence Tomography Machine Learning Classifiers for Glaucoma Detection: A Preliminary Study |
URI | http://www.iovs.org/cgi/content/abstract/46/11/4147 https://www.ncbi.nlm.nih.gov/pubmed/16249492 https://www.proquest.com/docview/68735071 https://pubmed.ncbi.nlm.nih.gov/PMC1941765 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj5swELbSrVT1UvXd9LH1oT1FbAMYA731ke223cclkaJekA2mYUsgCpBo--s7BhtIm6qPC0qIIYjvY5ixZ75B6IVvExaFoWWEggqDSL1PHrvE8BhxQpntHtW6BWfn9GRGPs2d-WCw6mUtVSU_Cr_vrSv5H1RhH-Aqq2T_Adn2pLADPgO-sAWEYftXGF-sSiXwsVBqsWW-VBrUo2WdJil0X4ivo1A6ykkse1_XyYXgOFdwVWwUibJOyMqayufVWqR1r6_1VU999lKnvLe6HBsxyuGOLli6bIScJIs2SVHpOsuONG8rWfJZfLsyJmnCinoq58sm6V4JwMZC9938wKKkyzqoGkax7DJhebcqtVQLXs0Khspb1rMXjirj609oUgMMCelbZDUpqZhn9uwrMRt9zl8NP5VLz0m-KY5kNqJN9-hrn18Ex7PT02A6mU-voesWBBay58X7j5_bEN1UQp76qnSpBHVf9c-968RoYWmZV8sKgD1ueqLsC1p-zr3tOTPT2-iWikLwm4ZSd9BAZHfRjTOVZ3EPCcUs3DILd8zCillYMwv3mIWBWVgzC7fMeo0Z7vEK17y6j2bHk-m7E0M15DBCMN2l4cfwLEe-40SchB6zHMbhSwweaUwYid2xlK33PMJ5yB3hexahsW-5jhBjblMyth-ggyzPxCOEqe85sRX5nEY-EdTmMbOsWDrXoePa3B6ikb7DQajU6mXTlDSoo1bqBhKPYOwEEo8hetmOXjUqLb8ZhzVYQbFkaQpYmMF2uyUUBgeSXUN0uANidz5gi9R2GqLnGtUATLFcX2OZyKsioJ5ry_BqiB42GHfHUkuqQMGx7g767QAp8r77S5YsarF30yemS53Hf_zXJ-hm94A9RQfluhLPwGEu-WHN8R9EWctX |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+coherence+tomography+machine+learning+classifiers+for+glaucoma+detection%3A+a+preliminary+study&rft.jtitle=Investigative+ophthalmology+%26+visual+science&rft.au=Burgansky-Eliash%2C+Zvia&rft.au=Wollstein%2C+Gadi&rft.au=Chu%2C+Tianjiao&rft.au=Ramsey%2C+Joseph+D&rft.date=2005-11-01&rft.issn=0146-0404&rft.volume=46&rft.issue=11&rft.spage=4147&rft_id=info:doi/10.1167%2Fiovs.05-0366&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-0404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-0404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-0404&client=summon |