Optical Coherence Tomography Machine Learning Classifiers for Glaucoma Detection: A Preliminary Study

Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection....

Full description

Saved in:
Bibliographic Details
Published inInvestigative ophthalmology & visual science Vol. 46; no. 11; pp. 4147 - 4152
Main Authors Burgansky-Eliash, Zvia, Wollstein, Gadi, Chu, Tianjiao, Ramsey, Joseph D, Glymour, Clark, Noecker, Robert J, Ishikawa, Hiroshi, Schuman, Joel S
Format Journal Article
LanguageEnglish
Published Rockville, MD ARVO 01.11.2005
Association for Research in Vision and Ophtalmology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection. Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] > or = -6 dB) and 20 had advanced glaucoma (MD < -6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated. The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854). Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality.
AbstractList Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection. Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] > or = -6 dB) and 20 had advanced glaucoma (MD < -6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated. The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854). Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality.
Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection.PURPOSEMachine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection.Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] > or = -6 dB) and 20 had advanced glaucoma (MD < -6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated.METHODSForty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] > or = -6 dB) and 20 had advanced glaucoma (MD < -6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated.The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854).RESULTSThe largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854).Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality.CONCLUSIONSAutomated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality.
Author Noecker, Robert J
Burgansky-Eliash, Zvia
Chu, Tianjiao
Schuman, Joel S
Wollstein, Gadi
Ramsey, Joseph D
Ishikawa, Hiroshi
Glymour, Clark
AuthorAffiliation 3 Institute for Human and Machine Cognition, Pensacola, Florida
4 Department of Philosophy, Carnegie Mellon University, Pittsburgh, Pennsylvania
1 UPMC Eye Center, Ophthalmology and Visual Science Research Center, Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
AuthorAffiliation_xml – name: 1 UPMC Eye Center, Ophthalmology and Visual Science Research Center, Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
– name: 3 Institute for Human and Machine Cognition, Pensacola, Florida
– name: 4 Department of Philosophy, Carnegie Mellon University, Pittsburgh, Pennsylvania
Author_xml – sequence: 1
  fullname: Burgansky-Eliash, Zvia
– sequence: 2
  fullname: Wollstein, Gadi
– sequence: 3
  fullname: Chu, Tianjiao
– sequence: 4
  fullname: Ramsey, Joseph D
– sequence: 5
  fullname: Glymour, Clark
– sequence: 6
  fullname: Noecker, Robert J
– sequence: 7
  fullname: Ishikawa, Hiroshi
– sequence: 8
  fullname: Schuman, Joel S
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17223082$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16249492$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9vFCEcxYmpsdvqzbPhol6cCgzMDw8mzbZWkzU1sZ4Jw37ZwTCwwkw3-9_LZFerJp4I4fPe98t7Z-jEBw8IPafkgtKqfmvDfbogoiBlVT1CCyoEK0TdlCdoQSivCsIJP0VnKX0nhFHKyBN0SivGW96yBYLb7Wi1cngZeojgNeC7MIRNVNt-jz8r3VsPeAUqeus3eOlUStZYiAmbEPGNU5MOg8JXMIIebfDv8CX-EsHZwXoV9_jrOK33T9Fjo1yCZ8fzHH37cH23_Fisbm8-LS9XhRaUjEVr2rZet0KsO64bxYTq8sUIwQ1X3NREk4Y0De863QloG8Yr07JaAJCurDgpz9H7g-926gZYa_BjVE5uox3yLjIoK_9-8baXm3AvactpXYls8OpoEMOPCdIoB5s0OKc8hCnJqqlLQWqawRd_Tvo94leyGXh5BFTK-ZqovLbpgasZK0kzc28OnI4hpQjmASFyLljOBUsi5Fxwxtk_uLajmoPP_7Huf6LXB1FvN_3ORpBpUM7l1anc7Xa8yhrJKa_Ln0_0uKo
CODEN IOVSDA
CitedBy_id crossref_primary_10_1146_annurev_vision_100419_111350
crossref_primary_10_1016_j_preteyeres_2020_100900
crossref_primary_10_18502_jovr_v18i1_12730
crossref_primary_10_1016_j_ophtha_2007_07_005
crossref_primary_10_1016_j_artmed_2019_02_006
crossref_primary_10_3389_fopht_2024_1368081
crossref_primary_10_1038_s41598_018_38136_8
crossref_primary_10_4274_tjo_galenos_2021_29726
crossref_primary_10_1142_S0219519408002504
crossref_primary_10_1097_IJG_0b013e318237c878
crossref_primary_10_1016_j_media_2021_102130
crossref_primary_10_1016_j_ajo_2016_11_001
crossref_primary_10_1136_bjophthalmol_2015_307313
crossref_primary_10_3129_i09_020
crossref_primary_10_1097_OPX_0b013e31822f4b82
crossref_primary_10_1097_01_opx_0000225893_38212_07
crossref_primary_10_1007_s00521_022_06920_3
crossref_primary_10_1371_journal_pone_0190621
crossref_primary_10_5301_ejo_5000183
crossref_primary_10_1371_journal_pone_0085941
crossref_primary_10_1016_j_ajo_2020_03_024
crossref_primary_10_3341_jkos_2014_55_6_860
crossref_primary_10_1088_0967_3334_31_6_004
crossref_primary_10_1016_j_compmedimag_2020_101818
crossref_primary_10_3109_08820538_2013_810277
crossref_primary_10_1155_2018_6581846
crossref_primary_10_1016_j_jfo_2018_11_013
crossref_primary_10_1167_iovs_65_8_15
crossref_primary_10_1186_s12938_023_01187_8
crossref_primary_10_1097_IJG_0b013e3182594f42
crossref_primary_10_1016_j_heares_2019_07_003
crossref_primary_10_1007_s10462_024_11067_9
crossref_primary_10_1016_j_ajo_2020_04_037
crossref_primary_10_1007_s11042_023_16129_8
crossref_primary_10_1038_s41598_020_79494_6
crossref_primary_10_3341_jkos_2010_51_1_63
crossref_primary_10_4015_S1016237222500429
crossref_primary_10_3341_kjo_2016_30_6_451
crossref_primary_10_1016_j_ogla_2022_03_001
crossref_primary_10_3341_jkos_2010_51_9_1250
crossref_primary_10_3390_diagnostics14040349
crossref_primary_10_1016_j_bspc_2021_103192
crossref_primary_10_1371_journal_pone_0106117
crossref_primary_10_1016_j_ajo_2021_11_008
crossref_primary_10_1038_s41598_023_27783_1
crossref_primary_10_1016_j_aopr_2022_100078
crossref_primary_10_1016_j_jfo_2021_11_002
crossref_primary_10_1167_tvst_9_2_55
crossref_primary_10_1086_715518
crossref_primary_10_1167_tvst_10_13_28
crossref_primary_10_1364_BOE_5_000348
crossref_primary_10_1080_03772063_2022_2043783
crossref_primary_10_1038_s41433_024_03026_z
crossref_primary_10_1016_j_jbi_2015_09_019
crossref_primary_10_1016_j_preteyeres_2006_03_001
crossref_primary_10_1186_1471_2415_11_20
crossref_primary_10_1097_IJG_0b013e31802b34e4
crossref_primary_10_3389_fnagi_2020_572337
crossref_primary_10_1016_j_ajo_2009_05_030
crossref_primary_10_1097_IAE_0000000000000028
crossref_primary_10_1097_ICU_0000000000000552
crossref_primary_10_1088_1361_6560_ad0520
crossref_primary_10_1167_tvst_9_2_42
crossref_primary_10_1016_j_ophtha_2011_12_014
crossref_primary_10_1016_j_ophtha_2012_01_046
crossref_primary_10_3390_diagnostics12020391
crossref_primary_10_4018_IJSIR_309940
crossref_primary_10_1117_1_JMI_4_4_041306
crossref_primary_10_3341_jkos_2009_50_3_418
crossref_primary_10_1016_j_ophtha_2012_12_014
crossref_primary_10_1097_OPX_0b013e3181783ab6
crossref_primary_10_1016_j_ophtha_2008_01_011
crossref_primary_10_1136_bjophthalmol_2019_315016
crossref_primary_10_1117_1_JMI_6_1_014002
crossref_primary_10_1016_j_ajo_2018_10_007
crossref_primary_10_1080_08820538_2018_1551496
crossref_primary_10_1364_AO_455626
crossref_primary_10_1016_j_xops_2023_100300
crossref_primary_10_1142_S0219519419500659
crossref_primary_10_1142_S0219519419400116
crossref_primary_10_1016_j_ophtha_2006_11_036
crossref_primary_10_1016_j_acra_2019_06_018
crossref_primary_10_1136_bmjopen_2013_003114
crossref_primary_10_1155_2022_5212128
crossref_primary_10_1097_OPX_0000000000000241
crossref_primary_10_1016_j_cmpb_2016_03_011
crossref_primary_10_1016_j_ophtha_2017_06_002
crossref_primary_10_1111_cxo_12847
crossref_primary_10_1136_bjophthalmol_2019_315600
crossref_primary_10_1177_112067210801800610
crossref_primary_10_1002_jemt_23094
crossref_primary_10_1097_IJG_0b013e318220dbb7
crossref_primary_10_1097_IJG_0b013e318032e4d4
crossref_primary_10_3390_bioengineering11060577
crossref_primary_10_1155_2013_789129
crossref_primary_10_3233_JIFS_219400
crossref_primary_10_1159_000525929
crossref_primary_10_1016_j_cmpb_2016_03_018
crossref_primary_10_1080_08820538_2017_1332233
crossref_primary_10_1155_2016_8503859
crossref_primary_10_1136_bjophthalmol_2020_316274
crossref_primary_10_1586_eop_10_33
crossref_primary_10_3390_diagnostics11091718
crossref_primary_10_3390_bioengineering11020122
crossref_primary_10_1016_j_survophthal_2008_08_003
crossref_primary_10_1007_s10792_021_01931_w
crossref_primary_10_3341_kjo_2012_26_1_32
crossref_primary_10_1016_j_ophtha_2008_12_045
crossref_primary_10_5301_ejo_5000167
crossref_primary_10_1016_j_exer_2011_05_004
crossref_primary_10_1016_j_ogla_2020_08_002
crossref_primary_10_1111_j_1444_0938_2011_00654_x
crossref_primary_10_1093_bmb_ldaa012
crossref_primary_10_1038_s41598_022_12147_y
crossref_primary_10_1111_j_1755_3768_2009_01784_x
crossref_primary_10_1097_IJG_0000000000000046
crossref_primary_10_1167_iovs_65_11_16
crossref_primary_10_3390_app9142789
crossref_primary_10_1016_j_ajo_2021_12_008
crossref_primary_10_1016_j_compbiomed_2022_105471
crossref_primary_10_1001_jamaophthalmol_2023_1717
crossref_primary_10_1038_s42003_023_04918_8
crossref_primary_10_1111_aos_12156
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright_xml – notice: 2005 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1167/iovs.05-0366
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1552-5783
EndPage 4152
ExternalDocumentID PMC1941765
16249492
17223082
10_1167_iovs_05_0366
www46_11_4147
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY013178
– fundername: NEI NIH HHS
  grantid: P30-EY13078
– fundername: NEI NIH HHS
  grantid: R01-EY13178
– fundername: NEI NIH HHS
  grantid: P30 EY013078
GroupedDBID -
2WC
34G
39C
53G
55
5GY
5RE
ABFLS
ACNCT
ADACO
ADBBV
AENEX
AFFNX
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GJ
GROUPED_DOAJ
GX1
H13
N9A
OK1
P2P
RHF
SJN
TRV
WH7
WOQ
WOW
X7M
ZA5
ZGI
ZXP
---
.55
.GJ
18M
AAYXX
ACGFO
AFOSN
CITATION
TR2
W8F
AI.
IQODW
RPM
VH1
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c510t-9f997d955db4c8a25ab955f554f4a4f70c080884bbcb5e98246f9275ee0b36403
ISSN 0146-0404
1552-5783
IngestDate Thu Aug 21 17:42:36 EDT 2025
Fri Jul 11 09:46:51 EDT 2025
Fri May 30 11:00:31 EDT 2025
Wed Apr 02 07:26:03 EDT 2025
Tue Jul 01 02:53:00 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Tue Nov 10 19:47:51 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Learning
Glaucoma
Protozoa
Eye disease
Optical coherence tomography
Glaucoma (eye)
Ciliata
Ophthalmology
Medical screening
Detection
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c510t-9f997d955db4c8a25ab955f554f4a4f70c080884bbcb5e98246f9275ee0b36403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors shared in equal part in preparation of the manuscript.
OpenAccessLink http://doi.org/10.1167/iovs.05-0366
PMID 16249492
PQID 68735071
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1941765
proquest_miscellaneous_68735071
pubmed_primary_16249492
pascalfrancis_primary_17223082
crossref_primary_10_1167_iovs_05_0366
crossref_citationtrail_10_1167_iovs_05_0366
highwire_smallpub1_www46_11_4147
ProviderPackageCode RHF
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-11-01
PublicationDateYYYYMMDD 2005-11-01
PublicationDate_xml – month: 11
  year: 2005
  text: 2005-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Investigative ophthalmology & visual science
PublicationTitleAlternate Invest Ophthalmol Vis Sci
PublicationYear 2005
Publisher ARVO
Association for Research in Vision and Ophtalmology
Publisher_xml – name: ARVO
– name: Association for Research in Vision and Ophtalmology
SSID ssj0021120
Score 2.2606974
Snippet Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis....
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4147
SubjectTerms Adult
Aged
Aged, 80 and over
Biological and medical sciences
Cross-Sectional Studies
Diagnostic Techniques, Ophthalmological - classification
Eye and associated structures. Visual pathways and centers. Vision
Female
Fundamental and applied biological sciences. Psychology
Glaucoma and intraocular pressure
Glaucoma, Open-Angle - classification
Glaucoma, Open-Angle - diagnosis
Humans
Intraocular Pressure
Male
Medical sciences
Middle Aged
Nerve Fibers - parasitology
Neural Networks, Computer
Ophthalmology
Optic Nerve Diseases - diagnosis
Pilot Projects
Reproducibility of Results
Retinal Ganglion Cells - parasitology
ROC Curve
Sensitivity and Specificity
Tomography, Optical Coherence - classification
Vertebrates: nervous system and sense organs
Title Optical Coherence Tomography Machine Learning Classifiers for Glaucoma Detection: A Preliminary Study
URI http://www.iovs.org/cgi/content/abstract/46/11/4147
https://www.ncbi.nlm.nih.gov/pubmed/16249492
https://www.proquest.com/docview/68735071
https://pubmed.ncbi.nlm.nih.gov/PMC1941765
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj5swELbSrVT1UvXd9LH1oT1FbAMYA731ke223cclkaJekA2mYUsgCpBo--s7BhtIm6qPC0qIIYjvY5ixZ75B6IVvExaFoWWEggqDSL1PHrvE8BhxQpntHtW6BWfn9GRGPs2d-WCw6mUtVSU_Cr_vrSv5H1RhH-Aqq2T_Adn2pLADPgO-sAWEYftXGF-sSiXwsVBqsWW-VBrUo2WdJil0X4ivo1A6ykkse1_XyYXgOFdwVWwUibJOyMqayufVWqR1r6_1VU999lKnvLe6HBsxyuGOLli6bIScJIs2SVHpOsuONG8rWfJZfLsyJmnCinoq58sm6V4JwMZC9938wKKkyzqoGkax7DJhebcqtVQLXs0Khspb1rMXjirj609oUgMMCelbZDUpqZhn9uwrMRt9zl8NP5VLz0m-KY5kNqJN9-hrn18Ex7PT02A6mU-voesWBBay58X7j5_bEN1UQp76qnSpBHVf9c-968RoYWmZV8sKgD1ueqLsC1p-zr3tOTPT2-iWikLwm4ZSd9BAZHfRjTOVZ3EPCcUs3DILd8zCillYMwv3mIWBWVgzC7fMeo0Z7vEK17y6j2bHk-m7E0M15DBCMN2l4cfwLEe-40SchB6zHMbhSwweaUwYid2xlK33PMJ5yB3hexahsW-5jhBjblMyth-ggyzPxCOEqe85sRX5nEY-EdTmMbOsWDrXoePa3B6ikb7DQajU6mXTlDSoo1bqBhKPYOwEEo8hetmOXjUqLb8ZhzVYQbFkaQpYmMF2uyUUBgeSXUN0uANidz5gi9R2GqLnGtUATLFcX2OZyKsioJ5ry_BqiB42GHfHUkuqQMGx7g767QAp8r77S5YsarF30yemS53Hf_zXJ-hm94A9RQfluhLPwGEu-WHN8R9EWctX
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+coherence+tomography+machine+learning+classifiers+for+glaucoma+detection%3A+a+preliminary+study&rft.jtitle=Investigative+ophthalmology+%26+visual+science&rft.au=Burgansky-Eliash%2C+Zvia&rft.au=Wollstein%2C+Gadi&rft.au=Chu%2C+Tianjiao&rft.au=Ramsey%2C+Joseph+D&rft.date=2005-11-01&rft.issn=0146-0404&rft.volume=46&rft.issue=11&rft.spage=4147&rft_id=info:doi/10.1167%2Fiovs.05-0366&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-0404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-0404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-0404&client=summon