D1-D5-P superstrata in 5 and 6 dimensions: separable wave equations and prepotentials
A bstract We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS 3 × 𝕊 2 5-dimensional superstrata have been produced, giving microstate geometr...
Saved in:
Published in | The journal of high energy physics Vol. 2019; no. 9; pp. 1 - 30 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2019
Springer Nature B.V Springer Berlin SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS
3
× 𝕊
2
5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS
2
× 𝕊
3
geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A ℤ
2
symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well. |
---|---|
AbstractList | We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS3 × ð*2 5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS2 × ð*3 geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A ℤ2 symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well. A bstract We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS 3 × 𝕊 2 5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS 2 × 𝕊 3 geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A ℤ 2 symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well. Abstract We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS3 × 𝕊2 5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS2 × 𝕊3 geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A ℤ2 symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well. We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS3 × $\mathbb{S}$2 5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS2 × $\mathbb{S}$3 geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A $\mathbb{Z}$2 symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well.l. We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS 3 × 2 5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS 2 × 3 geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A ℤ 2 symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well. |
ArticleNumber | 117 |
Author | Walker, Robert |
Author_xml | – sequence: 1 givenname: Robert orcidid: 0000-0003-2637-0061 surname: Walker fullname: Walker, Robert email: walkerra@usc.edu organization: Department of Physics and Astronomy, University of Southern California |
BackLink | https://www.osti.gov/servlets/purl/1611650$$D View this record in Osti.gov |
BookMark | eNp1kc1vFSEUxSemJrbVtVuiG12M5cKDGdyZftiaJnZh14SPO5WXV5gCT-N_X94bjcakq0vgd0645xx1BzFF7LrXQD8ApcPJl8vzG6reMQrqPcDwrDsEylQ_rgZ18M_5RXdUyppSEKDoYXd7Bv2Z6G9I2c6YS82mGhIiEcRETyTx4R5jCSmWj6TgbLKxGyQ_zQ8k-LA1dfeyR-eMc6oYazCb8rJ7PrWBr37P4-724vzb6WV__fXz1emn694JoLVXXE12pSQb1OTHgfrJWmAMUJkBxDBy7zlX3LX9hDLjSL0UkknVmEFaDvy4u1p8fTJrPedwb_IvnUzQ-4uU77TJNbgNas6ZdcLR1TixFUNpvZ9aJpOzFAAta15vFq9UatDFhYruu0sxoqsaJIAUtEFvF2jO6WGLpep12ubYdtSM05bqKMTYKLFQLqdSMk66ue2zavmGjQaqd5XppTK9q0y3ypru5D_dn5WeVtBFURoZ7zD__c9TkkeVkaXn |
CitedBy_id | crossref_primary_10_1007_JHEP07_2021_008 crossref_primary_10_1007_s10714_020_02698_8 crossref_primary_10_1007_JHEP04_2021_112 crossref_primary_10_1007_JHEP03_2025_120 crossref_primary_10_1007_s10714_020_02769_w crossref_primary_10_1007_JHEP10_2020_030 crossref_primary_10_1007_JHEP03_2023_145 crossref_primary_10_1007_JHEP02_2020_192 crossref_primary_10_1007_JHEP04_2022_065 crossref_primary_10_1007_JHEP06_2020_181 |
Cites_doi | 10.1007/JHEP04(2019)126 10.1007/JHEP05(2016)064 10.1007/JHEP11(2017)021 10.1103/PhysRevD.99.066009 10.1007/JHEP10(2011)116 10.1007/JHEP05(2015)110 10.1103/PhysRevD.77.125025 10.1007/JHEP03(2019)095 10.1007/JHEP06(2017)137 10.1007/JHEP10(2013)137 10.1088/1126-6708/2008/07/019 10.1007/s10714-019-2566-6 10.1016/0370-2693(96)00345-0 10.1007/JHEP07(2019)171 10.1088/1361-6382/ab01bc 10.1088/1361-6382/aaf133 10.1103/PhysRevLett.117.201601 10.1103/PhysRevD.74.066001 10.1007/JHEP02(2018)122 10.1007/978-3-540-79523-0_1 10.1088/1126-6708/2006/06/007 10.1088/1126-6708/2006/11/042 10.1007/JHEP12(2018)028 10.1007/JHEP02(2018)014 10.1088/0264-9381/31/16/165015 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
CorporateAuthor | Univ. of Southern California, Los Angeles, CA (United States) |
CorporateAuthor_xml | – name: Univ. of Southern California, Los Angeles, CA (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI DOA |
DOI | 10.1007/JHEP09(2019)117 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection (ProQuest) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 30 |
ExternalDocumentID | oai_doaj_org_article_332bc5c048f242e6bddf029fcb011eb2 1611650 10_1007_JHEP09_2019_117 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS AAYZJ AHBXF OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c510t-939fb496279fd870dfbb1221e9a715783dd3393c10059a880d65626912276b313 |
IEDL.DBID | C6C |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:29:51 EDT 2025 Mon Jul 10 02:31:52 EDT 2023 Fri Jul 25 04:02:15 EDT 2025 Tue Jul 01 03:54:46 EDT 2025 Thu Apr 24 22:57:34 EDT 2025 Fri Feb 21 02:33:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Black Holes in String Theory AdS-CFT Correspondence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c510t-939fb496279fd870dfbb1221e9a715783dd3393c10059a880d65626912276b313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0011687; 787320 USDOE Office of Science (SC) |
ORCID | 0000-0003-2637-0061 0000000326370061 |
OpenAccessLink | https://doi.org/10.1007/JHEP09(2019)117 |
PQID | 2300018558 |
PQPubID | 2034718 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_332bc5c048f242e6bddf029fcb011eb2 osti_scitechconnect_1611650 proquest_journals_2300018558 crossref_citationtrail_10_1007_JHEP09_2019_117 crossref_primary_10_1007_JHEP09_2019_117 springer_journals_10_1007_JHEP09_2019_117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Berlin SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Berlin – name: SpringerOpen |
References | S. Raju and P. Shrivastava, Critique of the fuzzball program, Phys. Rev.D 99 (2019) 066009 [arXiv:1804.10616] [INSPIRE]. I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev.D 74 (2006) 066001 [hep-th/0505166] [INSPIRE]. BakhshaeiElahehBombiniAlessandroThree-charge superstrata with internal excitationsClassical and Quantum Gravity20193650550012019CQGra..36e5001B391963010.1088/1361-6382/ab01bc I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP11 (2006) 042 [hep-th/0608217] [INSPIRE]. J. Garcia i Tormo and M. Taylor, One point functions for black hole microstates, Gen. Rel. Grav.51 (2019) 89 [arXiv:1904.10200] [INSPIRE]. I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, Double Supertube Bubble, JHEP10 (2011) 116 [arXiv:1107.2650] [INSPIRE]. I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett.117 (2016) 201601 [arXiv:1607.03908] [INSPIRE]. S. Giusto, S. Rawash and D. Turton, Ads3holography at dimension two, JHEP07 (2019) 171 [arXiv:1904.12880] [INSPIRE]. I. Bena, N. Bobev and N.P. Warner, Spectral Flow and the Spectrum of Multi-Center Solutions, Phys. Rev.D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE]. A. Tyukov, R. Walker and N.P. Warner, Tidal Stresses and Energy Gaps in Microstate Geometries, JHEP02 (2018) 122 [arXiv:1710.09006] [INSPIRE]. I. Bena, P. Heidmann, R. Monten and N.P. Warner, Thermal Decay without Information Loss in Horizonless Microstate Geometries, arXiv:1905.05194 [INSPIRE]. TyukovAlexanderWalkerRobertWarnerNicholas PThe structure of BPS equations for ambi-polar microstate geometriesClassical and Quantum Gravity20183610150212019CQGra..36a5021T390412710.1088/1361-6382/aaf133 I. Bena, P. Heidmann and D. Turton, AdS2holography: mind the cap, JHEP12 (2018) 028 [arXiv:1806.02834] [INSPIRE]. I. Bena, E. Martinec, D. Turton and N.P. Warner, M-theory Superstrata and the MSW String, JHEP06 (2017) 137 [arXiv:1703.10171] [INSPIRE]. I. Bena, D. Turton, R. Walker and N.P. Warner, Integrability and Black-Hole Microstate Geometries, JHEP11 (2017) 021 [arXiv:1709.01107] [INSPIRE]. I. Bena, E.J. Martinec, R. Walker and N.P. Warner, Early Scrambling and Capped BTZ Geometries, JHEP04 (2019) 126 [arXiv:1812.05110] [INSPIRE]. N. Čeplak, R. Russo and M. Shigemori, Supercharging Superstrata, JHEP03 (2019) 095 [arXiv:1812.08761] [INSPIRE]. I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys.755 (2008) 1 [hep-th/0701216] [INSPIRE]. I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black ring microstates, JHEP07 (2008) 019 [arXiv:0706.3786] [INSPIRE]. J. Tian, J. Hou and B. Chen, Holographic Correlators on Integrable Superstrata, arXiv:1904.04532 [INSPIRE]. B.E. Niehoff and N.P. Warner, Doubly-Fluctuating BPS Solutions in Six Dimensions, JHEP10 (2013) 137 [arXiv:1303.5449] [INSPIRE]. StromingerAndrewVafaCumrunMicroscopic origin of the Bekenstein-Hawking entropyPhysics Letters B19963791-4991041996PhLB..379...99S139627010.1016/0370-2693(96)00345-0 I. Bena et al., Asymptotically-flat supergravity solutions deep inside the black-hole regime, JHEP02 (2018) 014 [arXiv:1711.10474] [INSPIRE]. I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum Fractionation on Superstrata, JHEP05 (2016) 064 [arXiv:1601.05805] [INSPIRE]. I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus Superstratum! A constructive proof of the existence of superstrata, JHEP05 (2015) 110 [arXiv:1503.01463] [INSPIRE]. P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP06 (2006) 007 [hep-th/0505167] [INSPIRE]. I. Bena, S.F. Ross and N.P. Warner, Coiffured Black Rings, Class. Quant. Grav.31 (2014) 165015 [arXiv:1405.5217] [INSPIRE]. P. Heidmann and N.P. Warner, Superstratum Symbiosis, arXiv:1903.07631 [INSPIRE]. Andrew Strominger (11300_CR2) 1996; 379 11300_CR11 11300_CR10 11300_CR13 11300_CR12 11300_CR15 11300_CR14 11300_CR28 Alexander Tyukov (11300_CR27) 2018; 36 11300_CR20 11300_CR22 11300_CR21 11300_CR24 11300_CR26 11300_CR25 11300_CR4 11300_CR17 11300_CR3 11300_CR16 11300_CR6 11300_CR19 Elaheh Bakhshaei (11300_CR23) 2019; 36 11300_CR5 11300_CR18 11300_CR8 11300_CR7 11300_CR9 11300_CR1 |
References_xml | – reference: TyukovAlexanderWalkerRobertWarnerNicholas PThe structure of BPS equations for ambi-polar microstate geometriesClassical and Quantum Gravity20183610150212019CQGra..36a5021T390412710.1088/1361-6382/aaf133 – reference: I. Bena, P. Heidmann and D. Turton, AdS2holography: mind the cap, JHEP12 (2018) 028 [arXiv:1806.02834] [INSPIRE]. – reference: I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum Fractionation on Superstrata, JHEP05 (2016) 064 [arXiv:1601.05805] [INSPIRE]. – reference: I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys.755 (2008) 1 [hep-th/0701216] [INSPIRE]. – reference: StromingerAndrewVafaCumrunMicroscopic origin of the Bekenstein-Hawking entropyPhysics Letters B19963791-4991041996PhLB..379...99S139627010.1016/0370-2693(96)00345-0 – reference: J. Garcia i Tormo and M. Taylor, One point functions for black hole microstates, Gen. Rel. Grav.51 (2019) 89 [arXiv:1904.10200] [INSPIRE]. – reference: S. Raju and P. Shrivastava, Critique of the fuzzball program, Phys. Rev.D 99 (2019) 066009 [arXiv:1804.10616] [INSPIRE]. – reference: I. Bena, S.F. Ross and N.P. Warner, Coiffured Black Rings, Class. Quant. Grav.31 (2014) 165015 [arXiv:1405.5217] [INSPIRE]. – reference: I. Bena, E.J. Martinec, R. Walker and N.P. Warner, Early Scrambling and Capped BTZ Geometries, JHEP04 (2019) 126 [arXiv:1812.05110] [INSPIRE]. – reference: I. Bena et al., Asymptotically-flat supergravity solutions deep inside the black-hole regime, JHEP02 (2018) 014 [arXiv:1711.10474] [INSPIRE]. – reference: P. Heidmann and N.P. Warner, Superstratum Symbiosis, arXiv:1903.07631 [INSPIRE]. – reference: I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus Superstratum! A constructive proof of the existence of superstrata, JHEP05 (2015) 110 [arXiv:1503.01463] [INSPIRE]. – reference: I. Bena, D. Turton, R. Walker and N.P. Warner, Integrability and Black-Hole Microstate Geometries, JHEP11 (2017) 021 [arXiv:1709.01107] [INSPIRE]. – reference: I. Bena, P. Heidmann, R. Monten and N.P. Warner, Thermal Decay without Information Loss in Horizonless Microstate Geometries, arXiv:1905.05194 [INSPIRE]. – reference: I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP11 (2006) 042 [hep-th/0608217] [INSPIRE]. – reference: B.E. Niehoff and N.P. Warner, Doubly-Fluctuating BPS Solutions in Six Dimensions, JHEP10 (2013) 137 [arXiv:1303.5449] [INSPIRE]. – reference: I. Bena, N. Bobev and N.P. Warner, Spectral Flow and the Spectrum of Multi-Center Solutions, Phys. Rev.D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE]. – reference: I. Bena, E. Martinec, D. Turton and N.P. Warner, M-theory Superstrata and the MSW String, JHEP06 (2017) 137 [arXiv:1703.10171] [INSPIRE]. – reference: S. Giusto, S. Rawash and D. Turton, Ads3holography at dimension two, JHEP07 (2019) 171 [arXiv:1904.12880] [INSPIRE]. – reference: BakhshaeiElahehBombiniAlessandroThree-charge superstrata with internal excitationsClassical and Quantum Gravity20193650550012019CQGra..36e5001B391963010.1088/1361-6382/ab01bc – reference: I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett.117 (2016) 201601 [arXiv:1607.03908] [INSPIRE]. – reference: I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black ring microstates, JHEP07 (2008) 019 [arXiv:0706.3786] [INSPIRE]. – reference: J. Tian, J. Hou and B. Chen, Holographic Correlators on Integrable Superstrata, arXiv:1904.04532 [INSPIRE]. – reference: I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev.D 74 (2006) 066001 [hep-th/0505166] [INSPIRE]. – reference: A. Tyukov, R. Walker and N.P. Warner, Tidal Stresses and Energy Gaps in Microstate Geometries, JHEP02 (2018) 122 [arXiv:1710.09006] [INSPIRE]. – reference: I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, Double Supertube Bubble, JHEP10 (2011) 116 [arXiv:1107.2650] [INSPIRE]. – reference: N. Čeplak, R. Russo and M. Shigemori, Supercharging Superstrata, JHEP03 (2019) 095 [arXiv:1812.08761] [INSPIRE]. – reference: P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP06 (2006) 007 [hep-th/0505167] [INSPIRE]. – ident: 11300_CR6 – ident: 11300_CR8 – ident: 11300_CR22 doi: 10.1007/JHEP04(2019)126 – ident: 11300_CR19 doi: 10.1007/JHEP05(2016)064 – ident: 11300_CR3 doi: 10.1007/JHEP11(2017)021 – ident: 11300_CR4 doi: 10.1103/PhysRevD.99.066009 – ident: 11300_CR9 doi: 10.1007/JHEP10(2011)116 – ident: 11300_CR10 doi: 10.1007/JHEP05(2015)110 – ident: 11300_CR25 doi: 10.1103/PhysRevD.77.125025 – ident: 11300_CR11 doi: 10.1007/JHEP03(2019)095 – ident: 11300_CR13 doi: 10.1007/JHEP06(2017)137 – ident: 11300_CR26 doi: 10.1007/JHEP10(2013)137 – ident: 11300_CR18 doi: 10.1088/1126-6708/2008/07/019 – ident: 11300_CR21 – ident: 11300_CR24 doi: 10.1007/s10714-019-2566-6 – volume: 379 start-page: 99 issue: 1-4 year: 1996 ident: 11300_CR2 publication-title: Physics Letters B doi: 10.1016/0370-2693(96)00345-0 – ident: 11300_CR20 doi: 10.1007/JHEP07(2019)171 – volume: 36 start-page: 055001 issue: 5 year: 2019 ident: 11300_CR23 publication-title: Classical and Quantum Gravity doi: 10.1088/1361-6382/ab01bc – volume: 36 start-page: 015021 issue: 1 year: 2018 ident: 11300_CR27 publication-title: Classical and Quantum Gravity doi: 10.1088/1361-6382/aaf133 – ident: 11300_CR14 doi: 10.1103/PhysRevLett.117.201601 – ident: 11300_CR15 doi: 10.1103/PhysRevD.74.066001 – ident: 11300_CR5 doi: 10.1007/JHEP02(2018)122 – ident: 11300_CR1 doi: 10.1007/978-3-540-79523-0_1 – ident: 11300_CR16 doi: 10.1088/1126-6708/2006/06/007 – ident: 11300_CR17 doi: 10.1088/1126-6708/2006/11/042 – ident: 11300_CR7 doi: 10.1007/JHEP12(2018)028 – ident: 11300_CR12 doi: 10.1007/JHEP02(2018)014 – ident: 11300_CR28 doi: 10.1088/0264-9381/31/16/165015 |
SSID | ssj0015190 |
Score | 2.3968284 |
Snippet | A
bstract
We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction... We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of... Abstract We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of... |
SourceID | doaj osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | AdS-CFT Correspondence ASTRONOMY AND ASTROPHYSICS Asymptotic properties Black Holes in String Theory Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Elementary Particles Fluxes High energy physics Mathematical analysis Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Uplift Wave equations |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EELyIT4xV2YOH9hDtZrObrje1luJBPFjobcm-QJBYTdS_70wevqB48ZJAMi3LPDLfZibfEHLiXSJDECJmBg4p9yKGpMBiL23C0jzjma-7LW7ldJbezMX826gv7Alr6IEbxZ1xnhgrLDhagGzipXEuDBMVrAHPhG0hPn0h53WbqbZ-ALhk2BH5DLOzm-n13VD1IdmpAatnk33loJqqH05PEFI_YOavymidcCabZKNFivSiWeEWWfHFNlmrOzZtuUNmYxaPRXxHy9cFQjiwZE4fCipoXjgqqUPafnwVVp7T0iPDt3n09D1_89Q_N_zeZS26wLJBhU1D4Im7ZDa5vr-axu2MhNhCNFWx4iqYFCfoqOAg9lwwhiUJ8yrPGEQjd45zxS3Dr0xzCFYHAC6RCmQyaTjje2S1eCr8PqEW0hmTIxls4tORZbkPDquARiokrVMROe20pm1LII5zLB51R33cqFmjmpFEPCL9zx8sGu6M5aKXaIZPMSS9ri-AK-jWFfRfrhCRHhpRA3ZAAlyLnUK20oBpGeDQiBx2ttVtnJYaNmA4llCIUUQGnb2_bi9Z7cF_rLZH1vH_mn61Q7Javbz6IwA4lTmuffkDmUDyiw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpemDOkmDDjkkBzcryZKtXkqTbFhyCEvpQm7CepVC8G5ip_n7mbHlXVpILzbYY2M0mpmPmfE3hBwFz1WMUubMwqEQQeYQFFgelOOsqEtRhr7b4lrNl8XVjbxJCbc2tVWOPrF31H7lMEd-ClAZB8hJWX1b3-U4NQqrq2mExkuyAy64qiZk52x2vfixqSMAPpmOhD7T8vRqPltM9TEEPX3C-hll21jUU_bDaQWm9Rfc_KdC2geey7fkTUKM9Pug4l3yIjTvyKu-c9O178nyguUXMl_Q9mGNUA40WtPfDZW0bjxV1CN9P6bE2q-0Dcj0bW8Dfaz_BBruBp7vthddY_mgw-Yh2JEfyPJy9vN8nqdZCbkDq-pyLXS0BU7S0dGDDfpoLeOcBV2XDKxSeC-EFo7h36Y1GK0HIMeVBplSWcHERzJpVk34RKiDsMZUpaLjoagcq0P0WA20SiN5nc7Il3HVjEtE4jjP4taMFMjDMhtcZiQTz8jx5oH1wKHxvOgZqmEjhuTX_YXV_S-TbMkIwa2TDnxPBIARlPU-TrmOzoKzCpZnZB-VaABDIBGuw44h1xnAtgzwaEYORt2aZK-t2e6ujJyM-t7efuZr9_7_qn3yGiWHjrQDMunuH8JngDCdPUz79AnbL-qz priority: 102 providerName: ProQuest |
Title | D1-D5-P superstrata in 5 and 6 dimensions: separable wave equations and prepotentials |
URI | https://link.springer.com/article/10.1007/JHEP09(2019)117 https://www.proquest.com/docview/2300018558 https://www.osti.gov/servlets/purl/1611650 https://doaj.org/article/332bc5c048f242e6bddf029fcb011eb2 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6ahEIvpU_qJl106CE5uF1JlrzqLdnsdskhLKULuQnrBYXgbGqn_fud8WNLUnLoRX6NwGg0ns-a0TcAH2MQOiWlcu6wKWRUOToFnkftBS-qUpaxy7a41KtNcXGlrgaSJNoL8yB-__litVhPzTG6KXPCebkHB4rLkmo0zPV8Fy5AGDIdeXv-7XTP5XTM_Hi4QQu6hyofBEI7_7J8Ac8HYMhOe02-hCexfgVPuwRN37yGzTnPz1W-Zs3dlhAbKq5iP2qmWFUHplkgln5a-Wq-sCYSobe7jux39SuyeNvTeTed6JaiBC3lCOHEewOb5eL7fJUPJRFyj8bT5kaa5AoqmGNSQFMLyTkuBI-mKjkanwxBSiM9p02lFdpmQLwmtEGZUjvJ5VvYr2_q-A6YR-_F9UwnL2Ix87yKKVDQz2lDHHUmg0_jqFk_8IVT2YprOzId98NsaZiJMzyD412HbU-V8bjoGalhJ0Yc190NVL0dTMZKKZxXHj8xCXFE1C6ENBUmeYffpOhEBoekRItQgfhuPSUG-dYihOUIOzM4GnVrB7NsLP5vURVCpWYZnIz6_vv4kbd9_x-yh_CMTvsstCPYb3_exQ8IW1o3gb3Z8usEDs4Wl-tveDUXxaSbxpNuIQDbjTj9A9lH5h8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxFOYFtgDSO3BNLtrr7NICAFpSB9UPTRSb4v3hZAqJ61TKv4Uv5EZPxKBVG69JFIytqydb2c-e8bfALwOXqgY8zzlFj8yGfIUkwJPg3KCZ2Uhi9B0WxypyTTbP81P1-B3_y4MtVX2MbEJ1H7m6Bn5DlJlGiCX58MP8_OUpkZRdbUfodHC4iD8usJbtvr93gj9-0aI8e7J50naTRVIHeJvkWqpo81o5oyOHtHqo7VcCB50WXDEr_ReSi0dp_cyS4S3R8ojlEabQlnJJZ73FtzO0Ihu9objL8uqBbKhQS8fNCh29ie7xwO9hSlWb_NmItoq8zUDAvBrhhv5L3L7Tz22SXPjB3C_46fsYwuoh7AWqkdwp-kTdfVjmI54OsrTY1Zfzok4In5K9qNiOSsrzxTzNCyAHsDV71gdSFfcngV2Vf4MLJy3quJ1YzqnYsWCWpUQ_09geiNr-BTWq1kVngFzmES5GqroRMiGjpcheqo9WqVJKk8n8LZfNeM62XKannFmesHldpkNLTNJlyewtTxg3ip2XG_6idywNCOp7eaH2cV30-1cI6WwLncY6SLSmaCs93EgdHQWQ2OwIoENcqJBxkKyu476k9zCIJPmyH4T2Ox9a7roUJsVlhPY7v29-vuaq33-_1O9gruTk6-H5nDv6GAD7tFRbS_cJqwvLi7DCyRPC_uyQSyDbze9Rf4AZ78jIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB5Sh5ZeQp9ETdruoYXkoNq7q4e3UEpT2zhJMabUkJuqfZVCkJ1ISehf66_rjB42LaS3XGywV0LsfDPzSTP6BuCNsyLxPo5DrvEjki4OMSnw0CVG8ChPZerqbotZMl1EJ2fx2Rb87t6FobbKLibWgdouDT0j7yNVpgFycTzs-7YtYj6afFxdhDRBiiqt3TiNBiKn7tcN3r6VH45HaOu3QkzG3z5Pw3bCQGgQi1WopPI6ovkzyltErvVacyG4U3nKEcvSWimVNJze0cwR6hbpj0gUrkkTLbnE896D7ZTuinqwfTSezb-uaxjIjQadmNAg7Z9Mx_OBOsCEqw55PR9tkwfrcQH4tUS3_ovq_lOdrZPe5BHstGyVfWrg9Ri2XPEE7tddo6Z8CosRD0dxOGfl1YpoJKIpZz8LFrO8sCxhlkYH0OO48j0rHamM63PHbvJrx9xFozFe1ktXVLqoqHEJveEZLO5kF59Dr1gWbheYwZTKk2HijXDR0PDceUuVSJ0oEs5TAbzrdi0zrYg5zdI4zzr55WabM9pmEjIP4GB9wKrR77h96RGZYb2MhLfrH5aXP7LWjzMphTaxwbjnkdy4RFvrB0J5ozFQOi0C2CMjZshfSITXULeSqTLk1Ry5cAD7nW2zNlaU2QbZARx29t78fcvVvvj_qV7DA3SP7Mvx7HQPHtJBTWPcPvSqyyv3EplUpV-1kGXw_a695A8-kSi0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D1-D5-P+superstrata+in+5+and+6+dimensions%3A+separable+wave+equations+and+prepotentials&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Walker%2C+Robert&rft.date=2019-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2019&rft.issue=9&rft_id=info:doi/10.1007%2FJHEP09%282019%29117&rft.externalDocID=10_1007_JHEP09_2019_117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |