D1-D5-P superstrata in 5 and 6 dimensions: separable wave equations and prepotentials

A bstract We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS 3 × 𝕊 2 5-dimensional superstrata have been produced, giving microstate geometr...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2019; no. 9; pp. 1 - 30
Main Author Walker, Robert
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Springer Berlin
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS 3 × 𝕊 2 5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS 2 × 𝕊 3 geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A ℤ 2 symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well.
AbstractList We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS3 × ð*Š2 5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS2 × ð*Š3 geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A ℤ2 symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well.
A bstract We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS 3 × 𝕊 2 5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS 2 × 𝕊 3 geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A ℤ 2 symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well.
Abstract We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS3 × 𝕊2 5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS2 × 𝕊3 geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A ℤ2 symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well.
We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS3 × $\mathbb{S}$2 5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS2 × $\mathbb{S}$3 geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A $\mathbb{Z}$2 symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well.l.
We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of superstrata in 6 dimensions. Previously, asymptotically AdS 3 × 2 5-dimensional superstrata have been produced, giving microstate geometries of black strings in 5 dimensions. Our construction produces asymptotically AdS 2 × 3 geometries as well, the first instances of superstrata describing the microstate geometries of black holes in 5 dimensions. New examples of superstrata with separable massless wave equations in both 5 and 6 dimensions are uncovered. A ℤ 2 symmetry which identifies distinct 6-dimensional superstrata when reduced to 5 dimensions is found. Finally we use the mathematical structure of the underlying hyper-Kähler bases to produce prepotentials for the superstrata fluxes in 5 dimensions and uplift them to apply in 6 dimensions as well.
ArticleNumber 117
Author Walker, Robert
Author_xml – sequence: 1
  givenname: Robert
  orcidid: 0000-0003-2637-0061
  surname: Walker
  fullname: Walker, Robert
  email: walkerra@usc.edu
  organization: Department of Physics and Astronomy, University of Southern California
BackLink https://www.osti.gov/servlets/purl/1611650$$D View this record in Osti.gov
BookMark eNp1kc1vFSEUxSemJrbVtVuiG12M5cKDGdyZftiaJnZh14SPO5WXV5gCT-N_X94bjcakq0vgd0645xx1BzFF7LrXQD8ApcPJl8vzG6reMQrqPcDwrDsEylQ_rgZ18M_5RXdUyppSEKDoYXd7Bv2Z6G9I2c6YS82mGhIiEcRETyTx4R5jCSmWj6TgbLKxGyQ_zQ8k-LA1dfeyR-eMc6oYazCb8rJ7PrWBr37P4-724vzb6WV__fXz1emn694JoLVXXE12pSQb1OTHgfrJWmAMUJkBxDBy7zlX3LX9hDLjSL0UkknVmEFaDvy4u1p8fTJrPedwb_IvnUzQ-4uU77TJNbgNas6ZdcLR1TixFUNpvZ9aJpOzFAAta15vFq9UatDFhYruu0sxoqsaJIAUtEFvF2jO6WGLpep12ubYdtSM05bqKMTYKLFQLqdSMk66ue2zavmGjQaqd5XppTK9q0y3ypru5D_dn5WeVtBFURoZ7zD__c9TkkeVkaXn
CitedBy_id crossref_primary_10_1007_JHEP07_2021_008
crossref_primary_10_1007_s10714_020_02698_8
crossref_primary_10_1007_JHEP04_2021_112
crossref_primary_10_1007_JHEP03_2025_120
crossref_primary_10_1007_s10714_020_02769_w
crossref_primary_10_1007_JHEP10_2020_030
crossref_primary_10_1007_JHEP03_2023_145
crossref_primary_10_1007_JHEP02_2020_192
crossref_primary_10_1007_JHEP04_2022_065
crossref_primary_10_1007_JHEP06_2020_181
Cites_doi 10.1007/JHEP04(2019)126
10.1007/JHEP05(2016)064
10.1007/JHEP11(2017)021
10.1103/PhysRevD.99.066009
10.1007/JHEP10(2011)116
10.1007/JHEP05(2015)110
10.1103/PhysRevD.77.125025
10.1007/JHEP03(2019)095
10.1007/JHEP06(2017)137
10.1007/JHEP10(2013)137
10.1088/1126-6708/2008/07/019
10.1007/s10714-019-2566-6
10.1016/0370-2693(96)00345-0
10.1007/JHEP07(2019)171
10.1088/1361-6382/ab01bc
10.1088/1361-6382/aaf133
10.1103/PhysRevLett.117.201601
10.1103/PhysRevD.74.066001
10.1007/JHEP02(2018)122
10.1007/978-3-540-79523-0_1
10.1088/1126-6708/2006/06/007
10.1088/1126-6708/2006/11/042
10.1007/JHEP12(2018)028
10.1007/JHEP02(2018)014
10.1088/0264-9381/31/16/165015
ContentType Journal Article
Copyright The Author(s) 2019
Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
CorporateAuthor Univ. of Southern California, Los Angeles, CA (United States)
CorporateAuthor_xml – name: Univ. of Southern California, Los Angeles, CA (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP09(2019)117
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (ProQuest)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database



CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 30
ExternalDocumentID oai_doaj_org_article_332bc5c048f242e6bddf029fcb011eb2
1611650
10_1007_JHEP09_2019_117
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
AAYZJ
AHBXF
OIOZB
OTOTI
PUEGO
ID FETCH-LOGICAL-c510t-939fb496279fd870dfbb1221e9a715783dd3393c10059a880d65626912276b313
IEDL.DBID C6C
ISSN 1029-8479
IngestDate Wed Aug 27 01:29:51 EDT 2025
Mon Jul 10 02:31:52 EDT 2023
Fri Jul 25 04:02:15 EDT 2025
Tue Jul 01 03:54:46 EDT 2025
Thu Apr 24 22:57:34 EDT 2025
Fri Feb 21 02:33:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Black Holes in String Theory
AdS-CFT Correspondence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-939fb496279fd870dfbb1221e9a715783dd3393c10059a880d65626912276b313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0011687; 787320
USDOE Office of Science (SC)
ORCID 0000-0003-2637-0061
0000000326370061
OpenAccessLink https://doi.org/10.1007/JHEP09(2019)117
PQID 2300018558
PQPubID 2034718
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_332bc5c048f242e6bddf029fcb011eb2
osti_scitechconnect_1611650
proquest_journals_2300018558
crossref_citationtrail_10_1007_JHEP09_2019_117
crossref_primary_10_1007_JHEP09_2019_117
springer_journals_10_1007_JHEP09_2019_117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Berlin
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Berlin
– name: SpringerOpen
References S. Raju and P. Shrivastava, Critique of the fuzzball program, Phys. Rev.D 99 (2019) 066009 [arXiv:1804.10616] [INSPIRE].
I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev.D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].
BakhshaeiElahehBombiniAlessandroThree-charge superstrata with internal excitationsClassical and Quantum Gravity20193650550012019CQGra..36e5001B391963010.1088/1361-6382/ab01bc
I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP11 (2006) 042 [hep-th/0608217] [INSPIRE].
J. Garcia i Tormo and M. Taylor, One point functions for black hole microstates, Gen. Rel. Grav.51 (2019) 89 [arXiv:1904.10200] [INSPIRE].
I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, Double Supertube Bubble, JHEP10 (2011) 116 [arXiv:1107.2650] [INSPIRE].
I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett.117 (2016) 201601 [arXiv:1607.03908] [INSPIRE].
S. Giusto, S. Rawash and D. Turton, Ads3holography at dimension two, JHEP07 (2019) 171 [arXiv:1904.12880] [INSPIRE].
I. Bena, N. Bobev and N.P. Warner, Spectral Flow and the Spectrum of Multi-Center Solutions, Phys. Rev.D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE].
A. Tyukov, R. Walker and N.P. Warner, Tidal Stresses and Energy Gaps in Microstate Geometries, JHEP02 (2018) 122 [arXiv:1710.09006] [INSPIRE].
I. Bena, P. Heidmann, R. Monten and N.P. Warner, Thermal Decay without Information Loss in Horizonless Microstate Geometries, arXiv:1905.05194 [INSPIRE].
TyukovAlexanderWalkerRobertWarnerNicholas PThe structure of BPS equations for ambi-polar microstate geometriesClassical and Quantum Gravity20183610150212019CQGra..36a5021T390412710.1088/1361-6382/aaf133
I. Bena, P. Heidmann and D. Turton, AdS2holography: mind the cap, JHEP12 (2018) 028 [arXiv:1806.02834] [INSPIRE].
I. Bena, E. Martinec, D. Turton and N.P. Warner, M-theory Superstrata and the MSW String, JHEP06 (2017) 137 [arXiv:1703.10171] [INSPIRE].
I. Bena, D. Turton, R. Walker and N.P. Warner, Integrability and Black-Hole Microstate Geometries, JHEP11 (2017) 021 [arXiv:1709.01107] [INSPIRE].
I. Bena, E.J. Martinec, R. Walker and N.P. Warner, Early Scrambling and Capped BTZ Geometries, JHEP04 (2019) 126 [arXiv:1812.05110] [INSPIRE].
N. Čeplak, R. Russo and M. Shigemori, Supercharging Superstrata, JHEP03 (2019) 095 [arXiv:1812.08761] [INSPIRE].
I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys.755 (2008) 1 [hep-th/0701216] [INSPIRE].
I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black ring microstates, JHEP07 (2008) 019 [arXiv:0706.3786] [INSPIRE].
J. Tian, J. Hou and B. Chen, Holographic Correlators on Integrable Superstrata, arXiv:1904.04532 [INSPIRE].
B.E. Niehoff and N.P. Warner, Doubly-Fluctuating BPS Solutions in Six Dimensions, JHEP10 (2013) 137 [arXiv:1303.5449] [INSPIRE].
StromingerAndrewVafaCumrunMicroscopic origin of the Bekenstein-Hawking entropyPhysics Letters B19963791-4991041996PhLB..379...99S139627010.1016/0370-2693(96)00345-0
I. Bena et al., Asymptotically-flat supergravity solutions deep inside the black-hole regime, JHEP02 (2018) 014 [arXiv:1711.10474] [INSPIRE].
I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum Fractionation on Superstrata, JHEP05 (2016) 064 [arXiv:1601.05805] [INSPIRE].
I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus Superstratum! A constructive proof of the existence of superstrata, JHEP05 (2015) 110 [arXiv:1503.01463] [INSPIRE].
P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP06 (2006) 007 [hep-th/0505167] [INSPIRE].
I. Bena, S.F. Ross and N.P. Warner, Coiffured Black Rings, Class. Quant. Grav.31 (2014) 165015 [arXiv:1405.5217] [INSPIRE].
P. Heidmann and N.P. Warner, Superstratum Symbiosis, arXiv:1903.07631 [INSPIRE].
Andrew Strominger (11300_CR2) 1996; 379
11300_CR11
11300_CR10
11300_CR13
11300_CR12
11300_CR15
11300_CR14
11300_CR28
Alexander Tyukov (11300_CR27) 2018; 36
11300_CR20
11300_CR22
11300_CR21
11300_CR24
11300_CR26
11300_CR25
11300_CR4
11300_CR17
11300_CR3
11300_CR16
11300_CR6
11300_CR19
Elaheh Bakhshaei (11300_CR23) 2019; 36
11300_CR5
11300_CR18
11300_CR8
11300_CR7
11300_CR9
11300_CR1
References_xml – reference: TyukovAlexanderWalkerRobertWarnerNicholas PThe structure of BPS equations for ambi-polar microstate geometriesClassical and Quantum Gravity20183610150212019CQGra..36a5021T390412710.1088/1361-6382/aaf133
– reference: I. Bena, P. Heidmann and D. Turton, AdS2holography: mind the cap, JHEP12 (2018) 028 [arXiv:1806.02834] [INSPIRE].
– reference: I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum Fractionation on Superstrata, JHEP05 (2016) 064 [arXiv:1601.05805] [INSPIRE].
– reference: I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys.755 (2008) 1 [hep-th/0701216] [INSPIRE].
– reference: StromingerAndrewVafaCumrunMicroscopic origin of the Bekenstein-Hawking entropyPhysics Letters B19963791-4991041996PhLB..379...99S139627010.1016/0370-2693(96)00345-0
– reference: J. Garcia i Tormo and M. Taylor, One point functions for black hole microstates, Gen. Rel. Grav.51 (2019) 89 [arXiv:1904.10200] [INSPIRE].
– reference: S. Raju and P. Shrivastava, Critique of the fuzzball program, Phys. Rev.D 99 (2019) 066009 [arXiv:1804.10616] [INSPIRE].
– reference: I. Bena, S.F. Ross and N.P. Warner, Coiffured Black Rings, Class. Quant. Grav.31 (2014) 165015 [arXiv:1405.5217] [INSPIRE].
– reference: I. Bena, E.J. Martinec, R. Walker and N.P. Warner, Early Scrambling and Capped BTZ Geometries, JHEP04 (2019) 126 [arXiv:1812.05110] [INSPIRE].
– reference: I. Bena et al., Asymptotically-flat supergravity solutions deep inside the black-hole regime, JHEP02 (2018) 014 [arXiv:1711.10474] [INSPIRE].
– reference: P. Heidmann and N.P. Warner, Superstratum Symbiosis, arXiv:1903.07631 [INSPIRE].
– reference: I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus Superstratum! A constructive proof of the existence of superstrata, JHEP05 (2015) 110 [arXiv:1503.01463] [INSPIRE].
– reference: I. Bena, D. Turton, R. Walker and N.P. Warner, Integrability and Black-Hole Microstate Geometries, JHEP11 (2017) 021 [arXiv:1709.01107] [INSPIRE].
– reference: I. Bena, P. Heidmann, R. Monten and N.P. Warner, Thermal Decay without Information Loss in Horizonless Microstate Geometries, arXiv:1905.05194 [INSPIRE].
– reference: I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP11 (2006) 042 [hep-th/0608217] [INSPIRE].
– reference: B.E. Niehoff and N.P. Warner, Doubly-Fluctuating BPS Solutions in Six Dimensions, JHEP10 (2013) 137 [arXiv:1303.5449] [INSPIRE].
– reference: I. Bena, N. Bobev and N.P. Warner, Spectral Flow and the Spectrum of Multi-Center Solutions, Phys. Rev.D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE].
– reference: I. Bena, E. Martinec, D. Turton and N.P. Warner, M-theory Superstrata and the MSW String, JHEP06 (2017) 137 [arXiv:1703.10171] [INSPIRE].
– reference: S. Giusto, S. Rawash and D. Turton, Ads3holography at dimension two, JHEP07 (2019) 171 [arXiv:1904.12880] [INSPIRE].
– reference: BakhshaeiElahehBombiniAlessandroThree-charge superstrata with internal excitationsClassical and Quantum Gravity20193650550012019CQGra..36e5001B391963010.1088/1361-6382/ab01bc
– reference: I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett.117 (2016) 201601 [arXiv:1607.03908] [INSPIRE].
– reference: I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black ring microstates, JHEP07 (2008) 019 [arXiv:0706.3786] [INSPIRE].
– reference: J. Tian, J. Hou and B. Chen, Holographic Correlators on Integrable Superstrata, arXiv:1904.04532 [INSPIRE].
– reference: I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev.D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].
– reference: A. Tyukov, R. Walker and N.P. Warner, Tidal Stresses and Energy Gaps in Microstate Geometries, JHEP02 (2018) 122 [arXiv:1710.09006] [INSPIRE].
– reference: I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, Double Supertube Bubble, JHEP10 (2011) 116 [arXiv:1107.2650] [INSPIRE].
– reference: N. Čeplak, R. Russo and M. Shigemori, Supercharging Superstrata, JHEP03 (2019) 095 [arXiv:1812.08761] [INSPIRE].
– reference: P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP06 (2006) 007 [hep-th/0505167] [INSPIRE].
– ident: 11300_CR6
– ident: 11300_CR8
– ident: 11300_CR22
  doi: 10.1007/JHEP04(2019)126
– ident: 11300_CR19
  doi: 10.1007/JHEP05(2016)064
– ident: 11300_CR3
  doi: 10.1007/JHEP11(2017)021
– ident: 11300_CR4
  doi: 10.1103/PhysRevD.99.066009
– ident: 11300_CR9
  doi: 10.1007/JHEP10(2011)116
– ident: 11300_CR10
  doi: 10.1007/JHEP05(2015)110
– ident: 11300_CR25
  doi: 10.1103/PhysRevD.77.125025
– ident: 11300_CR11
  doi: 10.1007/JHEP03(2019)095
– ident: 11300_CR13
  doi: 10.1007/JHEP06(2017)137
– ident: 11300_CR26
  doi: 10.1007/JHEP10(2013)137
– ident: 11300_CR18
  doi: 10.1088/1126-6708/2008/07/019
– ident: 11300_CR21
– ident: 11300_CR24
  doi: 10.1007/s10714-019-2566-6
– volume: 379
  start-page: 99
  issue: 1-4
  year: 1996
  ident: 11300_CR2
  publication-title: Physics Letters B
  doi: 10.1016/0370-2693(96)00345-0
– ident: 11300_CR20
  doi: 10.1007/JHEP07(2019)171
– volume: 36
  start-page: 055001
  issue: 5
  year: 2019
  ident: 11300_CR23
  publication-title: Classical and Quantum Gravity
  doi: 10.1088/1361-6382/ab01bc
– volume: 36
  start-page: 015021
  issue: 1
  year: 2018
  ident: 11300_CR27
  publication-title: Classical and Quantum Gravity
  doi: 10.1088/1361-6382/aaf133
– ident: 11300_CR14
  doi: 10.1103/PhysRevLett.117.201601
– ident: 11300_CR15
  doi: 10.1103/PhysRevD.74.066001
– ident: 11300_CR5
  doi: 10.1007/JHEP02(2018)122
– ident: 11300_CR1
  doi: 10.1007/978-3-540-79523-0_1
– ident: 11300_CR16
  doi: 10.1088/1126-6708/2006/06/007
– ident: 11300_CR17
  doi: 10.1088/1126-6708/2006/11/042
– ident: 11300_CR7
  doi: 10.1007/JHEP12(2018)028
– ident: 11300_CR12
  doi: 10.1007/JHEP02(2018)014
– ident: 11300_CR28
  doi: 10.1088/0264-9381/31/16/165015
SSID ssj0015190
Score 2.3968284
Snippet A bstract We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction...
We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of...
Abstract We construct the most general single-mode superstrata in 5 dimensions with ambipolar, two centered Gibbons Hawking bases, via dimensional reduction of...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms AdS-CFT Correspondence
ASTRONOMY AND ASTROPHYSICS
Asymptotic properties
Black Holes in String Theory
Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Elementary Particles
Fluxes
High energy physics
Mathematical analysis
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Uplift
Wave equations
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EELyIT4xV2YOH9hDtZrObrje1luJBPFjobcm-QJBYTdS_70wevqB48ZJAMi3LPDLfZibfEHLiXSJDECJmBg4p9yKGpMBiL23C0jzjma-7LW7ldJbezMX826gv7Alr6IEbxZ1xnhgrLDhagGzipXEuDBMVrAHPhG0hPn0h53WbqbZ-ALhk2BH5DLOzm-n13VD1IdmpAatnk33loJqqH05PEFI_YOavymidcCabZKNFivSiWeEWWfHFNlmrOzZtuUNmYxaPRXxHy9cFQjiwZE4fCipoXjgqqUPafnwVVp7T0iPDt3n09D1_89Q_N_zeZS26wLJBhU1D4Im7ZDa5vr-axu2MhNhCNFWx4iqYFCfoqOAg9lwwhiUJ8yrPGEQjd45zxS3Dr0xzCFYHAC6RCmQyaTjje2S1eCr8PqEW0hmTIxls4tORZbkPDquARiokrVMROe20pm1LII5zLB51R33cqFmjmpFEPCL9zx8sGu6M5aKXaIZPMSS9ri-AK-jWFfRfrhCRHhpRA3ZAAlyLnUK20oBpGeDQiBx2ttVtnJYaNmA4llCIUUQGnb2_bi9Z7cF_rLZH1vH_mn61Q7Javbz6IwA4lTmuffkDmUDyiw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpemDOkmDDjkkBzcryZKtXkqTbFhyCEvpQm7CepVC8G5ip_n7mbHlXVpILzbYY2M0mpmPmfE3hBwFz1WMUubMwqEQQeYQFFgelOOsqEtRhr7b4lrNl8XVjbxJCbc2tVWOPrF31H7lMEd-ClAZB8hJWX1b3-U4NQqrq2mExkuyAy64qiZk52x2vfixqSMAPpmOhD7T8vRqPltM9TEEPX3C-hll21jUU_bDaQWm9Rfc_KdC2geey7fkTUKM9Pug4l3yIjTvyKu-c9O178nyguUXMl_Q9mGNUA40WtPfDZW0bjxV1CN9P6bE2q-0Dcj0bW8Dfaz_BBruBp7vthddY_mgw-Yh2JEfyPJy9vN8nqdZCbkDq-pyLXS0BU7S0dGDDfpoLeOcBV2XDKxSeC-EFo7h36Y1GK0HIMeVBplSWcHERzJpVk34RKiDsMZUpaLjoagcq0P0WA20SiN5nc7Il3HVjEtE4jjP4taMFMjDMhtcZiQTz8jx5oH1wKHxvOgZqmEjhuTX_YXV_S-TbMkIwa2TDnxPBIARlPU-TrmOzoKzCpZnZB-VaABDIBGuw44h1xnAtgzwaEYORt2aZK-t2e6ujJyM-t7efuZr9_7_qn3yGiWHjrQDMunuH8JngDCdPUz79AnbL-qz
  priority: 102
  providerName: ProQuest
Title D1-D5-P superstrata in 5 and 6 dimensions: separable wave equations and prepotentials
URI https://link.springer.com/article/10.1007/JHEP09(2019)117
https://www.proquest.com/docview/2300018558
https://www.osti.gov/servlets/purl/1611650
https://doaj.org/article/332bc5c048f242e6bddf029fcb011eb2
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6ahEIvpU_qJl106CE5uF1JlrzqLdnsdskhLKULuQnrBYXgbGqn_fud8WNLUnLoRX6NwGg0ns-a0TcAH2MQOiWlcu6wKWRUOToFnkftBS-qUpaxy7a41KtNcXGlrgaSJNoL8yB-__litVhPzTG6KXPCebkHB4rLkmo0zPV8Fy5AGDIdeXv-7XTP5XTM_Hi4QQu6hyofBEI7_7J8Ac8HYMhOe02-hCexfgVPuwRN37yGzTnPz1W-Zs3dlhAbKq5iP2qmWFUHplkgln5a-Wq-sCYSobe7jux39SuyeNvTeTed6JaiBC3lCOHEewOb5eL7fJUPJRFyj8bT5kaa5AoqmGNSQFMLyTkuBI-mKjkanwxBSiM9p02lFdpmQLwmtEGZUjvJ5VvYr2_q-A6YR-_F9UwnL2Ix87yKKVDQz2lDHHUmg0_jqFk_8IVT2YprOzId98NsaZiJMzyD412HbU-V8bjoGalhJ0Yc190NVL0dTMZKKZxXHj8xCXFE1C6ENBUmeYffpOhEBoekRItQgfhuPSUG-dYihOUIOzM4GnVrB7NsLP5vURVCpWYZnIz6_vv4kbd9_x-yh_CMTvsstCPYb3_exQ8IW1o3gb3Z8usEDs4Wl-tveDUXxaSbxpNuIQDbjTj9A9lH5h8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxFOYFtgDSO3BNLtrr7NICAFpSB9UPTRSb4v3hZAqJ61TKv4Uv5EZPxKBVG69JFIytqydb2c-e8bfALwOXqgY8zzlFj8yGfIUkwJPg3KCZ2Uhi9B0WxypyTTbP81P1-B3_y4MtVX2MbEJ1H7m6Bn5DlJlGiCX58MP8_OUpkZRdbUfodHC4iD8usJbtvr93gj9-0aI8e7J50naTRVIHeJvkWqpo81o5oyOHtHqo7VcCB50WXDEr_ReSi0dp_cyS4S3R8ojlEabQlnJJZ73FtzO0Ihu9objL8uqBbKhQS8fNCh29ie7xwO9hSlWb_NmItoq8zUDAvBrhhv5L3L7Tz22SXPjB3C_46fsYwuoh7AWqkdwp-kTdfVjmI54OsrTY1Zfzok4In5K9qNiOSsrzxTzNCyAHsDV71gdSFfcngV2Vf4MLJy3quJ1YzqnYsWCWpUQ_09geiNr-BTWq1kVngFzmES5GqroRMiGjpcheqo9WqVJKk8n8LZfNeM62XKannFmesHldpkNLTNJlyewtTxg3ip2XG_6idywNCOp7eaH2cV30-1cI6WwLncY6SLSmaCs93EgdHQWQ2OwIoENcqJBxkKyu476k9zCIJPmyH4T2Ox9a7roUJsVlhPY7v29-vuaq33-_1O9gruTk6-H5nDv6GAD7tFRbS_cJqwvLi7DCyRPC_uyQSyDbze9Rf4AZ78jIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB5Sh5ZeQp9ETdruoYXkoNq7q4e3UEpT2zhJMabUkJuqfZVCkJ1ISehf66_rjB42LaS3XGywV0LsfDPzSTP6BuCNsyLxPo5DrvEjki4OMSnw0CVG8ChPZerqbotZMl1EJ2fx2Rb87t6FobbKLibWgdouDT0j7yNVpgFycTzs-7YtYj6afFxdhDRBiiqt3TiNBiKn7tcN3r6VH45HaOu3QkzG3z5Pw3bCQGgQi1WopPI6ovkzyltErvVacyG4U3nKEcvSWimVNJze0cwR6hbpj0gUrkkTLbnE896D7ZTuinqwfTSezb-uaxjIjQadmNAg7Z9Mx_OBOsCEqw55PR9tkwfrcQH4tUS3_ovq_lOdrZPe5BHstGyVfWrg9Ri2XPEE7tddo6Z8CosRD0dxOGfl1YpoJKIpZz8LFrO8sCxhlkYH0OO48j0rHamM63PHbvJrx9xFozFe1ktXVLqoqHEJveEZLO5kF59Dr1gWbheYwZTKk2HijXDR0PDceUuVSJ0oEs5TAbzrdi0zrYg5zdI4zzr55WabM9pmEjIP4GB9wKrR77h96RGZYb2MhLfrH5aXP7LWjzMphTaxwbjnkdy4RFvrB0J5ozFQOi0C2CMjZshfSITXULeSqTLk1Ry5cAD7nW2zNlaU2QbZARx29t78fcvVvvj_qV7DA3SP7Mvx7HQPHtJBTWPcPvSqyyv3EplUpV-1kGXw_a695A8-kSi0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D1-D5-P+superstrata+in+5+and+6+dimensions%3A+separable+wave+equations+and+prepotentials&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Walker%2C+Robert&rft.date=2019-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2019&rft.issue=9&rft_id=info:doi/10.1007%2FJHEP09%282019%29117&rft.externalDocID=10_1007_JHEP09_2019_117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon