Model-based clustering for multivariate functional data

The first model-based clustering algorithm for multivariate functional data is proposed. After introducing multivariate functional principal components analysis (MFPCA), a parametric mixture model, based on the assumption of normality of the principal component scores, is defined and estimated by an...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 71; pp. 92 - 106
Main Authors Jacques, Julien, Preda, Cristian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The first model-based clustering algorithm for multivariate functional data is proposed. After introducing multivariate functional principal components analysis (MFPCA), a parametric mixture model, based on the assumption of normality of the principal component scores, is defined and estimated by an EM-like algorithm. The main advantage of the proposed model is its ability to take into account the dependence among curves. Results on simulated and real datasets show the efficiency of the proposed method.
AbstractList The first model-based clustering algorithm for multivariate functional data is proposed. After introducing multivariate functional principal components analysis (MFPCA), a parametric mixture model, based on the assumption of normality of the principal component scores, is defined and estimated by an EM-like algorithm. The main advantage of the proposed model is its ability to take into account the dependence among curves. Results on simulated and real datasets show the efficiency of the proposed method.
This paper proposes the first model-based clustering algorithm for multivariate functional data. After introducing multivariate functional principal components analysis (MFPCA), a parametric mixture model, {based on the assumption of normality of the principal components}, is defined and estimated by an EM-like algorithm. The main advantage of the proposed model is its ability to take into account the dependence among curves. Results on simulated and real datasets show the efficiency of the proposed method.
Author Preda, Cristian
Jacques, Julien
Author_xml – sequence: 1
  givenname: Julien
  surname: Jacques
  fullname: Jacques, Julien
  email: julien.jacques@polytech-lille.fr
– sequence: 2
  givenname: Cristian
  surname: Preda
  fullname: Preda, Cristian
  email: cristian.preda@polytech-lille.fr
BackLink https://hal.science/hal-00713334$$DView record in HAL
BookMark eNqFkEFr2zAUgEXpoEnXP9CTj9vB2ZNkWzbsEsLaDjJ26V3I0lOroFidJAf27yeTssMOGTx4IL5PPL41uZ7ChITcU9hQoN2Xw0YnozYMKNuUAWiuyIr2gtWCt-yarAok6qER_IasUzoAAGtEvyLiRzDo61ElNJX2c8oY3fRS2RCr4-yzO6noVMbKzpPOLkzKV0Zl9ZF8sMonvHvft-T54dvz7qne_3z8vtvua91SyHXPQYOlwnJDRWOwE8No234oR48URuhMO7bjMPLeWgQhOjECKGULqzUIfks-n799VV6-RXdU8bcMysmn7V4ubwCCcs6bEyvspzP7FsOvGVOWR5c0eq8mDHOSjLWc0YYN_X9R2kLHS72BF5SdUR1DShHt3zMoyKW9PMilvVzayzKlfZH6fyTtslry5aicv6x-PatYqp4cRpm0w0mjcRF1lia4S_ofX7yfmQ
CitedBy_id crossref_primary_10_1007_s00180_020_00958_4
crossref_primary_10_1007_s00180_022_01236_1
crossref_primary_10_1007_s00180_016_0676_0
crossref_primary_10_1080_14763141_2017_1384050
crossref_primary_10_1111_ejn_15998
crossref_primary_10_1155_jpas_5074649
crossref_primary_10_1016_j_jmva_2019_104568
crossref_primary_10_1007_s41237_018_0066_8
crossref_primary_10_1016_j_jmva_2021_104874
crossref_primary_10_5604_01_3001_0014_1152
crossref_primary_10_1371_journal_pone_0311418
crossref_primary_10_1002_cjs_11803
crossref_primary_10_1007_s00477_017_1441_9
crossref_primary_10_1515_jtse_2019_0047
crossref_primary_10_5194_dwes_10_75_2017
crossref_primary_10_1016_j_csda_2016_06_007
crossref_primary_10_1016_j_procs_2018_03_035
crossref_primary_10_1214_17_AOS1553
crossref_primary_10_1007_s11760_015_0749_5
crossref_primary_10_1007_s10260_023_00719_9
crossref_primary_10_1016_j_ins_2024_120932
crossref_primary_10_3390_stats4010014
crossref_primary_10_1007_s00362_023_01467_4
crossref_primary_10_1080_00949655_2022_2053855
crossref_primary_10_1007_s11047_018_9720_z
crossref_primary_10_1111_insr_12588
crossref_primary_10_1287_ijds_2022_0034
crossref_primary_10_1111_biom_13851
crossref_primary_10_1007_s11634_020_00432_5
crossref_primary_10_1007_s10203_023_00417_x
crossref_primary_10_1080_03610918_2020_1764033
crossref_primary_10_1007_s10260_018_00446_6
crossref_primary_10_1007_s13253_021_00477_9
crossref_primary_10_1016_j_csda_2022_107496
crossref_primary_10_1016_j_humov_2014_03_008
crossref_primary_10_1080_10485252_2024_2358435
crossref_primary_10_1016_j_jmva_2020_104675
crossref_primary_10_1080_14763141_2024_2398508
crossref_primary_10_1080_10485252_2024_2396361
crossref_primary_10_1097_AJP_0000000000001041
crossref_primary_10_1177_09622802211002865
crossref_primary_10_1214_21_AOAS1514
crossref_primary_10_1145_3581789
crossref_primary_10_1142_S0218488520500087
crossref_primary_10_1007_s00357_016_9212_8
crossref_primary_10_1016_j_ins_2020_06_014
crossref_primary_10_1002_cjs_11680
crossref_primary_10_1111_jtsa_12675
crossref_primary_10_1002_widm_1298
crossref_primary_10_1002_cem_3394
crossref_primary_10_1080_10618600_2022_2149540
crossref_primary_10_1016_j_csda_2016_07_010
crossref_primary_10_1080_00224065_2018_1438007
crossref_primary_10_1007_s00477_024_02700_8
crossref_primary_10_1007_s00477_021_02071_4
crossref_primary_10_1016_j_pocean_2023_103120
crossref_primary_10_1007_s11634_023_00542_w
crossref_primary_10_1007_s00357_020_09369_y
crossref_primary_10_1007_s11336_023_09918_5
crossref_primary_10_1214_18_BJPS418
crossref_primary_10_1002_sta4_245
crossref_primary_10_5194_hess_24_3951_2020
crossref_primary_10_1007_s11634_017_0290_1
crossref_primary_10_21307_stattrans_2016_079
crossref_primary_10_1080_03610926_2019_1602650
crossref_primary_10_1080_00949655_2021_1903463
crossref_primary_10_5604_01_3001_0014_0897
crossref_primary_10_1002_sim_8794
crossref_primary_10_1214_15_AOAS861
crossref_primary_10_1146_annurev_statistics_041715_033624
crossref_primary_10_1016_j_csda_2021_107376
crossref_primary_10_1109_TR_2020_3035084
crossref_primary_10_1007_s11222_023_10379_0
crossref_primary_10_1007_s11222_022_10128_9
crossref_primary_10_21307_stattrans_2019_018
crossref_primary_10_1038_s41598_022_06767_7
crossref_primary_10_1007_s10489_020_01765_6
crossref_primary_10_1016_j_jmva_2021_104891
crossref_primary_10_1002_sim_9654
crossref_primary_10_3390_analytics2040041
crossref_primary_10_1007_s00500_019_04505_2
crossref_primary_10_1080_01621459_2016_1273115
crossref_primary_10_1007_s12561_024_09419_8
crossref_primary_10_1177_0962280220921912
crossref_primary_10_1007_s00357_025_09503_8
crossref_primary_10_1016_j_future_2020_05_018
crossref_primary_10_1016_j_heliyon_2024_e41251
crossref_primary_10_1007_s11222_023_10288_2
crossref_primary_10_1080_00401706_2018_1456976
crossref_primary_10_1515_bile_2016_0010
crossref_primary_10_1007_s10651_015_0317_8
crossref_primary_10_1109_ACCESS_2019_2926579
crossref_primary_10_1007_s12561_023_09399_1
crossref_primary_10_1007_s11135_022_01611_6
crossref_primary_10_1093_biomet_asae015
crossref_primary_10_1177_1094428117725793
crossref_primary_10_1111_rssc_12404
crossref_primary_10_1016_j_knosys_2018_01_035
crossref_primary_10_1080_03610918_2018_1494280
crossref_primary_10_1002_bimj_201500027
crossref_primary_10_1088_1755_1315_526_1_012029
crossref_primary_10_1109_ACCESS_2023_3322929
crossref_primary_10_1109_JSTARS_2023_3288521
crossref_primary_10_1093_jrsssc_qlad017
crossref_primary_10_1002_app_50705
crossref_primary_10_1111_rssb_12337
crossref_primary_10_21307_stattrans_2016_032
crossref_primary_10_1007_s41096_022_00122_9
crossref_primary_10_1214_22_AOAS1602
crossref_primary_10_1109_TFUZZ_2021_3050857
crossref_primary_10_1177_0962280218815301
crossref_primary_10_1002_env_2370
crossref_primary_10_1111_rssc_12310
crossref_primary_10_1111_biom_13340
crossref_primary_10_1214_24_AOAS1989
crossref_primary_10_1016_j_neucom_2018_02_055
crossref_primary_10_1080_02664763_2016_1247791
crossref_primary_10_1080_00224065_2023_2219012
crossref_primary_10_1007_s11634_022_00500_y
crossref_primary_10_1007_s00357_020_09363_4
crossref_primary_10_1007_s13571_019_00221_x
crossref_primary_10_1016_j_ins_2018_12_060
crossref_primary_10_5194_hess_27_673_2023
crossref_primary_10_1016_j_matcom_2024_04_017
crossref_primary_10_1016_j_ijar_2018_05_002
crossref_primary_10_1080_10586458_2024_2423866
crossref_primary_10_1002_bimj_202300363
crossref_primary_10_1007_s00362_015_0710_2
crossref_primary_10_21307_stattrans_2015_006
crossref_primary_10_1016_j_jmva_2018_09_002
crossref_primary_10_1016_j_csda_2016_01_019
crossref_primary_10_1007_s11634_013_0158_y
crossref_primary_10_4018_IJHCITP_2018010101
crossref_primary_10_1016_j_spl_2019_04_017
crossref_primary_10_1109_TNNLS_2021_3137795
crossref_primary_10_22630_MIBE_2018_19_2_17
crossref_primary_10_1371_journal_pone_0310991
crossref_primary_10_1093_biostatistics_kxad013
crossref_primary_10_3150_17_BEJ929
crossref_primary_10_1016_j_ecosta_2023_03_002
crossref_primary_10_1080_03610918_2020_1830292
crossref_primary_10_1002_cjs_11838
crossref_primary_10_1016_j_jmva_2024_105355
crossref_primary_10_1016_j_csda_2020_107160
crossref_primary_10_1016_j_jspi_2014_05_008
crossref_primary_10_1016_j_jmva_2020_104662
crossref_primary_10_6339_21_JDS1031
crossref_primary_10_3390_su141912918
crossref_primary_10_1146_annurev_statistics_033121_115326
crossref_primary_10_1002_env_2437
crossref_primary_10_1016_j_patrec_2020_04_024
crossref_primary_10_1007_s11634_022_00501_x
crossref_primary_10_1080_01621459_2021_1917416
crossref_primary_10_1214_21_AOAS1542
crossref_primary_10_1177_0962280214549040
crossref_primary_10_1016_j_jmva_2023_105243
crossref_primary_10_1146_annurev_statistics_032921_033726
crossref_primary_10_1093_jrsssc_qlad100
crossref_primary_10_1002_sim_9917
crossref_primary_10_1111_rssc_12563
crossref_primary_10_1214_23_AOAS1827
crossref_primary_10_1002_sim_9117
crossref_primary_10_1002_bimj_201900112
crossref_primary_10_3150_20_BEJ1246
crossref_primary_10_1002_sim_10151
crossref_primary_10_1002_sim_9353
crossref_primary_10_1177_1471082X211056158
crossref_primary_10_1007_s10109_021_00352_8
crossref_primary_10_1360_SSM_2021_0081
crossref_primary_10_1002_2017WR021650
crossref_primary_10_1002_sta4_435
crossref_primary_10_1002_sta4_557
crossref_primary_10_1007_s11749_020_00733_z
crossref_primary_10_1002_cem_2560
crossref_primary_10_1007_s00180_018_0808_9
crossref_primary_10_1214_23_AOAS1857
crossref_primary_10_1080_10618600_2024_2304633
crossref_primary_10_1016_j_csda_2024_108069
crossref_primary_10_1007_s11205_020_02355_2
crossref_primary_10_1007_s11205_023_03098_6
crossref_primary_10_1186_s41118_018_0043_9
crossref_primary_10_1214_21_AOAS1547
crossref_primary_10_1016_j_ijar_2021_10_008
crossref_primary_10_1016_j_jspi_2023_106133
crossref_primary_10_1016_j_future_2023_12_021
crossref_primary_10_1007_s11634_023_00567_1
crossref_primary_10_3390_su11061620
crossref_primary_10_3390_joitmc8010006
crossref_primary_10_1016_j_jmva_2022_105095
crossref_primary_10_1111_rssc_12589
crossref_primary_10_1007_s00362_016_0757_8
crossref_primary_10_1016_j_csda_2013_10_010
crossref_primary_10_1016_j_chemolab_2015_09_018
Cites_doi 10.1007/s11634-011-0095-6
10.1007/s00180-006-0013-0
10.1111/j.1467-9868.2007.00605.x
10.1198/016214503000189
10.1198/073500107000000106
10.1007/s00180-007-0041-4
10.1111/1467-9469.00350
10.1016/j.neucom.2012.11.042
10.1214/09-AOS741
10.1016/j.csda.2009.12.008
10.1111/j.1467-9868.2006.00545.x
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.csda.2011.03.011
10.1207/s15327906mbr0102_10
10.1214/aos/1176344136
10.1023/B:STCO.0000035306.77434.31
10.1002/cem.945
10.1007/s00357-003-0007-3
10.1016/S0167-9473(03)00032-X
10.1016/j.jspi.2006.06.011
10.1016/j.csda.2008.11.019
10.1007/s00357-010-9054-8
10.1016/j.csda.2011.03.018
10.1016/j.csda.2007.02.009
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
VOOES
DOI 10.1016/j.csda.2012.12.004
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Computer and Information Systems Abstracts
AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
EndPage 106
ExternalDocumentID oai_HAL_hal_00713334v2
10_1016_j_csda_2012_12_004
S0167947312004380
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
UMC
VOOES
ID FETCH-LOGICAL-c510t-830c0f17f3d174de679bf589101b10b06d5b5b9b38ffe07767b00aaf74dcc073
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Fri May 09 12:24:08 EDT 2025
Thu Jul 10 18:31:44 EDT 2025
Mon Jul 21 09:44:04 EDT 2025
Tue Jul 01 02:24:27 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Fri Feb 23 02:23:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multivariate functional principal component analysis
Multivariate functional data
Density approximation
EM-algorithm
Model-based clustering
multivariate functional principal component analysis
model-based clustering
EM algorithm
density approximation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-830c0f17f3d174de679bf589101b10b06d5b5b9b38ffe07767b00aaf74dcc073
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0003-4808-2781
0000-0003-1250-177X
OpenAccessLink https://hal.science/hal-00713334
PQID 1506387293
PQPubID 23500
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_00713334v2
proquest_miscellaneous_2253214298
proquest_miscellaneous_1506387293
crossref_primary_10_1016_j_csda_2012_12_004
crossref_citationtrail_10_1016_j_csda_2012_12_004
elsevier_sciencedirect_doi_10_1016_j_csda_2012_12_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Berrendero, Justel, Svarc (br000010) 2011; 55
Schwarz (br000160) 1978; 6
Tuddenham, R., Snyder, M., 1954. Physical growth of California boys and girls from birth to eighteen years. Universities of California Public Child Development 1, pp. 188–364.
Sangalli, Secchi, Vantini, Vitelli (br000150) 2010; 54
Abraham, Cornillon, Matzner-Løber, Molinari (br000005) 2003; 30
Cattell (br000035) 1966; 1
Chiou, Li (br000040) 2007; 69
McLachlan, Peel (br000110) 2000
Saporta (br000155) 1981; vols. 37–38
Singhal, Seborg (br000165) 2005; 19
Preda, Saporta, Lévéder (br000130) 2007; 22
Besse, P., 1979. Etude descriptive d’un processus. Ph.D. Thesis. Université Paul Sabatier, Toulouse.
Bouveyron, Girard, Schmid (br000025) 2007; 52
Biernacki (br000020) 2004; 14
Ray, Mallick (br000140) 2006; 68
Jacques, J., Preda, C., 2013. Funclust: a curves clustering method using functional random variable density approximation. Neurocomputing (in press).
Ramsay, Silverman (br000135) 2005
Bouveyron, Jacques (br000030) 2011; 5
Ferraty, Vieu (br000060) 2003; 44
Frühwirth-Schnatter, Kaufmann (br000065) 2008; 26
Olszewski, R., 2001. Generalized feature extraction for structural pattern recognition in time-series data. Ph.D. Thesis. Carnegie Mellon University. Pittsburgh, PA.
Leveder, C., Abraham, C., Cornillon, P.A., Matzner-Løber, E., Molinari, N., 2004. Discrimination de courbes de pétrissage. In: Chimiométrie 2004. Paris. pp. 37–43.
James, Sugar (br000090) 2003; 98
Titterington, Smith, Makov (br000175) 1985
Dempster, Laird, Rubin (br000050) 1977; 39
Liu, Yang (br000105) 2009; 53
R Core Team, 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
.
Kayano, Dozono, Konishi (br000095) 2010; 27
Poskitt, Sengarapillai (br000120) 2013; 58
Guyon, I., Von Luxburg, U., Williamson, R., 2009. Clustering: science or art. In: NIPS 2009 Workshop on Clustering Theory.
Tarpey, Kinateder (br000170) 2003; 20
Tokushige, Yadohisa, Inada (br000180) 2007; 22
Deville (br000055) 1974; 15
Preda (br000125) 2007; 137
Ieva, Paganoni, Pigoli, Vitelli (br000075) 2012
Jacques, J., Preda, C., 2012. Model-based clustering of functional data. In: 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges. pp. 459–464.
Delaigle, Hall (br000045) 2010; 38
Dempster (10.1016/j.csda.2012.12.004_br000050) 1977; 39
Preda (10.1016/j.csda.2012.12.004_br000130) 2007; 22
Liu (10.1016/j.csda.2012.12.004_br000105) 2009; 53
10.1016/j.csda.2012.12.004_br000015
10.1016/j.csda.2012.12.004_br000115
James (10.1016/j.csda.2012.12.004_br000090) 2003; 98
Tokushige (10.1016/j.csda.2012.12.004_br000180) 2007; 22
McLachlan (10.1016/j.csda.2012.12.004_br000110) 2000
Titterington (10.1016/j.csda.2012.12.004_br000175) 1985
Biernacki (10.1016/j.csda.2012.12.004_br000020) 2004; 14
Bouveyron (10.1016/j.csda.2012.12.004_br000025) 2007; 52
10.1016/j.csda.2012.12.004_br000070
Ieva (10.1016/j.csda.2012.12.004_br000075) 2012
Ramsay (10.1016/j.csda.2012.12.004_br000135) 2005
Sangalli (10.1016/j.csda.2012.12.004_br000150) 2010; 54
Poskitt (10.1016/j.csda.2012.12.004_br000120) 2013; 58
10.1016/j.csda.2012.12.004_br000145
10.1016/j.csda.2012.12.004_br000185
10.1016/j.csda.2012.12.004_br000100
10.1016/j.csda.2012.12.004_br000085
Ferraty (10.1016/j.csda.2012.12.004_br000060) 2003; 44
Preda (10.1016/j.csda.2012.12.004_br000125) 2007; 137
10.1016/j.csda.2012.12.004_br000080
Singhal (10.1016/j.csda.2012.12.004_br000165) 2005; 19
Bouveyron (10.1016/j.csda.2012.12.004_br000030) 2011; 5
Delaigle (10.1016/j.csda.2012.12.004_br000045) 2010; 38
Saporta (10.1016/j.csda.2012.12.004_br000155) 1981; vols. 37–38
Cattell (10.1016/j.csda.2012.12.004_br000035) 1966; 1
Berrendero (10.1016/j.csda.2012.12.004_br000010) 2011; 55
Frühwirth-Schnatter (10.1016/j.csda.2012.12.004_br000065) 2008; 26
Ray (10.1016/j.csda.2012.12.004_br000140) 2006; 68
Schwarz (10.1016/j.csda.2012.12.004_br000160) 1978; 6
Chiou (10.1016/j.csda.2012.12.004_br000040) 2007; 69
Deville (10.1016/j.csda.2012.12.004_br000055) 1974; 15
Abraham (10.1016/j.csda.2012.12.004_br000005) 2003; 30
Kayano (10.1016/j.csda.2012.12.004_br000095) 2010; 27
Tarpey (10.1016/j.csda.2012.12.004_br000170) 2003; 20
References_xml – volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: br000050
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– volume: 68
  start-page: 305
  year: 2006
  end-page: 332
  ident: br000140
  article-title: Functional clustering by Bayesian wavelet methods
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– volume: 53
  start-page: 1361
  year: 2009
  end-page: 1376
  ident: br000105
  article-title: Simultaneous curve registration and clustering for functional data
  publication-title: Computational Statistics and Data Analysis
– volume: 137
  start-page: 829
  year: 2007
  end-page: 840
  ident: br000125
  article-title: Regression models for functional data by reproducing kernel Hilbert spaces methods
  publication-title: Journal of Statistical Planning and Inference
– volume: 55
  start-page: 2619
  year: 2011
  end-page: 2634
  ident: br000010
  article-title: Principal components for multivariate functional data
  publication-title: Computational Statistics and Data Analysis
– volume: 52
  start-page: 502
  year: 2007
  end-page: 519
  ident: br000025
  article-title: High dimensional data clustering
  publication-title: Computational Statistics and Data Analysis
– reference: Jacques, J., Preda, C., 2012. Model-based clustering of functional data. In: 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges. pp. 459–464.
– reference: Besse, P., 1979. Etude descriptive d’un processus. Ph.D. Thesis. Université Paul Sabatier, Toulouse.
– volume: 15
  start-page: 3
  year: 1974
  end-page: 101
  ident: br000055
  article-title: Méthodes statistiques et numériques de l’analyse harmonique
  publication-title: Annales de l’INSEE
– volume: 26
  start-page: 78
  year: 2008
  end-page: 89
  ident: br000065
  article-title: Model-based clustering of multiple time series
  publication-title: Journal of Business and Economic Statistics
– volume: 98
  start-page: 397
  year: 2003
  end-page: 408
  ident: br000090
  article-title: Clustering for sparsely sampled functional data
  publication-title: Journal of the American Statistical Association
– year: 2000
  ident: br000110
  article-title: Finite Mixture Models
– year: 2005
  ident: br000135
  publication-title: Functional Data Analysis
– reference: Tuddenham, R., Snyder, M., 1954. Physical growth of California boys and girls from birth to eighteen years. Universities of California Public Child Development 1, pp. 188–364.
– volume: 20
  start-page: 93
  year: 2003
  end-page: 114
  ident: br000170
  article-title: Clustering functional data
  publication-title: Journal of Classification
– year: 1985
  ident: br000175
  publication-title: Statistical Analysis of Finite Mixture Distributions
– reference: R Core Team, 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
– volume: 22
  start-page: 1
  year: 2007
  end-page: 16
  ident: br000180
  article-title: Crisp and fuzzy
  publication-title: Computational Statistics
– volume: 27
  start-page: 211
  year: 2010
  end-page: 230
  ident: br000095
  article-title: Functional cluster analysis via orthonormalized Gaussian basis expansions and its application
  publication-title: Journal of Classification
– volume: 19
  start-page: 427
  year: 2005
  end-page: 438
  ident: br000165
  article-title: Clustering multivariate time-series data
  publication-title: Journal of Chemometrics
– volume: 14
  start-page: 267
  year: 2004
  end-page: 279
  ident: br000020
  article-title: Initializing EM using the properties of its trajectories in Gaussian mixtures
  publication-title: Statistics and Computing
– volume: vols. 37–38
  year: 1981
  ident: br000155
  publication-title: Méthodes Exploratoires d’Analyse de Données Temporelles
– volume: 30
  start-page: 581
  year: 2003
  end-page: 595
  ident: br000005
  article-title: Unsupervised curve clustering using
  publication-title: Scandinavian Journal of Statistics. Theory and Applications
– volume: 58
  start-page: 98
  year: 2013
  end-page: 113
  ident: br000120
  article-title: Description length and dimensionality reduction in functional data analysis
  publication-title: Computational Statistics and Data Analysis
– volume: 38
  start-page: 1171
  year: 2010
  end-page: 1193
  ident: br000045
  article-title: Defining probability density for a distribution of random functions
  publication-title: The Annals of Statistics
– volume: 5
  start-page: 281
  year: 2011
  end-page: 300
  ident: br000030
  article-title: Model-based clustering of time series in group-specific functional subspaces
  publication-title: Advances in Data Analysis and Classification
– reference: .
– volume: 69
  start-page: 679
  year: 2007
  end-page: 699
  ident: br000040
  article-title: Functional clustering and identifying substructures of longitudinal data
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– reference: Leveder, C., Abraham, C., Cornillon, P.A., Matzner-Løber, E., Molinari, N., 2004. Discrimination de courbes de pétrissage. In: Chimiométrie 2004. Paris. pp. 37–43.
– year: 2012
  ident: br000075
  article-title: Multivariate functional clustering for the morphological analysis of electrocardiograph curves
  publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics)
– volume: 44
  start-page: 161
  year: 2003
  end-page: 173
  ident: br000060
  article-title: Curves discrimination: a nonparametric approach
  publication-title: Computational Statistics and Data Analysis
– volume: 54
  start-page: 1219
  year: 2010
  end-page: 1233
  ident: br000150
  article-title: -means alignment for curve clustering
  publication-title: Computational Statistics and Data Analysis
– reference: Jacques, J., Preda, C., 2013. Funclust: a curves clustering method using functional random variable density approximation. Neurocomputing (in press).
– volume: 22
  start-page: 223
  year: 2007
  end-page: 235
  ident: br000130
  article-title: PLS classification of functional data
  publication-title: Computational Statistics
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: br000160
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
– volume: 1
  start-page: 245
  year: 1966
  end-page: 276
  ident: br000035
  article-title: The scree test for the number of factors
  publication-title: Multivariate Behavioral Research
– reference: Guyon, I., Von Luxburg, U., Williamson, R., 2009. Clustering: science or art. In: NIPS 2009 Workshop on Clustering Theory.
– reference: Olszewski, R., 2001. Generalized feature extraction for structural pattern recognition in time-series data. Ph.D. Thesis. Carnegie Mellon University. Pittsburgh, PA.
– volume: 5
  start-page: 281
  issue: 4
  year: 2011
  ident: 10.1016/j.csda.2012.12.004_br000030
  article-title: Model-based clustering of time series in group-specific functional subspaces
  publication-title: Advances in Data Analysis and Classification
  doi: 10.1007/s11634-011-0095-6
– volume: 22
  start-page: 1
  year: 2007
  ident: 10.1016/j.csda.2012.12.004_br000180
  article-title: Crisp and fuzzy k-means clustering algorithms for multivariate functional data
  publication-title: Computational Statistics
  doi: 10.1007/s00180-006-0013-0
– year: 1985
  ident: 10.1016/j.csda.2012.12.004_br000175
– ident: 10.1016/j.csda.2012.12.004_br000080
– volume: 69
  start-page: 679
  issue: 4
  year: 2007
  ident: 10.1016/j.csda.2012.12.004_br000040
  article-title: Functional clustering and identifying substructures of longitudinal data
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.1467-9868.2007.00605.x
– volume: 98
  start-page: 397
  issue: 462
  year: 2003
  ident: 10.1016/j.csda.2012.12.004_br000090
  article-title: Clustering for sparsely sampled functional data
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214503000189
– year: 2000
  ident: 10.1016/j.csda.2012.12.004_br000110
– volume: 26
  start-page: 78
  year: 2008
  ident: 10.1016/j.csda.2012.12.004_br000065
  article-title: Model-based clustering of multiple time series
  publication-title: Journal of Business and Economic Statistics
  doi: 10.1198/073500107000000106
– volume: 22
  start-page: 223
  issue: 2
  year: 2007
  ident: 10.1016/j.csda.2012.12.004_br000130
  article-title: PLS classification of functional data
  publication-title: Computational Statistics
  doi: 10.1007/s00180-007-0041-4
– ident: 10.1016/j.csda.2012.12.004_br000100
– volume: 30
  start-page: 581
  issue: 3
  year: 2003
  ident: 10.1016/j.csda.2012.12.004_br000005
  article-title: Unsupervised curve clustering using B-splines
  publication-title: Scandinavian Journal of Statistics. Theory and Applications
  doi: 10.1111/1467-9469.00350
– ident: 10.1016/j.csda.2012.12.004_br000085
  doi: 10.1016/j.neucom.2012.11.042
– volume: 38
  start-page: 1171
  year: 2010
  ident: 10.1016/j.csda.2012.12.004_br000045
  article-title: Defining probability density for a distribution of random functions
  publication-title: The Annals of Statistics
  doi: 10.1214/09-AOS741
– volume: 54
  start-page: 1219
  issue: 5
  year: 2010
  ident: 10.1016/j.csda.2012.12.004_br000150
  article-title: K-means alignment for curve clustering
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2009.12.008
– volume: 68
  start-page: 305
  issue: 2
  year: 2006
  ident: 10.1016/j.csda.2012.12.004_br000140
  article-title: Functional clustering by Bayesian wavelet methods
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.1467-9868.2006.00545.x
– volume: 15
  start-page: 3
  year: 1974
  ident: 10.1016/j.csda.2012.12.004_br000055
  article-title: Méthodes statistiques et numériques de l’analyse harmonique
  publication-title: Annales de l’INSEE
– year: 2005
  ident: 10.1016/j.csda.2012.12.004_br000135
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.csda.2012.12.004_br000050
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 10.1016/j.csda.2012.12.004_br000115
– volume: 55
  start-page: 2619
  year: 2011
  ident: 10.1016/j.csda.2012.12.004_br000010
  article-title: Principal components for multivariate functional data
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2011.03.011
– volume: 1
  start-page: 245
  issue: 2
  year: 1966
  ident: 10.1016/j.csda.2012.12.004_br000035
  article-title: The scree test for the number of factors
  publication-title: Multivariate Behavioral Research
  doi: 10.1207/s15327906mbr0102_10
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.csda.2012.12.004_br000160
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344136
– volume: 14
  start-page: 267
  issue: 3
  year: 2004
  ident: 10.1016/j.csda.2012.12.004_br000020
  article-title: Initializing EM using the properties of its trajectories in Gaussian mixtures
  publication-title: Statistics and Computing
  doi: 10.1023/B:STCO.0000035306.77434.31
– ident: 10.1016/j.csda.2012.12.004_br000145
– volume: vols. 37–38
  year: 1981
  ident: 10.1016/j.csda.2012.12.004_br000155
– volume: 19
  start-page: 427
  year: 2005
  ident: 10.1016/j.csda.2012.12.004_br000165
  article-title: Clustering multivariate time-series data
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.945
– volume: 20
  start-page: 93
  issue: 1
  year: 2003
  ident: 10.1016/j.csda.2012.12.004_br000170
  article-title: Clustering functional data
  publication-title: Journal of Classification
  doi: 10.1007/s00357-003-0007-3
– year: 2012
  ident: 10.1016/j.csda.2012.12.004_br000075
  article-title: Multivariate functional clustering for the morphological analysis of electrocardiograph curves
  publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics)
– volume: 44
  start-page: 161
  year: 2003
  ident: 10.1016/j.csda.2012.12.004_br000060
  article-title: Curves discrimination: a nonparametric approach
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/S0167-9473(03)00032-X
– volume: 137
  start-page: 829
  year: 2007
  ident: 10.1016/j.csda.2012.12.004_br000125
  article-title: Regression models for functional data by reproducing kernel Hilbert spaces methods
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2006.06.011
– volume: 53
  start-page: 1361
  year: 2009
  ident: 10.1016/j.csda.2012.12.004_br000105
  article-title: Simultaneous curve registration and clustering for functional data
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2008.11.019
– ident: 10.1016/j.csda.2012.12.004_br000185
– volume: 27
  start-page: 211
  year: 2010
  ident: 10.1016/j.csda.2012.12.004_br000095
  article-title: Functional cluster analysis via orthonormalized Gaussian basis expansions and its application
  publication-title: Journal of Classification
  doi: 10.1007/s00357-010-9054-8
– volume: 58
  start-page: 98
  year: 2013
  ident: 10.1016/j.csda.2012.12.004_br000120
  article-title: Description length and dimensionality reduction in functional data analysis
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2011.03.018
– ident: 10.1016/j.csda.2012.12.004_br000015
– volume: 52
  start-page: 502
  year: 2007
  ident: 10.1016/j.csda.2012.12.004_br000025
  article-title: High dimensional data clustering
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2007.02.009
– ident: 10.1016/j.csda.2012.12.004_br000070
SSID ssj0002478
Score 2.5253878
Snippet The first model-based clustering algorithm for multivariate functional data is proposed. After introducing multivariate functional principal components...
This paper proposes the first model-based clustering algorithm for multivariate functional data. After introducing multivariate functional principal components...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 92
SubjectTerms Algorithms
data collection
Density approximation
EM-algorithm
Mathematics
Model-based clustering
Multivariate functional data
Multivariate functional principal component analysis
principal component analysis
Statistics
Statistics Theory
Title Model-based clustering for multivariate functional data
URI https://dx.doi.org/10.1016/j.csda.2012.12.004
https://www.proquest.com/docview/1506387293
https://www.proquest.com/docview/2253214298
https://hal.science/hal-00713334
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zXvQgfuL8GFW8SV3bJGtzHMNRndtBJ-4WmrTFyeiG-zj6t_te004U3UEolIaUhpfkfaS_93uEXDGmtQ9Rlw1hV9NmNHVtEXmBnfCYRR6LwKHD5ORevxk-s_shH1ZIu8yFQVhlofuNTs-1ddHSKKTZmI5GjScE0AvmU9czvOmYwc58XOU3H18wD48ZbYz83ti7SJwxGC89i5F7yPXyI8GiWNsvxmnjFVGSP5R1boE6u2SncB2tlhndHqkk2T7Z7q14V2cHxMfSZmMbTVNs6fECWRDANlngmVo5dHAJoTF4lxaaM3MKaCFG9JAMOreDdmgXpRFsDZtobgfU0U7q-imNIaSIE5CESrFAoOMq11FOM-aKK6FokKZJztgD2yuKUuirNezqI1LNJllyTCxFUyE49yPMkFWUCk6dONbUTbgW2lE14pYikbqgDcfqFWNZ4sPeJIpRohglXCDGGrlevTM1pBlre_NS0vLb1EvQ6mvfu4RpWX0AebLD1oPENhN7U7b0auSinDUJGwf_hkRZMlnMJFIr0gBiC_p3H1B2WMjJE8HJPwd5SrbgiRnU2hmpzt8XyTm4MXNVz9dpnWy27rphH-_dx5fuJzOZ8C4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFH_i47DtMA3GRPdFQNtpCk380SSHHdAGamnLZZ3UmxU7jgBVAS0t0y77o_gLeS92ijZtPSAh5eTYjvVsvw_n598D-CCEMQlGXSGGXb1Q8DIOs5yloZWFyJnI0aGjy8njs17_uzidyuka3LZ3YQhW6XW_0-mNtvYlXS_N7vXFRfcbAegzkfCYOd50j6wc2l8_MW6rPw--4iR_ZOzkePKlH_rUAqHBRTgPUx6ZqIyTkhfokhcWe9IlJdiLYh1HOuoVUkudaZ6WpW0Yb3B55nmJdY3BXYHdrsOmQG1BWRMOf9_DSphw2p_4xGl0_qKOw5SZuiCuo5g1R5A-Odw_jOH6OaEy_zIOjcU7eQHPvasaHDlpbMGarbbh2XjJ81q_hIRSqc1CMoVFYGYLYl1AWxigJxw0UMUbDMXRmw3IfLpTx4AwqTsweQx5vYKN6qqyuxBoXmaZlElON3I155nkUVEYHltpMhPpDsStSJTxNOWULWOmWjzapSIxKhKjwgfF2IFPyzbXjqRjZW3ZSlr9sdQUWpGV7Q5wWpYfIF7u_tFIUZmL9bm4YR3Yb2dN4Ualvy95Za8WtSIqR55iLMP_XweVKyWOYln6-oGD3IMn_cl4pEaDs-EbeIpvhEPMvYWN-Y-FfYcu1Fy_b9ZsAOqR98gdN3speg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+clustering+for+multivariate+functional+data&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Jacques%2C+Julien&rft.au=Preda%2C+Cristian&rft.date=2014-03-01&rft.issn=0167-9473&rft.volume=71&rft.spage=92&rft.epage=106&rft_id=info:doi/10.1016%2Fj.csda.2012.12.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csda_2012_12_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon