Quantitative Susceptibility Mapping by Inversion of a Perturbation Field Model: Correlation With Brain Iron in Normal Aging

There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR sign...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 34; no. 1; pp. 339 - 353
Main Authors Poynton, Clare B., Jenkinson, Mark, Adalsteinsson, Elfar, Sullivan, Edith V., Pfefferbaum, Adolf, Wells, William
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2014.2358552

Cover

Abstract There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B 0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from Rho=0.905 to Rho=1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions.
AbstractList There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B 0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from Rho = 0.905 to Rho = 1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions.
There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or ‘QSIP’. The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B 0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase (FDRI), and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in-vivo FDRI: statistically significant Spearman correlations ranging from Rho = 0.905 to Rho = 1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions.
There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from Rho=0.905 to Rho=1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions.There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from Rho=0.905 to Rho=1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions.
There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate [Formula Omitted] inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from [Formula Omitted] to [Formula Omitted] were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions.
There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from Rho=0.905 to Rho=1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions.
Author Poynton, Clare B.
Adalsteinsson, Elfar
Sullivan, Edith V.
Jenkinson, Mark
Pfefferbaum, Adolf
Wells, William
Author_xml – sequence: 1
  givenname: Clare B.
  surname: Poynton
  fullname: Poynton, Clare B.
  email: clare.poynton@ucsf.edu
  organization: Harvard-MIT Div. of Health Sci. & Technol. (HST), Massachusetts Inst. of Technol., Cambridge, MA, USA
– sequence: 2
  givenname: Mark
  surname: Jenkinson
  fullname: Jenkinson, Mark
  organization: Nufheld Dept. of Clinical Neurosciences, Univ. of Oxford, Oxford, UK
– sequence: 3
  givenname: Elfar
  surname: Adalsteinsson
  fullname: Adalsteinsson, Elfar
  organization: Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA
– sequence: 4
  givenname: Edith V.
  surname: Sullivan
  fullname: Sullivan, Edith V.
  organization: Sch. of Med., Dept. of Psychiatry & Behavioral Sci., Stanford Univ., Stanford, CA, USA
– sequence: 5
  givenname: Adolf
  surname: Pfefferbaum
  fullname: Pfefferbaum, Adolf
  organization: Sch. of Med., Dept. of Psychiatry & Behavioral Sci., Stanford Univ., Stanford, CA, USA
– sequence: 6
  givenname: William
  surname: Wells
  fullname: Wells, William
  organization: Med. Sch., Dept. of Radiol., Harvard Univ., Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25248179$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9rUzEUx4NMXDd9FwQJ-OJLa37_8EGYxWlh9QdO9C2kuWmXkSbX3HsLxX_e1HZD9yCDwCHnfL7fcE7OCThKOXkAnmI0wRjpV5fz2YQgzCaEcsU5eQBGmHM1Jpz9OAIjRKQaIyTIMTjpumtUSY70I3BMOGEKSz0Cv74MNvWht33YePh16Jxv-7AIMfRbOLdtG9IKLrZwlja-dCEnmJfQws--9ENZVFXNnAcfGzjPjY-v4TSX4uO-8D30V_BtsSHBWan3Gj_msrYRnq2q72PwcGlj558c4in4dv7ucvphfPHp_Wx6djF2HKN-LFRTD9OcSSoRdVQ74TRZcsqsxkLWlkjTIKWVqhkliRROScep1A4rp-gpeLP3bYfF2jfOp77YaNoS1rZsTbbB_FtJ4cqs8sYwhpiguBq8PBiU_HPwXW_WoQ4qRpt8HjqDBccMYS34PVAmEeKIyvugmCDKOK3oizvodR5KqkOrlKBCCiJ3bz__u8_bBm9-uwJiD7iSu674pXF_fj7v2g7RYGR2a2XqWpndWpnDWlUhuiO88f6P5NleErz3t7hQWgvF6W9tWNYd
CODEN ITMID4
CitedBy_id crossref_primary_10_1002_hbm_24461
crossref_primary_10_2174_1872208313666181217112745
crossref_primary_10_1016_j_mri_2018_07_009
crossref_primary_10_1016_j_neuroimage_2022_119788
crossref_primary_10_1007_s11065_015_9292_y
crossref_primary_10_1016_j_neuroimage_2017_01_053
crossref_primary_10_1002_mp_17747
crossref_primary_10_1002_nbm_4750
crossref_primary_10_1109_TBME_2017_2749298
crossref_primary_10_3389_fnimg_2024_1359630
crossref_primary_10_3389_fimmu_2018_00255
crossref_primary_10_1016_j_neuroimage_2023_120401
crossref_primary_10_1002_mrm_26748
crossref_primary_10_1016_j_mri_2015_09_002
crossref_primary_10_1038_srep45261
crossref_primary_10_1016_j_neuroimage_2019_116389
crossref_primary_10_3233_JAD_150797
crossref_primary_10_1186_s13578_018_0239_x
crossref_primary_10_1002_nbm_4666
crossref_primary_10_1002_mrm_26331
crossref_primary_10_1016_j_neuroimage_2016_05_024
crossref_primary_10_1088_2057_1976_ac0501
crossref_primary_10_1111_jnc_14132
crossref_primary_10_1007_s12559_022_10095_3
crossref_primary_10_1523_JNEUROSCI_1907_15_2016
Cites_doi 10.1002/mrm.1910050404
10.1002/mrm.1910360509
10.1016/j.mri.2004.10.001
10.1002/hbm.10062
10.1016/j.neuroimage.2010.10.070
10.1073/pnas.0910222107
10.1002/mrm.1910240219
10.1002/jmri.21693
10.1088/0031-9155/51/24/007
10.1109/TMI.2009.2023787
10.1002/mds.20550
10.1088/0957-0233/6/8/005
10.1007/BF02252926
10.2165/00023210-200216050-00006
10.1118/1.3481505
10.1006/jmre.2000.2267
10.1109/TITB.2003.808506
10.1002/mrm.10354
10.1016/S0730-725X(96)00234-2
10.1111/j.1469-8749.2011.03955.x
10.1016/j.neuroimage.2011.08.082
10.1002/mrm.1910020311
10.1111/j.1471-4159.1958.tb12607.x
10.1002/mrm.24272
10.1002/mrm.22187
10.1016/j.neuroimage.2010.06.070
10.1056/NEJM198212303072703
10.1016/S0730-725X(02)00601-X
10.1007/s00702-011-0607-8
10.1016/j.neuroimage.2009.05.006
10.1016/0730-725X(92)90489-M
10.1001/archneur.59.6.999
10.1002/mrm.20198
10.1002/cmr.b.20034
10.1016/S0730-725X(99)00017-X
10.2214/ajr.154.5.2108542
10.1002/mrm.20194
10.1002/mrm.21828
10.1016/j.neuroimage.2010.07.033
10.1007/s11064-007-9352-7
10.1007/s00702-005-0447-5
10.1016/S0730-725X(02)00507-6
10.1016/B978-0-444-52014-2.00009-4
10.1007/3-540-27660-2
10.1016/j.neuroimage.2011.02.024
10.1073/pnas.0610821104
10.1002/cmr.b.10083
10.1002/mrm.24135
10.1038/nrn1537
10.1002/mrm.22334
10.1016/0730-725X(94)92357-4
10.1002/hbm.20906
10.1002/nbm.1670
10.1002/jmri.22987
10.1002/mrm.20054
10.1002/mrm.1910290406
10.1002/mrm.1910030511
10.1002/mrm.22135
10.1196/annals.1379.018
10.1002/jmri.22752
10.1002/mrm.20735
10.1016/0006-3223(94)90047-7
10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
10.1016/0022-510X(95)00202-D
10.1016/j.neuroimage.2008.10.029
10.1088/0031-9155/54/5/005
10.1016/j.neurobiolaging.2006.02.005
10.1007/978-3-642-04271-3_115
10.1002/mrm.21710
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
Copyright (c) 2010 IEEE. 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
– notice: Copyright (c) 2010 IEEE. 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2014.2358552
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database


MEDLINE - Academic
Materials Research Database
MEDLINE
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 353
ExternalDocumentID PMC4404631
3625202421
25248179
10_1109_TMI_2014_2358552
6899685
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: R01 AA012388
– fundername: NIAAA NIH HHS
  grantid: K05AA017168
– fundername: NIAAA NIH HHS
  grantid: K05 AA017168
– fundername: NIBIB NIH HHS
  grantid: P41EB015898
– fundername: NIAAA NIH HHS
  grantid: R01AA012388
– fundername: NCRR NIH HHS
  grantid: P41 RR019703
– fundername: NCRR NIH HHS
  grantid: P41 RR013218
– fundername: NCRR NIH HHS
  grantid: P41RR019703
– fundername: NIBIB NIH HHS
  grantid: P41EB015902
– fundername: NIBIB NIH HHS
  grantid: T32EB0011680-06
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c510t-68d68d495473703c39c6c92f534a91675092dd0898834a87276c87c5379c18c83
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 18:22:17 EDT 2025
Thu Sep 04 17:24:20 EDT 2025
Fri Sep 05 03:41:54 EDT 2025
Fri Sep 05 10:58:57 EDT 2025
Sun Jun 29 15:55:55 EDT 2025
Mon Jul 21 06:06:23 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Tue Jul 01 03:15:55 EDT 2025
Tue Aug 26 16:39:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-68d68d495473703c39c6c92f534a91675092dd0898834a87276c87c5379c18c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4404631
PMID 25248179
PQID 1663676275
PQPubID 85460
PageCount 15
ParticipantIDs ieee_primary_6899685
pubmed_primary_25248179
proquest_miscellaneous_1651401965
crossref_primary_10_1109_TMI_2014_2358552
proquest_miscellaneous_1641203453
proquest_miscellaneous_1647005037
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4404631
proquest_journals_1663676275
crossref_citationtrail_10_1109_TMI_2014_2358552
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
bilgic (ref12) 2011
ref15
ref58
ref14
ref52
ref11
ref54
ref10
pohl (ref59) 2004
zollei (ref60) 2007
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
ref41
ref44
ref43
li (ref45) 2012; 68
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
marques (ref53) 2003; 11
ref40
poynton (ref42) 2011
ref35
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref33
ref76
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
jackson (ref77) 1999; 67
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref21
ref28
ref27
ref29
ref62
ref61
poynton (ref55) 2012
mattis (ref65) 1988
References_xml – ident: ref26
  doi: 10.1002/mrm.1910050404
– ident: ref50
  doi: 10.1002/mrm.1910360509
– ident: ref17
  doi: 10.1016/j.mri.2004.10.001
– ident: ref66
  doi: 10.1002/hbm.10062
– ident: ref19
  doi: 10.1016/j.neuroimage.2010.10.070
– ident: ref75
  doi: 10.1073/pnas.0910222107
– ident: ref63
  doi: 10.1002/mrm.1910240219
– ident: ref32
  doi: 10.1002/jmri.21693
– ident: ref30
  doi: 10.1088/0031-9155/51/24/007
– ident: ref46
  doi: 10.1109/TMI.2009.2023787
– ident: ref21
  doi: 10.1002/mds.20550
– ident: ref56
  doi: 10.1088/0957-0233/6/8/005
– volume: 11
  start-page: 1020
  year: 2003
  ident: ref53
  article-title: Evaluation of a Fourier-based method for calculating susceptibility induced magnetic field perturbations
  publication-title: Proc ISMRM
– ident: ref5
  doi: 10.1007/BF02252926
– ident: ref6
  doi: 10.2165/00023210-200216050-00006
– ident: ref41
  doi: 10.1118/1.3481505
– ident: ref29
  doi: 10.1006/jmre.2000.2267
– ident: ref67
  doi: 10.1109/TITB.2003.808506
– start-page: 81
  year: 2004
  ident: ref59
  article-title: Anatomical guided segmentation with nonstationary tissue class distributions in an expectation-maximization framework
  publication-title: Proc IEEE Int Symp Biomed Imag
– ident: ref64
  doi: 10.1002/mrm.10354
– ident: ref16
  doi: 10.1016/S0730-725X(96)00234-2
– ident: ref3
  doi: 10.1111/j.1469-8749.2011.03955.x
– ident: ref43
  doi: 10.1016/j.neuroimage.2011.08.082
– ident: ref24
  doi: 10.1002/mrm.1910020311
– ident: ref8
  doi: 10.1111/j.1471-4159.1958.tb12607.x
– ident: ref44
  doi: 10.1002/mrm.24272
– ident: ref40
  doi: 10.1002/mrm.22187
– ident: ref74
  doi: 10.1016/j.neuroimage.2010.06.070
– ident: ref28
  doi: 10.1056/NEJM198212303072703
– ident: ref51
  doi: 10.1016/S0730-725X(02)00601-X
– ident: ref4
  doi: 10.1007/s00702-011-0607-8
– ident: ref10
  doi: 10.1016/j.neuroimage.2009.05.006
– ident: ref47
  doi: 10.1016/0730-725X(92)90489-M
– ident: ref72
  doi: 10.1001/archneur.59.6.999
– volume: 67
  year: 1999
  ident: ref77
  publication-title: Classical Electrodynamics
– ident: ref23
  doi: 10.1002/mrm.20198
– ident: ref54
  doi: 10.1002/cmr.b.20034
– ident: ref70
  doi: 10.1016/S0730-725X(99)00017-X
– ident: ref27
  doi: 10.2214/ajr.154.5.2108542
– ident: ref52
  doi: 10.1002/mrm.20194
– ident: ref22
  doi: 10.1002/mrm.21828
– ident: ref62
  doi: 10.1016/j.neuroimage.2010.07.033
– ident: ref7
  doi: 10.1007/s11064-007-9352-7
– ident: ref20
  doi: 10.1007/s00702-005-0447-5
– ident: ref49
  doi: 10.1016/S0730-725X(02)00507-6
– ident: ref2
  doi: 10.1016/B978-0-444-52014-2.00009-4
– ident: ref76
  doi: 10.1007/3-540-27660-2
– ident: ref38
  doi: 10.1016/j.neuroimage.2011.02.024
– ident: ref33
  doi: 10.1073/pnas.0610821104
– year: 2011
  ident: ref42
  article-title: A variational approach to susceptibility estimation that is insensitive to b0 inhomogeneity
  publication-title: Proc 19th Annu Meet ISMRM
– ident: ref35
  doi: 10.1002/cmr.b.10083
– year: 2007
  ident: ref60
  article-title: The impact of atlas formation methods on atlas-guided brain segmentation
  publication-title: MICCAI Workshop
– volume: 68
  start-page: 1563
  year: 2012
  ident: ref45
  article-title: Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24135
– ident: ref1
  doi: 10.1038/nrn1537
– ident: ref34
  doi: 10.1002/mrm.22334
– ident: ref48
  doi: 10.1016/0730-725X(94)92357-4
– ident: ref68
  doi: 10.1002/hbm.20906
– ident: ref31
  doi: 10.1002/nbm.1670
– ident: ref9
  doi: 10.1002/jmri.22987
– ident: ref58
  doi: 10.1002/mrm.20054
– year: 2011
  ident: ref12
  article-title: MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping
  publication-title: NeuroImage
– ident: ref14
  doi: 10.1002/mrm.1910290406
– ident: ref25
  doi: 10.1002/mrm.1910030511
– ident: ref39
  doi: 10.1002/mrm.22135
– ident: ref11
  doi: 10.1196/annals.1379.018
– ident: ref73
  doi: 10.1002/jmri.22752
– year: 1988
  ident: ref65
  publication-title: Psychological Assessment Resources Lutz
– ident: ref57
  doi: 10.1002/mrm.20735
– ident: ref15
  doi: 10.1016/0006-3223(94)90047-7
– ident: ref71
  doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
– ident: ref13
  doi: 10.1016/0022-510X(95)00202-D
– ident: ref18
  doi: 10.1016/j.neuroimage.2008.10.029
– ident: ref36
  doi: 10.1088/0031-9155/54/5/005
– ident: ref69
  doi: 10.1016/j.neurobiolaging.2006.02.005
– ident: ref61
  doi: 10.1007/978-3-642-04271-3_115
– ident: ref37
  doi: 10.1002/mrm.21710
– year: 2012
  ident: ref55
  publication-title: Quantitative susceptibility mapping and susceptibility-based distortion correction of echo planar images
SSID ssj0014509
Score 2.2804294
Snippet There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's,...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 339
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Brain
Brain Chemistry
brain iron
Brain Mapping - methods
Brain modeling
Correlation
Deposition
Estimates
Estimation
Female
Humans
Image Processing, Computer-Assisted - methods
inverse methods
Inversions
Iron
Kernel
Laplace equations
Magnetic permeability
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Magnetic Resonance Imaging - methods
Magnetic susceptibility
Male
Medical research
Middle Aged
normal aging
Perturbation methods
Phantoms, Imaging
quantitative susceptibility mapping
Young Adult
Title Quantitative Susceptibility Mapping by Inversion of a Perturbation Field Model: Correlation With Brain Iron in Normal Aging
URI https://ieeexplore.ieee.org/document/6899685
https://www.ncbi.nlm.nih.gov/pubmed/25248179
https://www.proquest.com/docview/1663676275
https://www.proquest.com/docview/1641203453
https://www.proquest.com/docview/1647005037
https://www.proquest.com/docview/1651401965
https://pubmed.ncbi.nlm.nih.gov/PMC4404631
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_aPog--NH6kVplBV8Ec5dkP7LxTYtHK6Qotti3sNnstcWSK9fkofrPO7P54FrKIRzcRybHJjObndn5zW8A3gtXWVwWbWi4wwAFTSI0aelCbSqXUhou8bUw-ZE6OBHfTuXpBnwca2Gccx585ib00efyq4VtaatsqjA4UFpuwib-Z1erNWYMhOzgHAkxxkYqGVKSUTY9zg8JwyUmVBYqJTWwSWQidEz4rZXVyLdXuc_TvAuYXFmBZk8gH8beAU9-T9qmnNg_d2gd__finsLj3hVlnzvbeQYbrt6GRysEhdvwIO9T7zvw90dral-Rhs9H9rO99ngYD629YbkhmoczVt4wIu7wW3BsMWeGfXdLXNRKr382I7gco_Zrl5_YPvUF6ZB47NdFc86-ULcKdrjE7_h-RM40jo6aKD2Hk9nX4_2DsO_cEFqc402odIUvjL1EyvGRYnlmlc2SueTCoD9KXkpSVZHOtMZfNBqLsjq1kqeZjbXV_AVs1YvavQLGVRkZXfI5-iECgzeMesnJi-bKELOPDGA6aLCwPa05dde4LHx4E2UFqr8g9Re9-gP4MJ5x1VF6rJHdIU2Ncr2SAtgbjKTo5_x1EaPzplJifQ7g3XgYZyulYEztFi3JiDiJuJB8rUzqaXrSdTJ0D4gNMoCXnW2OYxxsO4D0ltWOAsQofvtIfXHumcWJLFLxePf-q34ND_HeyG4Dag-2mmXr3qBL1pRv_Vz8B75uL3M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VIvE48GihGAosEhcknDjeh9fcoCJKoI5ApKI3y15vaNXKQal9KPx5ZtYPpVUVIUVyYk-ktWfWM7Pz7TcAb4UtDLpF42fcYoKCJuFnUW59nRU2ojJc6PbCJDM1ORJfjuXxFrzv98JYax34zA7oq6vlF0tT01LZUGFyoLS8BbfR7wvZ7NbqawZCNoCOkDhjAxV2RckgHs6TKaG4xIA2hkpJLWxCGQo9IgTXmj9yDVZuijWvQybXfND4ISTd6BvoydmgrvKB-XON2PF_b-8RPGiDUfaxsZ7HsGXLHbi_RlG4A3eStvi-C3-_11np9qThG5L9qC8cIsaBay9ZkhHRwy-WXzKi7nCLcGy5YBn7Zlfo1nJnAWxMgDlGDdjOP7AD6gzSYPHYz9PqhH2ifhVsusLfeJxROI2jozZKT-Bo_Hl-MPHb3g2-wVle-UoX-MHsS0QcXyqGx0aZOFxILjKMSClOCYsi0LHWeEajuSijIyN5FJuRNpo_he1yWdpnwLjKg0znfIGRiMD0DfNeCvOChcqI20d6MOw0mJqW2Jz6a5ynLsEJ4hTVn5L601b9Hrzr__G7IfXYILtLmurlWiV5sN8ZSdrO-ot0hOGbioj32YM3_WWcr1SEyUq7rElGjMKAC8k3ykSOqCfaJEPPgPggPdhrbLMfY2fbHkRXrLYXIE7xq1fK0xPHLU50kYqPnt9816_h7mSeHKaH09nXF3APn5NslqP2Ybta1fYlBmhV_srNy3-5RzLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Susceptibility+Mapping+by+Inversion+of+a+Perturbation+Field+Model%3A+Correlation+With+Brain+Iron+in+Normal+Aging&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Poynton%2C+Clare+B.&rft.au=Jenkinson%2C+Mark&rft.au=Adalsteinsson%2C+Elfar&rft.au=Sullivan%2C+Edith+V.&rft.date=2015-01-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=34&rft.issue=1&rft.spage=339&rft.epage=353&rft_id=info:doi/10.1109%2FTMI.2014.2358552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2014_2358552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon