Quantitative Susceptibility Mapping by Inversion of a Perturbation Field Model: Correlation With Brain Iron in Normal Aging
There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR sign...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 34; no. 1; pp. 339 - 353 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2014.2358552 |
Cover
Abstract | There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B 0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from Rho=0.905 to Rho=1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions. |
---|---|
AbstractList | There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B 0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from Rho = 0.905 to Rho = 1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions. There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or ‘QSIP’. The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B 0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase (FDRI), and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in-vivo FDRI: statistically significant Spearman correlations ranging from Rho = 0.905 to Rho = 1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions. There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from Rho=0.905 to Rho=1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions.There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from Rho=0.905 to Rho=1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions. There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate [Formula Omitted] inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from [Formula Omitted] to [Formula Omitted] were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions. There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or "QSIP." The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase, and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in vivo FDRI: statistically significant Spearman correlations ranging from Rho=0.905 to Rho=1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions. |
Author | Poynton, Clare B. Adalsteinsson, Elfar Sullivan, Edith V. Jenkinson, Mark Pfefferbaum, Adolf Wells, William |
Author_xml | – sequence: 1 givenname: Clare B. surname: Poynton fullname: Poynton, Clare B. email: clare.poynton@ucsf.edu organization: Harvard-MIT Div. of Health Sci. & Technol. (HST), Massachusetts Inst. of Technol., Cambridge, MA, USA – sequence: 2 givenname: Mark surname: Jenkinson fullname: Jenkinson, Mark organization: Nufheld Dept. of Clinical Neurosciences, Univ. of Oxford, Oxford, UK – sequence: 3 givenname: Elfar surname: Adalsteinsson fullname: Adalsteinsson, Elfar organization: Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA – sequence: 4 givenname: Edith V. surname: Sullivan fullname: Sullivan, Edith V. organization: Sch. of Med., Dept. of Psychiatry & Behavioral Sci., Stanford Univ., Stanford, CA, USA – sequence: 5 givenname: Adolf surname: Pfefferbaum fullname: Pfefferbaum, Adolf organization: Sch. of Med., Dept. of Psychiatry & Behavioral Sci., Stanford Univ., Stanford, CA, USA – sequence: 6 givenname: William surname: Wells fullname: Wells, William organization: Med. Sch., Dept. of Radiol., Harvard Univ., Boston, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25248179$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt9rUzEUx4NMXDd9FwQJ-OJLa37_8EGYxWlh9QdO9C2kuWmXkSbX3HsLxX_e1HZD9yCDwCHnfL7fcE7OCThKOXkAnmI0wRjpV5fz2YQgzCaEcsU5eQBGmHM1Jpz9OAIjRKQaIyTIMTjpumtUSY70I3BMOGEKSz0Cv74MNvWht33YePh16Jxv-7AIMfRbOLdtG9IKLrZwlja-dCEnmJfQws--9ENZVFXNnAcfGzjPjY-v4TSX4uO-8D30V_BtsSHBWan3Gj_msrYRnq2q72PwcGlj558c4in4dv7ucvphfPHp_Wx6djF2HKN-LFRTD9OcSSoRdVQ74TRZcsqsxkLWlkjTIKWVqhkliRROScep1A4rp-gpeLP3bYfF2jfOp77YaNoS1rZsTbbB_FtJ4cqs8sYwhpiguBq8PBiU_HPwXW_WoQ4qRpt8HjqDBccMYS34PVAmEeKIyvugmCDKOK3oizvodR5KqkOrlKBCCiJ3bz__u8_bBm9-uwJiD7iSu674pXF_fj7v2g7RYGR2a2XqWpndWpnDWlUhuiO88f6P5NleErz3t7hQWgvF6W9tWNYd |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1002_hbm_24461 crossref_primary_10_2174_1872208313666181217112745 crossref_primary_10_1016_j_mri_2018_07_009 crossref_primary_10_1016_j_neuroimage_2022_119788 crossref_primary_10_1007_s11065_015_9292_y crossref_primary_10_1016_j_neuroimage_2017_01_053 crossref_primary_10_1002_mp_17747 crossref_primary_10_1002_nbm_4750 crossref_primary_10_1109_TBME_2017_2749298 crossref_primary_10_3389_fnimg_2024_1359630 crossref_primary_10_3389_fimmu_2018_00255 crossref_primary_10_1016_j_neuroimage_2023_120401 crossref_primary_10_1002_mrm_26748 crossref_primary_10_1016_j_mri_2015_09_002 crossref_primary_10_1038_srep45261 crossref_primary_10_1016_j_neuroimage_2019_116389 crossref_primary_10_3233_JAD_150797 crossref_primary_10_1186_s13578_018_0239_x crossref_primary_10_1002_nbm_4666 crossref_primary_10_1002_mrm_26331 crossref_primary_10_1016_j_neuroimage_2016_05_024 crossref_primary_10_1088_2057_1976_ac0501 crossref_primary_10_1111_jnc_14132 crossref_primary_10_1007_s12559_022_10095_3 crossref_primary_10_1523_JNEUROSCI_1907_15_2016 |
Cites_doi | 10.1002/mrm.1910050404 10.1002/mrm.1910360509 10.1016/j.mri.2004.10.001 10.1002/hbm.10062 10.1016/j.neuroimage.2010.10.070 10.1073/pnas.0910222107 10.1002/mrm.1910240219 10.1002/jmri.21693 10.1088/0031-9155/51/24/007 10.1109/TMI.2009.2023787 10.1002/mds.20550 10.1088/0957-0233/6/8/005 10.1007/BF02252926 10.2165/00023210-200216050-00006 10.1118/1.3481505 10.1006/jmre.2000.2267 10.1109/TITB.2003.808506 10.1002/mrm.10354 10.1016/S0730-725X(96)00234-2 10.1111/j.1469-8749.2011.03955.x 10.1016/j.neuroimage.2011.08.082 10.1002/mrm.1910020311 10.1111/j.1471-4159.1958.tb12607.x 10.1002/mrm.24272 10.1002/mrm.22187 10.1016/j.neuroimage.2010.06.070 10.1056/NEJM198212303072703 10.1016/S0730-725X(02)00601-X 10.1007/s00702-011-0607-8 10.1016/j.neuroimage.2009.05.006 10.1016/0730-725X(92)90489-M 10.1001/archneur.59.6.999 10.1002/mrm.20198 10.1002/cmr.b.20034 10.1016/S0730-725X(99)00017-X 10.2214/ajr.154.5.2108542 10.1002/mrm.20194 10.1002/mrm.21828 10.1016/j.neuroimage.2010.07.033 10.1007/s11064-007-9352-7 10.1007/s00702-005-0447-5 10.1016/S0730-725X(02)00507-6 10.1016/B978-0-444-52014-2.00009-4 10.1007/3-540-27660-2 10.1016/j.neuroimage.2011.02.024 10.1073/pnas.0610821104 10.1002/cmr.b.10083 10.1002/mrm.24135 10.1038/nrn1537 10.1002/mrm.22334 10.1016/0730-725X(94)92357-4 10.1002/hbm.20906 10.1002/nbm.1670 10.1002/jmri.22987 10.1002/mrm.20054 10.1002/mrm.1910290406 10.1002/mrm.1910030511 10.1002/mrm.22135 10.1196/annals.1379.018 10.1002/jmri.22752 10.1002/mrm.20735 10.1016/0006-3223(94)90047-7 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10.1016/0022-510X(95)00202-D 10.1016/j.neuroimage.2008.10.029 10.1088/0031-9155/54/5/005 10.1016/j.neurobiolaging.2006.02.005 10.1007/978-3-642-04271-3_115 10.1002/mrm.21710 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 Copyright (c) 2010 IEEE. 2010 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 – notice: Copyright (c) 2010 IEEE. 2010 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TMI.2014.2358552 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic Materials Research Database MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 353 |
ExternalDocumentID | PMC4404631 3625202421 25248179 10_1109_TMI_2014_2358552 6899685 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: R01 AA012388 – fundername: NIAAA NIH HHS grantid: K05AA017168 – fundername: NIAAA NIH HHS grantid: K05 AA017168 – fundername: NIBIB NIH HHS grantid: P41EB015898 – fundername: NIAAA NIH HHS grantid: R01AA012388 – fundername: NCRR NIH HHS grantid: P41 RR019703 – fundername: NCRR NIH HHS grantid: P41 RR013218 – fundername: NCRR NIH HHS grantid: P41RR019703 – fundername: NIBIB NIH HHS grantid: P41EB015902 – fundername: NIBIB NIH HHS grantid: T32EB0011680-06 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c510t-68d68d495473703c39c6c92f534a91675092dd0898834a87276c87c5379c18c83 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 18:22:17 EDT 2025 Thu Sep 04 17:24:20 EDT 2025 Fri Sep 05 03:41:54 EDT 2025 Fri Sep 05 10:58:57 EDT 2025 Sun Jun 29 15:55:55 EDT 2025 Mon Jul 21 06:06:23 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Tue Jul 01 03:15:55 EDT 2025 Tue Aug 26 16:39:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c510t-68d68d495473703c39c6c92f534a91675092dd0898834a87276c87c5379c18c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4404631 |
PMID | 25248179 |
PQID | 1663676275 |
PQPubID | 85460 |
PageCount | 15 |
ParticipantIDs | ieee_primary_6899685 pubmed_primary_25248179 proquest_miscellaneous_1651401965 crossref_primary_10_1109_TMI_2014_2358552 proquest_miscellaneous_1641203453 proquest_miscellaneous_1647005037 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4404631 proquest_journals_1663676275 crossref_citationtrail_10_1109_TMI_2014_2358552 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 bilgic (ref12) 2011 ref15 ref58 ref14 ref52 ref11 ref54 ref10 pohl (ref59) 2004 zollei (ref60) 2007 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref48 ref47 ref41 ref44 ref43 li (ref45) 2012; 68 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 marques (ref53) 2003; 11 ref40 poynton (ref42) 2011 ref35 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref33 ref76 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 jackson (ref77) 1999; 67 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref21 ref28 ref27 ref29 ref62 ref61 poynton (ref55) 2012 mattis (ref65) 1988 |
References_xml | – ident: ref26 doi: 10.1002/mrm.1910050404 – ident: ref50 doi: 10.1002/mrm.1910360509 – ident: ref17 doi: 10.1016/j.mri.2004.10.001 – ident: ref66 doi: 10.1002/hbm.10062 – ident: ref19 doi: 10.1016/j.neuroimage.2010.10.070 – ident: ref75 doi: 10.1073/pnas.0910222107 – ident: ref63 doi: 10.1002/mrm.1910240219 – ident: ref32 doi: 10.1002/jmri.21693 – ident: ref30 doi: 10.1088/0031-9155/51/24/007 – ident: ref46 doi: 10.1109/TMI.2009.2023787 – ident: ref21 doi: 10.1002/mds.20550 – ident: ref56 doi: 10.1088/0957-0233/6/8/005 – volume: 11 start-page: 1020 year: 2003 ident: ref53 article-title: Evaluation of a Fourier-based method for calculating susceptibility induced magnetic field perturbations publication-title: Proc ISMRM – ident: ref5 doi: 10.1007/BF02252926 – ident: ref6 doi: 10.2165/00023210-200216050-00006 – ident: ref41 doi: 10.1118/1.3481505 – ident: ref29 doi: 10.1006/jmre.2000.2267 – ident: ref67 doi: 10.1109/TITB.2003.808506 – start-page: 81 year: 2004 ident: ref59 article-title: Anatomical guided segmentation with nonstationary tissue class distributions in an expectation-maximization framework publication-title: Proc IEEE Int Symp Biomed Imag – ident: ref64 doi: 10.1002/mrm.10354 – ident: ref16 doi: 10.1016/S0730-725X(96)00234-2 – ident: ref3 doi: 10.1111/j.1469-8749.2011.03955.x – ident: ref43 doi: 10.1016/j.neuroimage.2011.08.082 – ident: ref24 doi: 10.1002/mrm.1910020311 – ident: ref8 doi: 10.1111/j.1471-4159.1958.tb12607.x – ident: ref44 doi: 10.1002/mrm.24272 – ident: ref40 doi: 10.1002/mrm.22187 – ident: ref74 doi: 10.1016/j.neuroimage.2010.06.070 – ident: ref28 doi: 10.1056/NEJM198212303072703 – ident: ref51 doi: 10.1016/S0730-725X(02)00601-X – ident: ref4 doi: 10.1007/s00702-011-0607-8 – ident: ref10 doi: 10.1016/j.neuroimage.2009.05.006 – ident: ref47 doi: 10.1016/0730-725X(92)90489-M – ident: ref72 doi: 10.1001/archneur.59.6.999 – volume: 67 year: 1999 ident: ref77 publication-title: Classical Electrodynamics – ident: ref23 doi: 10.1002/mrm.20198 – ident: ref54 doi: 10.1002/cmr.b.20034 – ident: ref70 doi: 10.1016/S0730-725X(99)00017-X – ident: ref27 doi: 10.2214/ajr.154.5.2108542 – ident: ref52 doi: 10.1002/mrm.20194 – ident: ref22 doi: 10.1002/mrm.21828 – ident: ref62 doi: 10.1016/j.neuroimage.2010.07.033 – ident: ref7 doi: 10.1007/s11064-007-9352-7 – ident: ref20 doi: 10.1007/s00702-005-0447-5 – ident: ref49 doi: 10.1016/S0730-725X(02)00507-6 – ident: ref2 doi: 10.1016/B978-0-444-52014-2.00009-4 – ident: ref76 doi: 10.1007/3-540-27660-2 – ident: ref38 doi: 10.1016/j.neuroimage.2011.02.024 – ident: ref33 doi: 10.1073/pnas.0610821104 – year: 2011 ident: ref42 article-title: A variational approach to susceptibility estimation that is insensitive to b0 inhomogeneity publication-title: Proc 19th Annu Meet ISMRM – ident: ref35 doi: 10.1002/cmr.b.10083 – year: 2007 ident: ref60 article-title: The impact of atlas formation methods on atlas-guided brain segmentation publication-title: MICCAI Workshop – volume: 68 start-page: 1563 year: 2012 ident: ref45 article-title: Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping publication-title: Magn Reson Med doi: 10.1002/mrm.24135 – ident: ref1 doi: 10.1038/nrn1537 – ident: ref34 doi: 10.1002/mrm.22334 – ident: ref48 doi: 10.1016/0730-725X(94)92357-4 – ident: ref68 doi: 10.1002/hbm.20906 – ident: ref31 doi: 10.1002/nbm.1670 – ident: ref9 doi: 10.1002/jmri.22987 – ident: ref58 doi: 10.1002/mrm.20054 – year: 2011 ident: ref12 article-title: MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping publication-title: NeuroImage – ident: ref14 doi: 10.1002/mrm.1910290406 – ident: ref25 doi: 10.1002/mrm.1910030511 – ident: ref39 doi: 10.1002/mrm.22135 – ident: ref11 doi: 10.1196/annals.1379.018 – ident: ref73 doi: 10.1002/jmri.22752 – year: 1988 ident: ref65 publication-title: Psychological Assessment Resources Lutz – ident: ref57 doi: 10.1002/mrm.20735 – ident: ref15 doi: 10.1016/0006-3223(94)90047-7 – ident: ref71 doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – ident: ref13 doi: 10.1016/0022-510X(95)00202-D – ident: ref18 doi: 10.1016/j.neuroimage.2008.10.029 – ident: ref36 doi: 10.1088/0031-9155/54/5/005 – ident: ref69 doi: 10.1016/j.neurobiolaging.2006.02.005 – ident: ref61 doi: 10.1007/978-3-642-04271-3_115 – ident: ref37 doi: 10.1002/mrm.21710 – year: 2012 ident: ref55 publication-title: Quantitative susceptibility mapping and susceptibility-based distortion correction of echo planar images |
SSID | ssj0014509 |
Score | 2.2804294 |
Snippet | There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's,... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 339 |
SubjectTerms | Adult Aged Aged, 80 and over Algorithms Brain Brain Chemistry brain iron Brain Mapping - methods Brain modeling Correlation Deposition Estimates Estimation Female Humans Image Processing, Computer-Assisted - methods inverse methods Inversions Iron Kernel Laplace equations Magnetic permeability Magnetic resonance imaging magnetic resonance imaging (MRI) Magnetic Resonance Imaging - methods Magnetic susceptibility Male Medical research Middle Aged normal aging Perturbation methods Phantoms, Imaging quantitative susceptibility mapping Young Adult |
Title | Quantitative Susceptibility Mapping by Inversion of a Perturbation Field Model: Correlation With Brain Iron in Normal Aging |
URI | https://ieeexplore.ieee.org/document/6899685 https://www.ncbi.nlm.nih.gov/pubmed/25248179 https://www.proquest.com/docview/1663676275 https://www.proquest.com/docview/1641203453 https://www.proquest.com/docview/1647005037 https://www.proquest.com/docview/1651401965 https://pubmed.ncbi.nlm.nih.gov/PMC4404631 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_aPog--NH6kVplBV8Ec5dkP7LxTYtHK6Qotti3sNnstcWSK9fkofrPO7P54FrKIRzcRybHJjObndn5zW8A3gtXWVwWbWi4wwAFTSI0aelCbSqXUhou8bUw-ZE6OBHfTuXpBnwca2Gccx585ib00efyq4VtaatsqjA4UFpuwib-Z1erNWYMhOzgHAkxxkYqGVKSUTY9zg8JwyUmVBYqJTWwSWQidEz4rZXVyLdXuc_TvAuYXFmBZk8gH8beAU9-T9qmnNg_d2gd__finsLj3hVlnzvbeQYbrt6GRysEhdvwIO9T7zvw90dral-Rhs9H9rO99ngYD629YbkhmoczVt4wIu7wW3BsMWeGfXdLXNRKr382I7gco_Zrl5_YPvUF6ZB47NdFc86-ULcKdrjE7_h-RM40jo6aKD2Hk9nX4_2DsO_cEFqc402odIUvjL1EyvGRYnlmlc2SueTCoD9KXkpSVZHOtMZfNBqLsjq1kqeZjbXV_AVs1YvavQLGVRkZXfI5-iECgzeMesnJi-bKELOPDGA6aLCwPa05dde4LHx4E2UFqr8g9Re9-gP4MJ5x1VF6rJHdIU2Ncr2SAtgbjKTo5_x1EaPzplJifQ7g3XgYZyulYEztFi3JiDiJuJB8rUzqaXrSdTJ0D4gNMoCXnW2OYxxsO4D0ltWOAsQofvtIfXHumcWJLFLxePf-q34ND_HeyG4Dag-2mmXr3qBL1pRv_Vz8B75uL3M |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VIvE48GihGAosEhcknDjeh9fcoCJKoI5ApKI3y15vaNXKQal9KPx5ZtYPpVUVIUVyYk-ktWfWM7Pz7TcAb4UtDLpF42fcYoKCJuFnUW59nRU2ojJc6PbCJDM1ORJfjuXxFrzv98JYax34zA7oq6vlF0tT01LZUGFyoLS8BbfR7wvZ7NbqawZCNoCOkDhjAxV2RckgHs6TKaG4xIA2hkpJLWxCGQo9IgTXmj9yDVZuijWvQybXfND4ISTd6BvoydmgrvKB-XON2PF_b-8RPGiDUfaxsZ7HsGXLHbi_RlG4A3eStvi-C3-_11np9qThG5L9qC8cIsaBay9ZkhHRwy-WXzKi7nCLcGy5YBn7Zlfo1nJnAWxMgDlGDdjOP7AD6gzSYPHYz9PqhH2ifhVsusLfeJxROI2jozZKT-Bo_Hl-MPHb3g2-wVle-UoX-MHsS0QcXyqGx0aZOFxILjKMSClOCYsi0LHWeEajuSijIyN5FJuRNpo_he1yWdpnwLjKg0znfIGRiMD0DfNeCvOChcqI20d6MOw0mJqW2Jz6a5ynLsEJ4hTVn5L601b9Hrzr__G7IfXYILtLmurlWiV5sN8ZSdrO-ot0hOGbioj32YM3_WWcr1SEyUq7rElGjMKAC8k3ykSOqCfaJEPPgPggPdhrbLMfY2fbHkRXrLYXIE7xq1fK0xPHLU50kYqPnt9816_h7mSeHKaH09nXF3APn5NslqP2Ybta1fYlBmhV_srNy3-5RzLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Susceptibility+Mapping+by+Inversion+of+a+Perturbation+Field+Model%3A+Correlation+With+Brain+Iron+in+Normal+Aging&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Poynton%2C+Clare+B.&rft.au=Jenkinson%2C+Mark&rft.au=Adalsteinsson%2C+Elfar&rft.au=Sullivan%2C+Edith+V.&rft.date=2015-01-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=34&rft.issue=1&rft.spage=339&rft.epage=353&rft_id=info:doi/10.1109%2FTMI.2014.2358552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2014_2358552 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |