Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks

One of the major challenges in anatomical landmark detection, based on deep neural networks, is the limited availability of medical imaging data for network learning. To address this problem, we present a two-stage task-oriented deep learning method to detect large-scale anatomical landmarks simulta...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 26; no. 10; pp. 4753 - 4764
Main Authors Zhang, Jun, Liu, Mingxia, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the major challenges in anatomical landmark detection, based on deep neural networks, is the limited availability of medical imaging data for network learning. To address this problem, we present a two-stage task-oriented deep learning method to detect large-scale anatomical landmarks simultaneously in real time, using limited training data. Specifically, our method consists of two deep convolutional neural networks (CNN), with each focusing on one specific task. Specifically, to alleviate the problem of limited training data, in the first stage, we propose a CNN based regression model using millions of image patches as input, aiming to learn inherent associations between local image patches and target anatomical landmarks. To further model the correlations among image patches, in the second stage, we develop another CNN model, which includes a) a fully convolutional network that shares the same architecture and network weights as the CNN used in the first stage and also b) several extra layers to jointly predict coordinates of multiple anatomical landmarks. Importantly, our method can jointly detect large-scale (e.g., thousands of) landmarks in real time. We have conducted various experiments for detecting 1200 brain landmarks from the 3D T1-weighted magnetic resonance images of 700 subjects, and also 7 prostate landmarks from the 3D computed tomography images of 73 subjects. The experimental results show the effectiveness of our method regarding both accuracy and efficiency in the anatomical landmark detection.
AbstractList One of the major challenges in anatomical landmark detection, based on deep neural networks, is the limited availability of medical imaging data for network learning. To address this problem, we present a two-stage task-oriented deep learning (T 2 DL) method to detect large-scale anatomical landmarks simultaneously in real time , using limited training data . Specifically, our method consists of two deep convolutional neural networks (CNN), with each focusing on one specific task. Specifically, to alleviate the problem of limited training data, in the first stage, we propose a CNN based regression model using millions of image patches as input, aiming to learn inherent associations between local image patches and target anatomical landmarks. To further model the correlations among image patches, in the second stage, we develop another CNN model, which includes a) a fully convolutional network (FCN) that shares the same architecture and network weights as the CNN used in the first stage and also b) several extra layers to jointly predict coordinates of multiple anatomical landmarks. Importantly, our method can jointly detect large-scale (e.g., thousands of) landmarks in real time. We have conducted various experiments for detecting 1200 brain landmarks from the 3D T1-weighted magnetic resonance (MR) images of 700 subjects, and also 7 prostate landmarks from the 3D computed tomography (CT) images of 73 subjects. The experimental results show the effectiveness of our method regarding both accuracy and efficiency in the anatomical landmark detection.
One of the major challenges in anatomical landmark detection, based on deep neural networks, is the limited availability of medical imaging data for network learning. To address this problem, we present a two-stage task-oriented deep learning method to detect large-scale anatomical landmarks simultaneously in real time , using limited training data . Specifically, our method consists of two deep convolutional neural networks (CNN), with each focusing on one specific task. Specifically, to alleviate the problem of limited training data, in the first stage, we propose a CNN based regression model using millions of image patches as input, aiming to learn inherent associations between local image patches and target anatomical landmarks. To further model the correlations among image patches, in the second stage, we develop another CNN model, which includes a) a fully convolutional network that shares the same architecture and network weights as the CNN used in the first stage and also b) several extra layers to jointly predict coordinates of multiple anatomical landmarks. Importantly, our method can jointly detect large-scale ( e.g. , thousands of) landmarks in real time. We have conducted various experiments for detecting 1200 brain landmarks from the 3D T1-weighted magnetic resonance images of 700 subjects, and also 7 prostate landmarks from the 3D computed tomography images of 73 subjects. The experimental results show the effectiveness of our method regarding both accuracy and efficiency in the anatomical landmark detection.
One of the major challenges in anatomical landmark detection, based on deep neural networks, is the limited availability of medical imaging data for network learning. To address this problem, we present a two-stage task-oriented deep learning method to detect large-scale anatomical landmarks simultaneously in real time, using limited training data. Specifically, our method consists of two deep convolutional neural networks (CNN), with each focusing on one specific task. Specifically, to alleviate the problem of limited training data, in the first stage, we propose a CNN based regression model using millions of image patches as input, aiming to learn inherent associations between local image patches and target anatomical landmarks. To further model the correlations among image patches, in the second stage, we develop another CNN model, which includes a) a fully convolutional network that shares the same architecture and network weights as the CNN used in the first stage and also b) several extra layers to jointly predict coordinates of multiple anatomical landmarks. Importantly, our method can jointly detect large-scale (e.g., thousands of) landmarks in real time. We have conducted various experiments for detecting 1200 brain landmarks from the 3D T1-weighted magnetic resonance images of 700 subjects, and also 7 prostate landmarks from the 3D computed tomography images of 73 subjects. The experimental results show the effectiveness of our method regarding both accuracy and efficiency in the anatomical landmark detection.One of the major challenges in anatomical landmark detection, based on deep neural networks, is the limited availability of medical imaging data for network learning. To address this problem, we present a two-stage task-oriented deep learning method to detect large-scale anatomical landmarks simultaneously in real time, using limited training data. Specifically, our method consists of two deep convolutional neural networks (CNN), with each focusing on one specific task. Specifically, to alleviate the problem of limited training data, in the first stage, we propose a CNN based regression model using millions of image patches as input, aiming to learn inherent associations between local image patches and target anatomical landmarks. To further model the correlations among image patches, in the second stage, we develop another CNN model, which includes a) a fully convolutional network that shares the same architecture and network weights as the CNN used in the first stage and also b) several extra layers to jointly predict coordinates of multiple anatomical landmarks. Importantly, our method can jointly detect large-scale (e.g., thousands of) landmarks in real time. We have conducted various experiments for detecting 1200 brain landmarks from the 3D T1-weighted magnetic resonance images of 700 subjects, and also 7 prostate landmarks from the 3D computed tomography images of 73 subjects. The experimental results show the effectiveness of our method regarding both accuracy and efficiency in the anatomical landmark detection.
Author Liu, Mingxia
Shen, Dinggang
Zhang, Jun
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0001-5579-7094
  surname: Zhang
  fullname: Zhang, Jun
  email: xdzhangjun@gmail.com
  organization: Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 2
  givenname: Mingxia
  surname: Liu
  fullname: Liu, Mingxia
  email: mingxia_liu@med.unc.edu
  organization: Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 3
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and the Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28678706$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r3DAQxUVJaT6ae6FQDL304q0kyxr7UgjZpl3YJIVszkKWx1sltrWx5Ib895G7m5Dm0JMGze893vAOyV7veiTkA6Mzxmj5dbX4NeOUwYwDjx_yDTlgpWAppYLvxZnmkAIT5T459P6GUiZyJt-RfV5IKIDKA-LnGNAE26-Tk14H11mj22Sp-7rTw61PzgbXJUvb2YB1co713_Wi0-tJMddBJ9d-Glf3Lr0Keo3JSvvb9HKw2E-SOeImucBxiLILDPcumr4nbxvdejzevUfk-uz76vRnurz8sTg9WaYmZzSkktaiMlhJ4JWmBYgsr0QGWgiEssamkFxDkWvJGylYI3hljAGsAQB1Znh2RL5tfTdj1WFtYqIYQ20GG297UE5b9e-mt7_V2v1ROfCSF3k0-LIzGNzdiD6oznqDbat7dKNXrGQSGCsLGdHPr9AbNw59PC9SnIqCgmSR-vQy0XOUpz4iILeAGZz3AzbK2KCDdVNA2ypG1VS8isWrqXi1Kz4K6Svhk_d_JB-3EouIzziUknGaZ4_pMLjs
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s00247_021_05004_z
crossref_primary_10_1109_TMI_2022_3180343
crossref_primary_10_1007_s11042_017_5581_1
crossref_primary_10_1109_TIP_2020_2973510
crossref_primary_10_1007_s00521_021_06873_z
crossref_primary_10_1007_s11548_024_03089_z
crossref_primary_10_1016_j_neucom_2020_02_069
crossref_primary_10_1088_1361_6501_ac5436
crossref_primary_10_3389_fnins_2021_670287
crossref_primary_10_1109_TMI_2019_2899328
crossref_primary_10_1007_s42600_024_00394_z
crossref_primary_10_1016_j_compbiomed_2018_05_018
crossref_primary_10_3233_JIFS_220167
crossref_primary_10_1148_radiol_2018180547
crossref_primary_10_1109_TMI_2022_3174513
crossref_primary_10_1049_iet_ipr_2019_0617
crossref_primary_10_1109_TMI_2022_3222730
crossref_primary_10_1109_TMI_2018_2865671
crossref_primary_10_1016_j_cmpb_2021_106581
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_1007_s11280_022_01051_0
crossref_primary_10_1109_ACCESS_2019_2926288
crossref_primary_10_1109_JBHI_2018_2882392
crossref_primary_10_1007_s11042_022_12792_5
crossref_primary_10_1016_j_asoc_2021_107445
crossref_primary_10_1109_TPAMI_2018_2889096
crossref_primary_10_1155_2020_9843275
crossref_primary_10_1109_TITS_2022_3158253
crossref_primary_10_1109_JBHI_2020_3002582
crossref_primary_10_1016_j_bspc_2024_106398
crossref_primary_10_1109_TMI_2022_3149281
crossref_primary_10_1038_s41598_023_28669_y
crossref_primary_10_1007_s00530_017_0579_0
crossref_primary_10_1038_s44172_023_00066_3
crossref_primary_10_1109_JBHI_2020_2997760
crossref_primary_10_1016_j_media_2019_03_007
crossref_primary_10_1016_j_compmedimag_2024_102364
crossref_primary_10_1016_j_media_2020_101659
crossref_primary_10_1016_j_eswa_2022_119166
crossref_primary_10_1109_JBHI_2021_3110680
crossref_primary_10_1259_dmfr_20220081
crossref_primary_10_1117_1_JEI_32_6_063021
crossref_primary_10_1016_j_patcog_2021_108341
crossref_primary_10_3390_app13148295
crossref_primary_10_1016_j_media_2017_10_005
crossref_primary_10_3390_electronics12194038
crossref_primary_10_1109_JBHI_2017_2732287
crossref_primary_10_1016_j_bspc_2024_107067
crossref_primary_10_1109_ACCESS_2025_3541601
crossref_primary_10_1007_s00138_022_01303_z
crossref_primary_10_1016_j_neuroimage_2019_05_037
crossref_primary_10_1007_s11042_018_6463_x
crossref_primary_10_1007_s11042_024_19416_0
crossref_primary_10_3390_jcm11113203
crossref_primary_10_1016_j_media_2019_101621
crossref_primary_10_1002_rcs_2093
crossref_primary_10_1109_ACCESS_2019_2929365
crossref_primary_10_1007_s00530_017_0576_3
crossref_primary_10_1016_j_eswa_2023_120269
crossref_primary_10_1109_TMI_2018_2875814
crossref_primary_10_1109_TMI_2020_3009002
crossref_primary_10_1097_SCS_0000000000009299
crossref_primary_10_1109_JBHI_2020_2994114
crossref_primary_10_1016_j_future_2022_04_011
crossref_primary_10_1097_MD_0000000000024427
crossref_primary_10_1038_s41551_021_00704_1
crossref_primary_10_1109_TIP_2019_2919937
crossref_primary_10_1109_TNNLS_2021_3055772
crossref_primary_10_1016_j_bspc_2022_104400
crossref_primary_10_1109_JBHI_2021_3090966
crossref_primary_10_1007_s00530_017_0580_7
crossref_primary_10_1007_s11548_020_02240_w
crossref_primary_10_1007_s11831_023_09967_0
crossref_primary_10_1016_j_knee_2022_11_026
crossref_primary_10_1007_s11548_021_02523_w
crossref_primary_10_3390_app112110277
crossref_primary_10_1109_TCYB_2019_2909925
crossref_primary_10_1007_s11548_022_02770_5
crossref_primary_10_1016_j_media_2023_102759
crossref_primary_10_1136_bjophthalmol_2019_315723
crossref_primary_10_1016_j_media_2020_101904
crossref_primary_10_1002_mp_13264
crossref_primary_10_1002_mp_14355
crossref_primary_10_1109_TIP_2024_3356174
crossref_primary_10_1016_j_media_2018_02_009
crossref_primary_10_1007_s11042_022_12284_6
crossref_primary_10_1016_j_bspc_2023_104608
crossref_primary_10_1007_s00530_017_0577_2
crossref_primary_10_3390_jpm12030387
crossref_primary_10_1109_JBHI_2022_3166068
crossref_primary_10_1109_ACCESS_2020_3035809
crossref_primary_10_3390_app122010190
crossref_primary_10_3348_jksr_2019_80_2_176
crossref_primary_10_1109_TIP_2018_2820424
crossref_primary_10_1007_s10527_020_09961_x
crossref_primary_10_1016_j_neucom_2024_127325
crossref_primary_10_3389_fnins_2021_760975
crossref_primary_10_1016_j_displa_2024_102743
crossref_primary_10_1109_JBHI_2018_2791863
Cites_doi 10.1109/CVPR.2013.446
10.1109/TPAMI.2015.2430325
10.1016/j.imavis.2009.07.010
10.1109/TMI.2013.2258030
10.1007/978-3-540-85988-8_69
10.1016/j.patcog.2015.01.019
10.1016/j.media.2015.06.012
10.1016/j.cviu.2012.10.004
10.1109/CVPR.2015.7298664
10.1109/ICCVW.2015.21
10.1109/TBME.2015.2503421
10.1109/EMBC.2015.7318454
10.1109/CVPR.2005.177
10.1007/978-3-319-46726-9_1
10.1016/j.media.2016.11.002
10.1016/j.neuroimage.2014.05.078
10.1007/978-3-319-46723-8_27
10.1007/978-3-319-46726-9_27
10.1109/TMI.2016.2582386
10.1109/TMI.2016.2597270
10.1109/ICCV.2015.419
10.1109/TIP.2012.2214045
10.1016/j.media.2014.01.002
10.1109/TIP.2015.2446944
10.1109/TMI.2011.2162634
10.1109/ISBI.2016.7493535
10.1109/TIP.2015.2502485
10.1023/A:1010933404324
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1109/TIP.2017.2721106
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 4764
ExternalDocumentID PMC5729285
28678706
10_1109_TIP_2017_2721106
7961205
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIH
  grantid: EB006733; EB008374; EB009634; MH100217; AG041721; AG049371; AG042599
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB009634
– fundername: NIA NIH HHS
  grantid: R01 AG042599
– fundername: NCI NIH HHS
  grantid: R01 CA140413
– fundername: NIA NIH HHS
  grantid: R01 AG049371
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIA NIH HHS
  grantid: R01 AG041721
– fundername: NIMH NIH HHS
  grantid: R01 MH100217
– fundername: NIA NIH HHS
  grantid: RF1 AG053867
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c510t-60d4bceb672ba087435b437a44e79def862a785a62f641f42bccc7ed777ea3c23
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Thu Aug 21 13:44:11 EDT 2025
Fri Jul 11 01:04:56 EDT 2025
Mon Jun 30 10:15:40 EDT 2025
Mon Jul 21 06:07:53 EDT 2025
Thu Apr 24 22:56:28 EDT 2025
Tue Jul 01 02:03:15 EDT 2025
Wed Aug 27 02:30:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-60d4bceb672ba087435b437a44e79def862a785a62f641f42bccc7ed777ea3c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contribute equally to this study.
ORCID 0000-0001-5579-7094
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5729285
PMID 28678706
PQID 1920480761
PQPubID 85429
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5729285
crossref_primary_10_1109_TIP_2017_2721106
proquest_journals_1920480761
pubmed_primary_28678706
proquest_miscellaneous_1916711986
ieee_primary_7961205
crossref_citationtrail_10_1109_TIP_2017_2721106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref15
ref36
ref14
liang (ref33) 2015
ref30
ref11
ref32
ref10
krizhevsky (ref39) 2012
sermanet (ref31) 2013
ref2
ref17
ref16
ref19
zheng (ref4) 2015
ref18
cootes (ref38) 2012
zhang (ref29) 0
criminisi (ref20) 2009
ref24
ref23
ref26
ref25
ref22
ref21
ronneberger (ref40) 2015
ref28
abadi (ref35) 2016
ref27
ref8
ref7
suzani (ref5) 2015
ref9
ref3
ref6
zhang (ref1) 2014
li (ref34) 2016
26201875 - Med Image Anal. 2015 Aug;24(1):205-19
27898305 - Med Image Anal. 2017 Feb;36:123-134
26736354 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :683-6
28055830 - IEEE Trans Med Imaging. 2017 Jan;36(1):332-342
24911377 - Neuroimage. 2014 Oct 15;100:91-105
27333602 - IEEE Trans Med Imaging. 2016 Dec;35(12 ):2524-2533
28975161 - Med Image Comput Comput Assist Interv. 2016 Oct;9902:1-9
28534798 - IEEE J Biomed Health Inform. 2017 Nov;21(6):1607-1616
22910113 - IEEE Trans Image Process. 2013 Jan;22(1):31-42
26625402 - IEEE Trans Biomed Eng. 2016 Sep;63(9):1820-1829
21788183 - IEEE Trans Med Imaging. 2011 Dec;30(12):2087-100
26599969 - IEEE Trans Image Process. 2016 Feb;25(2):700-12
26087493 - IEEE Trans Image Process. 2015 Nov;24(11):3425-40
18979793 - Med Image Comput Comput Assist Interv. 2008;11(Pt 1):576-84
24561486 - Med Image Anal. 2014 Apr;18(3):487-99
23591481 - IEEE Trans Med Imaging. 2013 Aug;32(8):1462-72
References_xml – ident: ref2
  doi: 10.1109/CVPR.2013.446
– start-page: 265
  year: 2016
  ident: ref35
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc USENIX Symp Oper Syst Design Implementation
– start-page: 94
  year: 2014
  ident: ref1
  article-title: Facial landmark detection by deep multi-task learning
  publication-title: Proc Eur Conf Comput Vis
– ident: ref25
  doi: 10.1109/TPAMI.2015.2430325
– start-page: 69
  year: 2009
  ident: ref20
  article-title: Decision forests with long-range spatial context for organ localization in CT volumes
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref11
  doi: 10.1016/j.imavis.2009.07.010
– ident: ref14
  doi: 10.1109/TMI.2013.2258030
– ident: ref12
  doi: 10.1007/978-3-540-85988-8_69
– year: 2013
  ident: ref31
  publication-title: Overfeat Integrated Recognition Localization and Detection Using Convolutional Networks
– start-page: 278
  year: 2012
  ident: ref38
  article-title: Robust and accurate shape model fitting using random forest regression voting
  publication-title: Proc Eur Conf Comput Vis
– ident: ref28
  doi: 10.1016/j.patcog.2015.01.019
– ident: ref37
  doi: 10.1016/j.media.2015.06.012
– ident: ref23
  doi: 10.1016/j.cviu.2012.10.004
– ident: ref32
  doi: 10.1109/CVPR.2015.7298664
– start-page: 565
  year: 2015
  ident: ref4
  article-title: 3D deep learning for efficient and robust landmark detection in volumetric data
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref10
  doi: 10.1109/ICCVW.2015.21
– ident: ref13
  doi: 10.1109/TBME.2015.2503421
– ident: ref8
  doi: 10.1109/EMBC.2015.7318454
– ident: ref22
  doi: 10.1109/CVPR.2005.177
– ident: ref24
  doi: 10.1007/978-3-319-46726-9_1
– ident: ref30
  doi: 10.1016/j.media.2016.11.002
– ident: ref27
  doi: 10.1016/j.neuroimage.2014.05.078
– ident: ref6
  doi: 10.1007/978-3-319-46723-8_27
– year: 2015
  ident: ref33
  publication-title: Unconstrained facial landmark localization with backbone-branches fully-convolutional networks
– ident: ref7
  doi: 10.1007/978-3-319-46726-9_27
– ident: ref36
  doi: 10.1109/TMI.2016.2582386
– start-page: 941514
  year: 2015
  ident: ref5
  article-title: Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images
  publication-title: Proc SPIE
– ident: ref18
  doi: 10.1109/TMI.2016.2597270
– ident: ref3
  doi: 10.1109/ICCV.2015.419
– ident: ref21
  doi: 10.1109/TIP.2012.2214045
– ident: ref15
  doi: 10.1016/j.media.2014.01.002
– ident: ref16
  doi: 10.1109/TIP.2015.2446944
– year: 0
  ident: ref29
  article-title: Alzheimer's disease diagnosis using landmark-based features from longitudinal structural MR images
  publication-title: IEEE J Biomed Health Inform
– ident: ref19
  doi: 10.1109/TMI.2011.2162634
– start-page: 1097
  year: 2012
  ident: ref39
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref9
  doi: 10.1109/ISBI.2016.7493535
– ident: ref17
  doi: 10.1109/TIP.2015.2502485
– start-page: 234
  year: 2015
  ident: ref40
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref26
  doi: 10.1023/A:1010933404324
– start-page: 379
  year: 2016
  ident: ref34
  article-title: R-FCN: Object detection via region-based fully convolutional networks
  publication-title: Proc Adv Neural Inf Process Syst
– reference: 28534798 - IEEE J Biomed Health Inform. 2017 Nov;21(6):1607-1616
– reference: 24911377 - Neuroimage. 2014 Oct 15;100:91-105
– reference: 18979793 - Med Image Comput Comput Assist Interv. 2008;11(Pt 1):576-84
– reference: 24561486 - Med Image Anal. 2014 Apr;18(3):487-99
– reference: 26599969 - IEEE Trans Image Process. 2016 Feb;25(2):700-12
– reference: 26625402 - IEEE Trans Biomed Eng. 2016 Sep;63(9):1820-1829
– reference: 23591481 - IEEE Trans Med Imaging. 2013 Aug;32(8):1462-72
– reference: 28975161 - Med Image Comput Comput Assist Interv. 2016 Oct;9902:1-9
– reference: 27333602 - IEEE Trans Med Imaging. 2016 Dec;35(12 ):2524-2533
– reference: 26087493 - IEEE Trans Image Process. 2015 Nov;24(11):3425-40
– reference: 21788183 - IEEE Trans Med Imaging. 2011 Dec;30(12):2087-100
– reference: 26736354 - Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015 :683-6
– reference: 22910113 - IEEE Trans Image Process. 2013 Jan;22(1):31-42
– reference: 28055830 - IEEE Trans Med Imaging. 2017 Jan;36(1):332-342
– reference: 26201875 - Med Image Anal. 2015 Aug;24(1):205-19
– reference: 27898305 - Med Image Anal. 2017 Feb;36:123-134
SSID ssj0014516
Score 2.6020849
Snippet One of the major challenges in anatomical landmark detection, based on deep neural networks, is the limited availability of medical imaging data for network...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4753
SubjectTerms Accuracy
Anatomical landmark detection
Artificial neural networks
Biological neural networks
Biomedical imaging
Brain
Computed tomography
Computer architecture
deep convolutional neural networks
Landmarks
limited medical imaging data
Machine learning
Magnetic resonance imaging
Medical imaging
Neural networks
Patches (structures)
Prostate
Real time
Target recognition
task-oriented
Testing
Three-dimensional displays
Training
Training data
Title Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks
URI https://ieeexplore.ieee.org/document/7961205
https://www.ncbi.nlm.nih.gov/pubmed/28678706
https://www.proquest.com/docview/1920480761
https://www.proquest.com/docview/1916711986
https://pubmed.ncbi.nlm.nih.gov/PMC5729285
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_GnuCBwcZHYaAg8YJE765pmrSPE8dpQ2zwcJP2VqWpO9Bx7XTtCYm_HjtNq900Id4ixYkS2W7s2v6ZsfcGHS4bowIKkCqUkS7DtDQ6lGmZQBKjarqU__MLdXopv1wlV3vs41gLAwAu-QwmNHSx_LKxW_pVNtUZvscEWPoAHbe-VmuMGFDDWRfZTHSo0ewfQpKzbLo8-045XHoinLtDXYtEqkhS1c5r5Nqr3Gdp3k2YvPUCLQ7Y-XD2PvFkNdl2xcT-uQPr-L-Xe8Iee1OUn_Sy85TtQX3IDrxZyr3St4fs0S3MwiPWzoHiDjjmJzV67A5ugH81dbk2m1XLF5tmzX3ZFPdhIH62ds2Q-Nx0hrssBb783YRo6V4DX5p2FX4jvGVaMge44QQZgssu-hz19hm7XHxefjoNfeeG0KKOd6GalbKwUCgtCjNL0UpJChlrIyXorIQK3Sij08QoUSkZVVIU1loNJQoGmNiK-Dnbr5saXjJO6D42MQJnAT82gA6priotlShjKWZZwKYDB3PrYc2pu8av3Lk3syxH9ufE_tyzP2AfxhU3PaTHP2iPiFMjnWdSwI4HIcm9zrc52squQF9FAXs3TqO2UgjG1NBsiSZSOoqyFHd-0cvUuPcgkwHTO9I2EhAS-O5M_fOHQwRP0EUSafLq_tO-Zg_pTn0K4jHb7zZbeIOmVFe8dTr0Fw19GJg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELem8QA8bLABCwwwEi9IpE0cx04eJ0rVQlt4yKS9RY5zGag0mZpUSPz1nJ0PrdOEeLPkD9m6u9xd7u53hLxX6HDpAAWQARcu92XuRrmSLo_yEMIARdOm_C9XYnbJv1yFVwfk41ALAwA2-QxGZmhj-Xmld-ZX2VjGqI8NYOkD1Psha6u1hpiBaTlrY5uhdCUa_n1Q0ovHyfy7yeKSI2YdHtO3iEXC8KrY00e2wcp9tubdlMlbOmh6TJb97dvUk_Vo12Qj_ecOsOP_Pu8JOeqMUXrRcs9TcgDlCTnuDFPaiX19Qh7fQi08JfUETOQBx_SiRJ_dAg7QhSrzjdquazrdVhvaFU7RLhBE5xvbDolOVKOozVOgye_KRVv3Gmii6rX7zSAumy0TgBtqQENw26rNUq-fkcvp5-TTzO16N7gapbxxhZfzTEMmJMuUF6GdEmY8kIpzkHEOBTpSSkahEqwQ3C84y7TWEnJkDVCBZsFzclhWJZwRavB9dKgYzgJ-bgBdUlkUkguWB5x5sUPGPQVT3QGbm_4av1Lr4HhxiuRPDfnTjvwO-TDsuGlBPf6x9tRQaljXEckh5z2TpJ3U1ylay7ZEX_gOeTdMo7yaIIwqodqZNb6Qvh9HePKLlqeGs3uedIjc47ZhgcEC358pf_6wmOAhOkksCl_ef9u35OEsWS7SxXz19RV5ZN7XJiSek8Nmu4PXaFg12RsrT38Bzm4b4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Anatomical+Landmarks+From+Limited+Medical+Imaging+Data+Using+Two-Stage+Task-Oriented+Deep+Neural+Networks&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhang%2C+Jun&rft.au=Liu%2C+Mingxia&rft.au=Shen%2C+Dinggang&rft.date=2017-10-01&rft.eissn=1941-0042&rft.volume=26&rft.issue=10&rft.spage=4753&rft_id=info:doi/10.1109%2FTIP.2017.2721106&rft_id=info%3Apmid%2F28678706&rft.externalDocID=28678706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon