Markov-Switching Linked Autoregressive Model for Non-continuous Wind Direction Data
In this paper, a Markov-switching linked autoregressive model is proposed to describe and forecast non-continuous wind direction data. Due to the influence factors of geography and atmosphere, the distribution of wind direction is disjunct and multi-modal. Moreover, for a number of practical situati...
Saved in:
Published in | Journal of agricultural, biological, and environmental statistics Vol. 23; no. 3; pp. 410 - 425 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Science + Business Media
01.09.2018
Springer US Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a Markov-switching linked autoregressive model is proposed to describe and forecast non-continuous wind direction data. Due to the influence factors of geography and atmosphere, the distribution of wind direction is disjunct and multi-modal. Moreover, for a number of practical situations, wind direction is a time series and its dependence on time provides very important information for modeling. Our model takes these two points into account to give an accurate prediction of this kind of wind direction. A simulation study shows that our model has a significantly higher prediction accuracy and a smaller mean circular prediction error than three existing models and it is illustrated to be effective by analyzing real data.
Supplementary materials accompanying this paper appear online. |
---|---|
AbstractList | In this paper, a Markov-switching linked autoregressive model is proposed to describe and forecast non-continuous wind direction data. Due to the influence factors of geography and atmosphere, the distribution of wind direction is disjunct and multi-modal. Moreover, for a number of practical situations, wind direction is a time series and its dependence on time provides very important information for modeling. Our model takes these two points into account to give an accurate prediction of this kind of wind direction. A simulation study shows that our model has a significantly higher prediction accuracy and a smaller mean circular prediction error than three existing models and it is illustrated to be effective by analyzing real data. Supplementary materials accompanying this paper appear online. In this paper, a Markov-switching linked autoregressive model is proposed to describe and forecast non-continuous wind direction data. Due to the influence factors of geography and atmosphere, the distribution of wind direction is disjunct and multi-modal. Moreover, for a number of practical situations, wind direction is a time series and its dependence on time provides very important information for modeling. Our model takes these two points into account to give an accurate prediction of this kind of wind direction. A simulation study shows that our model has a significantly higher prediction accuracy and a smaller mean circular prediction error than three existing models and it is illustrated to be effective by analyzing real data. Supplementary materials accompanying this paper appear online. |
Audience | Academic |
Author | Zhan, Xiaoping Shimizu, Kunio Liu, Shuangzhe Ma, Tiefeng |
Author_xml | – sequence: 1 givenname: Xiaoping surname: Zhan fullname: Zhan, Xiaoping – sequence: 2 givenname: Tiefeng surname: Ma fullname: Ma, Tiefeng – sequence: 3 givenname: Shuangzhe surname: Liu fullname: Liu, Shuangzhe – sequence: 4 givenname: Kunio surname: Shimizu fullname: Shimizu, Kunio |
BookMark | eNp9kU1PHSEUhieNTaq2P6CLJpN00y5QPgaYWd5oP0yumvS26ZJwmcOU61ywwKj115ebaWx0YVhAyPNwDuc9qPZ88FBVbwk-IhjL40QY5Qxh0iLMGEH3L6p9wplEVHRsr5xxy5EkRL6qDlLaYEyYwHS_Wp3reBVu0OrWZfPL-aFeOn8Ffb2YcogwREjJ3UB9HnoYaxtifRE8MsFn56cwpfqn83196iKY7IKvT3XWr6uXVo8J3vzbD6sfnz99P_mKlpdfzk4WS2Q4wRnxNYO10Jh1mhvaCGmY7GUvTE-o4LJtabO2ljHMjGgbMIJb2XY9w9j2DcGUHVYf5nevY_g9Qcpq65KBcdQeSmuKlgEI2rVdU9D3T9BNmKIv3SmK24Z1glBWqKOZGvQIynkbctSmrB62rvwZrCv3C950ZdadJEX4-EjYzQXu8qCnlNTZ6ttjVs6siSGlCFYZl_VuaKWIGxXBapekmpNUJUm1S1LdF5M8Ma-j2-r451mHzk4qrB8g_v_wc9K7WdqkEv5DlaaVtFCS_QVc7Loe |
CitedBy_id | crossref_primary_10_1002_env_2655 |
Cites_doi | 10.1093/biomet/67.1.255 10.1007/s10651-006-0015-7 10.1016/j.jspi.2014.12.005 10.1002/env.2355 10.1016/0304-4076(73)90002-X 10.1080/02664763.2013.839634 10.1002/wics.98 10.1016/j.atmosenv.2004.10.047 10.1080/03610920802650338 10.1016/j.apenergy.2010.10.031 10.1016/0004-6981(78)90020-3 10.1007/s00362-012-0454-1 10.1007/s11203-016-9154-0 10.1016/j.csda.2013.01.026 10.1111/j.1467-9868.2010.00748.x 10.2307/1912559 10.1007/s13253-015-0203-8 10.1017/CBO9780511564345 10.1007/s10651-015-0338-3 10.1198/jabes.2009.0003 10.1016/j.envsoft.2011.10.011 10.1080/03610926.2011.593283 10.1109/TPWRD.2002.1022802 10.1016/j.jeconom.2013.08.017 10.1007/s13571-016-0116-8 10.1142/4031 10.1016/j.ememar.2008.02.005 10.1111/j.2517-6161.1994.tb01981.x 10.1007/978-1-4612-3688-7_10 10.1201/9781315119472 10.1007/s00362-017-0897-5 |
ContentType | Journal Article |
Copyright | 2018 International Biometric Society International Biometric Society 2018 COPYRIGHT 2018 Springer Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: 2018 International Biometric Society – notice: International Biometric Society 2018 – notice: COPYRIGHT 2018 Springer – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION ISR 7S9 L.6 |
DOI | 10.1007/s13253-018-0331-z |
DatabaseName | CrossRef Gale In Context: Science AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Environmental Sciences Medicine Statistics Geography |
EISSN | 1537-2693 |
EndPage | 425 |
ExternalDocumentID | A549253971 10_1007_s13253_018_0331_z 48720187 |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: JBK120509; JBK140507 – fundername: National Natural Science Foundation of China grantid: 11471264; 11401148 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11571282 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | 06D 0R~ 0VY 199 1N0 203 2AX 2JN 2KG 2LR 2XV 30V 4.4 406 408 40D 40E 5GY 8UJ 95. 96X A8Z AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAWIL AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABAWQ ABBHK ABBRH ABDBE ABDBF ABDZT ABECU ABFAN ABFSG ABFTV ABHLI ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQDR ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ABXSQ ABYWD ACAOD ACDIW ACDTI ACGFS ACHJO ACHSB ACHXU ACKNC ACMDZ ACMLO ACMTB ACOKC ACPIV ACPRK ACSTC ACTMH ACUHS ACZOJ ADHHG ADHIR ADKNI ADKPE ADODI ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEKMD AELLO AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUPB AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AFRAH AFVYC AFWTZ AFZKB AGAYW AGDGC AGJBK AGLNM AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIHAF AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN BAPOH BGNMA CSCUP D0L DDRTE DNIVK DPUIP DQDLB DSRWC DU5 EBD EBLON EBS ECEWR EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNWQR GQ7 GXS H13 HF~ HMJXF HQ6 HRMNR IAO IEP IGS IKXTQ IPSME ISR ITM IWAJR I~Z J-C J0Z JAA JAAYA JBMMH JBSCW JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST JZLTJ KOV LLZTM M4Y ML. NPVJJ NQJWS NU0 O93 O9J P2P P9R PT4 R9I ROL RSV S27 S3B SA0 SHX SISQX SJN SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~KM -5D -5G -BR -EM -~C 0VX 2VQ 3-Y AAKYL AARHV ABULA ACBXY ADINQ ADRFC ADULT AEBTG AELPN AFLOW AHSBF AI. AJBLW AS~ BHOJU CAG COF FEDTE GIFXF GQ6 HGD HVGLF HZ~ IFM JSODD O9- PKN RNS S1Z UQL VH1 Z7U Z7W Z7Y Z7Z Z81 AAYXX ADXHL CITATION AEIIB ABRTQ 7S9 L.6 |
ID | FETCH-LOGICAL-c510t-5b3eb6a039a5c2467c37d7d6cd126578824bff3303c684ec65f789d300fd41023 |
IEDL.DBID | U2A |
ISSN | 1085-7117 |
IngestDate | Fri Jul 11 12:20:00 EDT 2025 Fri Jul 25 11:19:27 EDT 2025 Tue Jun 10 20:25:56 EDT 2025 Fri Jun 27 05:12:37 EDT 2025 Tue Jul 01 01:51:33 EDT 2025 Thu Apr 24 22:58:05 EDT 2025 Fri Feb 21 02:33:21 EST 2025 Thu Jun 19 21:33:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Prediction accuracy Circular regressive model Non-continuous wind direction Mean circular prediction error |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c510t-5b3eb6a039a5c2467c37d7d6cd126578824bff3303c684ec65f789d300fd41023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2084396123 |
PQPubID | 2044458 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2153629894 proquest_journals_2084396123 gale_infotracacademiconefile_A549253971 gale_incontextgauss_ISR_A549253971 crossref_citationtrail_10_1007_s13253_018_0331_z crossref_primary_10_1007_s13253_018_0331_z springer_journals_10_1007_s13253_018_0331_z jstor_primary_48720187 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of agricultural, biological, and environmental statistics |
PublicationTitleAbbrev | JABES |
PublicationYear | 2018 |
Publisher | Springer Science + Business Media Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Bhattachary, SenGupta (CR8) 2009; 14 Artes, Toloi (CR5) 2010; 39 Lee (CR26) 2010; 2 Holzmann, Munk, Suster, Zuccnini (CR19) 2006; 13 Erdem, Shi (CR12) 2011; 88 Kato (CR22) 2010; 72 Bauwens, Dufays, Rombouts (CR7) 2014; 178 Jammalamadaka, SenGupta (CR20) 2001 Fisher (CR14) 1993 CR35 Mardia, Jupp (CR29) 2000 Ailliot, Monbet (CR3) 2012; 30 Lagona, Picone, Maruotti (CR25) 2015; 26 CR33 Wehrly, Johnson (CR34) 1980; 67 Goldfeld, Quandt (CR16) 1970; 1 Ji, Tan, Wang (CR21) 2012; 43 Kazor, Hering (CR23) 2015; 20 Augustyniak (CR6) 2014; 76 Abe, Ogata, Shiohama, Taniai (CR1) 2017; 20 Ailliot, Bessac, Monbet, Pène (CR2) 2015; 160 Zhang, Pu (CR36) 2002; 17 Liu, Ma, SenGupta, Shimizu, Wang (CR28) 2017; 79 Pewsey, Neuhäuser, Ruxton (CR32) 2013 Hamilton (CR17) 1989; 57 Craig (CR11) 1988 Hokimoto, Shimizu (CR18) 2014; 41 CR9 CR27 Kim, SenGupta (CR24) 2013; 54 Alizadeh, Rezakhah (CR4) 2014; 42 Maruotti (CR30) 2016; 23 Finzi, Fronza, Rinaldi (CR13) 1978; 12 Fisher, Lee (CR15) 1994; 56 McMillan, Bortnick, Irwin, Berliner (CR31) 2005; 39 Brunetti, Scotti, Mariano, Tan (CR10) 2008; 9 AJ Lee (331_CR26) 2010; 2 L Ji (331_CR21) 2012; 43 NI Fisher (331_CR14) 1993 331_CR33 331_CR35 L Bauwens (331_CR7) 2014; 178 A Pewsey (331_CR32) 2013 331_CR27 P Ailliot (331_CR3) 2012; 30 KV Mardia (331_CR29) 2000 P Ailliot (331_CR2) 2015; 160 NI Fisher (331_CR15) 1994; 56 F Lagona (331_CR25) 2015; 26 SH Alizadeh (331_CR4) 2014; 42 A Maruotti (331_CR30) 2016; 23 PS Craig (331_CR11) 1988 S Liu (331_CR28) 2017; 79 N McMillan (331_CR31) 2005; 39 M Augustyniak (331_CR6) 2014; 76 G Finzi (331_CR13) 1978; 12 H Holzmann (331_CR19) 2006; 13 JD Hamilton (331_CR17) 1989; 57 SM Goldfeld (331_CR16) 1970; 1 K Kazor (331_CR23) 2015; 20 E Erdem (331_CR12) 2011; 88 TE Wehrly (331_CR34) 1980; 67 S Kato (331_CR22) 2010; 72 SR Jammalamadaka (331_CR20) 2001 T Hokimoto (331_CR18) 2014; 41 T Abe (331_CR1) 2017; 20 S Kim (331_CR24) 2013; 54 C Brunetti (331_CR10) 2008; 9 R Artes (331_CR5) 2010; 39 J Zhang (331_CR36) 2002; 17 S Bhattachary (331_CR8) 2009; 14 331_CR9 |
References_xml | – volume: 67 start-page: 255 issue: 1 year: 1980 end-page: 256 ident: CR34 article-title: Bivariate models for dependence of angular observations and a related Markov process publication-title: Biometrika doi: 10.1093/biomet/67.1.255 – volume: 13 start-page: 325 year: 2006 end-page: 347 ident: CR19 article-title: Hidden Markov models for circular and linear-circular time series publication-title: Environmental and Ecological Statistics doi: 10.1007/s10651-006-0015-7 – volume: 160 start-page: 75 issue: 1 year: 2015 end-page: 88 ident: CR2 article-title: Non-homogeneous hidden Markov-switching models for wind time series publication-title: Journal of Statistical Planning & Inference doi: 10.1016/j.jspi.2014.12.005 – volume: 43 start-page: 3274 issue: 8 year: 2012 end-page: 3279 ident: CR21 article-title: Wind direction modeling using Markov chain publication-title: Journal of Central South University Science and Technology – volume: 26 start-page: 534 year: 2015 end-page: 544 ident: CR25 article-title: A hidden Markov model for the analysis of cylindrical time series publication-title: Environmetrics doi: 10.1002/env.2355 – year: 1988 ident: CR11 publication-title: Time Series Analysis for Directional Data – volume: 1 start-page: 3 year: 1970 end-page: 16 ident: CR16 article-title: A Markov model for switching regressions publication-title: Journal of Econometrics doi: 10.1016/0304-4076(73)90002-X – volume: 41 start-page: 294 issue: 2 year: 2014 end-page: 319 ident: CR18 article-title: A nonhomogeneous hidden Markov model for predicting the distribution of sea surface elevation publication-title: Journal of Applied Statistics doi: 10.1080/02664763.2013.839634 – year: 2013 ident: CR32 publication-title: Circular Statistics in R – volume: 2 start-page: 477 year: 2010 end-page: 486 ident: CR26 article-title: Circular data publication-title: Wiley Interdisciplinary Reviews: Computational Statistics doi: 10.1002/wics.98 – volume: 39 start-page: 1373 issue: 8 year: 2005 end-page: 1382 ident: CR31 article-title: A hierarchical Bayesian model to estimate and forecast ozone through space and time publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2004.10.047 – ident: CR33 – volume: 39 start-page: 186 year: 2010 end-page: 194 ident: CR5 article-title: An autoregressive model for time series of circular data publication-title: Communications in Statistics - Theory and Methods doi: 10.1080/03610920802650338 – volume: 88 start-page: 1405 year: 2011 end-page: 1414 ident: CR12 article-title: ARMA based on approaches for forecasting the tuple of wind speed and direction publication-title: Applied Energy doi: 10.1016/j.apenergy.2010.10.031 – volume: 12 start-page: 831 issue: 4 year: 1978 end-page: 838 ident: CR13 article-title: Stochastic modelling and forecast of the dosage area product publication-title: Atmospheric Environment doi: 10.1016/0004-6981(78)90020-3 – volume: 54 start-page: 685 issue: 3 year: 2013 end-page: 693 ident: CR24 article-title: A three-parameter generalized von Mises distribution publication-title: Statistical Papers doi: 10.1007/s00362-012-0454-1 – ident: CR35 – volume: 20 start-page: 275 issue: 3 year: 2017 end-page: 290 ident: CR1 article-title: Circular autocorrelation of stationary circular Markov processes publication-title: Statistical Inference for Stochastic Processes doi: 10.1007/s11203-016-9154-0 – volume: 76 start-page: 61 year: 2014 end-page: 75 ident: CR6 article-title: Maximum likelihood estimation of the Markov-switching GARCH model publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2013.01.026 – ident: CR27 – volume: 72 start-page: 655 year: 2010 end-page: 672 ident: CR22 article-title: A Markov process for circular data publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2010.00748.x – volume: 57 start-page: 357 issue: 2 year: 1989 end-page: 384 ident: CR17 article-title: A new approach to the economic analysis of nonstationary time series and business cycle publication-title: Econometrica doi: 10.2307/1912559 – volume: 20 start-page: 192 issue: 2 year: 2015 end-page: 217 ident: CR23 article-title: Assessing the performance of model-based clustering methods in multivariate time series with application to identifying regional wind regimes publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.1007/s13253-015-0203-8 – year: 1993 ident: CR14 publication-title: Statistical Analysis of Circular Data doi: 10.1017/CBO9780511564345 – volume: 23 start-page: 257 issue: 2 year: 2016 end-page: 277 ident: CR30 article-title: Analyzing longitudinal circular data by projected normal models, a semi-parametric approach based on finite mixture models publication-title: Environmental and Ecological Statistics doi: 10.1007/s10651-015-0338-3 – ident: CR9 – volume: 14 start-page: 33 issue: 1 year: 2009 end-page: 65 ident: CR8 article-title: Bayesian analysis of semiparametric linear-circular models publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.1198/jabes.2009.0003 – volume: 30 start-page: 92 year: 2012 end-page: 101 ident: CR3 article-title: Markov-switching autoregressive models for wind time series publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2011.10.011 – volume: 42 start-page: 1087 year: 2014 end-page: 1104 ident: CR4 article-title: Hidden Markov mixture autoregressive model: stability and moments publication-title: Communications in Statistics - Theory and Methods doi: 10.1080/03610926.2011.593283 – volume: 56 start-page: 327 year: 1994 end-page: 639 ident: CR15 article-title: Time series analysis of circular data publication-title: Journal of the Royal Statistical Society, Series B – year: 2000 ident: CR29 publication-title: Directional Statistics – volume: 17 start-page: 770 year: 2002 end-page: 778 ident: CR36 article-title: A Bayesian approach for short-term transmission line thermal overload risk assessment publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.2002.1022802 – volume: 178 start-page: 508 year: 2014 end-page: 522 ident: CR7 article-title: Marginal likelihood for Markov-switching and change-point GARCH models publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2013.08.017 – volume: 79 start-page: 76 issue: 1 year: 2017 end-page: 93 ident: CR28 article-title: Influence diagnostics in possibly asymmetric circular-linear multivariate regression models publication-title: Sankhyā B: Indian Journal of Statistics. doi: 10.1007/s13571-016-0116-8 – year: 2001 ident: CR20 publication-title: Topics in Circular Statistics doi: 10.1142/4031 – volume: 9 start-page: 104 year: 2008 end-page: 128 ident: CR10 article-title: Markov switching GARCH models of currency turmoil in Southeast Asia publication-title: Emerging Markets Review doi: 10.1016/j.ememar.2008.02.005 – volume: 88 start-page: 1405 year: 2011 ident: 331_CR12 publication-title: Applied Energy doi: 10.1016/j.apenergy.2010.10.031 – volume: 56 start-page: 327 year: 1994 ident: 331_CR15 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1994.tb01981.x – volume: 79 start-page: 76 issue: 1 year: 2017 ident: 331_CR28 publication-title: Sankhyā B: Indian Journal of Statistics. doi: 10.1007/s13571-016-0116-8 – volume: 43 start-page: 3274 issue: 8 year: 2012 ident: 331_CR21 publication-title: Journal of Central South University Science and Technology – volume: 160 start-page: 75 issue: 1 year: 2015 ident: 331_CR2 publication-title: Journal of Statistical Planning & Inference doi: 10.1016/j.jspi.2014.12.005 – volume: 13 start-page: 325 year: 2006 ident: 331_CR19 publication-title: Environmental and Ecological Statistics doi: 10.1007/s10651-006-0015-7 – volume-title: Topics in Circular Statistics year: 2001 ident: 331_CR20 doi: 10.1142/4031 – volume: 54 start-page: 685 issue: 3 year: 2013 ident: 331_CR24 publication-title: Statistical Papers doi: 10.1007/s00362-012-0454-1 – ident: 331_CR9 doi: 10.1007/978-1-4612-3688-7_10 – volume-title: Statistical Analysis of Circular Data year: 1993 ident: 331_CR14 doi: 10.1017/CBO9780511564345 – volume: 17 start-page: 770 year: 2002 ident: 331_CR36 publication-title: IEEE Transactions on Power Delivery doi: 10.1109/TPWRD.2002.1022802 – volume: 39 start-page: 186 year: 2010 ident: 331_CR5 publication-title: Communications in Statistics - Theory and Methods doi: 10.1080/03610920802650338 – volume: 20 start-page: 275 issue: 3 year: 2017 ident: 331_CR1 publication-title: Statistical Inference for Stochastic Processes doi: 10.1007/s11203-016-9154-0 – volume: 178 start-page: 508 year: 2014 ident: 331_CR7 publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2013.08.017 – volume: 20 start-page: 192 issue: 2 year: 2015 ident: 331_CR23 publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.1007/s13253-015-0203-8 – ident: 331_CR27 doi: 10.1201/9781315119472 – volume: 41 start-page: 294 issue: 2 year: 2014 ident: 331_CR18 publication-title: Journal of Applied Statistics doi: 10.1080/02664763.2013.839634 – volume: 72 start-page: 655 year: 2010 ident: 331_CR22 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2010.00748.x – volume: 14 start-page: 33 issue: 1 year: 2009 ident: 331_CR8 publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.1198/jabes.2009.0003 – volume: 76 start-page: 61 year: 2014 ident: 331_CR6 publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2013.01.026 – volume: 1 start-page: 3 year: 1970 ident: 331_CR16 publication-title: Journal of Econometrics doi: 10.1016/0304-4076(73)90002-X – volume-title: Time Series Analysis for Directional Data year: 1988 ident: 331_CR11 – volume-title: Directional Statistics year: 2000 ident: 331_CR29 – volume: 23 start-page: 257 issue: 2 year: 2016 ident: 331_CR30 publication-title: Environmental and Ecological Statistics doi: 10.1007/s10651-015-0338-3 – volume: 57 start-page: 357 issue: 2 year: 1989 ident: 331_CR17 publication-title: Econometrica doi: 10.2307/1912559 – ident: 331_CR35 doi: 10.1007/s00362-017-0897-5 – volume: 26 start-page: 534 year: 2015 ident: 331_CR25 publication-title: Environmetrics doi: 10.1002/env.2355 – volume: 2 start-page: 477 year: 2010 ident: 331_CR26 publication-title: Wiley Interdisciplinary Reviews: Computational Statistics doi: 10.1002/wics.98 – volume: 9 start-page: 104 year: 2008 ident: 331_CR10 publication-title: Emerging Markets Review doi: 10.1016/j.ememar.2008.02.005 – ident: 331_CR33 – volume: 12 start-page: 831 issue: 4 year: 1978 ident: 331_CR13 publication-title: Atmospheric Environment doi: 10.1016/0004-6981(78)90020-3 – volume: 67 start-page: 255 issue: 1 year: 1980 ident: 331_CR34 publication-title: Biometrika doi: 10.1093/biomet/67.1.255 – volume: 39 start-page: 1373 issue: 8 year: 2005 ident: 331_CR31 publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2004.10.047 – volume: 42 start-page: 1087 year: 2014 ident: 331_CR4 publication-title: Communications in Statistics - Theory and Methods doi: 10.1080/03610926.2011.593283 – volume-title: Circular Statistics in R year: 2013 ident: 331_CR32 – volume: 30 start-page: 92 year: 2012 ident: 331_CR3 publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2011.10.011 |
SSID | ssj0013602 |
Score | 2.1583014 |
Snippet | In this paper, a Markov-switching linked autoregressive model is proposed to describe and forecast non-continuous wind direction data. Due to the influence... |
SourceID | proquest gale crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 410 |
SubjectTerms | Agriculture Animal behavior Atmospheric models Autoregressive models Biostatistics Computer simulation Data processing Geography Health Sciences Markov chains Mathematics and Statistics Medicine Model accuracy Monitoring/Environmental Analysis prediction Statistics Statistics for Life Sciences Switching Time dependence time series analysis Wind Wind direction |
Title | Markov-Switching Linked Autoregressive Model for Non-continuous Wind Direction Data |
URI | https://www.jstor.org/stable/48720187 https://link.springer.com/article/10.1007/s13253-018-0331-z https://www.proquest.com/docview/2084396123 https://www.proquest.com/docview/2153629894 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0RakPRaOH0basIghKINlk8_EY7NWqtA-eh_VpSXY3pVASaXIt9q93JtlcOKmCz9lN2MzH_oaZ-Q3AmwpDf0QF1H5WhhigZNpLDemyHxnlF3gBZ9TgfHIaHy-jz2fizPZxt2O1-5iS7D311OwWckG1P9QSFgbe7X3YFhi6Ux3XkudT6iC2hYap8JIgSMZU5l2v2LiMrEseyhI3AOcfOdL-6jl6DLsWM7J8EPITuGdqBx7l51eWN8M48GCYKfnLgdl8al3DTdZ2Wwcentg0ugM7BDEHhuansKB2nebaW9xcdH1hJaP41GiWE72B6eNxdImMpqZdMsS47LSpPSpxv6hXzapl3zGsZ9Z1NjU7LLriGSyP5t8-HHt21IKn0Cg7T5ShKePCD7NCKI7OU4WJTnSsdMBjNOqUR2VVhXjfqThFKcaiStJMh75f6YjYH2awVTe1eQ4s4pHGGKoKI47BW1Wksa9VkFSZUVpHonTBH_-5VJaHnMZhXMqJQZnEJFFMksQkb114t97ycyDh-Nfi1yRISeQWNVXPnBertpWfFl9lTnR0AhFY4MJbu6hq8OOqsM0IeATiw9pYOesVYv1hjPA4TTJ0YW_UEGntvpXcTxHhEaWNC6_Wj9FiKQ1T1AalIhFkIWog4nsX3o-aNb3irwd78V-rX8IO7xWdyuH2YKu7Wpl9xE9deQDb-ccfX-YHvd38BnX_D_M |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB1VRUB7QGCIcCmwIBASyJK9_j5wsGirhDY5kEb0ttjedRWpslHtULV_hz_KjL2OFQRIHHrOOv6Y2dk3mjdvAN4UmPojKqD2s8zFBCWWVqTIl21P5XaKB3BMDc7TWTBeeJ_P_LMt-Nn3wrRs974k2UbqodnN5T5xf6glzHWsG82kPFbXV5in1R8nB2jUt5wfHZ5-Glt6lICVo9M1lp-5KgtS241TP-cYHHI3lKEMcunwAJ024l5WFJjbu3kQ4VMGfhFGsXRtu5Bep26Acf4OYo-Its6CJ0OpItDExsi3QscJ-9Lpnx554_DTR0BHg9wAuL_VZNuj7ughPNAYlSWdUz2CLVUasJucX2qdDmXA3W6G5bUBo8OhVQ4v0rGiNuDeVJftDdghSNspQj-GObUHVT-s-dWyaYmcjPJhJVlCcgqqzf8xBDOa0nbBEFOzWVVaRKlflqtqVbOvy1IyHaqrkh2kTfoEFrdijxFsl1WpngLzuCcxZytcj2OyWKRRYMvcCYtY5VJ6fmaC3X9zkWvdcxq_cSEGxWYyk0AzCTKTuDHh_fqS753ox78WvyZDChLTKImtc56u6lpM5l9EQvJ3PiI-x4R3elFR4c3zVDc_4CuQ_tbGylHrEOsbY0bJaXKiCfu9hwgdZ2rB7QgRJUnomPBq_TNGCCr7pKVCqwgEdYhSSGjfhA-9Zw1_8dcX2_uv1S_h_vh0eiJOJrPjZ7DDW6cnKt4-bDeXK_UcsVuTvWj3DoNvt71ZfwGO2koG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB1VRVTlgMAQYSiwIBASyKq9_j5wsEijhtIIESJ6W2zvuopU2VXtULV_ir_IjL2OFQRIHHrOOrYzs7NvMvPeALwqMPVHVED0s8zFBCWWVqTIl21P5XaKB3BMBOfjWXC48D6e-Cdb8LPnwrTd7n1JsuM0kEpT2eyfy2J_IL653Kc-IKKHuY51rbsqj9TVJeZs9fvpGA38mvPJwdcPh5YeK2Dl6ICN5WeuyoLUduPUzzkGitwNZSiDXDo8QAeOuJcVBeb5bh5E-MSBX4RRLF3bLqTXKR1gzL_lEfkYN9CCJ0PZItBNjpFvhY4T9mXUPz3yxkGoj4OuJXID7P5Wn22Pvck9uKvxKks6B7sPW6o04E5yeqE1O5QBt7t5llcGjA4G2hxepONGbcDOsS7hG7BL8LZTh34Ac6IKVT-s-eWyaZs6GeXGSrKEpBVU-18AhmNGE9vOGOJrNqtKi2y1LFfVqmbflqVkOmxXJRunTfoQFjdijxFsl1WpHgHzuCcxfytcj2PiWKRRYMvcCYtY5VJ6fmaC3f_mItca6DSK40wM6s1kJoFmEmQmcW3C2_Ul550AyL8WvyRDChLWKKlz5zRd1bWYzr-IhKTwfER_jglv9KKiwpvnqSZC4CuQFtfGylHrEOsbY3bJaYqiCXu9hwgdc2rB7QjRJcnpmPBi_TFGCyoBpaVCqwgEeIhYSHTfhHe9Zw1f8dcXe_xfq5_DzufxRHyazo6ewC5vfZ668vZgu7lYqacI45rsWbt1GHy_6b36C5aSTjk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Markov-Switching+Linked+Autoregressive+Model+for+Non-continuous+Wind+Direction+Data&rft.jtitle=Journal+of+agricultural%2C+biological%2C+and+environmental+statistics&rft.au=Zhan%2C+Xiaoping&rft.au=Ma%2C+Tiefeng&rft.au=Liu%2C+Shuangzhe&rft.au=Shimizu%2C+Kunio&rft.date=2018-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1085-7117&rft.eissn=1537-2693&rft.volume=23&rft.issue=3&rft.spage=410&rft.epage=425&rft_id=info:doi/10.1007%2Fs13253-018-0331-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-7117&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-7117&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-7117&client=summon |