Markov-Switching Linked Autoregressive Model for Non-continuous Wind Direction Data

In this paper, a Markov-switching linked autoregressive model is proposed to describe and forecast non-continuous wind direction data. Due to the influence factors of geography and atmosphere, the distribution of wind direction is disjunct and multi-modal. Moreover, for a number of practical situati...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural, biological, and environmental statistics Vol. 23; no. 3; pp. 410 - 425
Main Authors Zhan, Xiaoping, Ma, Tiefeng, Liu, Shuangzhe, Shimizu, Kunio
Format Journal Article
LanguageEnglish
Published New York Springer Science + Business Media 01.09.2018
Springer US
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a Markov-switching linked autoregressive model is proposed to describe and forecast non-continuous wind direction data. Due to the influence factors of geography and atmosphere, the distribution of wind direction is disjunct and multi-modal. Moreover, for a number of practical situations, wind direction is a time series and its dependence on time provides very important information for modeling. Our model takes these two points into account to give an accurate prediction of this kind of wind direction. A simulation study shows that our model has a significantly higher prediction accuracy and a smaller mean circular prediction error than three existing models and it is illustrated to be effective by analyzing real data. Supplementary materials accompanying this paper appear online.
AbstractList In this paper, a Markov-switching linked autoregressive model is proposed to describe and forecast non-continuous wind direction data. Due to the influence factors of geography and atmosphere, the distribution of wind direction is disjunct and multi-modal. Moreover, for a number of practical situations, wind direction is a time series and its dependence on time provides very important information for modeling. Our model takes these two points into account to give an accurate prediction of this kind of wind direction. A simulation study shows that our model has a significantly higher prediction accuracy and a smaller mean circular prediction error than three existing models and it is illustrated to be effective by analyzing real data. Supplementary materials accompanying this paper appear online.
In this paper, a Markov-switching linked autoregressive model is proposed to describe and forecast non-continuous wind direction data. Due to the influence factors of geography and atmosphere, the distribution of wind direction is disjunct and multi-modal. Moreover, for a number of practical situations, wind direction is a time series and its dependence on time provides very important information for modeling. Our model takes these two points into account to give an accurate prediction of this kind of wind direction. A simulation study shows that our model has a significantly higher prediction accuracy and a smaller mean circular prediction error than three existing models and it is illustrated to be effective by analyzing real data. Supplementary materials accompanying this paper appear online.
Audience Academic
Author Zhan, Xiaoping
Shimizu, Kunio
Liu, Shuangzhe
Ma, Tiefeng
Author_xml – sequence: 1
  givenname: Xiaoping
  surname: Zhan
  fullname: Zhan, Xiaoping
– sequence: 2
  givenname: Tiefeng
  surname: Ma
  fullname: Ma, Tiefeng
– sequence: 3
  givenname: Shuangzhe
  surname: Liu
  fullname: Liu, Shuangzhe
– sequence: 4
  givenname: Kunio
  surname: Shimizu
  fullname: Shimizu, Kunio
BookMark eNp9kU1PHSEUhieNTaq2P6CLJpN00y5QPgaYWd5oP0yumvS26ZJwmcOU61ywwKj115ebaWx0YVhAyPNwDuc9qPZ88FBVbwk-IhjL40QY5Qxh0iLMGEH3L6p9wplEVHRsr5xxy5EkRL6qDlLaYEyYwHS_Wp3reBVu0OrWZfPL-aFeOn8Ffb2YcogwREjJ3UB9HnoYaxtifRE8MsFn56cwpfqn83196iKY7IKvT3XWr6uXVo8J3vzbD6sfnz99P_mKlpdfzk4WS2Q4wRnxNYO10Jh1mhvaCGmY7GUvTE-o4LJtabO2ljHMjGgbMIJb2XY9w9j2DcGUHVYf5nevY_g9Qcpq65KBcdQeSmuKlgEI2rVdU9D3T9BNmKIv3SmK24Z1glBWqKOZGvQIynkbctSmrB62rvwZrCv3C950ZdadJEX4-EjYzQXu8qCnlNTZ6ttjVs6siSGlCFYZl_VuaKWIGxXBapekmpNUJUm1S1LdF5M8Ma-j2-r451mHzk4qrB8g_v_wc9K7WdqkEv5DlaaVtFCS_QVc7Loe
CitedBy_id crossref_primary_10_1002_env_2655
Cites_doi 10.1093/biomet/67.1.255
10.1007/s10651-006-0015-7
10.1016/j.jspi.2014.12.005
10.1002/env.2355
10.1016/0304-4076(73)90002-X
10.1080/02664763.2013.839634
10.1002/wics.98
10.1016/j.atmosenv.2004.10.047
10.1080/03610920802650338
10.1016/j.apenergy.2010.10.031
10.1016/0004-6981(78)90020-3
10.1007/s00362-012-0454-1
10.1007/s11203-016-9154-0
10.1016/j.csda.2013.01.026
10.1111/j.1467-9868.2010.00748.x
10.2307/1912559
10.1007/s13253-015-0203-8
10.1017/CBO9780511564345
10.1007/s10651-015-0338-3
10.1198/jabes.2009.0003
10.1016/j.envsoft.2011.10.011
10.1080/03610926.2011.593283
10.1109/TPWRD.2002.1022802
10.1016/j.jeconom.2013.08.017
10.1007/s13571-016-0116-8
10.1142/4031
10.1016/j.ememar.2008.02.005
10.1111/j.2517-6161.1994.tb01981.x
10.1007/978-1-4612-3688-7_10
10.1201/9781315119472
10.1007/s00362-017-0897-5
ContentType Journal Article
Copyright 2018 International Biometric Society
International Biometric Society 2018
COPYRIGHT 2018 Springer
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: 2018 International Biometric Society
– notice: International Biometric Society 2018
– notice: COPYRIGHT 2018 Springer
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
ISR
7S9
L.6
DOI 10.1007/s13253-018-0331-z
DatabaseName CrossRef
Gale In Context: Science
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList



AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Environmental Sciences
Medicine
Statistics
Geography
EISSN 1537-2693
EndPage 425
ExternalDocumentID A549253971
10_1007_s13253_018_0331_z
48720187
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: JBK120509; JBK140507
– fundername: National Natural Science Foundation of China
  grantid: 11471264; 11401148
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11571282
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 06D
0R~
0VY
199
1N0
203
2AX
2JN
2KG
2LR
2XV
30V
4.4
406
408
40D
40E
5GY
8UJ
95.
96X
A8Z
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWIL
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABAWQ
ABBHK
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFAN
ABFSG
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQDR
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ABXSQ
ABYWD
ACAOD
ACDIW
ACDTI
ACGFS
ACHJO
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACMTB
ACOKC
ACPIV
ACPRK
ACSTC
ACTMH
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADODI
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AELLO
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUPB
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFRAH
AFVYC
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGLNM
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIHAF
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BAPOH
BGNMA
CSCUP
D0L
DDRTE
DNIVK
DPUIP
DQDLB
DSRWC
DU5
EBD
EBLON
EBS
ECEWR
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GXS
H13
HF~
HMJXF
HQ6
HRMNR
IAO
IEP
IGS
IKXTQ
IPSME
ISR
ITM
IWAJR
I~Z
J-C
J0Z
JAA
JAAYA
JBMMH
JBSCW
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JZLTJ
KOV
LLZTM
M4Y
ML.
NPVJJ
NQJWS
NU0
O93
O9J
P2P
P9R
PT4
R9I
ROL
RSV
S27
S3B
SA0
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~KM
-5D
-5G
-BR
-EM
-~C
0VX
2VQ
3-Y
AAKYL
AARHV
ABULA
ACBXY
ADINQ
ADRFC
ADULT
AEBTG
AELPN
AFLOW
AHSBF
AI.
AJBLW
AS~
BHOJU
CAG
COF
FEDTE
GIFXF
GQ6
HGD
HVGLF
HZ~
IFM
JSODD
O9-
PKN
RNS
S1Z
UQL
VH1
Z7U
Z7W
Z7Y
Z7Z
Z81
AAYXX
ADXHL
CITATION
AEIIB
ABRTQ
7S9
L.6
ID FETCH-LOGICAL-c510t-5b3eb6a039a5c2467c37d7d6cd126578824bff3303c684ec65f789d300fd41023
IEDL.DBID U2A
ISSN 1085-7117
IngestDate Fri Jul 11 12:20:00 EDT 2025
Fri Jul 25 11:19:27 EDT 2025
Tue Jun 10 20:25:56 EDT 2025
Fri Jun 27 05:12:37 EDT 2025
Tue Jul 01 01:51:33 EDT 2025
Thu Apr 24 22:58:05 EDT 2025
Fri Feb 21 02:33:21 EST 2025
Thu Jun 19 21:33:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Prediction accuracy
Circular regressive model
Non-continuous wind direction
Mean circular prediction error
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-5b3eb6a039a5c2467c37d7d6cd126578824bff3303c684ec65f789d300fd41023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2084396123
PQPubID 2044458
PageCount 16
ParticipantIDs proquest_miscellaneous_2153629894
proquest_journals_2084396123
gale_infotracacademiconefile_A549253971
gale_incontextgauss_ISR_A549253971
crossref_citationtrail_10_1007_s13253_018_0331_z
crossref_primary_10_1007_s13253_018_0331_z
springer_journals_10_1007_s13253_018_0331_z
jstor_primary_48720187
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of agricultural, biological, and environmental statistics
PublicationTitleAbbrev JABES
PublicationYear 2018
Publisher Springer Science + Business Media
Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer Science + Business Media
– name: Springer US
– name: Springer
– name: Springer Nature B.V
References Bhattachary, SenGupta (CR8) 2009; 14
Artes, Toloi (CR5) 2010; 39
Lee (CR26) 2010; 2
Holzmann, Munk, Suster, Zuccnini (CR19) 2006; 13
Erdem, Shi (CR12) 2011; 88
Kato (CR22) 2010; 72
Bauwens, Dufays, Rombouts (CR7) 2014; 178
Jammalamadaka, SenGupta (CR20) 2001
Fisher (CR14) 1993
CR35
Mardia, Jupp (CR29) 2000
Ailliot, Monbet (CR3) 2012; 30
Lagona, Picone, Maruotti (CR25) 2015; 26
CR33
Wehrly, Johnson (CR34) 1980; 67
Goldfeld, Quandt (CR16) 1970; 1
Ji, Tan, Wang (CR21) 2012; 43
Kazor, Hering (CR23) 2015; 20
Augustyniak (CR6) 2014; 76
Abe, Ogata, Shiohama, Taniai (CR1) 2017; 20
Ailliot, Bessac, Monbet, Pène (CR2) 2015; 160
Zhang, Pu (CR36) 2002; 17
Liu, Ma, SenGupta, Shimizu, Wang (CR28) 2017; 79
Pewsey, Neuhäuser, Ruxton (CR32) 2013
Hamilton (CR17) 1989; 57
Craig (CR11) 1988
Hokimoto, Shimizu (CR18) 2014; 41
CR9
CR27
Kim, SenGupta (CR24) 2013; 54
Alizadeh, Rezakhah (CR4) 2014; 42
Maruotti (CR30) 2016; 23
Finzi, Fronza, Rinaldi (CR13) 1978; 12
Fisher, Lee (CR15) 1994; 56
McMillan, Bortnick, Irwin, Berliner (CR31) 2005; 39
Brunetti, Scotti, Mariano, Tan (CR10) 2008; 9
AJ Lee (331_CR26) 2010; 2
L Ji (331_CR21) 2012; 43
NI Fisher (331_CR14) 1993
331_CR33
331_CR35
L Bauwens (331_CR7) 2014; 178
A Pewsey (331_CR32) 2013
331_CR27
P Ailliot (331_CR3) 2012; 30
KV Mardia (331_CR29) 2000
P Ailliot (331_CR2) 2015; 160
NI Fisher (331_CR15) 1994; 56
F Lagona (331_CR25) 2015; 26
SH Alizadeh (331_CR4) 2014; 42
A Maruotti (331_CR30) 2016; 23
PS Craig (331_CR11) 1988
S Liu (331_CR28) 2017; 79
N McMillan (331_CR31) 2005; 39
M Augustyniak (331_CR6) 2014; 76
G Finzi (331_CR13) 1978; 12
H Holzmann (331_CR19) 2006; 13
JD Hamilton (331_CR17) 1989; 57
SM Goldfeld (331_CR16) 1970; 1
K Kazor (331_CR23) 2015; 20
E Erdem (331_CR12) 2011; 88
TE Wehrly (331_CR34) 1980; 67
S Kato (331_CR22) 2010; 72
SR Jammalamadaka (331_CR20) 2001
T Hokimoto (331_CR18) 2014; 41
T Abe (331_CR1) 2017; 20
S Kim (331_CR24) 2013; 54
C Brunetti (331_CR10) 2008; 9
R Artes (331_CR5) 2010; 39
J Zhang (331_CR36) 2002; 17
S Bhattachary (331_CR8) 2009; 14
331_CR9
References_xml – volume: 67
  start-page: 255
  issue: 1
  year: 1980
  end-page: 256
  ident: CR34
  article-title: Bivariate models for dependence of angular observations and a related Markov process
  publication-title: Biometrika
  doi: 10.1093/biomet/67.1.255
– volume: 13
  start-page: 325
  year: 2006
  end-page: 347
  ident: CR19
  article-title: Hidden Markov models for circular and linear-circular time series
  publication-title: Environmental and Ecological Statistics
  doi: 10.1007/s10651-006-0015-7
– volume: 160
  start-page: 75
  issue: 1
  year: 2015
  end-page: 88
  ident: CR2
  article-title: Non-homogeneous hidden Markov-switching models for wind time series
  publication-title: Journal of Statistical Planning & Inference
  doi: 10.1016/j.jspi.2014.12.005
– volume: 43
  start-page: 3274
  issue: 8
  year: 2012
  end-page: 3279
  ident: CR21
  article-title: Wind direction modeling using Markov chain
  publication-title: Journal of Central South University Science and Technology
– volume: 26
  start-page: 534
  year: 2015
  end-page: 544
  ident: CR25
  article-title: A hidden Markov model for the analysis of cylindrical time series
  publication-title: Environmetrics
  doi: 10.1002/env.2355
– year: 1988
  ident: CR11
  publication-title: Time Series Analysis for Directional Data
– volume: 1
  start-page: 3
  year: 1970
  end-page: 16
  ident: CR16
  article-title: A Markov model for switching regressions
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(73)90002-X
– volume: 41
  start-page: 294
  issue: 2
  year: 2014
  end-page: 319
  ident: CR18
  article-title: A nonhomogeneous hidden Markov model for predicting the distribution of sea surface elevation
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2013.839634
– year: 2013
  ident: CR32
  publication-title: Circular Statistics in R
– volume: 2
  start-page: 477
  year: 2010
  end-page: 486
  ident: CR26
  article-title: Circular data
  publication-title: Wiley Interdisciplinary Reviews: Computational Statistics
  doi: 10.1002/wics.98
– volume: 39
  start-page: 1373
  issue: 8
  year: 2005
  end-page: 1382
  ident: CR31
  article-title: A hierarchical Bayesian model to estimate and forecast ozone through space and time
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2004.10.047
– ident: CR33
– volume: 39
  start-page: 186
  year: 2010
  end-page: 194
  ident: CR5
  article-title: An autoregressive model for time series of circular data
  publication-title: Communications in Statistics - Theory and Methods
  doi: 10.1080/03610920802650338
– volume: 88
  start-page: 1405
  year: 2011
  end-page: 1414
  ident: CR12
  article-title: ARMA based on approaches for forecasting the tuple of wind speed and direction
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 12
  start-page: 831
  issue: 4
  year: 1978
  end-page: 838
  ident: CR13
  article-title: Stochastic modelling and forecast of the dosage area product
  publication-title: Atmospheric Environment
  doi: 10.1016/0004-6981(78)90020-3
– volume: 54
  start-page: 685
  issue: 3
  year: 2013
  end-page: 693
  ident: CR24
  article-title: A three-parameter generalized von Mises distribution
  publication-title: Statistical Papers
  doi: 10.1007/s00362-012-0454-1
– ident: CR35
– volume: 20
  start-page: 275
  issue: 3
  year: 2017
  end-page: 290
  ident: CR1
  article-title: Circular autocorrelation of stationary circular Markov processes
  publication-title: Statistical Inference for Stochastic Processes
  doi: 10.1007/s11203-016-9154-0
– volume: 76
  start-page: 61
  year: 2014
  end-page: 75
  ident: CR6
  article-title: Maximum likelihood estimation of the Markov-switching GARCH model
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2013.01.026
– ident: CR27
– volume: 72
  start-page: 655
  year: 2010
  end-page: 672
  ident: CR22
  article-title: A Markov process for circular data
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.1467-9868.2010.00748.x
– volume: 57
  start-page: 357
  issue: 2
  year: 1989
  end-page: 384
  ident: CR17
  article-title: A new approach to the economic analysis of nonstationary time series and business cycle
  publication-title: Econometrica
  doi: 10.2307/1912559
– volume: 20
  start-page: 192
  issue: 2
  year: 2015
  end-page: 217
  ident: CR23
  article-title: Assessing the performance of model-based clustering methods in multivariate time series with application to identifying regional wind regimes
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.1007/s13253-015-0203-8
– year: 1993
  ident: CR14
  publication-title: Statistical Analysis of Circular Data
  doi: 10.1017/CBO9780511564345
– volume: 23
  start-page: 257
  issue: 2
  year: 2016
  end-page: 277
  ident: CR30
  article-title: Analyzing longitudinal circular data by projected normal models, a semi-parametric approach based on finite mixture models
  publication-title: Environmental and Ecological Statistics
  doi: 10.1007/s10651-015-0338-3
– ident: CR9
– volume: 14
  start-page: 33
  issue: 1
  year: 2009
  end-page: 65
  ident: CR8
  article-title: Bayesian analysis of semiparametric linear-circular models
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.1198/jabes.2009.0003
– volume: 30
  start-page: 92
  year: 2012
  end-page: 101
  ident: CR3
  article-title: Markov-switching autoregressive models for wind time series
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2011.10.011
– volume: 42
  start-page: 1087
  year: 2014
  end-page: 1104
  ident: CR4
  article-title: Hidden Markov mixture autoregressive model: stability and moments
  publication-title: Communications in Statistics - Theory and Methods
  doi: 10.1080/03610926.2011.593283
– volume: 56
  start-page: 327
  year: 1994
  end-page: 639
  ident: CR15
  article-title: Time series analysis of circular data
  publication-title: Journal of the Royal Statistical Society, Series B
– year: 2000
  ident: CR29
  publication-title: Directional Statistics
– volume: 17
  start-page: 770
  year: 2002
  end-page: 778
  ident: CR36
  article-title: A Bayesian approach for short-term transmission line thermal overload risk assessment
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2002.1022802
– volume: 178
  start-page: 508
  year: 2014
  end-page: 522
  ident: CR7
  article-title: Marginal likelihood for Markov-switching and change-point GARCH models
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2013.08.017
– volume: 79
  start-page: 76
  issue: 1
  year: 2017
  end-page: 93
  ident: CR28
  article-title: Influence diagnostics in possibly asymmetric circular-linear multivariate regression models
  publication-title: Sankhyā B: Indian Journal of Statistics.
  doi: 10.1007/s13571-016-0116-8
– year: 2001
  ident: CR20
  publication-title: Topics in Circular Statistics
  doi: 10.1142/4031
– volume: 9
  start-page: 104
  year: 2008
  end-page: 128
  ident: CR10
  article-title: Markov switching GARCH models of currency turmoil in Southeast Asia
  publication-title: Emerging Markets Review
  doi: 10.1016/j.ememar.2008.02.005
– volume: 88
  start-page: 1405
  year: 2011
  ident: 331_CR12
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 56
  start-page: 327
  year: 1994
  ident: 331_CR15
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1994.tb01981.x
– volume: 79
  start-page: 76
  issue: 1
  year: 2017
  ident: 331_CR28
  publication-title: Sankhyā B: Indian Journal of Statistics.
  doi: 10.1007/s13571-016-0116-8
– volume: 43
  start-page: 3274
  issue: 8
  year: 2012
  ident: 331_CR21
  publication-title: Journal of Central South University Science and Technology
– volume: 160
  start-page: 75
  issue: 1
  year: 2015
  ident: 331_CR2
  publication-title: Journal of Statistical Planning & Inference
  doi: 10.1016/j.jspi.2014.12.005
– volume: 13
  start-page: 325
  year: 2006
  ident: 331_CR19
  publication-title: Environmental and Ecological Statistics
  doi: 10.1007/s10651-006-0015-7
– volume-title: Topics in Circular Statistics
  year: 2001
  ident: 331_CR20
  doi: 10.1142/4031
– volume: 54
  start-page: 685
  issue: 3
  year: 2013
  ident: 331_CR24
  publication-title: Statistical Papers
  doi: 10.1007/s00362-012-0454-1
– ident: 331_CR9
  doi: 10.1007/978-1-4612-3688-7_10
– volume-title: Statistical Analysis of Circular Data
  year: 1993
  ident: 331_CR14
  doi: 10.1017/CBO9780511564345
– volume: 17
  start-page: 770
  year: 2002
  ident: 331_CR36
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2002.1022802
– volume: 39
  start-page: 186
  year: 2010
  ident: 331_CR5
  publication-title: Communications in Statistics - Theory and Methods
  doi: 10.1080/03610920802650338
– volume: 20
  start-page: 275
  issue: 3
  year: 2017
  ident: 331_CR1
  publication-title: Statistical Inference for Stochastic Processes
  doi: 10.1007/s11203-016-9154-0
– volume: 178
  start-page: 508
  year: 2014
  ident: 331_CR7
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2013.08.017
– volume: 20
  start-page: 192
  issue: 2
  year: 2015
  ident: 331_CR23
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.1007/s13253-015-0203-8
– ident: 331_CR27
  doi: 10.1201/9781315119472
– volume: 41
  start-page: 294
  issue: 2
  year: 2014
  ident: 331_CR18
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2013.839634
– volume: 72
  start-page: 655
  year: 2010
  ident: 331_CR22
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.1467-9868.2010.00748.x
– volume: 14
  start-page: 33
  issue: 1
  year: 2009
  ident: 331_CR8
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.1198/jabes.2009.0003
– volume: 76
  start-page: 61
  year: 2014
  ident: 331_CR6
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2013.01.026
– volume: 1
  start-page: 3
  year: 1970
  ident: 331_CR16
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(73)90002-X
– volume-title: Time Series Analysis for Directional Data
  year: 1988
  ident: 331_CR11
– volume-title: Directional Statistics
  year: 2000
  ident: 331_CR29
– volume: 23
  start-page: 257
  issue: 2
  year: 2016
  ident: 331_CR30
  publication-title: Environmental and Ecological Statistics
  doi: 10.1007/s10651-015-0338-3
– volume: 57
  start-page: 357
  issue: 2
  year: 1989
  ident: 331_CR17
  publication-title: Econometrica
  doi: 10.2307/1912559
– ident: 331_CR35
  doi: 10.1007/s00362-017-0897-5
– volume: 26
  start-page: 534
  year: 2015
  ident: 331_CR25
  publication-title: Environmetrics
  doi: 10.1002/env.2355
– volume: 2
  start-page: 477
  year: 2010
  ident: 331_CR26
  publication-title: Wiley Interdisciplinary Reviews: Computational Statistics
  doi: 10.1002/wics.98
– volume: 9
  start-page: 104
  year: 2008
  ident: 331_CR10
  publication-title: Emerging Markets Review
  doi: 10.1016/j.ememar.2008.02.005
– ident: 331_CR33
– volume: 12
  start-page: 831
  issue: 4
  year: 1978
  ident: 331_CR13
  publication-title: Atmospheric Environment
  doi: 10.1016/0004-6981(78)90020-3
– volume: 67
  start-page: 255
  issue: 1
  year: 1980
  ident: 331_CR34
  publication-title: Biometrika
  doi: 10.1093/biomet/67.1.255
– volume: 39
  start-page: 1373
  issue: 8
  year: 2005
  ident: 331_CR31
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2004.10.047
– volume: 42
  start-page: 1087
  year: 2014
  ident: 331_CR4
  publication-title: Communications in Statistics - Theory and Methods
  doi: 10.1080/03610926.2011.593283
– volume-title: Circular Statistics in R
  year: 2013
  ident: 331_CR32
– volume: 30
  start-page: 92
  year: 2012
  ident: 331_CR3
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2011.10.011
SSID ssj0013602
Score 2.1583014
Snippet In this paper, a Markov-switching linked autoregressive model is proposed to describe and forecast non-continuous wind direction data. Due to the influence...
SourceID proquest
gale
crossref
springer
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 410
SubjectTerms Agriculture
Animal behavior
Atmospheric models
Autoregressive models
Biostatistics
Computer simulation
Data processing
Geography
Health Sciences
Markov chains
Mathematics and Statistics
Medicine
Model accuracy
Monitoring/Environmental Analysis
prediction
Statistics
Statistics for Life Sciences
Switching
Time dependence
time series analysis
Wind
Wind direction
Title Markov-Switching Linked Autoregressive Model for Non-continuous Wind Direction Data
URI https://www.jstor.org/stable/48720187
https://link.springer.com/article/10.1007/s13253-018-0331-z
https://www.proquest.com/docview/2084396123
https://www.proquest.com/docview/2153629894
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0RakPRaOH0basIghKINlk8_EY7NWqtA-eh_VpSXY3pVASaXIt9q93JtlcOKmCz9lN2MzH_oaZ-Q3AmwpDf0QF1H5WhhigZNpLDemyHxnlF3gBZ9TgfHIaHy-jz2fizPZxt2O1-5iS7D311OwWckG1P9QSFgbe7X3YFhi6Ux3XkudT6iC2hYap8JIgSMZU5l2v2LiMrEseyhI3AOcfOdL-6jl6DLsWM7J8EPITuGdqBx7l51eWN8M48GCYKfnLgdl8al3DTdZ2Wwcentg0ugM7BDEHhuansKB2nebaW9xcdH1hJaP41GiWE72B6eNxdImMpqZdMsS47LSpPSpxv6hXzapl3zGsZ9Z1NjU7LLriGSyP5t8-HHt21IKn0Cg7T5ShKePCD7NCKI7OU4WJTnSsdMBjNOqUR2VVhXjfqThFKcaiStJMh75f6YjYH2awVTe1eQ4s4pHGGKoKI47BW1Wksa9VkFSZUVpHonTBH_-5VJaHnMZhXMqJQZnEJFFMksQkb114t97ycyDh-Nfi1yRISeQWNVXPnBertpWfFl9lTnR0AhFY4MJbu6hq8OOqsM0IeATiw9pYOesVYv1hjPA4TTJ0YW_UEGntvpXcTxHhEaWNC6_Wj9FiKQ1T1AalIhFkIWog4nsX3o-aNb3irwd78V-rX8IO7xWdyuH2YKu7Wpl9xE9deQDb-ccfX-YHvd38BnX_D_M
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB1VRUB7QGCIcCmwIBASyJK9_j5wsGirhDY5kEb0ttjedRWpslHtULV_hz_KjL2OFQRIHHrOOv6Y2dk3mjdvAN4UmPojKqD2s8zFBCWWVqTIl21P5XaKB3BMDc7TWTBeeJ_P_LMt-Nn3wrRs974k2UbqodnN5T5xf6glzHWsG82kPFbXV5in1R8nB2jUt5wfHZ5-Glt6lICVo9M1lp-5KgtS241TP-cYHHI3lKEMcunwAJ024l5WFJjbu3kQ4VMGfhFGsXRtu5Bep26Acf4OYo-Its6CJ0OpItDExsi3QscJ-9Lpnx554_DTR0BHg9wAuL_VZNuj7ughPNAYlSWdUz2CLVUasJucX2qdDmXA3W6G5bUBo8OhVQ4v0rGiNuDeVJftDdghSNspQj-GObUHVT-s-dWyaYmcjPJhJVlCcgqqzf8xBDOa0nbBEFOzWVVaRKlflqtqVbOvy1IyHaqrkh2kTfoEFrdijxFsl1WpngLzuCcxZytcj2OyWKRRYMvcCYtY5VJ6fmaC3X9zkWvdcxq_cSEGxWYyk0AzCTKTuDHh_fqS753ox78WvyZDChLTKImtc56u6lpM5l9EQvJ3PiI-x4R3elFR4c3zVDc_4CuQ_tbGylHrEOsbY0bJaXKiCfu9hwgdZ2rB7QgRJUnomPBq_TNGCCr7pKVCqwgEdYhSSGjfhA-9Zw1_8dcX2_uv1S_h_vh0eiJOJrPjZ7DDW6cnKt4-bDeXK_UcsVuTvWj3DoNvt71ZfwGO2koG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB1VRVTlgMAQYSiwIBASyKq9_j5wsEijhtIIESJ6W2zvuopU2VXtULV_ir_IjL2OFQRIHHrOOrYzs7NvMvPeALwqMPVHVED0s8zFBCWWVqTIl21P5XaKB3BMBOfjWXC48D6e-Cdb8LPnwrTd7n1JsuM0kEpT2eyfy2J_IL653Kc-IKKHuY51rbsqj9TVJeZs9fvpGA38mvPJwdcPh5YeK2Dl6ICN5WeuyoLUduPUzzkGitwNZSiDXDo8QAeOuJcVBeb5bh5E-MSBX4RRLF3bLqTXKR1gzL_lEfkYN9CCJ0PZItBNjpFvhY4T9mXUPz3yxkGoj4OuJXID7P5Wn22Pvck9uKvxKks6B7sPW6o04E5yeqE1O5QBt7t5llcGjA4G2hxepONGbcDOsS7hG7BL8LZTh34Ac6IKVT-s-eWyaZs6GeXGSrKEpBVU-18AhmNGE9vOGOJrNqtKi2y1LFfVqmbflqVkOmxXJRunTfoQFjdijxFsl1WpHgHzuCcxfytcj2PiWKRRYMvcCYtY5VJ6fmaC3f_mItca6DSK40wM6s1kJoFmEmQmcW3C2_Ul550AyL8WvyRDChLWKKlz5zRd1bWYzr-IhKTwfER_jglv9KKiwpvnqSZC4CuQFtfGylHrEOsbY3bJaYqiCXu9hwgdc2rB7QjRJcnpmPBi_TFGCyoBpaVCqwgEeIhYSHTfhHe9Zw1f8dcXe_xfq5_DzufxRHyazo6ewC5vfZ668vZgu7lYqacI45rsWbt1GHy_6b36C5aSTjk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Markov-Switching+Linked+Autoregressive+Model+for+Non-continuous+Wind+Direction+Data&rft.jtitle=Journal+of+agricultural%2C+biological%2C+and+environmental+statistics&rft.au=Zhan%2C+Xiaoping&rft.au=Ma%2C+Tiefeng&rft.au=Liu%2C+Shuangzhe&rft.au=Shimizu%2C+Kunio&rft.date=2018-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1085-7117&rft.eissn=1537-2693&rft.volume=23&rft.issue=3&rft.spage=410&rft.epage=425&rft_id=info:doi/10.1007%2Fs13253-018-0331-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-7117&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-7117&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-7117&client=summon