Developmental Regulation of Spontaneous Activity in the Mammalian Cochlea
Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating...
Saved in:
Published in | The Journal of neuroscience Vol. 30; no. 4; pp. 1539 - 1550 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
27.01.2010
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in the developing cochlea periodically release ATP, which depolarizes inner hair cells (IHCs), leading to bursts of action potentials in postsynaptic spiral ganglion neurons (SGNs). To determine when purinergic signaling appears in the developing cochlea and whether it is responsible for initiating auditory neuron activity throughout the prehearing period, we examined spontaneous activity from ISCs, IHCs, and SGNs in cochleae acutely isolated from rats during the first three postnatal weeks. We found that ATP was released from ISCs within the cochlea from birth until the onset of hearing, which led to periodic inward currents, Ca
2+
transients, and morphological changes in these supporting cells. This spontaneous release of ATP also depolarized IHCs and triggered bursts of action potentials in SGNs for most of the postnatal prehearing period, beginning a few days after birth as IHCs became responsive to ATP, until the onset of hearing when ATP was no longer released from ISCs. When IHCs were not subject to purinergic excitation, SGNs exhibited little or no activity. These results suggest that supporting cells in the cochlea provide the primary excitatory stimulus responsible for initiating bursts of action potentials in auditory nerve fibers before the onset of hearing. |
---|---|
AbstractList | Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in the developing cochlea periodically release ATP, which depolarizes inner hair cells (IHCs), leading to bursts of action potentials in postsynaptic spiral ganglion neurons (SGNs). To determine when purinergic signaling appears in the developing cochlea and whether it is responsible for initiating auditory neuron activity throughout the prehearing period, we examined spontaneous activity from ISCs, IHCs, and SGNs in cochleae acutely isolated from rats during the first three postnatal weeks. We found that ATP was released from ISCs within the cochlea from birth until the onset of hearing, which led to periodic inward currents, Ca
2+
transients, and morphological changes in these supporting cells. This spontaneous release of ATP also depolarized IHCs and triggered bursts of action potentials in SGNs for most of the postnatal prehearing period, beginning a few days after birth as IHCs became responsive to ATP, until the onset of hearing when ATP was no longer released from ISCs. When IHCs were not subject to purinergic excitation, SGNs exhibited little or no activity. These results suggest that supporting cells in the cochlea provide the primary excitatory stimulus responsible for initiating bursts of action potentials in auditory nerve fibers before the onset of hearing. Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in the developing cochlea periodically release ATP, which depolarizes inner hair cells (IHCs), leading to bursts of action potentials in postsynaptic spiral ganglion neurons (SGNs). To determine when purinergic signaling appears in the developing cochlea and whether it is responsible for initiating auditory neuron activity throughout the prehearing period, we examined spontaneous activity from ISCs, IHCs, and SGNs in cochleae acutely isolated from rats during the first three postnatal weeks. We found that ATP was released from ISCs within the cochlea from birth until the onset of hearing, which led to periodic inward currents, Ca(2+) transients, and morphological changes in these supporting cells. This spontaneous release of ATP also depolarized IHCs and triggered bursts of action potentials in SGNs for most of the postnatal prehearing period, beginning a few days after birth as IHCs became responsive to ATP, until the onset of hearing when ATP was no longer released from ISCs. When IHCs were not subject to purinergic excitation, SGNs exhibited little or no activity. These results suggest that supporting cells in the cochlea provide the primary excitatory stimulus responsible for initiating bursts of action potentials in auditory nerve fibers before the onset of hearing. Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in the developing cochlea periodically release ATP, which depolarizes inner hair cells (IHCs), leading to bursts of action potentials in postsynaptic spiral ganglion neurons (SGNs). To determine when purinergic signaling appears in the developing cochlea and whether it is responsible for initiating auditory neuron activity throughout the prehearing period, we examined spontaneous activity from ISCs, IHCs, and SGNs in cochleae acutely isolated from rats during the first three postnatal weeks. We found that ATP was released from ISCs within the cochlea from birth until the onset of hearing, which led to periodic inward currents, Ca(2+) transients, and morphological changes in these supporting cells. This spontaneous release of ATP also depolarized IHCs and triggered bursts of action potentials in SGNs for most of the postnatal prehearing period, beginning a few days after birth as IHCs became responsive to ATP, until the onset of hearing when ATP was no longer released from ISCs. When IHCs were not subject to purinergic excitation, SGNs exhibited little or no activity. These results suggest that supporting cells in the cochlea provide the primary excitatory stimulus responsible for initiating bursts of action potentials in auditory nerve fibers before the onset of hearing.Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in the developing cochlea periodically release ATP, which depolarizes inner hair cells (IHCs), leading to bursts of action potentials in postsynaptic spiral ganglion neurons (SGNs). To determine when purinergic signaling appears in the developing cochlea and whether it is responsible for initiating auditory neuron activity throughout the prehearing period, we examined spontaneous activity from ISCs, IHCs, and SGNs in cochleae acutely isolated from rats during the first three postnatal weeks. We found that ATP was released from ISCs within the cochlea from birth until the onset of hearing, which led to periodic inward currents, Ca(2+) transients, and morphological changes in these supporting cells. This spontaneous release of ATP also depolarized IHCs and triggered bursts of action potentials in SGNs for most of the postnatal prehearing period, beginning a few days after birth as IHCs became responsive to ATP, until the onset of hearing when ATP was no longer released from ISCs. When IHCs were not subject to purinergic excitation, SGNs exhibited little or no activity. These results suggest that supporting cells in the cochlea provide the primary excitatory stimulus responsible for initiating bursts of action potentials in auditory nerve fibers before the onset of hearing. |
Author | Tritsch, Nicolas X Bergles, Dwight E |
Author_xml | – sequence: 1 fullname: Tritsch, Nicolas X – sequence: 2 fullname: Bergles, Dwight E |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20107081$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUd9v0zAQttAQ6wb_wpQneEo527GdSAhpKgOKBpM29mw5zqUxcuIuTlvtv8ddtwl44emku-_H3X0n5GgIAxJyRmFOBePvv_24uL2-ulks57xUIodqzoDCCzJL0ypnBdAjMgOmIJeFKo7JSYy_AEABVa_I8R6roKQzsvyEW_Rh3eMwGZ9d42rjzeTCkIU2u1mH1B0wbGJ2bie3ddN95oZs6jD7bvreeGeGbBFs59G8Ji9b4yO-eayn5Pbzxc_F1_zy6stycX6ZW0FhygVYywxjtW0aaEpZYiErxgXnhqtKWNWApDXW1jDR2hKUqkXDSskQZWtaxU_Jx4PuelP32Ni0-Gi8Xo-uN-O9DsbpvyeD6_QqbDUracEVTQLvHgXGcLfBOOneRYveHy7VinNZCCb3Vmd_Wj17PL0vAT4cAHYMMY7Yauumh_clZ-c1Bb1PSz-npfdpaageJBJd_kN_cvgv8e2B2LlVt3Mj6pjC8GlNqne7HQddJD6v-G99kqiq |
CitedBy_id | crossref_primary_10_7554_eLife_72251 crossref_primary_10_1523_JNEUROSCI_0363_19_2019 crossref_primary_10_1007_s00441_015_2168_x crossref_primary_10_1111_ejn_12486 crossref_primary_10_1152_physrev_00030_2017 crossref_primary_10_1073_pnas_1211869109 crossref_primary_10_1113_JP284980 crossref_primary_10_1093_hmg_ddq402 crossref_primary_10_1007_s10162_023_00894_2 crossref_primary_10_1002_hbm_23521 crossref_primary_10_1016_j_neuron_2013_10_030 crossref_primary_10_1002_cne_23473 crossref_primary_10_1016_j_bpj_2014_11_3489 crossref_primary_10_1016_j_heares_2014_01_007 crossref_primary_10_1093_hmg_ddx386 crossref_primary_10_1016_j_neucli_2020_10_006 crossref_primary_10_1016_j_neuron_2012_09_024 crossref_primary_10_1007_s10162_015_0520_1 crossref_primary_10_1038_s41598_020_73050_y crossref_primary_10_1167_iovs_63_3_21 crossref_primary_10_1371_journal_pbio_2006994 crossref_primary_10_1002_biof_150 crossref_primary_10_3389_fncel_2019_00278 crossref_primary_10_1073_pnas_1319615111 crossref_primary_10_1002_dneu_20856 crossref_primary_10_1152_jn_00522_2014 crossref_primary_10_1038_s41467_018_06033_3 crossref_primary_10_1523_JNEUROSCI_2557_18_2018 crossref_primary_10_1016_j_heares_2013_01_017 crossref_primary_10_1371_journal_pgen_1004823 crossref_primary_10_3389_fcell_2021_719491 crossref_primary_10_1152_jn_00644_2010 crossref_primary_10_1007_s10162_012_0325_4 crossref_primary_10_1113_JP272780 crossref_primary_10_3389_fncel_2018_00407 crossref_primary_10_1152_jn_00897_2012 crossref_primary_10_1016_j_jchemneu_2020_101746 crossref_primary_10_1002_cne_22634 crossref_primary_10_1016_j_neuron_2018_07_004 crossref_primary_10_1038_nn_2604 crossref_primary_10_1523_JNEUROSCI_5098_10_2011 crossref_primary_10_1002_jnr_23107 crossref_primary_10_1085_jgp_201311019 crossref_primary_10_1016_j_bbrc_2017_08_092 crossref_primary_10_1016_j_mcn_2022_103720 crossref_primary_10_1016_j_semcdb_2012_09_004 crossref_primary_10_1523_JNEUROSCI_2300_10_2010 crossref_primary_10_1002_syn_22087 crossref_primary_10_1523_JNEUROSCI_2178_20_2020 crossref_primary_10_1523_JNEUROSCI_1187_16_2016 crossref_primary_10_1007_s11064_015_1818_4 crossref_primary_10_1016_j_neuroscience_2012_09_008 crossref_primary_10_3390_cells11152431 crossref_primary_10_1016_j_tins_2024_04_007 crossref_primary_10_1113_jphysiol_2011_226886 crossref_primary_10_1371_journal_pone_0029005 crossref_primary_10_1016_j_heares_2013_01_008 crossref_primary_10_1016_j_cophys_2020_09_011 crossref_primary_10_3389_fnmol_2017_00428 crossref_primary_10_1113_jphysiol_2010_198564 crossref_primary_10_1007_s12264_020_00586_4 crossref_primary_10_1038_s41467_021_22796_8 crossref_primary_10_1002_dneu_22242 crossref_primary_10_1523_JNEUROSCI_3369_10_2011 crossref_primary_10_1016_j_heares_2015_07_015 crossref_primary_10_3389_fnmol_2018_00264 crossref_primary_10_1113_jphysiol_2013_267914 crossref_primary_10_1186_s13041_019_0536_2 crossref_primary_10_3389_fncir_2022_866999 crossref_primary_10_1016_j_celrep_2022_111649 crossref_primary_10_3389_fncir_2022_911023 crossref_primary_10_1038_s41467_022_31580_1 crossref_primary_10_1016_j_neuroscience_2016_03_043 crossref_primary_10_1016_j_brainresbull_2019_01_029 crossref_primary_10_1002_dneu_22813 crossref_primary_10_1523_ENEURO_0303_17_2017 crossref_primary_10_1073_pnas_2209565119 crossref_primary_10_1016_j_heares_2015_06_017 crossref_primary_10_1016_j_heares_2011_04_009 crossref_primary_10_1113_JP276400 crossref_primary_10_1016_j_neubiorev_2011_02_006 crossref_primary_10_7554_eLife_52160 crossref_primary_10_1371_journal_pone_0067351 crossref_primary_10_1371_journal_pgen_1010925 crossref_primary_10_1007_s10162_016_0598_0 crossref_primary_10_3390_ijms20122979 crossref_primary_10_1016_j_jprot_2012_11_018 crossref_primary_10_1146_annurev_neuro_061010_113705 crossref_primary_10_1016_j_braindev_2015_10_008 crossref_primary_10_1016_j_neuron_2014_04_001 crossref_primary_10_1111_dgd_12739 crossref_primary_10_1016_j_brainresrev_2010_04_007 crossref_primary_10_3390_ijms19051332 crossref_primary_10_1016_j_pneurobio_2011_01_004 crossref_primary_10_1016_j_siny_2024_101556 crossref_primary_10_1007_s11302_010_9192_9 crossref_primary_10_1523_JNEUROSCI_0575_11_2011 crossref_primary_10_3389_fncel_2019_00225 crossref_primary_10_1038_s41598_021_96188_9 crossref_primary_10_1016_j_jphysparis_2011_06_001 crossref_primary_10_1523_JNEUROSCI_2541_10_2010 crossref_primary_10_1111_j_1460_9568_2011_07878_x crossref_primary_10_1042_BCJ20160668 crossref_primary_10_3389_fnmol_2017_00371 crossref_primary_10_1093_cercor_bhs103 crossref_primary_10_1016_j_neulet_2013_08_010 crossref_primary_10_1210_en_2017_03210 crossref_primary_10_1523_JNEUROSCI_1995_11_2011 crossref_primary_10_3390_cells8101266 crossref_primary_10_1371_journal_ppat_1004774 crossref_primary_10_1016_j_heares_2010_12_018 crossref_primary_10_1523_JNEUROSCI_2251_16_2016 crossref_primary_10_1016_j_cell_2015_10_070 crossref_primary_10_1016_j_cell_2018_07_008 crossref_primary_10_1007_s00441_014_2007_5 crossref_primary_10_1016_j_neuron_2015_12_016 crossref_primary_10_1007_s10162_017_0620_1 crossref_primary_10_1186_s12860_016_0095_7 crossref_primary_10_1016_j_neuroscience_2011_08_060 crossref_primary_10_1177_1073858413510044 crossref_primary_10_3389_fncel_2022_1025429 crossref_primary_10_1113_JP273272 crossref_primary_10_3389_fneur_2024_1361747 crossref_primary_10_1523_JNEUROSCI_2743_11_2011 crossref_primary_10_1007_s11302_010_9189_4 crossref_primary_10_1073_pnas_2315599121 crossref_primary_10_1016_j_heares_2021_108391 crossref_primary_10_1038_nn_2803 crossref_primary_10_1002_jnr_24754 crossref_primary_10_3389_fncir_2022_882485 crossref_primary_10_1016_j_heares_2021_108278 crossref_primary_10_1073_pnas_1408064111 crossref_primary_10_1371_journal_pone_0020756 crossref_primary_10_3389_fnmol_2022_1031989 crossref_primary_10_1073_pnas_2203935119 crossref_primary_10_4103_1673_5374_382862 crossref_primary_10_1038_s41467_024_55519_w crossref_primary_10_5607_en_2013_22_4_322 crossref_primary_10_1007_s00429_019_01979_6 crossref_primary_10_1523_JNEUROSCI_2528_10_2010 crossref_primary_10_1152_physiol_00036_2011 crossref_primary_10_1155_2014_367939 crossref_primary_10_3390_ijms25126594 crossref_primary_10_1016_j_heares_2015_12_018 crossref_primary_10_1155_2020_2908182 crossref_primary_10_1523_JNEUROSCI_3437_15_2016 crossref_primary_10_1172_jci_insight_181783 crossref_primary_10_1016_j_semcdb_2013_03_009 crossref_primary_10_1016_j_ijdevneu_2013_10_006 crossref_primary_10_1016_j_heares_2016_03_011 crossref_primary_10_1371_journal_pbio_3002160 crossref_primary_10_1002_wdev_324 crossref_primary_10_1016_j_neuron_2021_06_026 crossref_primary_10_1152_jn_00948_2011 crossref_primary_10_1101_cshperspect_a033530 crossref_primary_10_1371_journal_pone_0167850 crossref_primary_10_3389_fnmol_2018_00183 crossref_primary_10_1093_cercor_bhac324 |
Cites_doi | 10.1016/j.heares.2007.05.006 10.1016/j.neuron.2007.11.032 10.1016/0378-5955(86)90104-8 10.1152/jn.1990.63.5.1068 10.1113/jphysiol.2005.087460 10.1007/978-1-4612-2186-9_4 10.1146/annurev.neuro.31.060407.125533 10.1016/S0092-8674(00)00013-1 10.1126/science.288.5475.2366 10.3109/00016487709123963 10.1038/nn.2332 10.1016/S0378-5955(03)00054-6 10.1038/28401 10.1523/JNEUROSCI.4278-05.2006 10.1002/cne.10916 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G 10.1016/0378-5955(91)90147-2 10.1113/jphysiol.2004.074740 10.1152/jn.00472.2007 10.1038/nature03132 10.1073/pnas.2530348100 10.1080/000164801300006209 10.1016/S0378-5955(98)00019-7 10.1002/(SICI)1097-4695(19990215)38:3<338::AID-NEU4>3.0.CO;2-1 10.1523/JNEUROSCI.21-20-08129.2001 10.1016/0378-5955(95)00152-3 10.1016/S0006-8993(01)02300-9 10.1111/j.1469-7793.2001.0693h.x 10.1146/annurev.physiol.62.1.493 10.1523/JNEUROSCI.1377-09.2009 10.1113/jphysiol.2002.034801 10.1016/B978-0-12-594450-2.50012-5 10.1523/JNEUROSCI.14-03-01486.1994 10.1016/0378-5955(81)90038-1 10.1016/j.neuron.2007.10.010 10.1523/JNEUROSCI.23-34-10832.2003 10.1523/JNEUROSCI.3965-06.2007 10.1038/nn796 10.1152/jn.00844.2007 10.1387/ijdb.072388mk 10.1073/pnas.0506481102 10.1523/JNEUROSCI.21-13-04593.2001 10.1113/jphysiol.2007.131995 10.1126/science.2035024 10.1523/JNEUROSCI.4116-06.2007 10.1007/s004240051134 10.1038/nature06233 10.1016/j.ceca.2006.05.005 10.1016/j.cub.2004.03.002 10.1242/dev.002279 |
ContentType | Journal Article |
Copyright | Copyright © 2010 the authors 0270-6474/10/301539-12$15.00/0 2010 |
Copyright_xml | – notice: Copyright © 2010 the authors 0270-6474/10/301539-12$15.00/0 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.3875-09.2010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 1550 |
ExternalDocumentID | PMC2814371 20107081 10_1523_JNEUROSCI_3875_09_2010 www30_4_1539 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: DC008860 – fundername: NIDCD NIH HHS grantid: R21 DC009464 – fundername: NINDS NIH HHS grantid: P30 NS050274 – fundername: PHS HHS grantid: PAR-02-059 – fundername: NIDCD NIH HHS grantid: DC009464 – fundername: NIDCD NIH HHS grantid: R01 DC008860 |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RPM TFN WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c510t-50cc2a22bcdd0d868e46923533a3795c7d061bebca25fc8077b5d2862ee6faf73 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 17:59:33 EDT 2025 Thu Jul 10 23:05:05 EDT 2025 Sat May 31 02:10:04 EDT 2025 Tue Jul 01 02:59:10 EDT 2025 Thu Apr 24 23:03:31 EDT 2025 Tue Nov 10 19:48:41 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c510t-50cc2a22bcdd0d868e46923533a3795c7d061bebca25fc8077b5d2862ee6faf73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/30/4/1539.full.pdf |
PMID | 20107081 |
PQID | 733645267 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2814371 proquest_miscellaneous_733645267 pubmed_primary_20107081 crossref_citationtrail_10_1523_JNEUROSCI_3875_09_2010 crossref_primary_10_1523_JNEUROSCI_3875_09_2010 highwire_smallpub1_www30_4_1539 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100127 2010-01-27 2010-Jan-27 |
PublicationDateYYYYMMDD | 2010-01-27 |
PublicationDate_xml | – month: 01 year: 2010 text: 20100127 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2010 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | Jones (2023041303421452000_30.4.1539.20) 2001; 21 2023041303421452000_30.4.1539.28 Rodriguez-Contreras (2023041303421452000_30.4.1539.48) 2009; 32 2023041303421452000_30.4.1539.29 2023041303421452000_30.4.1539.26 2023041303421452000_30.4.1539.27 2023041303421452000_30.4.1539.24 2023041303421452000_30.4.1539.25 2023041303421452000_30.4.1539.4 2023041303421452000_30.4.1539.5 2023041303421452000_30.4.1539.1 2023041303421452000_30.4.1539.22 2023041303421452000_30.4.1539.23 Brandt (2023041303421452000_30.4.1539.3) 2003; 23 2023041303421452000_30.4.1539.21 2023041303421452000_30.4.1539.8 2023041303421452000_30.4.1539.9 2023041303421452000_30.4.1539.6 2023041303421452000_30.4.1539.7 2023041303421452000_30.4.1539.19 2023041303421452000_30.4.1539.17 2023041303421452000_30.4.1539.18 2023041303421452000_30.4.1539.15 2023041303421452000_30.4.1539.16 2023041303421452000_30.4.1539.13 2023041303421452000_30.4.1539.14 2023041303421452000_30.4.1539.11 2023041303421452000_30.4.1539.55 2023041303421452000_30.4.1539.12 Wada (2023041303421452000_30.4.1539.53) 1923; 10 2023041303421452000_30.4.1539.10 2023041303421452000_30.4.1539.54 2023041303421452000_30.4.1539.51 2023041303421452000_30.4.1539.52 Beutner (2023041303421452000_30.4.1539.2) 2001; 21 2023041303421452000_30.4.1539.49 Lippe (2023041303421452000_30.4.1539.34) 1994; 14 2023041303421452000_30.4.1539.46 2023041303421452000_30.4.1539.47 Sobkowicz (2023041303421452000_30.4.1539.50) 1993; 502 2023041303421452000_30.4.1539.44 Muñoz (2023041303421452000_30.4.1539.42) 2001; 121 2023041303421452000_30.4.1539.45 2023041303421452000_30.4.1539.40 2023041303421452000_30.4.1539.41 Nakagawa (2023041303421452000_30.4.1539.43) 1990; 63 2023041303421452000_30.4.1539.39 2023041303421452000_30.4.1539.37 2023041303421452000_30.4.1539.38 2023041303421452000_30.4.1539.35 2023041303421452000_30.4.1539.36 2023041303421452000_30.4.1539.33 2023041303421452000_30.4.1539.31 2023041303421452000_30.4.1539.32 2023041303421452000_30.4.1539.30 |
References_xml | – ident: 2023041303421452000_30.4.1539.37 doi: 10.1016/j.heares.2007.05.006 – ident: 2023041303421452000_30.4.1539.49 doi: 10.1016/j.neuron.2007.11.032 – ident: 2023041303421452000_30.4.1539.1 doi: 10.1016/0378-5955(86)90104-8 – volume: 63 start-page: 1068 year: 1990 ident: 2023041303421452000_30.4.1539.43 article-title: ATP-induced current in isolated outer hair cells of guinea pig cochlea publication-title: J Neurophysiol doi: 10.1152/jn.1990.63.5.1068 – ident: 2023041303421452000_30.4.1539.14 doi: 10.1113/jphysiol.2005.087460 – ident: 2023041303421452000_30.4.1539.47 doi: 10.1007/978-1-4612-2186-9_4 – ident: 2023041303421452000_30.4.1539.17 doi: 10.1146/annurev.neuro.31.060407.125533 – ident: 2023041303421452000_30.4.1539.46 doi: 10.1016/S0092-8674(00)00013-1 – ident: 2023041303421452000_30.4.1539.10 doi: 10.1126/science.288.5475.2366 – ident: 2023041303421452000_30.4.1539.16 doi: 10.3109/00016487709123963 – ident: 2023041303421452000_30.4.1539.23 doi: 10.1038/nn.2332 – ident: 2023041303421452000_30.4.1539.12 doi: 10.1016/S0378-5955(03)00054-6 – volume: 32 start-page: 373 year: 2009 ident: 2023041303421452000_30.4.1539.48 article-title: Synaptic inputs drive bursts of action potentials in the rat auditory brainstem before the onset of hearing publication-title: Assoc Res Otolaryngol Abstr – volume: 502 start-page: 3 year: 1993 ident: 2023041303421452000_30.4.1539.50 article-title: Tissue culture of the organ of Corti publication-title: Acta Otolaryngol Suppl – volume: 10 start-page: 1 year: 1923 ident: 2023041303421452000_30.4.1539.53 article-title: Anatomical and physiological studies on the growth of the inner ear of the albino rat publication-title: Am Anat Mem – ident: 2023041303421452000_30.4.1539.30 doi: 10.1038/28401 – ident: 2023041303421452000_30.4.1539.18 doi: 10.1523/JNEUROSCI.4278-05.2006 – ident: 2023041303421452000_30.4.1539.8 doi: 10.1002/cne.10916 – ident: 2023041303421452000_30.4.1539.39 doi: 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G – ident: 2023041303421452000_30.4.1539.40 doi: 10.1016/0378-5955(91)90147-2 – ident: 2023041303421452000_30.4.1539.19 doi: 10.1113/jphysiol.2004.074740 – ident: 2023041303421452000_30.4.1539.21 doi: 10.1152/jn.00472.2007 – ident: 2023041303421452000_30.4.1539.25 doi: 10.1038/nature03132 – ident: 2023041303421452000_30.4.1539.13 doi: 10.1073/pnas.2530348100 – volume: 121 start-page: 10 year: 2001 ident: 2023041303421452000_30.4.1539.42 article-title: Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia publication-title: Acta Otolaryngol doi: 10.1080/000164801300006209 – ident: 2023041303421452000_30.4.1539.5 doi: 10.1016/S0378-5955(98)00019-7 – ident: 2023041303421452000_30.4.1539.27 doi: 10.1002/(SICI)1097-4695(19990215)38:3<338::AID-NEU4>3.0.CO;2-1 – volume: 21 start-page: 8129 year: 2001 ident: 2023041303421452000_30.4.1539.20 article-title: Primordial rhythmic bursting in embryonic cochlear ganglion cells publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-20-08129.2001 – ident: 2023041303421452000_30.4.1539.41 doi: 10.1016/0378-5955(95)00152-3 – ident: 2023041303421452000_30.4.1539.22 doi: 10.1016/S0006-8993(01)02300-9 – ident: 2023041303421452000_30.4.1539.31 doi: 10.1111/j.1469-7793.2001.0693h.x – ident: 2023041303421452000_30.4.1539.33 – ident: 2023041303421452000_30.4.1539.26 doi: 10.1146/annurev.physiol.62.1.493 – ident: 2023041303421452000_30.4.1539.51 doi: 10.1523/JNEUROSCI.1377-09.2009 – ident: 2023041303421452000_30.4.1539.36 doi: 10.1113/jphysiol.2002.034801 – ident: 2023041303421452000_30.4.1539.6 doi: 10.1016/B978-0-12-594450-2.50012-5 – volume: 14 start-page: 1486 year: 1994 ident: 2023041303421452000_30.4.1539.34 article-title: Rhythmic spontaneous activity in the developing avian auditory system publication-title: J Neurosci doi: 10.1523/JNEUROSCI.14-03-01486.1994 – ident: 2023041303421452000_30.4.1539.29 doi: 10.1016/0378-5955(81)90038-1 – ident: 2023041303421452000_30.4.1539.44 doi: 10.1016/j.neuron.2007.10.010 – volume: 23 start-page: 10832 year: 2003 ident: 2023041303421452000_30.4.1539.3 article-title: CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-34-10832.2003 – ident: 2023041303421452000_30.4.1539.4 doi: 10.1523/JNEUROSCI.3965-06.2007 – ident: 2023041303421452000_30.4.1539.11 doi: 10.1038/nn796 – ident: 2023041303421452000_30.4.1539.28 doi: 10.1152/jn.00844.2007 – ident: 2023041303421452000_30.4.1539.54 – ident: 2023041303421452000_30.4.1539.24 doi: 10.1387/ijdb.072388mk – ident: 2023041303421452000_30.4.1539.55 doi: 10.1073/pnas.0506481102 – volume: 21 start-page: 4593 year: 2001 ident: 2023041303421452000_30.4.1539.2 article-title: The presynaptic function of mouse cochlear inner hair cells during development of hearing publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-13-04593.2001 – ident: 2023041303421452000_30.4.1539.32 doi: 10.1113/jphysiol.2007.131995 – ident: 2023041303421452000_30.4.1539.38 doi: 10.1126/science.2035024 – ident: 2023041303421452000_30.4.1539.7 doi: 10.1523/JNEUROSCI.4116-06.2007 – ident: 2023041303421452000_30.4.1539.35 doi: 10.1007/s004240051134 – ident: 2023041303421452000_30.4.1539.52 doi: 10.1038/nature06233 – ident: 2023041303421452000_30.4.1539.45 doi: 10.1016/j.ceca.2006.05.005 – ident: 2023041303421452000_30.4.1539.9 doi: 10.1016/j.cub.2004.03.002 – ident: 2023041303421452000_30.4.1539.15 doi: 10.1242/dev.002279 |
SSID | ssj0007017 |
Score | 2.4099917 |
Snippet | Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1539 |
SubjectTerms | Action Potentials - physiology Adenosine Triphosphate - metabolism Animals Animals, Newborn Cell Differentiation - physiology Cochlea - cytology Cochlea - growth & development Cochlea - metabolism Hair Cells, Auditory - cytology Hair Cells, Auditory - metabolism Hair Cells, Auditory, Inner - cytology Hair Cells, Auditory, Inner - metabolism Hearing - physiology Labyrinth Supporting Cells - cytology Labyrinth Supporting Cells - metabolism Organogenesis - physiology Rats Rats, Sprague-Dawley Sensory Receptor Cells - cytology Sensory Receptor Cells - metabolism Spiral Ganglion - cytology Spiral Ganglion - growth & development Spiral Ganglion - metabolism |
Title | Developmental Regulation of Spontaneous Activity in the Mammalian Cochlea |
URI | http://www.jneurosci.org/cgi/content/abstract/30/4/1539 https://www.ncbi.nlm.nih.gov/pubmed/20107081 https://www.proquest.com/docview/733645267 https://pubmed.ncbi.nlm.nih.gov/PMC2814371 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHHJuPkB8TKlc524Th6rAtqGVgnRSX2zHMfZKrXJ1AZV8Os5vuTSqtKAl6hyG7s939eTc-xzQegjlUwSlZJQga1qUnKSMGGKhUPJdZqCBUBtbM7VdHR-HV_O2bxLIbDZJXU2UL8P5pX8D6owBriaLNl_QLadFAbgNeALV0AYrn-FcS_ix9bIv_G9uGwmyl0Fo6U2Ia5j5XtE-KDGK7lauf2NSaVul1r2TdQuWcyaqb2Cly0HZutFvXE9pCyT5OZ03vr1en3j-2h_3hrP3-c6-J0FG6AWukR9t7NYqdPp_hpOM1EOPmfs2usMtNec1B7VDPuq1R-5LPr7BlZPgp5NDypwZgtJXE5NHOOPycUgAn8qJKmNweseWc0x_d6TrI0v3G63ERGxMMs8RI8ouBBGB3773lWS58R2Y25_is8eh_XPDq--a7g0xaQPOSb78bU9g2X2FD3xEOKxo80z9ECXz9HxuJR1tfqFP2Eb-2sPVY7RxQ6TcMckXBW4xyTcMAkvSgxMwi2TsGfSC3T99ctsch76JhuhAnVch4woRSWlmcpzkiejRMcjMPrBC5ART5niOVh8mQmZoybcj3CesZyCH6z1qJAFj16io7Iq9WuEWaELqVWhdUZhEp4STmlR5DIqeA4iDhBrJCiUr0BvGqEshfFEQfKilbwwkhckFUbyATpr77tzNVjuveNDA5DYgBiWgMdQ9FkRINzgJkChmlMyJ0hh6oPGjI54gF45GNtFzdQcbOgA8R2A2w-YWu2775SLW1uznSbgmPDhyb1f7A163P0X36Kjev1TvwO7t87eWwL_ARcXrtk |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developmental+Regulation+of+Spontaneous+Activity+in+the+Mammalian+Cochlea&rft.jtitle=The+Journal+of+neuroscience&rft.au=Tritsch%2C+Nicolas+X&rft.au=Bergles%2C+Dwight+E&rft.date=2010-01-27&rft.pub=Soc+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=30&rft.issue=4&rft.spage=1539&rft_id=info:doi/10.1523%2FJNEUROSCI.3875-09.2010&rft.externalDBID=n%2Fa&rft.externalDocID=www30_4_1539 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |