Developmental Regulation of Spontaneous Activity in the Mammalian Cochlea

Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 30; no. 4; pp. 1539 - 1550
Main Authors Tritsch, Nicolas X, Bergles, Dwight E
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 27.01.2010
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in the developing cochlea periodically release ATP, which depolarizes inner hair cells (IHCs), leading to bursts of action potentials in postsynaptic spiral ganglion neurons (SGNs). To determine when purinergic signaling appears in the developing cochlea and whether it is responsible for initiating auditory neuron activity throughout the prehearing period, we examined spontaneous activity from ISCs, IHCs, and SGNs in cochleae acutely isolated from rats during the first three postnatal weeks. We found that ATP was released from ISCs within the cochlea from birth until the onset of hearing, which led to periodic inward currents, Ca 2+ transients, and morphological changes in these supporting cells. This spontaneous release of ATP also depolarized IHCs and triggered bursts of action potentials in SGNs for most of the postnatal prehearing period, beginning a few days after birth as IHCs became responsive to ATP, until the onset of hearing when ATP was no longer released from ISCs. When IHCs were not subject to purinergic excitation, SGNs exhibited little or no activity. These results suggest that supporting cells in the cochlea provide the primary excitatory stimulus responsible for initiating bursts of action potentials in auditory nerve fibers before the onset of hearing.
AbstractList Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in the developing cochlea periodically release ATP, which depolarizes inner hair cells (IHCs), leading to bursts of action potentials in postsynaptic spiral ganglion neurons (SGNs). To determine when purinergic signaling appears in the developing cochlea and whether it is responsible for initiating auditory neuron activity throughout the prehearing period, we examined spontaneous activity from ISCs, IHCs, and SGNs in cochleae acutely isolated from rats during the first three postnatal weeks. We found that ATP was released from ISCs within the cochlea from birth until the onset of hearing, which led to periodic inward currents, Ca 2+ transients, and morphological changes in these supporting cells. This spontaneous release of ATP also depolarized IHCs and triggered bursts of action potentials in SGNs for most of the postnatal prehearing period, beginning a few days after birth as IHCs became responsive to ATP, until the onset of hearing when ATP was no longer released from ISCs. When IHCs were not subject to purinergic excitation, SGNs exhibited little or no activity. These results suggest that supporting cells in the cochlea provide the primary excitatory stimulus responsible for initiating bursts of action potentials in auditory nerve fibers before the onset of hearing.
Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in the developing cochlea periodically release ATP, which depolarizes inner hair cells (IHCs), leading to bursts of action potentials in postsynaptic spiral ganglion neurons (SGNs). To determine when purinergic signaling appears in the developing cochlea and whether it is responsible for initiating auditory neuron activity throughout the prehearing period, we examined spontaneous activity from ISCs, IHCs, and SGNs in cochleae acutely isolated from rats during the first three postnatal weeks. We found that ATP was released from ISCs within the cochlea from birth until the onset of hearing, which led to periodic inward currents, Ca(2+) transients, and morphological changes in these supporting cells. This spontaneous release of ATP also depolarized IHCs and triggered bursts of action potentials in SGNs for most of the postnatal prehearing period, beginning a few days after birth as IHCs became responsive to ATP, until the onset of hearing when ATP was no longer released from ISCs. When IHCs were not subject to purinergic excitation, SGNs exhibited little or no activity. These results suggest that supporting cells in the cochlea provide the primary excitatory stimulus responsible for initiating bursts of action potentials in auditory nerve fibers before the onset of hearing.
Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in the developing cochlea periodically release ATP, which depolarizes inner hair cells (IHCs), leading to bursts of action potentials in postsynaptic spiral ganglion neurons (SGNs). To determine when purinergic signaling appears in the developing cochlea and whether it is responsible for initiating auditory neuron activity throughout the prehearing period, we examined spontaneous activity from ISCs, IHCs, and SGNs in cochleae acutely isolated from rats during the first three postnatal weeks. We found that ATP was released from ISCs within the cochlea from birth until the onset of hearing, which led to periodic inward currents, Ca(2+) transients, and morphological changes in these supporting cells. This spontaneous release of ATP also depolarized IHCs and triggered bursts of action potentials in SGNs for most of the postnatal prehearing period, beginning a few days after birth as IHCs became responsive to ATP, until the onset of hearing when ATP was no longer released from ISCs. When IHCs were not subject to purinergic excitation, SGNs exhibited little or no activity. These results suggest that supporting cells in the cochlea provide the primary excitatory stimulus responsible for initiating bursts of action potentials in auditory nerve fibers before the onset of hearing.Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in the developing cochlea periodically release ATP, which depolarizes inner hair cells (IHCs), leading to bursts of action potentials in postsynaptic spiral ganglion neurons (SGNs). To determine when purinergic signaling appears in the developing cochlea and whether it is responsible for initiating auditory neuron activity throughout the prehearing period, we examined spontaneous activity from ISCs, IHCs, and SGNs in cochleae acutely isolated from rats during the first three postnatal weeks. We found that ATP was released from ISCs within the cochlea from birth until the onset of hearing, which led to periodic inward currents, Ca(2+) transients, and morphological changes in these supporting cells. This spontaneous release of ATP also depolarized IHCs and triggered bursts of action potentials in SGNs for most of the postnatal prehearing period, beginning a few days after birth as IHCs became responsive to ATP, until the onset of hearing when ATP was no longer released from ISCs. When IHCs were not subject to purinergic excitation, SGNs exhibited little or no activity. These results suggest that supporting cells in the cochlea provide the primary excitatory stimulus responsible for initiating bursts of action potentials in auditory nerve fibers before the onset of hearing.
Author Tritsch, Nicolas X
Bergles, Dwight E
Author_xml – sequence: 1
  fullname: Tritsch, Nicolas X
– sequence: 2
  fullname: Bergles, Dwight E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20107081$$D View this record in MEDLINE/PubMed
BookMark eNqFUd9v0zAQttAQ6wb_wpQneEo527GdSAhpKgOKBpM29mw5zqUxcuIuTlvtv8ddtwl44emku-_H3X0n5GgIAxJyRmFOBePvv_24uL2-ulks57xUIodqzoDCCzJL0ypnBdAjMgOmIJeFKo7JSYy_AEABVa_I8R6roKQzsvyEW_Rh3eMwGZ9d42rjzeTCkIU2u1mH1B0wbGJ2bie3ddN95oZs6jD7bvreeGeGbBFs59G8Ji9b4yO-eayn5Pbzxc_F1_zy6stycX6ZW0FhygVYywxjtW0aaEpZYiErxgXnhqtKWNWApDXW1jDR2hKUqkXDSskQZWtaxU_Jx4PuelP32Ni0-Gi8Xo-uN-O9DsbpvyeD6_QqbDUracEVTQLvHgXGcLfBOOneRYveHy7VinNZCCb3Vmd_Wj17PL0vAT4cAHYMMY7Yauumh_clZ-c1Bb1PSz-npfdpaageJBJd_kN_cvgv8e2B2LlVt3Mj6pjC8GlNqne7HQddJD6v-G99kqiq
CitedBy_id crossref_primary_10_7554_eLife_72251
crossref_primary_10_1523_JNEUROSCI_0363_19_2019
crossref_primary_10_1007_s00441_015_2168_x
crossref_primary_10_1111_ejn_12486
crossref_primary_10_1152_physrev_00030_2017
crossref_primary_10_1073_pnas_1211869109
crossref_primary_10_1113_JP284980
crossref_primary_10_1093_hmg_ddq402
crossref_primary_10_1007_s10162_023_00894_2
crossref_primary_10_1002_hbm_23521
crossref_primary_10_1016_j_neuron_2013_10_030
crossref_primary_10_1002_cne_23473
crossref_primary_10_1016_j_bpj_2014_11_3489
crossref_primary_10_1016_j_heares_2014_01_007
crossref_primary_10_1093_hmg_ddx386
crossref_primary_10_1016_j_neucli_2020_10_006
crossref_primary_10_1016_j_neuron_2012_09_024
crossref_primary_10_1007_s10162_015_0520_1
crossref_primary_10_1038_s41598_020_73050_y
crossref_primary_10_1167_iovs_63_3_21
crossref_primary_10_1371_journal_pbio_2006994
crossref_primary_10_1002_biof_150
crossref_primary_10_3389_fncel_2019_00278
crossref_primary_10_1073_pnas_1319615111
crossref_primary_10_1002_dneu_20856
crossref_primary_10_1152_jn_00522_2014
crossref_primary_10_1038_s41467_018_06033_3
crossref_primary_10_1523_JNEUROSCI_2557_18_2018
crossref_primary_10_1016_j_heares_2013_01_017
crossref_primary_10_1371_journal_pgen_1004823
crossref_primary_10_3389_fcell_2021_719491
crossref_primary_10_1152_jn_00644_2010
crossref_primary_10_1007_s10162_012_0325_4
crossref_primary_10_1113_JP272780
crossref_primary_10_3389_fncel_2018_00407
crossref_primary_10_1152_jn_00897_2012
crossref_primary_10_1016_j_jchemneu_2020_101746
crossref_primary_10_1002_cne_22634
crossref_primary_10_1016_j_neuron_2018_07_004
crossref_primary_10_1038_nn_2604
crossref_primary_10_1523_JNEUROSCI_5098_10_2011
crossref_primary_10_1002_jnr_23107
crossref_primary_10_1085_jgp_201311019
crossref_primary_10_1016_j_bbrc_2017_08_092
crossref_primary_10_1016_j_mcn_2022_103720
crossref_primary_10_1016_j_semcdb_2012_09_004
crossref_primary_10_1523_JNEUROSCI_2300_10_2010
crossref_primary_10_1002_syn_22087
crossref_primary_10_1523_JNEUROSCI_2178_20_2020
crossref_primary_10_1523_JNEUROSCI_1187_16_2016
crossref_primary_10_1007_s11064_015_1818_4
crossref_primary_10_1016_j_neuroscience_2012_09_008
crossref_primary_10_3390_cells11152431
crossref_primary_10_1016_j_tins_2024_04_007
crossref_primary_10_1113_jphysiol_2011_226886
crossref_primary_10_1371_journal_pone_0029005
crossref_primary_10_1016_j_heares_2013_01_008
crossref_primary_10_1016_j_cophys_2020_09_011
crossref_primary_10_3389_fnmol_2017_00428
crossref_primary_10_1113_jphysiol_2010_198564
crossref_primary_10_1007_s12264_020_00586_4
crossref_primary_10_1038_s41467_021_22796_8
crossref_primary_10_1002_dneu_22242
crossref_primary_10_1523_JNEUROSCI_3369_10_2011
crossref_primary_10_1016_j_heares_2015_07_015
crossref_primary_10_3389_fnmol_2018_00264
crossref_primary_10_1113_jphysiol_2013_267914
crossref_primary_10_1186_s13041_019_0536_2
crossref_primary_10_3389_fncir_2022_866999
crossref_primary_10_1016_j_celrep_2022_111649
crossref_primary_10_3389_fncir_2022_911023
crossref_primary_10_1038_s41467_022_31580_1
crossref_primary_10_1016_j_neuroscience_2016_03_043
crossref_primary_10_1016_j_brainresbull_2019_01_029
crossref_primary_10_1002_dneu_22813
crossref_primary_10_1523_ENEURO_0303_17_2017
crossref_primary_10_1073_pnas_2209565119
crossref_primary_10_1016_j_heares_2015_06_017
crossref_primary_10_1016_j_heares_2011_04_009
crossref_primary_10_1113_JP276400
crossref_primary_10_1016_j_neubiorev_2011_02_006
crossref_primary_10_7554_eLife_52160
crossref_primary_10_1371_journal_pone_0067351
crossref_primary_10_1371_journal_pgen_1010925
crossref_primary_10_1007_s10162_016_0598_0
crossref_primary_10_3390_ijms20122979
crossref_primary_10_1016_j_jprot_2012_11_018
crossref_primary_10_1146_annurev_neuro_061010_113705
crossref_primary_10_1016_j_braindev_2015_10_008
crossref_primary_10_1016_j_neuron_2014_04_001
crossref_primary_10_1111_dgd_12739
crossref_primary_10_1016_j_brainresrev_2010_04_007
crossref_primary_10_3390_ijms19051332
crossref_primary_10_1016_j_pneurobio_2011_01_004
crossref_primary_10_1016_j_siny_2024_101556
crossref_primary_10_1007_s11302_010_9192_9
crossref_primary_10_1523_JNEUROSCI_0575_11_2011
crossref_primary_10_3389_fncel_2019_00225
crossref_primary_10_1038_s41598_021_96188_9
crossref_primary_10_1016_j_jphysparis_2011_06_001
crossref_primary_10_1523_JNEUROSCI_2541_10_2010
crossref_primary_10_1111_j_1460_9568_2011_07878_x
crossref_primary_10_1042_BCJ20160668
crossref_primary_10_3389_fnmol_2017_00371
crossref_primary_10_1093_cercor_bhs103
crossref_primary_10_1016_j_neulet_2013_08_010
crossref_primary_10_1210_en_2017_03210
crossref_primary_10_1523_JNEUROSCI_1995_11_2011
crossref_primary_10_3390_cells8101266
crossref_primary_10_1371_journal_ppat_1004774
crossref_primary_10_1016_j_heares_2010_12_018
crossref_primary_10_1523_JNEUROSCI_2251_16_2016
crossref_primary_10_1016_j_cell_2015_10_070
crossref_primary_10_1016_j_cell_2018_07_008
crossref_primary_10_1007_s00441_014_2007_5
crossref_primary_10_1016_j_neuron_2015_12_016
crossref_primary_10_1007_s10162_017_0620_1
crossref_primary_10_1186_s12860_016_0095_7
crossref_primary_10_1016_j_neuroscience_2011_08_060
crossref_primary_10_1177_1073858413510044
crossref_primary_10_3389_fncel_2022_1025429
crossref_primary_10_1113_JP273272
crossref_primary_10_3389_fneur_2024_1361747
crossref_primary_10_1523_JNEUROSCI_2743_11_2011
crossref_primary_10_1007_s11302_010_9189_4
crossref_primary_10_1073_pnas_2315599121
crossref_primary_10_1016_j_heares_2021_108391
crossref_primary_10_1038_nn_2803
crossref_primary_10_1002_jnr_24754
crossref_primary_10_3389_fncir_2022_882485
crossref_primary_10_1016_j_heares_2021_108278
crossref_primary_10_1073_pnas_1408064111
crossref_primary_10_1371_journal_pone_0020756
crossref_primary_10_3389_fnmol_2022_1031989
crossref_primary_10_1073_pnas_2203935119
crossref_primary_10_4103_1673_5374_382862
crossref_primary_10_1038_s41467_024_55519_w
crossref_primary_10_5607_en_2013_22_4_322
crossref_primary_10_1007_s00429_019_01979_6
crossref_primary_10_1523_JNEUROSCI_2528_10_2010
crossref_primary_10_1152_physiol_00036_2011
crossref_primary_10_1155_2014_367939
crossref_primary_10_3390_ijms25126594
crossref_primary_10_1016_j_heares_2015_12_018
crossref_primary_10_1155_2020_2908182
crossref_primary_10_1523_JNEUROSCI_3437_15_2016
crossref_primary_10_1172_jci_insight_181783
crossref_primary_10_1016_j_semcdb_2013_03_009
crossref_primary_10_1016_j_ijdevneu_2013_10_006
crossref_primary_10_1016_j_heares_2016_03_011
crossref_primary_10_1371_journal_pbio_3002160
crossref_primary_10_1002_wdev_324
crossref_primary_10_1016_j_neuron_2021_06_026
crossref_primary_10_1152_jn_00948_2011
crossref_primary_10_1101_cshperspect_a033530
crossref_primary_10_1371_journal_pone_0167850
crossref_primary_10_3389_fnmol_2018_00183
crossref_primary_10_1093_cercor_bhac324
Cites_doi 10.1016/j.heares.2007.05.006
10.1016/j.neuron.2007.11.032
10.1016/0378-5955(86)90104-8
10.1152/jn.1990.63.5.1068
10.1113/jphysiol.2005.087460
10.1007/978-1-4612-2186-9_4
10.1146/annurev.neuro.31.060407.125533
10.1016/S0092-8674(00)00013-1
10.1126/science.288.5475.2366
10.3109/00016487709123963
10.1038/nn.2332
10.1016/S0378-5955(03)00054-6
10.1038/28401
10.1523/JNEUROSCI.4278-05.2006
10.1002/cne.10916
10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G
10.1016/0378-5955(91)90147-2
10.1113/jphysiol.2004.074740
10.1152/jn.00472.2007
10.1038/nature03132
10.1073/pnas.2530348100
10.1080/000164801300006209
10.1016/S0378-5955(98)00019-7
10.1002/(SICI)1097-4695(19990215)38:3<338::AID-NEU4>3.0.CO;2-1
10.1523/JNEUROSCI.21-20-08129.2001
10.1016/0378-5955(95)00152-3
10.1016/S0006-8993(01)02300-9
10.1111/j.1469-7793.2001.0693h.x
10.1146/annurev.physiol.62.1.493
10.1523/JNEUROSCI.1377-09.2009
10.1113/jphysiol.2002.034801
10.1016/B978-0-12-594450-2.50012-5
10.1523/JNEUROSCI.14-03-01486.1994
10.1016/0378-5955(81)90038-1
10.1016/j.neuron.2007.10.010
10.1523/JNEUROSCI.23-34-10832.2003
10.1523/JNEUROSCI.3965-06.2007
10.1038/nn796
10.1152/jn.00844.2007
10.1387/ijdb.072388mk
10.1073/pnas.0506481102
10.1523/JNEUROSCI.21-13-04593.2001
10.1113/jphysiol.2007.131995
10.1126/science.2035024
10.1523/JNEUROSCI.4116-06.2007
10.1007/s004240051134
10.1038/nature06233
10.1016/j.ceca.2006.05.005
10.1016/j.cub.2004.03.002
10.1242/dev.002279
ContentType Journal Article
Copyright Copyright © 2010 the authors 0270-6474/10/301539-12$15.00/0 2010
Copyright_xml – notice: Copyright © 2010 the authors 0270-6474/10/301539-12$15.00/0 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.3875-09.2010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 1550
ExternalDocumentID PMC2814371
20107081
10_1523_JNEUROSCI_3875_09_2010
www30_4_1539
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: DC008860
– fundername: NIDCD NIH HHS
  grantid: R21 DC009464
– fundername: NINDS NIH HHS
  grantid: P30 NS050274
– fundername: PHS HHS
  grantid: PAR-02-059
– fundername: NIDCD NIH HHS
  grantid: DC009464
– fundername: NIDCD NIH HHS
  grantid: R01 DC008860
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c510t-50cc2a22bcdd0d868e46923533a3795c7d061bebca25fc8077b5d2862ee6faf73
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 17:59:33 EDT 2025
Thu Jul 10 23:05:05 EDT 2025
Sat May 31 02:10:04 EDT 2025
Tue Jul 01 02:59:10 EDT 2025
Thu Apr 24 23:03:31 EDT 2025
Tue Nov 10 19:48:41 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c510t-50cc2a22bcdd0d868e46923533a3795c7d061bebca25fc8077b5d2862ee6faf73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jneurosci.org/content/jneuro/30/4/1539.full.pdf
PMID 20107081
PQID 733645267
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2814371
proquest_miscellaneous_733645267
pubmed_primary_20107081
crossref_citationtrail_10_1523_JNEUROSCI_3875_09_2010
crossref_primary_10_1523_JNEUROSCI_3875_09_2010
highwire_smallpub1_www30_4_1539
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100127
2010-01-27
2010-Jan-27
PublicationDateYYYYMMDD 2010-01-27
PublicationDate_xml – month: 01
  year: 2010
  text: 20100127
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2010
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References Jones (2023041303421452000_30.4.1539.20) 2001; 21
2023041303421452000_30.4.1539.28
Rodriguez-Contreras (2023041303421452000_30.4.1539.48) 2009; 32
2023041303421452000_30.4.1539.29
2023041303421452000_30.4.1539.26
2023041303421452000_30.4.1539.27
2023041303421452000_30.4.1539.24
2023041303421452000_30.4.1539.25
2023041303421452000_30.4.1539.4
2023041303421452000_30.4.1539.5
2023041303421452000_30.4.1539.1
2023041303421452000_30.4.1539.22
2023041303421452000_30.4.1539.23
Brandt (2023041303421452000_30.4.1539.3) 2003; 23
2023041303421452000_30.4.1539.21
2023041303421452000_30.4.1539.8
2023041303421452000_30.4.1539.9
2023041303421452000_30.4.1539.6
2023041303421452000_30.4.1539.7
2023041303421452000_30.4.1539.19
2023041303421452000_30.4.1539.17
2023041303421452000_30.4.1539.18
2023041303421452000_30.4.1539.15
2023041303421452000_30.4.1539.16
2023041303421452000_30.4.1539.13
2023041303421452000_30.4.1539.14
2023041303421452000_30.4.1539.11
2023041303421452000_30.4.1539.55
2023041303421452000_30.4.1539.12
Wada (2023041303421452000_30.4.1539.53) 1923; 10
2023041303421452000_30.4.1539.10
2023041303421452000_30.4.1539.54
2023041303421452000_30.4.1539.51
2023041303421452000_30.4.1539.52
Beutner (2023041303421452000_30.4.1539.2) 2001; 21
2023041303421452000_30.4.1539.49
Lippe (2023041303421452000_30.4.1539.34) 1994; 14
2023041303421452000_30.4.1539.46
2023041303421452000_30.4.1539.47
Sobkowicz (2023041303421452000_30.4.1539.50) 1993; 502
2023041303421452000_30.4.1539.44
Muñoz (2023041303421452000_30.4.1539.42) 2001; 121
2023041303421452000_30.4.1539.45
2023041303421452000_30.4.1539.40
2023041303421452000_30.4.1539.41
Nakagawa (2023041303421452000_30.4.1539.43) 1990; 63
2023041303421452000_30.4.1539.39
2023041303421452000_30.4.1539.37
2023041303421452000_30.4.1539.38
2023041303421452000_30.4.1539.35
2023041303421452000_30.4.1539.36
2023041303421452000_30.4.1539.33
2023041303421452000_30.4.1539.31
2023041303421452000_30.4.1539.32
2023041303421452000_30.4.1539.30
References_xml – ident: 2023041303421452000_30.4.1539.37
  doi: 10.1016/j.heares.2007.05.006
– ident: 2023041303421452000_30.4.1539.49
  doi: 10.1016/j.neuron.2007.11.032
– ident: 2023041303421452000_30.4.1539.1
  doi: 10.1016/0378-5955(86)90104-8
– volume: 63
  start-page: 1068
  year: 1990
  ident: 2023041303421452000_30.4.1539.43
  article-title: ATP-induced current in isolated outer hair cells of guinea pig cochlea
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1990.63.5.1068
– ident: 2023041303421452000_30.4.1539.14
  doi: 10.1113/jphysiol.2005.087460
– ident: 2023041303421452000_30.4.1539.47
  doi: 10.1007/978-1-4612-2186-9_4
– ident: 2023041303421452000_30.4.1539.17
  doi: 10.1146/annurev.neuro.31.060407.125533
– ident: 2023041303421452000_30.4.1539.46
  doi: 10.1016/S0092-8674(00)00013-1
– ident: 2023041303421452000_30.4.1539.10
  doi: 10.1126/science.288.5475.2366
– ident: 2023041303421452000_30.4.1539.16
  doi: 10.3109/00016487709123963
– ident: 2023041303421452000_30.4.1539.23
  doi: 10.1038/nn.2332
– ident: 2023041303421452000_30.4.1539.12
  doi: 10.1016/S0378-5955(03)00054-6
– volume: 32
  start-page: 373
  year: 2009
  ident: 2023041303421452000_30.4.1539.48
  article-title: Synaptic inputs drive bursts of action potentials in the rat auditory brainstem before the onset of hearing
  publication-title: Assoc Res Otolaryngol Abstr
– volume: 502
  start-page: 3
  year: 1993
  ident: 2023041303421452000_30.4.1539.50
  article-title: Tissue culture of the organ of Corti
  publication-title: Acta Otolaryngol Suppl
– volume: 10
  start-page: 1
  year: 1923
  ident: 2023041303421452000_30.4.1539.53
  article-title: Anatomical and physiological studies on the growth of the inner ear of the albino rat
  publication-title: Am Anat Mem
– ident: 2023041303421452000_30.4.1539.30
  doi: 10.1038/28401
– ident: 2023041303421452000_30.4.1539.18
  doi: 10.1523/JNEUROSCI.4278-05.2006
– ident: 2023041303421452000_30.4.1539.8
  doi: 10.1002/cne.10916
– ident: 2023041303421452000_30.4.1539.39
  doi: 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G
– ident: 2023041303421452000_30.4.1539.40
  doi: 10.1016/0378-5955(91)90147-2
– ident: 2023041303421452000_30.4.1539.19
  doi: 10.1113/jphysiol.2004.074740
– ident: 2023041303421452000_30.4.1539.21
  doi: 10.1152/jn.00472.2007
– ident: 2023041303421452000_30.4.1539.25
  doi: 10.1038/nature03132
– ident: 2023041303421452000_30.4.1539.13
  doi: 10.1073/pnas.2530348100
– volume: 121
  start-page: 10
  year: 2001
  ident: 2023041303421452000_30.4.1539.42
  article-title: Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia
  publication-title: Acta Otolaryngol
  doi: 10.1080/000164801300006209
– ident: 2023041303421452000_30.4.1539.5
  doi: 10.1016/S0378-5955(98)00019-7
– ident: 2023041303421452000_30.4.1539.27
  doi: 10.1002/(SICI)1097-4695(19990215)38:3<338::AID-NEU4>3.0.CO;2-1
– volume: 21
  start-page: 8129
  year: 2001
  ident: 2023041303421452000_30.4.1539.20
  article-title: Primordial rhythmic bursting in embryonic cochlear ganglion cells
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-20-08129.2001
– ident: 2023041303421452000_30.4.1539.41
  doi: 10.1016/0378-5955(95)00152-3
– ident: 2023041303421452000_30.4.1539.22
  doi: 10.1016/S0006-8993(01)02300-9
– ident: 2023041303421452000_30.4.1539.31
  doi: 10.1111/j.1469-7793.2001.0693h.x
– ident: 2023041303421452000_30.4.1539.33
– ident: 2023041303421452000_30.4.1539.26
  doi: 10.1146/annurev.physiol.62.1.493
– ident: 2023041303421452000_30.4.1539.51
  doi: 10.1523/JNEUROSCI.1377-09.2009
– ident: 2023041303421452000_30.4.1539.36
  doi: 10.1113/jphysiol.2002.034801
– ident: 2023041303421452000_30.4.1539.6
  doi: 10.1016/B978-0-12-594450-2.50012-5
– volume: 14
  start-page: 1486
  year: 1994
  ident: 2023041303421452000_30.4.1539.34
  article-title: Rhythmic spontaneous activity in the developing avian auditory system
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-03-01486.1994
– ident: 2023041303421452000_30.4.1539.29
  doi: 10.1016/0378-5955(81)90038-1
– ident: 2023041303421452000_30.4.1539.44
  doi: 10.1016/j.neuron.2007.10.010
– volume: 23
  start-page: 10832
  year: 2003
  ident: 2023041303421452000_30.4.1539.3
  article-title: CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-34-10832.2003
– ident: 2023041303421452000_30.4.1539.4
  doi: 10.1523/JNEUROSCI.3965-06.2007
– ident: 2023041303421452000_30.4.1539.11
  doi: 10.1038/nn796
– ident: 2023041303421452000_30.4.1539.28
  doi: 10.1152/jn.00844.2007
– ident: 2023041303421452000_30.4.1539.54
– ident: 2023041303421452000_30.4.1539.24
  doi: 10.1387/ijdb.072388mk
– ident: 2023041303421452000_30.4.1539.55
  doi: 10.1073/pnas.0506481102
– volume: 21
  start-page: 4593
  year: 2001
  ident: 2023041303421452000_30.4.1539.2
  article-title: The presynaptic function of mouse cochlear inner hair cells during development of hearing
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-13-04593.2001
– ident: 2023041303421452000_30.4.1539.32
  doi: 10.1113/jphysiol.2007.131995
– ident: 2023041303421452000_30.4.1539.38
  doi: 10.1126/science.2035024
– ident: 2023041303421452000_30.4.1539.7
  doi: 10.1523/JNEUROSCI.4116-06.2007
– ident: 2023041303421452000_30.4.1539.35
  doi: 10.1007/s004240051134
– ident: 2023041303421452000_30.4.1539.52
  doi: 10.1038/nature06233
– ident: 2023041303421452000_30.4.1539.45
  doi: 10.1016/j.ceca.2006.05.005
– ident: 2023041303421452000_30.4.1539.9
  doi: 10.1016/j.cub.2004.03.002
– ident: 2023041303421452000_30.4.1539.15
  doi: 10.1242/dev.002279
SSID ssj0007017
Score 2.4099917
Snippet Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1539
SubjectTerms Action Potentials - physiology
Adenosine Triphosphate - metabolism
Animals
Animals, Newborn
Cell Differentiation - physiology
Cochlea - cytology
Cochlea - growth & development
Cochlea - metabolism
Hair Cells, Auditory - cytology
Hair Cells, Auditory - metabolism
Hair Cells, Auditory, Inner - cytology
Hair Cells, Auditory, Inner - metabolism
Hearing - physiology
Labyrinth Supporting Cells - cytology
Labyrinth Supporting Cells - metabolism
Organogenesis - physiology
Rats
Rats, Sprague-Dawley
Sensory Receptor Cells - cytology
Sensory Receptor Cells - metabolism
Spiral Ganglion - cytology
Spiral Ganglion - growth & development
Spiral Ganglion - metabolism
Title Developmental Regulation of Spontaneous Activity in the Mammalian Cochlea
URI http://www.jneurosci.org/cgi/content/abstract/30/4/1539
https://www.ncbi.nlm.nih.gov/pubmed/20107081
https://www.proquest.com/docview/733645267
https://pubmed.ncbi.nlm.nih.gov/PMC2814371
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHHJuPkB8TKlc524Th6rAtqGVgnRSX2zHMfZKrXJ1AZV8Os5vuTSqtKAl6hyG7s939eTc-xzQegjlUwSlZJQga1qUnKSMGGKhUPJdZqCBUBtbM7VdHR-HV_O2bxLIbDZJXU2UL8P5pX8D6owBriaLNl_QLadFAbgNeALV0AYrn-FcS_ix9bIv_G9uGwmyl0Fo6U2Ia5j5XtE-KDGK7lauf2NSaVul1r2TdQuWcyaqb2Cly0HZutFvXE9pCyT5OZ03vr1en3j-2h_3hrP3-c6-J0FG6AWukR9t7NYqdPp_hpOM1EOPmfs2usMtNec1B7VDPuq1R-5LPr7BlZPgp5NDypwZgtJXE5NHOOPycUgAn8qJKmNweseWc0x_d6TrI0v3G63ERGxMMs8RI8ouBBGB3773lWS58R2Y25_is8eh_XPDq--a7g0xaQPOSb78bU9g2X2FD3xEOKxo80z9ECXz9HxuJR1tfqFP2Eb-2sPVY7RxQ6TcMckXBW4xyTcMAkvSgxMwi2TsGfSC3T99ctsch76JhuhAnVch4woRSWlmcpzkiejRMcjMPrBC5ART5niOVh8mQmZoybcj3CesZyCH6z1qJAFj16io7Iq9WuEWaELqVWhdUZhEp4STmlR5DIqeA4iDhBrJCiUr0BvGqEshfFEQfKilbwwkhckFUbyATpr77tzNVjuveNDA5DYgBiWgMdQ9FkRINzgJkChmlMyJ0hh6oPGjI54gF45GNtFzdQcbOgA8R2A2w-YWu2775SLW1uznSbgmPDhyb1f7A163P0X36Kjev1TvwO7t87eWwL_ARcXrtk
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developmental+Regulation+of+Spontaneous+Activity+in+the+Mammalian+Cochlea&rft.jtitle=The+Journal+of+neuroscience&rft.au=Tritsch%2C+Nicolas+X&rft.au=Bergles%2C+Dwight+E&rft.date=2010-01-27&rft.pub=Soc+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=30&rft.issue=4&rft.spage=1539&rft_id=info:doi/10.1523%2FJNEUROSCI.3875-09.2010&rft.externalDBID=n%2Fa&rft.externalDocID=www30_4_1539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon