Optimized deep neural network models for blood pressure classification using Fourier analysis-based time–frequency spectrogram of photoplethysmography signal

Appropriate blood pressure (BP) management through continuous monitoring and rapid diagnosis helps to take preventive care against cardiovascular diseases (CVD). As hypertension is one of the leading causes of CVDs, keeping hypertension under control by a timely screening of subjects becomes lifesav...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering letters Vol. 13; no. 4; pp. 739 - 750
Main Authors Pankaj, Kumar, Ashish, Kumar, Manjeet, Komaragiri, Rama
Format Journal Article
LanguageEnglish
Published Korea The Korean Society of Medical and Biological Engineering 01.11.2023
Springer Nature B.V
대한의용생체공학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Appropriate blood pressure (BP) management through continuous monitoring and rapid diagnosis helps to take preventive care against cardiovascular diseases (CVD). As hypertension is one of the leading causes of CVDs, keeping hypertension under control by a timely screening of subjects becomes lifesaving. This work proposes estimating BP from motion artifact-affected photoplethysmography signals (PPG) by applying signal processing techniques in realtime. This paper proposes a deep neural network-based methodology to accurately classify PPG signals using a Fourier theory-based time–frequency (TF) spectrogram. This work uses the Fourier decomposition method (FDM) to transform a PPG signal into a TF spectrogram. In the proposed work, the last three layers of the pre-trained deep neural network, namely, GoogleNet, DenseNet, and AlexNet, are modified and then used to classify the PPG signal into normotension, pre-hypertension, and hypertension. The proposed framework is trained and tested using the MIMIC-III and PPG–BP databases using five-fold training and testing. Out of the three deep neural networks, the proposed framework with the DenseNet-201 network performs best, with a test accuracy of 96.5%. The proposed work uses FDM to compute the TF spectrogram to accurately separate the motion artifacts and noise components from a noise-corrupted PPG signal. Capturing more frequency components that contain more information from PPG signals makes the deep neural networks extract better and more meaningful features. Thus, training a deep neural network model with clean PPG signal features improves the generalized capability of a BP classification model when tested in realtime.
AbstractList Appropriate blood pressure (BP) management through continuous monitoring and rapid diagnosis helps to take preventivecare against cardiovascular diseases (CVD). As hypertension is one of the leading causes of CVDs, keeping hypertensionunder control by a timely screening of subjects becomes lifesaving. This work proposes estimating BP from motion artifactaffectedphotoplethysmography signals (PPG) by applying signal processing techniques in realtime. This paper proposes adeep neural network-based methodology to accurately classify PPG signals using a Fourier theory-based time–frequency(TF) spectrogram. This work uses the Fourier decomposition method (FDM) to transform a PPG signal into a TF spectrogram. In the proposed work, the last three layers of the pre-trained deep neural network, namely, GoogleNet, DenseNet, andAlexNet, are modified and then used to classify the PPG signal into normotension, pre-hypertension, and hypertension. Theproposed framework is trained and tested using the MIMIC-III and PPG–BP databases using five-fold training and testing. Out of the three deep neural networks, the proposed framework with the DenseNet-201 network performs best, with a testaccuracy of 96.5%. The proposed work uses FDM to compute the TF spectrogram to accurately separate the motion artifactsand noise components from a noise-corrupted PPG signal. Capturing more frequency components that contain moreinformation from PPG signals makes the deep neural networks extract better and more meaningful features. Thus, training adeep neural network model with clean PPG signal features improves the generalized capability of a BP classification modelwhen tested in realtime. KCI Citation Count: 0
Appropriate blood pressure (BP) management through continuous monitoring and rapid diagnosis helps to take preventive care against cardiovascular diseases (CVD). As hypertension is one of the leading causes of CVDs, keeping hypertension under control by a timely screening of subjects becomes lifesaving. This work proposes estimating BP from motion artifact-affected photoplethysmography signals (PPG) by applying signal processing techniques in realtime. This paper proposes a deep neural network-based methodology to accurately classify PPG signals using a Fourier theory-based time–frequency (TF) spectrogram. This work uses the Fourier decomposition method (FDM) to transform a PPG signal into a TF spectrogram. In the proposed work, the last three layers of the pre-trained deep neural network, namely, GoogleNet, DenseNet, and AlexNet, are modified and then used to classify the PPG signal into normotension, pre-hypertension, and hypertension. The proposed framework is trained and tested using the MIMIC-III and PPG–BP databases using five-fold training and testing. Out of the three deep neural networks, the proposed framework with the DenseNet-201 network performs best, with a test accuracy of 96.5%. The proposed work uses FDM to compute the TF spectrogram to accurately separate the motion artifacts and noise components from a noise-corrupted PPG signal. Capturing more frequency components that contain more information from PPG signals makes the deep neural networks extract better and more meaningful features. Thus, training a deep neural network model with clean PPG signal features improves the generalized capability of a BP classification model when tested in realtime.
Appropriate blood pressure (BP) management through continuous monitoring and rapid diagnosis helps to take preventive care against cardiovascular diseases (CVD). As hypertension is one of the leading causes of CVDs, keeping hypertension under control by a timely screening of subjects becomes lifesaving. This work proposes estimating BP from motion artifact-affected photoplethysmography signals (PPG) by applying signal processing techniques in realtime. This paper proposes a deep neural network-based methodology to accurately classify PPG signals using a Fourier theory-based time-frequency (TF) spectrogram. This work uses the Fourier decomposition method (FDM) to transform a PPG signal into a TF spectrogram. In the proposed work, the last three layers of the pre-trained deep neural network, namely, GoogleNet, DenseNet, and AlexNet, are modified and then used to classify the PPG signal into normotension, pre-hypertension, and hypertension. The proposed framework is trained and tested using the MIMIC-III and PPG-BP databases using five-fold training and testing. Out of the three deep neural networks, the proposed framework with the DenseNet-201 network performs best, with a test accuracy of 96.5%. The proposed work uses FDM to compute the TF spectrogram to accurately separate the motion artifacts and noise components from a noise-corrupted PPG signal. Capturing more frequency components that contain more information from PPG signals makes the deep neural networks extract better and more meaningful features. Thus, training a deep neural network model with clean PPG signal features improves the generalized capability of a BP classification model when tested in realtime.Appropriate blood pressure (BP) management through continuous monitoring and rapid diagnosis helps to take preventive care against cardiovascular diseases (CVD). As hypertension is one of the leading causes of CVDs, keeping hypertension under control by a timely screening of subjects becomes lifesaving. This work proposes estimating BP from motion artifact-affected photoplethysmography signals (PPG) by applying signal processing techniques in realtime. This paper proposes a deep neural network-based methodology to accurately classify PPG signals using a Fourier theory-based time-frequency (TF) spectrogram. This work uses the Fourier decomposition method (FDM) to transform a PPG signal into a TF spectrogram. In the proposed work, the last three layers of the pre-trained deep neural network, namely, GoogleNet, DenseNet, and AlexNet, are modified and then used to classify the PPG signal into normotension, pre-hypertension, and hypertension. The proposed framework is trained and tested using the MIMIC-III and PPG-BP databases using five-fold training and testing. Out of the three deep neural networks, the proposed framework with the DenseNet-201 network performs best, with a test accuracy of 96.5%. The proposed work uses FDM to compute the TF spectrogram to accurately separate the motion artifacts and noise components from a noise-corrupted PPG signal. Capturing more frequency components that contain more information from PPG signals makes the deep neural networks extract better and more meaningful features. Thus, training a deep neural network model with clean PPG signal features improves the generalized capability of a BP classification model when tested in realtime.
Author Pankaj
Kumar, Ashish
Kumar, Manjeet
Komaragiri, Rama
Author_xml – sequence: 1
  surname: Pankaj
  fullname: Pankaj
  organization: Department of Electronics and Communication Engineering, Bennett University
– sequence: 2
  givenname: Ashish
  surname: Kumar
  fullname: Kumar, Ashish
  organization: School of Electronics Engineering, Vellore Institute of Technology
– sequence: 3
  givenname: Manjeet
  orcidid: 0000-0001-6578-9741
  surname: Kumar
  fullname: Kumar, Manjeet
  email: manjeetchhillar@gmail.com
  organization: Department of Electronics and Communication Engineering, Delhi Technological University
– sequence: 4
  givenname: Rama
  surname: Komaragiri
  fullname: Komaragiri, Rama
  organization: Department of Electronics and Communication Engineering, Bennett University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37872982$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003022777$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kkFu1DAUhiNUREvpBVggS2wQUsCx48ReoaqiUKlSJVQkdpbjPGfcSexgJ0XDijtwAO7GSfBM2gJd1Jtn2d__-9fze5rtOe8gy54X-E2Bcf02FpTRMseE5hgTUeXVo-yAYEFzwdmXvbt9xfezoxivcFqsYILSJ9k-rXlNBCcH2a-LcbKD_Q4tagFG5GAOqk9l-ubDGg2-hT4i4wNqeu9bNAaIcQ6AdK9itMZqNVnv0Byt69Cpn4OFgJRT_SbamDcqJuf0Avz-8dME-DqD0xsUR9BT8F1QA_IGjSs_-bGHabWJw_Z0XCXGdsnlWfbYqD7C0U09zD6fvr88-ZifX3w4Ozk-zzUr8JQTUISXmGpFCTMlqzhtmkaVLS65YrVgmpei4cwIbkCoBmvKmqLEYKDlLVB6mL1efF0wcq2t9MruauflOsjjT5dnssCU0oLWCX63wOPcDNBqcFNqmhyDHVTY7KT_3zi7SkbXyYEJTMutw6sbh-BTT-IkBxs19L1y4OcoCecFKSuGeUJf3kOvUpdTa7ZULeqqxhVL1It_I91luf3pBPAF0MHHGMBIbafd36WEtk_R5Hau5DJXMs2V3M2VrJKU3JPeuj8ooosoJth1EP7GfkD1B0JB5Z8
CitedBy_id crossref_primary_10_1109_JSEN_2024_3354113
crossref_primary_10_1007_s13246_023_01322_8
crossref_primary_10_1088_1361_6560_adaa4b
crossref_primary_10_3390_s24123980
crossref_primary_10_1016_j_heliyon_2024_e39745
Cites_doi 10.1109/JBHI.2022.3220967
10.1177/00202940211001904
10.1016/j.compbiomed.2021.105081
10.1161/HYPERTENSIONAHA.119.14240
10.1109/BMEiCON56653.2022.10012088
10.1109/ACCESS.2020.2968967
10.1038/sdata.2016.35
10.1016/j.compbiomed.2020.103719
10.1109/CVPRW56347.2022.00236
10.3389/fphys.2023.1072273
10.1109/TBME.2016.2580904
10.1109/CVPR.2017.243
10.1186/s40537-021-00444-8
10.3390/diagnostics12112886
10.23919/MIPRO55190.2022.9803582
10.1016/j.compbiomed.2022.105479
10.3390/s21217207
10.1109/EMBC46164.2021.9629687
10.3390/bios11040120
10.1109/TIM.2022.3192831
10.3390/bios8040101
10.1016/j.jacc.2017.11.006
10.3390/s21186022
10.1007/s11831-021-09597-4
10.1155/2021/9938584
10.1109/ACCESS.2019.2945129
10.3390/info11020093
10.1109/ACCESS.2020.2984130
10.1109/TIM.2019.2947103
10.4258/hir.2017.23.1.4
10.1109/CompComm.2018.8780834
10.1016/j.future.2019.02.032
10.1109/IEMBS.2003.1280811
10.1016/j.bspc.2019.02.028
10.1109/ICAECC.2018.8479458
10.1109/TIPTEKNO56568.2022.9960176
10.1109/SSCI.2016.7849886
10.1161/HYPERTENSIONAHA.121.18192
10.1016/j.bspc.2023.104782
10.1016/j.cmpb.2022.107294
10.1177/1460458216663025
10.3390/app12168380
10.1161/JAHA.122.027169
ContentType Journal Article
Copyright Korean Society of Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Korean Society of Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
NPM
7X8
5PM
ACYCR
DOI 10.1007/s13534-023-00296-6
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-985X
EndPage 750
ExternalDocumentID oai_kci_go_kr_ARTI_10333137
PMC10590347
37872982
10_1007_s13534_023_00296_6
Genre Journal Article
GroupedDBID -EM
0R~
0VY
203
29~
2VQ
30V
4.4
406
408
53G
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACPRK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AUKKA
AXYYD
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
HF~
HMJXF
HRMNR
HYE
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
PT4
RLLFE
ROL
RPM
RSV
S27
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7X
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
NPM
7X8
5PM
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
UNUBA
ID FETCH-LOGICAL-c510t-2ea28403ca325f45683bbba4d048a5795c849b85f98fe9ab0c35b140efed8de33
IEDL.DBID U2A
ISSN 2093-9868
2093-985X
IngestDate Wed Jan 24 04:14:35 EST 2024
Thu Aug 21 18:33:31 EDT 2025
Fri Jul 11 11:34:16 EDT 2025
Fri Jul 25 10:57:16 EDT 2025
Mon Jul 21 06:17:37 EDT 2025
Thu Apr 24 23:12:21 EDT 2025
Tue Jul 01 01:04:54 EDT 2025
Fri Feb 21 02:43:09 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Hypertension
Time–frequency spectrogram
Deep learning
Transfer learning
Arterial blood pressure
Fourier decomposition method
Photoplethysmography
Language English
License Korean Society of Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-2ea28403ca325f45683bbba4d048a5795c849b85f98fe9ab0c35b140efed8de33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6578-9741
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10590347
PMID 37872982
PQID 2879767065
PQPubID 2043953
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10333137
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10590347
proquest_miscellaneous_2881246508
proquest_journals_2879767065
pubmed_primary_37872982
crossref_citationtrail_10_1007_s13534_023_00296_6
crossref_primary_10_1007_s13534_023_00296_6
springer_journals_10_1007_s13534_023_00296_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Korea
PublicationPlace_xml – name: Korea
– name: Germany
– name: Heidelberg
PublicationTitle Biomedical engineering letters
PublicationTitleAbbrev Biomed. Eng. Lett
PublicationTitleAlternate Biomed Eng Lett
PublicationYear 2023
Publisher The Korean Society of Medical and Biological Engineering
Springer Nature B.V
대한의용생체공학회
Publisher_xml – name: The Korean Society of Medical and Biological Engineering
– name: Springer Nature B.V
– name: 대한의용생체공학회
References Schrumpf F, Serdack PR, Fuchs M. Regression or classification? Reflection on BP prediction from PPG data using deep neural networks in the scope of practical applications. In: 2022 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022; pp. 2172–2181
KachueeMKianiMMMohammadzadeHShabanyMCuffless blood pressure estimation algorithms for continuous health-care monitoringIEEE Trans Biomed Eng201764485986910.1109/TBME.2016.2580904
TjahjadiHRamliKNoninvasive blood pressure classification based on photoplethysmography using K-nearest neighbors algorithm: a feasibility studyInformation (Switz)20201129310.3390/info11020093
LiTJiaoWWangLNZhongGAutomatic DenseNet sparsificationIEEE Access20208625616257110.1109/ACCESS.2020.2984130
Tazarv A, Levorato M. A deep learning approach to predict blood pressure from PPG signals. In 2021 IEEE 43rd Annual international conference of the IEEE engineering in medicine & biology society (EMBC), 2021;pp. 5658–5662.
MeyerovitzCVSocial determinants, blood pressure control, and racial inequities in childbearing age women with hypertension, 2001 to 2018J Am Heart Assoc2023125e02716910.1161/JAHA.122.027169
Tanc YH, Ozturk M. Hypertension classification using PPG signals. In: 2022 medical technologies congress (TIPTEKNO). IEEE; 2022. pp. 1–4.
PankajKumarAKumarMKomaragiriRSTSR: spectro-temporal super-resolution analysis of a reference signal less photoplethysmogram for heart rate estimation during physical activityIEEE Trans Instrum Meas20227111010.1109/TIM.2022.3192831
EvdochimLDobrescuDHalichidisSDobrescuLStanciuSHypertension detection based on photoplethysmography signal morphology and machine learning techniquesAppl Sci (Switz)20221216838010.3390/app12168380
SunXZhouLChangSLiuZUsing CNN and HHT to predict blood pressure level based on photoplethysmography and its derivativesBiosensors (Basel)202111412010.3390/bios11040120
Lafreniere D, Zulkernine F, Barber D, Martin K. Using machine learning to predict hypertension from a clinical dataset. In: 2016 IEEE symposium series on computational intelligence, SSCI 2016, 2017.
FuadahYNLimKMClassification of blood pressure levels based on photoplethysmogram and electrocardiogram signals with a concatenated convolutional neural networkDiagnostics20221211288610.3390/diagnostics12112886
TanveerMSHasanMKCuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM networkBiomed Signal Process Control20195138239210.1016/j.bspc.2019.02.028
TjahjadiHRamliKMurfiHNoninvasive classification of blood pressure based on photoplethysmography signals using bidirectional long short-term memory and time-frequency analysisIEEE Access20208207352074810.1109/ACCESS.2020.2968967
Johnson AEW, et al. Data descriptor: MIMIC-III, a freely accessible critical care database. Scientific data 2016;3(1):1–9.
KumarAAshdhirAKomaragiriRKumarMAnalysis of photoplethysmogram signal to estimate heart rate during physical activity using fractional Fourier transform–a sampling frequency independent and reference signal-less methodComput Methods Programs Biomed202322910729410.1016/j.cmpb.2022.107294
Patnaik R, Chandran M, Lee SC, Gupta A, Kim C. Predicting the occurrence of essential hypertension using annual health records. In: 2018 2nd International Conference on Advances in Electronics, Computers and Communications, ICAECC 2018; vol. 13, pp. 1–5:2018.
ZhangCVideo based cocktail causal container for blood pressure classification and blood glucose predictionIEEE J Biomed Health Inform20232721118112810.1109/JBHI.2022.3220967
EsmaelpoorJMoradiMHKadkhodamohammadiAA multistage deep neural network model for blood pressure estimation using photoplethysmogram signalsComput Biol Med202012010371910.1016/j.compbiomed.2020.103719
HuXBlood pressure stratification using photoplethysmography and light gradient boosting machineFront Physiol20231423110.3389/fphys.2023.1072273
AlzubaidiLReview of deep learning: concepts, CNN architectures, challenges, applications, future directionsJ Big Data20218117410.1186/s40537-021-00444-8
Wu J, Liang H, Ding C, Huang X, Huang J, Peng Q. Improving the accuracy in classification of blood pressure from photoplethysmography using continuous wavelet transform and deep learning. Int J Hypertens. 2021;9938584:2021.
Kuzmanov I, Kostoska M, Bogdanova AM. Blood pressure class estimation using CNN-GRU model. In: 2022 The 19th International Conference on Informatics and Information Technologies, CIIT 2022. In 2021 IEEE Computing in Cardiology, CinC 2021. 2021;Vol. 48; pp. 1–4.
Health topic, cardiovascular disease, world health organization. 2023. https://www.who.int/health-topics/hypertension. Accessed 31 Mar 2023.
RiazFAzadMAArshadJImranMHassanARehmanSPervasive blood pressure monitoring using Photoplethysmogram (PPG) sensorFutur Gener Comput Syst20199812013010.1016/j.future.2019.02.032
Kuzmanov I, Bogdanova AM, Kostoska M, Ackovska N Fast cuffless blood pressure classification with ECG and PPG signals using CNN–LSTM models in emergency medicine. In: 2022 45th Jubilee international convention on information, communication and electronic technology (MIPRO). 2022; pp. 362–7.
SchrumpfFFrenzelPAustCOsterhoffGFuchsMAssessment of non-invasive blood pressure prediction from PPG and RPPG signals using deep learningSensors20212118602210.3390/s21186022
PankajKumarAKomaragiriRKumarMReference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercisesComput Biol Med202214110508110.1016/j.compbiomed.2021.105081
Mansouri SR, Lowe A, Gholamhosseini H, Baig MM. Blood pressure estimation from electrocardiogram and photoplethysmography signals using continuous wavelet transform and convolutional neural network. Conf-Irm 2019, 28;2019. https://aisel.aisnet.org/confirm2019/28
WheltonPK2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelinesJ Am Coll Cardiol20187119e127e24810.1016/j.jacc.2017.11.006
LiZHeWA continuous blood pressure estimation method using photoplethysmography by GRNN-based modelSensors20212121720710.3390/s21217207
Al-MakkiAHypertension pharmacological treatment in adults: a world health organization guideline executive summaryHypertension202279129330110.1161/HYPERTENSIONAHA.121.18192
PankajKumarAKomaragiriRKumarMA review on computation methods used in photoplethysmography signal analysis for heart rate estimationArch Comput Methods Eng202229292194010.1007/s11831-021-09597-4
KwongEWYWuHPangGKHA prediction model of blood pressure for telemedicineHealth Inform J201824322724410.1177/1460458216663025
Martinez-Ríos EA, Montesinos L, Alfaro M. A comparison between wavelet scattering transform and transfer learning for elevated blood pressure detection. In: 2022 BMEiCON. IEEE; 2022. pp. 1–5.
SongKChungKYChangJHCuffless deep learning-based blood pressure estimation for smart wristwatchesIEEE Trans Instrum Meas20206974292430210.1109/TIM.2019.2947103
FitriyaniNLSyafrudinMAlfianGRheeJDevelopment of disease prediction model based on ensemble learning approach for diabetes and hypertensionIEEE Access2019714477714478910.1109/ACCESS.2019.2945129
Cano J, Bertomeu-González V, Fácia L, Zangróniz R, Alcaraz R, Rieta JJ. Hypertension risk assessment from photoplethysmographic recordings using deep learning classifiers.
Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. Aug. 2016, [Online]. Available at http://arxiv.org/abs/1608.06993
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. [Online]. Available at http://code.google.com/p/cuda-convnet
Hypertension, key facts, world health organization. 2023. https://www.who.int/news-room/fact-sheets/detail/hypertension. Accessed 31 Mar 2023.
Faris AliNAtefMAn efficient hybrid LSTM-ANN joint classification-regression model for PPG based blood pressure monitoringBiomed Signal Process Control20238410478210.1016/j.bspc.2023.104782
Martinez-RíosEMontesinosLAlfaro-PonceMA machine learning approach for hypertension detection based on photoplethysmography and clinical dataComput Biol Med202214510547910.1016/j.compbiomed.2022.105479
HaghiMThurowKStollRWearable devices in medical internet of things: scientific research and commercially available devicesHealthc Inform Res201723141510.4258/hir.2017.23.1.4
YenCTChangSNLiaoCHDeep learning algorithm evaluation of hypertension classification in less photoplethysmography signals conditionsMeas Control (UK)2021543–443944510.1177/00202940211001904
LiangYChenZWardRPhotoplethysmography and deep learning: enhancing hypertension risk stratificationBiosensors2018810110.3390/bios8040101
Teng XF, Zhang YT Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach. 2003. pp. 3153–3156
FuchsFDWheltonPKHigh blood pressure and cardiovascular diseaseHypertension20207528529210.1161/HYPERTENSIONAHA.119.14240
Luo Y, Li Y, Lu Y, Lin S, Liu X. The prediction of hypertension based on convolution neural network. In: 2018 IEEE 4th international conference on computer and communications, ICCC 2018. pp. 2122–2127;2018.
Szegedy C, et al. Going deeper with convolutions. Sep. 2014, Online. Available at http://arxiv.org/abs/1409.4842
SinghPJoshiSDPatneyRKSahaKThe Fourier decomposition method for nonlinear and non-stationary time series analysisProc R Soc A Math Phys Eng Sci201747321992016087136415861404.94026
Y Liang (296_CR22) 2018; 8
NL Fitriyani (296_CR48) 2019; 7
T Li (296_CR43) 2020; 8
H Tjahjadi (296_CR15) 2020; 11
296_CR47
EWY Kwong (296_CR30) 2018; 24
X Sun (296_CR32) 2021; 11
296_CR45
296_CR46
296_CR44
296_CR41
296_CR42
F Schrumpf (296_CR18) 2021; 21
L Evdochim (296_CR17) 2022; 12
MS Tanveer (296_CR28) 2019; 51
Z Li (296_CR13) 2021; 21
Pankaj (296_CR8) 2022; 29
296_CR36
296_CR35
M Haghi (296_CR7) 2017; 23
A Kumar (296_CR10) 2023; 229
296_CR33
J Esmaelpoor (296_CR12) 2020; 120
PK Whelton (296_CR39) 2018; 71
296_CR1
296_CR2
A Al-Makki (296_CR6) 2022; 79
P Singh (296_CR37) 2017; 473
CV Meyerovitz (296_CR3) 2023; 12
CT Yen (296_CR31) 2021; 54
Pankaj (296_CR11) 2022; 71
296_CR29
YN Fuadah (296_CR21) 2022; 12
296_CR27
296_CR26
296_CR23
FD Fuchs (296_CR4) 2020; 75
296_CR24
H Tjahjadi (296_CR49) 2020; 8
296_CR20
N Faris Ali (296_CR25) 2023; 84
E Martinez-Ríos (296_CR50) 2022; 145
X Hu (296_CR16) 2023; 14
K Song (296_CR5) 2020; 69
296_CR19
C Zhang (296_CR51) 2023; 27
F Riaz (296_CR34) 2019; 98
Pankaj (296_CR38) 2022; 141
L Alzubaidi (296_CR40) 2021; 8
296_CR14
M Kachuee (296_CR9) 2017; 64
References_xml – reference: ZhangCVideo based cocktail causal container for blood pressure classification and blood glucose predictionIEEE J Biomed Health Inform20232721118112810.1109/JBHI.2022.3220967
– reference: YenCTChangSNLiaoCHDeep learning algorithm evaluation of hypertension classification in less photoplethysmography signals conditionsMeas Control (UK)2021543–443944510.1177/00202940211001904
– reference: TanveerMSHasanMKCuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM networkBiomed Signal Process Control20195138239210.1016/j.bspc.2019.02.028
– reference: Tanc YH, Ozturk M. Hypertension classification using PPG signals. In: 2022 medical technologies congress (TIPTEKNO). IEEE; 2022. pp. 1–4.
– reference: SchrumpfFFrenzelPAustCOsterhoffGFuchsMAssessment of non-invasive blood pressure prediction from PPG and RPPG signals using deep learningSensors20212118602210.3390/s21186022
– reference: Johnson AEW, et al. Data descriptor: MIMIC-III, a freely accessible critical care database. Scientific data 2016;3(1):1–9.
– reference: Kuzmanov I, Bogdanova AM, Kostoska M, Ackovska N Fast cuffless blood pressure classification with ECG and PPG signals using CNN–LSTM models in emergency medicine. In: 2022 45th Jubilee international convention on information, communication and electronic technology (MIPRO). 2022; pp. 362–7.
– reference: FuchsFDWheltonPKHigh blood pressure and cardiovascular diseaseHypertension20207528529210.1161/HYPERTENSIONAHA.119.14240
– reference: Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. Aug. 2016, [Online]. Available at http://arxiv.org/abs/1608.06993
– reference: Tazarv A, Levorato M. A deep learning approach to predict blood pressure from PPG signals. In 2021 IEEE 43rd Annual international conference of the IEEE engineering in medicine & biology society (EMBC), 2021;pp. 5658–5662.
– reference: Health topic, cardiovascular disease, world health organization. 2023. https://www.who.int/health-topics/hypertension. Accessed 31 Mar 2023.
– reference: TjahjadiHRamliKMurfiHNoninvasive classification of blood pressure based on photoplethysmography signals using bidirectional long short-term memory and time-frequency analysisIEEE Access20208207352074810.1109/ACCESS.2020.2968967
– reference: Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. [Online]. Available at http://code.google.com/p/cuda-convnet/
– reference: Lafreniere D, Zulkernine F, Barber D, Martin K. Using machine learning to predict hypertension from a clinical dataset. In: 2016 IEEE symposium series on computational intelligence, SSCI 2016, 2017.
– reference: KumarAAshdhirAKomaragiriRKumarMAnalysis of photoplethysmogram signal to estimate heart rate during physical activity using fractional Fourier transform–a sampling frequency independent and reference signal-less methodComput Methods Programs Biomed202322910729410.1016/j.cmpb.2022.107294
– reference: LiZHeWA continuous blood pressure estimation method using photoplethysmography by GRNN-based modelSensors20212121720710.3390/s21217207
– reference: PankajKumarAKomaragiriRKumarMA review on computation methods used in photoplethysmography signal analysis for heart rate estimationArch Comput Methods Eng202229292194010.1007/s11831-021-09597-4
– reference: EvdochimLDobrescuDHalichidisSDobrescuLStanciuSHypertension detection based on photoplethysmography signal morphology and machine learning techniquesAppl Sci (Switz)20221216838010.3390/app12168380
– reference: TjahjadiHRamliKNoninvasive blood pressure classification based on photoplethysmography using K-nearest neighbors algorithm: a feasibility studyInformation (Switz)20201129310.3390/info11020093
– reference: RiazFAzadMAArshadJImranMHassanARehmanSPervasive blood pressure monitoring using Photoplethysmogram (PPG) sensorFutur Gener Comput Syst20199812013010.1016/j.future.2019.02.032
– reference: Cano J, Bertomeu-González V, Fácia L, Zangróniz R, Alcaraz R, Rieta JJ. Hypertension risk assessment from photoplethysmographic recordings using deep learning classifiers.
– reference: Martinez-Ríos EA, Montesinos L, Alfaro M. A comparison between wavelet scattering transform and transfer learning for elevated blood pressure detection. In: 2022 BMEiCON. IEEE; 2022. pp. 1–5.
– reference: KachueeMKianiMMMohammadzadeHShabanyMCuffless blood pressure estimation algorithms for continuous health-care monitoringIEEE Trans Biomed Eng201764485986910.1109/TBME.2016.2580904
– reference: PankajKumarAKumarMKomaragiriRSTSR: spectro-temporal super-resolution analysis of a reference signal less photoplethysmogram for heart rate estimation during physical activityIEEE Trans Instrum Meas20227111010.1109/TIM.2022.3192831
– reference: AlzubaidiLReview of deep learning: concepts, CNN architectures, challenges, applications, future directionsJ Big Data20218117410.1186/s40537-021-00444-8
– reference: FitriyaniNLSyafrudinMAlfianGRheeJDevelopment of disease prediction model based on ensemble learning approach for diabetes and hypertensionIEEE Access2019714477714478910.1109/ACCESS.2019.2945129
– reference: EsmaelpoorJMoradiMHKadkhodamohammadiAA multistage deep neural network model for blood pressure estimation using photoplethysmogram signalsComput Biol Med202012010371910.1016/j.compbiomed.2020.103719
– reference: Faris AliNAtefMAn efficient hybrid LSTM-ANN joint classification-regression model for PPG based blood pressure monitoringBiomed Signal Process Control20238410478210.1016/j.bspc.2023.104782
– reference: KwongEWYWuHPangGKHA prediction model of blood pressure for telemedicineHealth Inform J201824322724410.1177/1460458216663025
– reference: LiangYChenZWardRPhotoplethysmography and deep learning: enhancing hypertension risk stratificationBiosensors2018810110.3390/bios8040101
– reference: Teng XF, Zhang YT Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach. 2003. pp. 3153–3156
– reference: Hypertension, key facts, world health organization. 2023. https://www.who.int/news-room/fact-sheets/detail/hypertension. Accessed 31 Mar 2023.
– reference: Martinez-RíosEMontesinosLAlfaro-PonceMA machine learning approach for hypertension detection based on photoplethysmography and clinical dataComput Biol Med202214510547910.1016/j.compbiomed.2022.105479
– reference: MeyerovitzCVSocial determinants, blood pressure control, and racial inequities in childbearing age women with hypertension, 2001 to 2018J Am Heart Assoc2023125e02716910.1161/JAHA.122.027169
– reference: SunXZhouLChangSLiuZUsing CNN and HHT to predict blood pressure level based on photoplethysmography and its derivativesBiosensors (Basel)202111412010.3390/bios11040120
– reference: PankajKumarAKomaragiriRKumarMReference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercisesComput Biol Med202214110508110.1016/j.compbiomed.2021.105081
– reference: SinghPJoshiSDPatneyRKSahaKThe Fourier decomposition method for nonlinear and non-stationary time series analysisProc R Soc A Math Phys Eng Sci201747321992016087136415861404.94026
– reference: Luo Y, Li Y, Lu Y, Lin S, Liu X. The prediction of hypertension based on convolution neural network. In: 2018 IEEE 4th international conference on computer and communications, ICCC 2018. pp. 2122–2127;2018.
– reference: Schrumpf F, Serdack PR, Fuchs M. Regression or classification? Reflection on BP prediction from PPG data using deep neural networks in the scope of practical applications. In: 2022 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022; pp. 2172–2181
– reference: FuadahYNLimKMClassification of blood pressure levels based on photoplethysmogram and electrocardiogram signals with a concatenated convolutional neural networkDiagnostics20221211288610.3390/diagnostics12112886
– reference: WheltonPK2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelinesJ Am Coll Cardiol20187119e127e24810.1016/j.jacc.2017.11.006
– reference: Wu J, Liang H, Ding C, Huang X, Huang J, Peng Q. Improving the accuracy in classification of blood pressure from photoplethysmography using continuous wavelet transform and deep learning. Int J Hypertens. 2021;9938584:2021.
– reference: Kuzmanov I, Kostoska M, Bogdanova AM. Blood pressure class estimation using CNN-GRU model. In: 2022 The 19th International Conference on Informatics and Information Technologies, CIIT 2022. In 2021 IEEE Computing in Cardiology, CinC 2021. 2021;Vol. 48; pp. 1–4.
– reference: Szegedy C, et al. Going deeper with convolutions. Sep. 2014, Online. Available at http://arxiv.org/abs/1409.4842
– reference: Al-MakkiAHypertension pharmacological treatment in adults: a world health organization guideline executive summaryHypertension202279129330110.1161/HYPERTENSIONAHA.121.18192
– reference: SongKChungKYChangJHCuffless deep learning-based blood pressure estimation for smart wristwatchesIEEE Trans Instrum Meas20206974292430210.1109/TIM.2019.2947103
– reference: Patnaik R, Chandran M, Lee SC, Gupta A, Kim C. Predicting the occurrence of essential hypertension using annual health records. In: 2018 2nd International Conference on Advances in Electronics, Computers and Communications, ICAECC 2018; vol. 13, pp. 1–5:2018.
– reference: HaghiMThurowKStollRWearable devices in medical internet of things: scientific research and commercially available devicesHealthc Inform Res201723141510.4258/hir.2017.23.1.4
– reference: HuXBlood pressure stratification using photoplethysmography and light gradient boosting machineFront Physiol20231423110.3389/fphys.2023.1072273
– reference: LiTJiaoWWangLNZhongGAutomatic DenseNet sparsificationIEEE Access20208625616257110.1109/ACCESS.2020.2984130
– reference: Mansouri SR, Lowe A, Gholamhosseini H, Baig MM. Blood pressure estimation from electrocardiogram and photoplethysmography signals using continuous wavelet transform and convolutional neural network. Conf-Irm 2019, 28;2019. https://aisel.aisnet.org/confirm2019/28
– volume: 27
  start-page: 1118
  issue: 2
  year: 2023
  ident: 296_CR51
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3220967
– volume: 54
  start-page: 439
  issue: 3–4
  year: 2021
  ident: 296_CR31
  publication-title: Meas Control (UK)
  doi: 10.1177/00202940211001904
– volume: 141
  start-page: 105081
  year: 2022
  ident: 296_CR38
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105081
– volume: 75
  start-page: 285
  year: 2020
  ident: 296_CR4
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.119.14240
– ident: 296_CR27
  doi: 10.1109/BMEiCON56653.2022.10012088
– volume: 8
  start-page: 20735
  year: 2020
  ident: 296_CR49
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968967
– ident: 296_CR36
  doi: 10.1038/sdata.2016.35
– volume: 120
  start-page: 103719
  year: 2020
  ident: 296_CR12
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103719
– ident: 296_CR23
– ident: 296_CR33
  doi: 10.1109/CVPRW56347.2022.00236
– volume: 14
  start-page: 231
  year: 2023
  ident: 296_CR16
  publication-title: Front Physiol
  doi: 10.3389/fphys.2023.1072273
– volume: 64
  start-page: 859
  issue: 4
  year: 2017
  ident: 296_CR9
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2580904
– ident: 296_CR42
  doi: 10.1109/CVPR.2017.243
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 296_CR40
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00444-8
– volume: 12
  start-page: 2886
  issue: 11
  year: 2022
  ident: 296_CR21
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12112886
– ident: 296_CR19
  doi: 10.23919/MIPRO55190.2022.9803582
– volume: 145
  start-page: 105479
  year: 2022
  ident: 296_CR50
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105479
– volume: 21
  start-page: 7207
  issue: 21
  year: 2021
  ident: 296_CR13
  publication-title: Sensors
  doi: 10.3390/s21217207
– ident: 296_CR29
  doi: 10.1109/EMBC46164.2021.9629687
– volume: 11
  start-page: 120
  issue: 4
  year: 2021
  ident: 296_CR32
  publication-title: Biosensors (Basel)
  doi: 10.3390/bios11040120
– volume: 71
  start-page: 1
  year: 2022
  ident: 296_CR11
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2022.3192831
– volume: 8
  start-page: 101
  year: 2018
  ident: 296_CR22
  publication-title: Biosensors
  doi: 10.3390/bios8040101
– volume: 71
  start-page: e127
  issue: 19
  year: 2018
  ident: 296_CR39
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2017.11.006
– ident: 296_CR2
– volume: 21
  start-page: 6022
  issue: 18
  year: 2021
  ident: 296_CR18
  publication-title: Sensors
  doi: 10.3390/s21186022
– volume: 29
  start-page: 921
  issue: 2
  year: 2022
  ident: 296_CR8
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-021-09597-4
– volume: 473
  start-page: 20160871
  issue: 2199
  year: 2017
  ident: 296_CR37
  publication-title: Proc R Soc A Math Phys Eng Sci
– ident: 296_CR24
  doi: 10.1155/2021/9938584
– volume: 7
  start-page: 144777
  year: 2019
  ident: 296_CR48
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2945129
– volume: 11
  start-page: 93
  issue: 2
  year: 2020
  ident: 296_CR15
  publication-title: Information (Switz)
  doi: 10.3390/info11020093
– volume: 8
  start-page: 62561
  year: 2020
  ident: 296_CR43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984130
– volume: 69
  start-page: 4292
  issue: 7
  year: 2020
  ident: 296_CR5
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2947103
– volume: 23
  start-page: 4
  issue: 1
  year: 2017
  ident: 296_CR7
  publication-title: Healthc Inform Res
  doi: 10.4258/hir.2017.23.1.4
– ident: 296_CR47
  doi: 10.1109/CompComm.2018.8780834
– ident: 296_CR1
– volume: 98
  start-page: 120
  year: 2019
  ident: 296_CR34
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.02.032
– ident: 296_CR44
– ident: 296_CR41
– ident: 296_CR14
  doi: 10.1109/IEMBS.2003.1280811
– ident: 296_CR20
– volume: 51
  start-page: 382
  year: 2019
  ident: 296_CR28
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.02.028
– ident: 296_CR35
– ident: 296_CR46
  doi: 10.1109/ICAECC.2018.8479458
– ident: 296_CR26
  doi: 10.1109/TIPTEKNO56568.2022.9960176
– ident: 296_CR45
  doi: 10.1109/SSCI.2016.7849886
– volume: 79
  start-page: 293
  issue: 1
  year: 2022
  ident: 296_CR6
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.121.18192
– volume: 84
  start-page: 104782
  year: 2023
  ident: 296_CR25
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104782
– volume: 229
  start-page: 107294
  year: 2023
  ident: 296_CR10
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.107294
– volume: 24
  start-page: 227
  issue: 3
  year: 2018
  ident: 296_CR30
  publication-title: Health Inform J
  doi: 10.1177/1460458216663025
– volume: 12
  start-page: 8380
  issue: 16
  year: 2022
  ident: 296_CR17
  publication-title: Appl Sci (Switz)
  doi: 10.3390/app12168380
– volume: 12
  start-page: e027169
  issue: 5
  year: 2023
  ident: 296_CR3
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.122.027169
SSID ssj0000515933
Score 2.3211524
Snippet Appropriate blood pressure (BP) management through continuous monitoring and rapid diagnosis helps to take preventive care against cardiovascular diseases...
Appropriate blood pressure (BP) management through continuous monitoring and rapid diagnosis helps to take preventivecare against cardiovascular diseases...
SourceID nrf
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 739
SubjectTerms Artificial neural networks
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Blood pressure
Cardiovascular diseases
Classification
Engineering
Fourier analysis
Hypertension
Medical and Radiation Physics
Model testing
Neural networks
Original
Original Article
Real time
Signal classification
Signal processing
Time-frequency analysis
Training
의공학
Title Optimized deep neural network models for blood pressure classification using Fourier analysis-based time–frequency spectrogram of photoplethysmography signal
URI https://link.springer.com/article/10.1007/s13534-023-00296-6
https://www.ncbi.nlm.nih.gov/pubmed/37872982
https://www.proquest.com/docview/2879767065
https://www.proquest.com/docview/2881246508
https://pubmed.ncbi.nlm.nih.gov/PMC10590347
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003022777
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biomedical Engineering Letters (BMEL), 2023, 13(4), , pp.739-750
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB7R9gIHxD-BUhnBDSxl4_w4xxXqUkCCCyuVk2U7drtqm6yyuwd66jvwALwbT8KMk-yyUJA47SF25NX8fZP5PAPw0mMYyuNCc2dLzVPvC260ttzFRWHTkUfMELp9fsyPpun74-y4vxS2GNjuQ0kyeOrNZTeRiZRjjOFUSsp5vgN7GebuROSaJuP1lxWaWtLNkE8wXeelzGV_W-b612xFpJ269deBzT85k78VTkM8mtyB2z2QZONO8nfhhqvvwa1f2gveh--f0B9czC5dxSrn5ox6V-KWumN-szAEZ8EQtbJAX2eBE7tqHbMEqYlDFMTGiBt_wibddDum-zYmnAJgxWg4_Y-rb77tONlfWbi72bG-WOPZ_LRZEkmdFOKi74_NiDWizx_AdHL4-c0R7wcycIumu-SJ0xjNYmG1SDKP0EsKY4xOK3QDOivKzMq0NDLzpfSu1Ca2IjOYwTnvKlk5IR7Cbt3U7jEwa_NKUxU214ThcmnR12R-ZND54ttNBKNBKMr23cppaMa52vRZJkEqFKQKglR5BK_We-Zdr45_rn6BslZndqaoxTb9njTqrFWYSLzDTUKIkSgi2B90QfXWvVCYZSKKowJxBM_Xj9Euqdiia9esaA1BJ8K_ETzqVGd9KIFeMillEoHcUqr1AjrQ9pN6dhp6fxMcjkWK53o96N_mXH__s0_-b_lTuJmQhYQ7l_uwu2xX7hmCr6U5gL3x2y8fDg-Czf0EvX4sMQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKOQCHit-ypYARcAJLm_X-eA8cKiBKaCmXRurN2F67jdruRptEqJx4Bx6AC0_GkzDj3WwIFCQOPeWwdjLRjGc-73wzQ8gzB2EoDTPFrMkVi53LmFbKMBtmmYl7DjCD7_a5nw5G8bvD5HCNfF_Uwni2-yIl6T31stiNJzxmEGMYppJSlrZUyl17_gkuatNXwzeg1edR1H978HrA2lkCzIDVzVhkFTjikBvFo8QBahBca63iAixYJVmeGBHnWiQuF87mSoeGJxouH9bZQhQWX3uCo78K4EPg2RlFO92bHJyS0sysj8Kcs1ykoq3OuVjslQh4pazdReD2T47mb4laH__6N8lGC1zpTmNpt8iaLW-TG7-0M7xDvn0A_3M2_mwLWlg7odgrE7aUDdOc-qE7UwoomXq6PPUc3HltqUEIj5wlbyYUufhHtN9M06OqbZvCMOAWFH7B_vjy1dUNB_yc-lrRhmVGK0cnx9UMSfFogGdtP26KLBV1epeMLkVp98h6WZX2PqHGpIXCrG-qEDOmwoBvS1xPg7OHb9cB6S2UIk3bHR2HdJzKZV9nVKQERUqvSJkG5EW3Z9L0Bvnn6qega3lixhJbeuPnUSVPagkXlyFs4pz3eBaQ7YUtyNabTCXcagE1YkI6IE-6x-AHMLmjSlvNcQ1CNcTbAdlsTKcTioNXjnIRBUSsGFW3AAVafVKOj32vcYTfIY9BrpcL-1vK9fc_u_V_yx-Ta4OD93tyb7i_-4Bcj_C0-HrPbbI-q-f2IQC_mX7kzx0lHy_7oP8E0fFoKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkRAcEP8EChgBJ7CajfPjHDhUlFWXosKBlXoztmO3q7bJKpsVKifegQfgFXgmnoQZJ9lloSBx6GkPsXe9mvH4c-abbwh56uAYSsNMMWtyxWLnMqaVMsyGWWbigQPM4NU-99KdcfxmP9lfI9_7WhjPdu9Tkm1NA6o0lc3mtHCby8I3nvCYwXnDMK2UsrSjVe7a009waZu9HG2DhZ9F0fD1h1c7rOsrwAx4YMMiqyAoh9woHiUOEITgWmsVF-DNKsnyxIg41yJxuXA2Vzo0PNFwEbHOFqKw-AoUgv7FGKuPYQeNo63FWx3smNL2r4_CnLNcpKKr1Dl72Sun4YWydmcB3T_5mr8lbf1ZOLxGrnYglm61XnedrNnyBrnyi7ThTfLtHcSik8lnW9DC2ilF3UyYUrasc-ob8MwoIGbqqfPU83HntaUG4Tzyl7zLUOTlH9Bh21mPqk5CheHhW1D4Bfvjy1dXt3zwU-rrRlvGGa0cnR5WDRLk0RlPOm1uiowVdXyLjM_FaLfJelmV9i6hxqSFwgxwqhA_psJAnEvcQEPgh2_XARn0RpGmU0rHhh3HcqnxjIaUYEjpDSnTgDxfzJm2OiH_HP0EbC2PzESivDd-HlTyqJZwiRnBJM75gGcB2eh9QXaRZSbhhgsIEpPTAXm8eAwxARM9qrTVHMcgbEPsHZA7ressFsUhQke5iAIiVpxqMQAXtPqknBx63XGE4iGPYV0vev9bruvvf_be_w1_RC693x7Kt6O93fvkcoSbxZd-bpD1pp7bB4ABG_3QbztKPp73Pv8J4B9sXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+deep+neural+network+models+for+blood+pressure+classification+using+Fourier+analysis%E2%80%91based+time%E2%80%93frequency+spectrogram+of+photoplethysmography+signal&rft.jtitle=Biomedical+engineering+letters&rft.au=Pankaj&rft.au=Ashish+Kumar&rft.au=Manjeet+Kumar&rft.au=Rama+Komaragiri&rft.date=2023-11-01&rft.pub=%EB%8C%80%ED%95%9C%EC%9D%98%EC%9A%A9%EC%83%9D%EC%B2%B4%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=2093-9868&rft.eissn=2093-985X&rft.spage=739&rft.epage=750&rft_id=info:doi/10.1007%2Fs13534-023-00296-6&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10333137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-9868&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-9868&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-9868&client=summon