Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

We present a deep convolutional neural network for breast cancer screening exam classification, trained, and evaluated on over 200000 exams (over 1000000 images). Our network achieves an AUC of 0.895 in predicting the presence of cancer in the breast, when tested on the screening population. We attr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 39; no. 4; pp. 1184 - 1194
Main Authors Wu, Nan, Phang, Jason, Park, Jungkyu, Shen, Yiqiu, Huang, Zhe, Zorin, Masha, Jastrzebski, Stanislaw, Fevry, Thibault, Katsnelson, Joe, Kim, Eric, Wolfson, Stacey, Parikh, Ujas, Gaddam, Sushma, Lin, Leng Leng Young, Ho, Kara, Weinstein, Joshua D., Reig, Beatriu, Gao, Yiming, Toth, Hildegard, Pysarenko, Kristine, Lewin, Alana, Lee, Jiyon, Airola, Krystal, Mema, Eralda, Chung, Stephanie, Hwang, Esther, Samreen, Naziya, Kim, S. Gene, Heacock, Laura, Moy, Linda, Cho, Kyunghyun, Geras, Krzysztof J.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…