Spinning Strings and Integrable Spin Chains in the AdS/CFT Correspondence
In this introductory review we discuss dynamical tests of the × string/[Formula: see text] Super Yang-Mills duality. After a brief introduction to AdS/CFT, we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the...
Saved in:
Published in | Living reviews in relativity Vol. 8; no. 1; p. 9 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
Springer Nature B.V
01.01.2005
Springer International Publishing SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2367-3613 1433-8351 1433-8351 |
DOI | 10.12942/lrr-2005-9 |
Cover
Loading…
Abstract | In this introductory review we discuss dynamical tests of the
×
string/[Formula: see text] Super Yang-Mills duality. After a brief introduction to AdS/CFT, we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the
. The energies of the folded and circular spinning string solutions rotating on a
within the
are derived, which yield all-loop predictions for the dual gauge theory scaling dimensions. These follow from the eigenvalues of the dilatation operator of [Formula: see text] Super Yang-Mills in a minimal SU(2) subsector, and we display its reformulation in terms of a Heisenberg
= 1/2 spin chain along with the coordinate Bethe ansatz for its explicit diagonalization. In order to make contact to the spinning string energies, we then study the thermodynamic limit of the one-loop gauge theory Bethe equations and demonstrate the matching with the folded and closed string result at this loop order. Finally, the known gauge theory results at higher-loop orders are reviewed and the associated long-range spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop conjecture for the gauge theory Bethe equations. This uncovers discrepancies at the three-loop order between gauge theory scaling dimensions and string theory energies and the implications of this are discussed. Along the way, we comment on further developments and generalizations of the subject and point to the relevant literature. |
---|---|
AbstractList | In this introductory review we discuss dynamical tests of the
AdS
5
×
S
5
string/
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal N}=4$\end{document}
Super Yang-Mills duality. After a brief introduction to AdS/CFT, we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the
S
5
. The energies of the folded and circular spinning string solutions rotating on a
S
3
within the
S
5
are derived, which yield all-loop predictions for the dual gauge theory scaling dimensions. These follow from the eigenvalues of the dilatation operator of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal N}=4$\end{document}
Super Yang-Mills in a minimal SU(2) subsector, and we display its reformulation in terms of a Heisenberg
s
= 1/2 spin chain along with the coordinate Bethe ansatz for its explicit diagonalization. In order to make contact to the spinning string energies, we then study the thermodynamic limit of the one-loop gauge theory Bethe equations and demonstrate the matching with the folded and closed string result at this loop order. Finally, the known gauge theory results at higher-loop orders are reviewed and the associated long-range spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop conjecture for the gauge theory Bethe equations. This uncovers discrepancies at the three-loop order between gauge theory scaling dimensions and string theory energies and the implications of this are discussed. Along the way, we comment on further developments and generalizations of the subject and point to the relevant literature. In this introductory review we discuss dynamical tests of the AdS5 × S5 string/ Super Yang-Mills duality. After a brief introduction to AdS/CFT, we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the S5. The energies of the folded and circular spinning string solutions rotating on a S3 within the S5 are derived, which yield all-loop predictions for the dual gauge theory scaling dimensions. These follow from the eigenvalues of the dilatation operator of Super Yang-Mills in a minimal SU(2) subsector, and we display its reformulation in terms of a Heisenberg s = 1/2 spin chain along with the coordinate Bethe ansatz for its explicit diagonalization. In order to make contact to the spinning string energies, we then study the thermodynamic limit of the one-loop gauge theory Bethe equations and demonstrate the matching with the folded and closed string result at this loop order. Finally, the known gauge theory results at higher-loop orders are reviewed and the associated long-range spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop conjecture for the gauge theory Bethe equations. This uncovers discrepancies at the three-loop order between gauge theory scaling dimensions and string theory energies and the implications of this are discussed. Along the way, we comment on further developments and generalizations of the subject and point to the relevant literature. In this introductory review we discuss dynamical tests of the AdS5 × S5 string/[Formula: see text] Super Yang-Mills duality. After a brief introduction to AdS/CFT, we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the S5. The energies of the folded and circular spinning string solutions rotating on a S3 within the S5 are derived, which yield all-loop predictions for the dual gauge theory scaling dimensions. These follow from the eigenvalues of the dilatation operator of [Formula: see text] Super Yang-Mills in a minimal SU(2) subsector, and we display its reformulation in terms of a Heisenberg s = 1/2 spin chain along with the coordinate Bethe ansatz for its explicit diagonalization. In order to make contact to the spinning string energies, we then study the thermodynamic limit of the one-loop gauge theory Bethe equations and demonstrate the matching with the folded and closed string result at this loop order. Finally, the known gauge theory results at higher-loop orders are reviewed and the associated long-range spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop conjecture for the gauge theory Bethe equations. This uncovers discrepancies at the three-loop order between gauge theory scaling dimensions and string theory energies and the implications of this are discussed. Along the way, we comment on further developments and generalizations of the subject and point to the relevant literature.In this introductory review we discuss dynamical tests of the AdS5 × S5 string/[Formula: see text] Super Yang-Mills duality. After a brief introduction to AdS/CFT, we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the S5. The energies of the folded and circular spinning string solutions rotating on a S3 within the S5 are derived, which yield all-loop predictions for the dual gauge theory scaling dimensions. These follow from the eigenvalues of the dilatation operator of [Formula: see text] Super Yang-Mills in a minimal SU(2) subsector, and we display its reformulation in terms of a Heisenberg s = 1/2 spin chain along with the coordinate Bethe ansatz for its explicit diagonalization. In order to make contact to the spinning string energies, we then study the thermodynamic limit of the one-loop gauge theory Bethe equations and demonstrate the matching with the folded and closed string result at this loop order. Finally, the known gauge theory results at higher-loop orders are reviewed and the associated long-range spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop conjecture for the gauge theory Bethe equations. This uncovers discrepancies at the three-loop order between gauge theory scaling dimensions and string theory energies and the implications of this are discussed. Along the way, we comment on further developments and generalizations of the subject and point to the relevant literature. In this introductory review we discuss dynamical tests of the × string/[Formula: see text] Super Yang-Mills duality. After a brief introduction to AdS/CFT, we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the . The energies of the folded and circular spinning string solutions rotating on a within the are derived, which yield all-loop predictions for the dual gauge theory scaling dimensions. These follow from the eigenvalues of the dilatation operator of [Formula: see text] Super Yang-Mills in a minimal SU(2) subsector, and we display its reformulation in terms of a Heisenberg = 1/2 spin chain along with the coordinate Bethe ansatz for its explicit diagonalization. In order to make contact to the spinning string energies, we then study the thermodynamic limit of the one-loop gauge theory Bethe equations and demonstrate the matching with the folded and closed string result at this loop order. Finally, the known gauge theory results at higher-loop orders are reviewed and the associated long-range spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop conjecture for the gauge theory Bethe equations. This uncovers discrepancies at the three-loop order between gauge theory scaling dimensions and string theory energies and the implications of this are discussed. Along the way, we comment on further developments and generalizations of the subject and point to the relevant literature. In this introductory review we discuss dynamical tests of the AdS_5 × S^5 string/N = 4 Super Yang-Mills duality. After a brief introduction to AdS/CFT, we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the S^5. The energies of the folded and circular spinning string solutions rotating on a S^3 within the S^5 are derived, which yield all-loop predictions for the dual gauge theory scaling dimensions. These follow from the eigenvalues of the dilatation operator of N = 4 Super Yang-Mills in a minimal SU(2) subsector, and we display its reformulation in terms of a Heisenberg s = 1/2 spin chain along with the coordinate Bethe ansatz for its explicit diagonalization. In order to make contact to the spinning string energies, we then study the thermodynamic limit of the one-loop gauge theory Bethe equations and demonstrate the matching with the folded and closed string result at this loop order. Finally, the known gauge theory results at higher-loop orders are reviewed and the associated long-range spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop conjecture for the gauge theory Bethe equations. This uncovers discrepancies at the three-loop order between gauge theory scaling dimensions and string theory energies and the implications of this are discussed. Along the way, we comment on further developments and generalizations of the subject and point to the relevant literature. |
ArticleNumber | 9 |
Author | Plefka, Jan |
Author_xml | – sequence: 1 givenname: Jan surname: Plefka fullname: Plefka, Jan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28163650$$D View this record in MEDLINE/PubMed |
BookMark | eNptUk1r3DAQFSWl2W5z6r0YegkUJ_qwZOlSCKZpFwI9bHoWsjTeVfBKW8lb6L-PnE1DE3KaQfP0eDPvvUcnIQZA6CPBF4Sqhl6OKdUUY16rN2hBGsZqyTg5QQvKRFszQdgpOsvZ97ihhOCWiXfolEoimOB4gVbrvQ_Bh021nlIpuTLBVaswwSaZfoRqnlfd1viQq9JNW6iu3Pqyu76tupgS5H0MDoKFD-jtYMYMZ491iX5df7vtftQ3P7-vuqub2nKCp5ooAXZgknMM1FGnsHNG9aZVjbJ97yyhrQDnsBqkFMpYJUQzKG4FsVIZxpZodeR10dzpffI7k_7qaLx-eIhpo02avB1BD2Vd0isuRTkVk20vqJOtHAZogAOlhevrkWt_6HfgLIQpmfEZ6fNJ8Fu9iX80p5wpoQrB-SNBir8PkCe989nCOJoA8ZA1kYLzYk8jCvTzC-hdPKRQTqUpK761bDZliT79r-hJyj_HCuDLEWBTzDnB8AQhWD9EQpdI6DkSetZHXqCtn8zk47yOH1_9cw_f-7fv |
CitedBy_id | crossref_primary_10_1007_JHEP12_2015_036 crossref_primary_10_1142_S0217751X10048639 crossref_primary_10_1016_j_nuclphysb_2022_115742 crossref_primary_10_1007_JHEP04_2012_038 crossref_primary_10_1088_1126_6708_2008_03_032 crossref_primary_10_1103_PhysRevD_84_026002 crossref_primary_10_1002_prop_200900060 crossref_primary_10_1007_JHEP01_2011_040 crossref_primary_10_1142_S0129055X12300014 crossref_primary_10_4213_tmf6082 crossref_primary_10_1007_JHEP05_2010_099 crossref_primary_10_1007_JHEP08_2010_032 crossref_primary_10_1007_s11005_011_0529_2 crossref_primary_10_1007_s11005_011_0466_0 crossref_primary_10_1007_s11232_007_0090_4 crossref_primary_10_1007_JHEP10_2014_050 crossref_primary_10_1007_JHEP04_2010_085 crossref_primary_10_1088_1126_6708_2009_03_144 crossref_primary_10_1007_JHEP03_2010_028 crossref_primary_10_1007_JHEP07_2010_068 crossref_primary_10_1088_1751_8113_42_5_055204 crossref_primary_10_1007_JHEP09_2010_030 crossref_primary_10_1088_1742_5468_2008_03_P03001 crossref_primary_10_1103_PhysRevD_83_046002 crossref_primary_10_1007_JHEP07_2016_070 crossref_primary_10_1088_1126_6708_2009_11_056 crossref_primary_10_1088_1126_6708_2009_11_013 crossref_primary_10_1103_PhysRevD_77_126005 crossref_primary_10_1155_2010_471238 crossref_primary_10_1134_S0081543811010263 crossref_primary_10_1088_0264_9381_25_21_214003 crossref_primary_10_1088_1751_8113_42_25_254001 crossref_primary_10_1016_j_nuclphysb_2007_05_021 crossref_primary_10_1016_j_nuclphysbps_2011_05_012 crossref_primary_10_1088_1751_8113_41_25_255204 crossref_primary_10_1088_1126_6708_2009_04_052 crossref_primary_10_1088_1751_8113_44_26_265202 crossref_primary_10_1002_prop_200900080 crossref_primary_10_1007_JHEP07_2022_075 crossref_primary_10_1007_JHEP06_2012_057 crossref_primary_10_1088_1751_8113_42_28_285401 crossref_primary_10_1088_1126_6708_2009_03_042 crossref_primary_10_1088_1742_5468_2007_01_P01017 crossref_primary_10_1088_1126_6708_2007_09_025 crossref_primary_10_1007_JHEP03_2010_122 crossref_primary_10_1103_PhysRevD_90_066001 crossref_primary_10_1007_JHEP05_2016_083 crossref_primary_10_1007_s10955_019_02375_4 crossref_primary_10_1088_1126_6708_2007_10_031 crossref_primary_10_1088_1126_6708_2009_05_046 crossref_primary_10_1088_1126_6708_2008_05_021 crossref_primary_10_1007_JHEP03_2011_046 crossref_primary_10_1016_j_geomphys_2010_10_003 crossref_primary_10_1007_JHEP01_2010_077 crossref_primary_10_1016_j_nantod_2022_101750 crossref_primary_10_1088_1126_6708_2008_04_022 crossref_primary_10_1088_1367_2630_10_10_103023 crossref_primary_10_1088_1126_6708_2009_04_001 crossref_primary_10_1088_1742_5468_2006_07_P07006 crossref_primary_10_1103_PhysRevD_78_066011 |
Cites_doi | 10.1088/1126-6708/2004/03/004 10.1016/0003-4916(86)90201-0 10.1016/S0550-3213(02)00373-5 10.1016/j.nuclphysb.2004.05.028 10.1016/j.physrep.2004.09.007 10.1016/j.physletb.2003.07.022 10.1016/j.nuclphysb.2003.08.036 10.1016/S0550-3213(98)00570-7 10.1063/1.4822511 10.1007/BF01609119 10.1103/PhysRevD.69.046002 10.1088/1126-6708/2004/08/055 10.1142/S0217751X04019895 10.1016/S0550-3213(03)00229-3 10.1103/PhysRevD.65.126004 10.1088/1126-6708/2004/06/001 10.1088/1126-6708/2005/08/039 10.1016/0370-2693(83)91210-8 10.1088/1126-6708/2004/04/052 10.1016/j.nuclphysb.2003.09.008 10.1088/1126-6708/2005/02/059 10.1088/1126-6708/2004/05/024 10.1016/j.nuclphysb.2004.11.020 10.1016/j.nuclphysb.2005.04.026 10.1016/j.nuclphysb.2003.12.032 10.1016/j.nuclphysb.2005.02.034 10.1103/RevModPhys.76.853 10.1016/j.nuclphysb.2004.07.025 10.4310/ATMP.1998.v2.n2.a1 10.1016/j.nuclphysb.2004.06.033 10.1016/S0370-2693(98)00377-3 10.1088/1126-6708/2002/09/021 10.1016/j.nuclphysb.2005.01.036 10.1088/1126-6708/2005/03/013 10.1088/1126-6708/2005/02/039 10.1016/S0370-2693(02)02424-3 10.1016/j.nuclphysb.2004.08.025 10.1016/j.nuclphysb.2003.11.043 10.1088/1126-6708/2004/09/038 10.1088/1126-6708/2005/07/030 10.1088/1126-6708/2004/11/079 10.1016/0550-3213(84)90528-5 10.1088/1126-6708/2004/02/029 10.1016/S0550-3213(02)00738-1 10.1088/1126-6708/2004/09/032 10.1088/1126-6708/2003/09/010 10.1088/1126-6708/2000/11/024 10.1016/S0550-3213(03)00406-1 10.1088/1126-6708/2004/05/042 10.1088/0264-9381/19/10/101 10.1088/1126-6708/2004/11/054 10.1016/S0370-1573(99)00083-6 10.1007/BF01341708 10.1002/prop.200410207 10.1088/1126-6708/2005/03/041 10.1088/1126-6708/2004/10/060 10.1088/1126-6708/2005/05/054 10.1016/0550-3213(95)00261-P 10.1088/1126-6708/2004/09/023 10.1088/1126-6708/2005/07/026 10.1088/1126-6708/2003/10/037 10.1088/0264-9381/21/10/001 10.1002/prop.200310119 10.1103/PhysRevLett.81.2020 10.1016/S0550-3213(02)00003-2 10.1088/1126-6708/2004/10/016 10.1016/0550-3213(77)90206-1 10.1088/1126-6708/2002/04/013 10.1016/j.nuclphysb.2003.08.019 10.1088/1126-6708/2005/05/069 10.1088/1126-6708/2005/06/059 10.1088/1126-6708/2005/07/002 10.1088/1126-6708/2005/02/060 10.1016/S0370-2693(03)00269-7 10.1103/PhysRevD.71.026006 10.1016/0370-2693(81)90326-9 10.1016/S0550-3213(02)00966-5 10.1088/1126-6708/2004/07/075 10.1088/1126-6708/2003/03/013 10.1088/1126-6708/2004/03/057 10.1088/1126-6708/2002/05/056 10.1088/1126-6708/2003/07/016 10.1088/1126-6708/2002/01/047 10.1016/0370-2693(94)01363-H 10.1016/S0550-3213(00)00003-1 10.1088/1126-6708/2002/06/038 10.1088/1126-6708/2002/06/007 10.1088/1126-6708/2005/09/070 10.1016/j.nuclphysb.2003.08.015 10.1016/j.nuclphysb.2004.09.010 10.1016/j.physletb.2004.04.013 10.1016/j.nuclphysb.2005.06.038 10.1016/0550-3213(74)90154-0 10.1016/0550-3213(78)90049-4 10.1103/PhysRevLett.93.161602 10.1016/S0550-3213(03)00580-7 10.1103/PhysRevD.69.086009 10.1002/prop.200310121 10.1016/j.nuclphysb.2004.09.005 10.1016/0550-3213(77)90328-5 10.1088/1126-6708/2004/04/035 10.1088/1126-6708/2003/11/063 10.1088/1126-6708/2005/05/033 10.1016/j.nuclphysb.2005.01.003 10.1016/j.nuclphysb.2003.10.019 |
ContentType | Journal Article |
Copyright | Living Reviews in Relativity is a copyright of Springer, (2005). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2005 |
Copyright_xml | – notice: Living Reviews in Relativity is a copyright of Springer, (2005). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2005 |
DBID | AAYXX CITATION NPM 8FD ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO H8D HCIFZ L7M PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.12942/lrr-2005-9 |
DatabaseName | CrossRef PubMed Technology Research Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1433-8351 |
ExternalDocumentID | oai_doaj_org_article_f0731b9586294387b62d878ffe4e5e22 PMC5253969 28163650 10_12942_lrr_2005_9 |
Genre | Journal Article Review |
GroupedDBID | -~9 0R~ 29L 2WC 5GY 5VS AAFWJ AAKKN AAYXX ABDBF ABEEZ ACACY ACGFO ACGFS ACUHS ACULB ADBBV AEGXH AENEX AEUYN AFGXO AFKRA AFPKN AHSBF AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ASPBG AVWKF B0M BAPOH BCNDV BENPR BHPHI BKSAR C1A C24 C6C CCPQU CITATION E3Z EAP EBS EJD EMK ESX GROUPED_DOAJ HCIFZ I-F IAO IPNFZ ISR ITC J9A KQ8 M~E OK1 OVT P2P PCBAR PHGZM PHGZT PIMPY PROAC REM RIG RNS SOJ TR2 TUS XSB ~8M NPM 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c510t-196ecf38550e2d2d90dda9ba7949cbbdc1276edd09f8869ac9664f95c61c89a33 |
IEDL.DBID | DOA |
ISSN | 2367-3613 1433-8351 |
IngestDate | Wed Aug 27 01:25:13 EDT 2025 Thu Aug 21 18:10:47 EDT 2025 Fri Sep 05 05:56:54 EDT 2025 Mon Jun 30 02:38:57 EDT 2025 Mon May 19 03:31:24 EDT 2025 Tue Jul 01 03:51:46 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c510t-196ecf38550e2d2d90dda9ba7949cbbdc1276edd09f8869ac9664f95c61c89a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/f0731b9586294387b62d878ffe4e5e22 |
PMID | 28163650 |
PQID | 2343373816 |
PQPubID | 4402871 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f0731b9586294387b62d878ffe4e5e22 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5253969 proquest_miscellaneous_1865520046 proquest_journals_2343373816 pubmed_primary_28163650 crossref_primary_10_12942_lrr_2005_9 crossref_citationtrail_10_12942_lrr_2005_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-01-01 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – month: 01 year: 2005 text: 2005-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Berlin – name: Cham |
PublicationTitle | Living reviews in relativity |
PublicationTitleAlternate | Living Rev Relativ |
PublicationYear | 2005 |
Publisher | Springer Nature B.V Springer International Publishing SpringerOpen |
Publisher_xml | – name: Springer Nature B.V – name: Springer International Publishing – name: SpringerOpen |
References | LF Alday (9_CR3) 2005; 2005 M Luscher (9_CR85) 1978; 137 VE Zakharov (9_CR118) 1978; 47 M Kruczenski (9_CR79) 2004; 93 JA Minahan (9_CR91) 2002; 648 LF Alday (9_CR2) 2005; 2005 9_CR55 9_CR52 I Bena (9_CR31) 2004; 69 J Engquist (9_CR54) 2003; 2003 JA Minahan (9_CR92) 2003; 2003 AA Tseytlin (9_CR117) 2005 K Okuyama (9_CR93) 2004; 2004 J Plefka (9_CR97) 2004; 52 K Dasgupta (9_CR49) 2002; 2002 D Berenstein (9_CR32) 2004; 702 R Russo (9_CR103) 2004; 21 H Bethe (9_CR37) 1931; 71 R Hernandez (9_CR71) 2004; 2004 9_CR67 9_CR65 B Chen (9_CR48) 2004; 591 R Hernandez (9_CR70) 2004; 2004 D Serban (9_CR107) 2004; 2004 T Klose (9_CR78) 2004; 679 SS Gubser (9_CR68) 1998; 428 RR Metsaev (9_CR90) 2002; 65 JG Russo (9_CR102) 2002; 2002 CG Callan Jr (9_CR46) 2003; 673 S Frolov (9_CR60) 2002; 2002 S Frolov (9_CR61) 2003; 668 T Fischbacher (9_CR58) 2005; 2005 N Beisert (9_CR14) 2005; 53 SS Gubser (9_CR69) 2002; 636 RR Metsaev (9_CR89) 1998; 533 G Arutyunov (9_CR4) 2005; 2005 RG Leigh (9_CR82) 1995; 447 M Staudacher (9_CR109) 2005; 2005 JM Maldacena (9_CR86) 1998; 2 N Beisert (9_CR20) 2003; 558 G Arutyunov (9_CR7) 2004; 69 G Arutyunov (9_CR9) 2005; 2005 LD Faddeev (9_CR56) 1995; 342 O DeWolfe (9_CR51) 2004; 2004 N Beisert (9_CR15) 2004; 2004 D Sadri (9_CR104) 2004; 76 N Beisert (9_CR21) 2003; 664 N Kim (9_CR77) 2002; 643 R Roiban (9_CR100) 2000; 2000 M Blau (9_CR39) 2002; 19 B Eden (9_CR53) 2005; 712 B Stefanski Jr (9_CR111) 2004; 2004 N Beisert (9_CR16) 2003; 2003 M Blau (9_CR38) 2002; 2002 R Roiban (9_CR99) 2004; 2004 N Beisert (9_CR25) 2005; 727 LD Faddeev (9_CR57) 1986; 167 9_CR83 B Chen (9_CR47) 2004; 2004 SA Frolov (9_CR64) 2005; 71 M Karbach (9_CR73) 1997; 11 S Bellucci (9_CR30) 2004; 699 B Stefanski Jr (9_CR110) 2004; 2004 B Stefanski Jr (9_CR112) 2005; 718 9_CR18 S Frolov (9_CR62) 2003; 2003 9_CR17 IY Park (9_CR95) 2005; 2005 VM Braun (9_CR40) 1998; 81 N Beisert (9_CR10) 2003; 659 N Beisert (9_CR19) 2005; 2005 L Brink (9_CR42) 1977; 121 K Peeters (9_CR96) 2004; 2004 A Pankiewicz (9_CR94) 2003; 51 K Zarembo (9_CR119) 2004; 5 N Beisert (9_CR24) 2003; 670 L Brink (9_CR41) 1983; 123 9_CR106 S Frolov (9_CR59) 2005; 2005 M Kruczenski (9_CR80) 2004; 692 O Lunin (9_CR84) 2005; 2005 CG Callan Jr (9_CR44) 2004; 700 G Arutyunov (9_CR6) 2004; 2004 9_CR28 CG Callan Jr (9_CR45) 2004; 694 N Beisert (9_CR23) 2005; 2005 RR Metsaev (9_CR88) 2002; 625 N Beisert (9_CR11) 2004; 676 S Schafer-Nameki (9_CR105) 2005; 714 G Hooft ’t (9_CR115) 1974; 72 CG Callan Jr (9_CR43) 2004; 701 AV Belitsky (9_CR27) 2004; 19 G Arutyunov (9_CR8) 2004; 2004 D Berenstein (9_CR33) 2002; 2002 S Frolov (9_CR63) 2003; 570 D Berenstein (9_CR34) 2005; 2005 N Beisert (9_CR13) 2005; 405 R Roiban (9_CR101) 2004; 2004 I Swanson (9_CR113) 2005; 709 F Gliozzi (9_CR66) 1977; 122 G Mandal (9_CR87) 2002; 543 MF Sohnius (9_CR108) 1981; 100 N Beisert (9_CR22) 2003; 2003 K Pohlmeyer (9_CR98) 1976; 46 N Beisert (9_CR12) 2004; 682 G Arutyunov (9_CR5) 2003; 671 S Bellucci (9_CR29) 2005; 707 N Berkovits (9_CR35) 2005; 2005 M Kruczenski (9_CR81) 2004; 2004 AV Belitsky (9_CR26) 2000; 547 N Berkovits (9_CR36) 2005; 2005 VA Kazakov (9_CR74) 2004; 2004 I Swanson (9_CR114) 2005 9_CR116 VA Kazakov (9_CR75) 2004; 2004 K Dasgupta (9_CR50) 2002; 2002 O Aharony (9_CR1) 2000; 323 N Kim (9_CR76) 2003; 671 PS Howe (9_CR72) 1984; 236 15524978 - Phys Rev Lett. 2004 Oct 15;93(16):161602 |
References_xml | – volume: 2004 start-page: 004 issue: 03 year: 2004 ident: 9_CR8 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/03/004 – volume: 167 start-page: 227 year: 1986 ident: 9_CR57 publication-title: Ann. Phys. (N.Y.) doi: 10.1016/0003-4916(86)90201-0 – volume: 636 start-page: 99 year: 2002 ident: 9_CR69 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(02)00373-5 – volume: 692 start-page: 3 year: 2004 ident: 9_CR80 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.05.028 – volume: 405 start-page: 1 year: 2005 ident: 9_CR13 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2004.09.007 – volume: 570 start-page: 96 year: 2003 ident: 9_CR63 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2003.07.022 – volume: 671 start-page: 3 year: 2003 ident: 9_CR5 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2003.08.036 – volume: 533 start-page: 109 year: 1998 ident: 9_CR89 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(98)00570-7 – volume: 11 start-page: 36 year: 1997 ident: 9_CR73 publication-title: Comput. Phys. doi: 10.1063/1.4822511 – volume: 46 start-page: 207 year: 1976 ident: 9_CR98 publication-title: Commun. Math. Phys. doi: 10.1007/BF01609119 – volume: 69 start-page: 046002 year: 2004 ident: 9_CR31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.69.046002 – volume: 2004 start-page: 055 issue: 08 year: 2004 ident: 9_CR93 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/08/055 – volume: 19 start-page: 4715 year: 2004 ident: 9_CR27 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X04019895 – volume: 659 start-page: 79 year: 2003 ident: 9_CR10 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(03)00229-3 – volume: 65 start-page: 126004 year: 2002 ident: 9_CR90 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.65.126004 – volume: 2004 start-page: 001 issue: 06 year: 2004 ident: 9_CR107 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/06/001 – volume: 2005 start-page: 039 issue: 08 year: 2005 ident: 9_CR23 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/08/039 – ident: 9_CR28 – volume: 123 start-page: 323 year: 1983 ident: 9_CR41 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(83)91210-8 – volume: 2004 start-page: 052 issue: 04 year: 2004 ident: 9_CR71 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/04/052 – volume: 673 start-page: 3 year: 2003 ident: 9_CR46 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2003.09.008 – volume: 2005 start-page: 059 issue: 02 year: 2005 ident: 9_CR4 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/02/059 – volume: 2004 start-page: 024 issue: 05 year: 2004 ident: 9_CR74 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/05/024 – volume: 707 start-page: 303 year: 2005 ident: 9_CR29 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.11.020 – volume: 718 start-page: 83 year: 2005 ident: 9_CR112 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2005.04.026 – volume: 682 start-page: 487 year: 2004 ident: 9_CR12 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2003.12.032 – ident: 9_CR17 – volume: 714 start-page: 3 year: 2005 ident: 9_CR105 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2005.02.034 – volume: 76 start-page: 853 year: 2004 ident: 9_CR104 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.853 – volume: 699 start-page: 151 year: 2004 ident: 9_CR30 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.07.025 – volume: 2 start-page: 231 year: 1998 ident: 9_CR86 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a1 – volume: 5 start-page: 1081 year: 2004 ident: 9_CR119 publication-title: C. R. Acad. Sci. Ser. IV – ident: 9_CR106 – volume: 694 start-page: 115 year: 2004 ident: 9_CR45 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.06.033 – volume: 428 start-page: 105 year: 1998 ident: 9_CR68 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00377-3 – volume: 2002 start-page: 021 issue: 09 year: 2002 ident: 9_CR50 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2002/09/021 – volume: 712 start-page: 157 year: 2005 ident: 9_CR53 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2005.01.036 – volume: 2005 start-page: 013 issue: 03 year: 2005 ident: 9_CR95 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/03/013 – volume: 2005 start-page: 039 issue: 02 year: 2005 ident: 9_CR58 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/02/039 – volume: 543 start-page: 81 year: 2002 ident: 9_CR87 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(02)02424-3 – volume: 700 start-page: 271 year: 2004 ident: 9_CR44 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.08.025 – volume: 679 start-page: 127 year: 2004 ident: 9_CR78 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2003.11.043 – volume: 2004 start-page: 038 issue: 09 year: 2004 ident: 9_CR81 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/09/038 – ident: 9_CR55 – volume: 2005 start-page: 030 issue: 07 year: 2005 ident: 9_CR19 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/07/030 – volume: 2004 start-page: 079 issue: 11 year: 2004 ident: 9_CR70 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/11/079 – volume: 236 start-page: 125 year: 1984 ident: 9_CR72 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(84)90528-5 – volume: 2004 start-page: 029 issue: 02 year: 2004 ident: 9_CR47 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/02/029 – volume: 643 start-page: 31 year: 2002 ident: 9_CR77 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(02)00738-1 – ident: 9_CR83 – volume: 2004 start-page: 032 issue: 09 year: 2004 ident: 9_CR101 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/09/032 – volume: 2003 start-page: 010 issue: 09 year: 2003 ident: 9_CR22 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2003/09/010 – volume: 2000 start-page: 024 issue: 11 year: 2000 ident: 9_CR100 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2000/11/024 – ident: 9_CR52 – volume: 664 start-page: 131 year: 2003 ident: 9_CR21 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(03)00406-1 – volume: 2004 start-page: 042 issue: 05 year: 2004 ident: 9_CR111 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/05/042 – volume: 19 start-page: L87 year: 2002 ident: 9_CR39 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/19/10/101 – volume: 2004 start-page: 054 issue: 11 year: 2004 ident: 9_CR96 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/11/054 – volume: 323 start-page: 183 year: 2000 ident: 9_CR1 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(99)00083-6 – volume: 71 start-page: 205 year: 1931 ident: 9_CR37 publication-title: Z. Phys. doi: 10.1007/BF01341708 – volume-title: Superstring holography and integrability in AdS(5) x S(5) year: 2005 ident: 9_CR114 – volume: 53 start-page: 852 year: 2005 ident: 9_CR14 publication-title: Fortschr. Phys. doi: 10.1002/prop.200410207 – volume: 2005 start-page: 041 issue: 03 year: 2005 ident: 9_CR36 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/03/041 – volume: 2004 start-page: 060 issue: 10 year: 2004 ident: 9_CR75 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/10/060 – volume: 2005 start-page: 054 issue: 05 year: 2005 ident: 9_CR109 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/05/054 – volume: 447 start-page: 95 year: 1995 ident: 9_CR82 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(95)00261-P – volume: 2004 start-page: 023 issue: 09 year: 2004 ident: 9_CR99 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/09/023 – volume: 2005 start-page: 026 issue: 07 year: 2005 ident: 9_CR9 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/07/026 – ident: 9_CR18 – volume: 2003 start-page: 037 issue: 10 year: 2003 ident: 9_CR16 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2003/10/037 – volume: 21 start-page: 1265 year: 2004 ident: 9_CR103 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/21/10/001 – volume: 51 start-page: 1139 year: 2003 ident: 9_CR94 publication-title: Fortschr. Phys. doi: 10.1002/prop.200310119 – volume: 81 start-page: 2020 year: 1998 ident: 9_CR40 publication-title: Phys. Lett. B doi: 10.1103/PhysRevLett.81.2020 – volume: 47 start-page: 1017 year: 1978 ident: 9_CR118 publication-title: Sov. Phys. JETP – volume: 625 start-page: 70 year: 2002 ident: 9_CR88 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(02)00003-2 – volume: 2004 start-page: 016 issue: 10 year: 2004 ident: 9_CR6 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/10/016 – volume: 122 start-page: 253 year: 1977 ident: 9_CR66 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(77)90206-1 – volume: 2002 start-page: 013 issue: 04 year: 2002 ident: 9_CR33 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2002/04/013 – volume: 671 start-page: 359 year: 2003 ident: 9_CR76 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2003.08.019 – volume: 2005 start-page: 069 issue: 05 year: 2005 ident: 9_CR59 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/05/069 – ident: 9_CR116 – volume: 2005 start-page: 059 issue: 06 year: 2005 ident: 9_CR34 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/06/059 – volume: 2005 start-page: 002 issue: 07 year: 2005 ident: 9_CR2 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/07/002 – volume: 2005 start-page: 060 issue: 02 year: 2005 ident: 9_CR35 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/02/060 – volume: 558 start-page: 229 year: 2003 ident: 9_CR20 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(03)00269-7 – volume: 71 start-page: 026006 year: 2005 ident: 9_CR64 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.71.026006 – volume: 100 start-page: 245 year: 1981 ident: 9_CR108 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(81)90326-9 – volume: 648 start-page: 203 year: 2002 ident: 9_CR91 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(02)00966-5 – volume: 2004 start-page: 075 issue: 07 year: 2004 ident: 9_CR15 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/07/075 – ident: 9_CR65 – volume: 2003 start-page: 013 issue: 03 year: 2003 ident: 9_CR92 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2003/03/013 – volume: 2004 start-page: 057 issue: 03 year: 2004 ident: 9_CR110 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/03/057 – volume-title: From Fields to Strings: Circumnavigating Theoretical Physics (Ian Kogan Memorial Collection) year: 2005 ident: 9_CR117 – volume: 2002 start-page: 056 issue: 05 year: 2002 ident: 9_CR49 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2002/05/056 – volume: 2003 start-page: 016 issue: 07 year: 2003 ident: 9_CR62 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2003/07/016 – volume: 2002 start-page: 047 issue: 01 year: 2002 ident: 9_CR38 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2002/01/047 – volume: 342 start-page: 311 year: 1995 ident: 9_CR56 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(94)01363-H – volume: 547 start-page: 407 year: 2000 ident: 9_CR26 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(00)00003-1 – volume: 2002 start-page: 038 issue: 06 year: 2002 ident: 9_CR102 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2002/06/038 – volume: 2002 start-page: 007 issue: 06 year: 2002 ident: 9_CR60 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2002/06/007 – volume: 2005 start-page: 070 issue: 09 year: 2005 ident: 9_CR3 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/09/070 – volume: 670 start-page: 439 year: 2003 ident: 9_CR24 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2003.08.015 – volume: 701 start-page: 180 year: 2004 ident: 9_CR43 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.09.010 – volume: 591 start-page: 170 year: 2004 ident: 9_CR48 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2004.04.013 – volume: 727 start-page: 1 year: 2005 ident: 9_CR25 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2005.06.038 – volume: 72 start-page: 461 year: 1974 ident: 9_CR115 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(74)90154-0 – volume: 137 start-page: 46 year: 1978 ident: 9_CR85 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(78)90049-4 – volume: 93 start-page: 161602 year: 2004 ident: 9_CR79 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.161602 – volume: 668 start-page: 77 year: 2003 ident: 9_CR61 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(03)00580-7 – volume: 69 start-page: 086009 year: 2004 ident: 9_CR7 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.69.086009 – volume: 52 start-page: 264 year: 2004 ident: 9_CR97 publication-title: Fortschr. Phys. doi: 10.1002/prop.200310121 – volume: 702 start-page: 49 year: 2004 ident: 9_CR32 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.09.005 – volume: 121 start-page: 77 year: 1977 ident: 9_CR42 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(77)90328-5 – volume: 2004 start-page: 035 issue: 04 year: 2004 ident: 9_CR51 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/04/035 – ident: 9_CR67 – volume: 2003 start-page: 063 issue: 11 year: 2003 ident: 9_CR54 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2003/11/063 – volume: 2005 start-page: 033 issue: 05 year: 2005 ident: 9_CR84 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2005/05/033 – volume: 709 start-page: 443 year: 2005 ident: 9_CR113 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2005.01.003 – volume: 676 start-page: 3 year: 2004 ident: 9_CR11 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2003.10.019 – reference: 15524978 - Phys Rev Lett. 2004 Oct 15;93(16):161602 |
SSID | ssib042110736 ssj0021401 |
Score | 2.0107148 |
SecondaryResourceType | review_article |
Snippet | In this introductory review we discuss dynamical tests of the
×
string/[Formula: see text] Super Yang-Mills duality. After a brief introduction to AdS/CFT, we... In this introductory review we discuss dynamical tests of the AdS5 × S5 string/ Super Yang-Mills duality. After a brief introduction to AdS/CFT, we argue that... In this introductory review we discuss dynamical tests of the AdS5 × S5 string/[Formula: see text] Super Yang-Mills duality. After a brief introduction to... In this introductory review we discuss dynamical tests of the AdS 5 × S 5 string/ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym}... In this introductory review we discuss dynamical tests of the AdS_5 × S^5 string/N = 4 Super Yang-Mills duality. After a brief introduction to AdS/CFT, we... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9 |
SubjectTerms | Chains Eigenvalues Gauge theory Mathematical analysis Review String theory |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZby2AvY-0u9dYODfo0MI1lSZaeRhta2sLKWFrom9F1DQQ7i9P_v3MUJVtG2ZuxZBA69yP5-wg5to2QxltWBgjeJY8ylorxWCJanQtOmBiwNfDtRl7e8et7cZ8bbkO-Vrn2iclR-95hj_yE1bxGFJ5Kfp3_KpE1Ck9XM4XGc7ILLliBnu-end98_7HWKJ7KG2T0ziUYlhOJbg7cQw2RLP-xxzRnJ7PFokzAnHorRiUo_6fyz3-vUf4Vly5ek1c5oaSnKw3YI89Ct09epIudbnhDribzaWIlopMltvAGajpPr1YgEXYWKI7T8YOZdgOFJ8gH6amfgDHc0nFi7pj3XeIdfUvuLs5vx5dlpk8oHRjasgTbCi7WiFgWmGdej7w32hqwQO2s9a5ijQzej3RUSmrjoPLhUQsnK6e0qet3ZKfru3BAqFDRKBGlsnrETfQqKOkaAYIWASHqC_JlvWGty9jiSHExa7HGwN1tYXeR8lK0uiDHm8nzFaTG09POcOc3UxAHO73oFz_bbFZtBOlWVguoyzSvVWMl86pRMQYeRGCsIIdrubXZOIf2jyoV5PNmGMwKz0pMF_rHoa3wh93UPSjI-5WYNyth8GUNmW1Bmi0F2Frq9kg3fUjQ3YKJWkv94f_L-kheJkVMnZ5DsrNcPIYjyH2W9lNW8N87MwHD priority: 102 providerName: ProQuest |
Title | Spinning Strings and Integrable Spin Chains in the AdS/CFT Correspondence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28163650 https://www.proquest.com/docview/2343373816 https://www.proquest.com/docview/1865520046 https://pubmed.ncbi.nlm.nih.gov/PMC5253969 https://doaj.org/article/f0731b9586294387b62d878ffe4e5e22 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KSqGX0nfdpkGFnAoitmTJ0jFZNiSFhNJNIDejJ1lYvMt6c-1v70j2LtkS6KUXYyzZyDPfWDNj6RuAY9sIabxlNODkTesoI1WsjjSx1bnghIkhpQauruXFbf3jTtw9KvWV1oQN9MCD4E4iYrCyWqDnrWuuGiuZV42KMdRBBJa_vqUut8HUGGqlsCHvK-Kcoo9RjTvz8BHsZLFe00zAqffmokzZ_5Sf-fdyyUfzz_lreDU6juR0GPAbeBa6t_AiL-B0_Tu4nK3mufoQmW1Sqq4npvPkciCDsItAUjuZ3Jt51xM8Q7-PnPoZgv6GTHKFjtWyy_VF38Pt-fRmckHHMgnUoUFtKNpQcJEnZrLAPPO69N5oa9DStLPWu4o1Mnhf6qiU1MZhhFNHLZysnNKG8w9w0C278AmIUNEoEaWyuqxN9Coo6RqBChUhUdEX8H0rsNaNHOKplMWiTbFEkm6L0k2lLUWrCzjedV4N1BlPdztLkt91SXzX-QKioB1R0P4LBQUcbvXWjkbYt4yj-pv0Z7SAb7tmNJ_0T8R0YfnQt1XamJuzBAV8HNS8GwnDOzl6sAU0ewDYG-p-Sze_zxTdggmupf78P97tC7zMcM15n0M42Kwfwlf0hDb2CJ6fTa9__jrK4Mfj1e_pHz-fB1A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL2aNiF4QXwvMMBI4wUpWuvYjv2A0FY2tWyrEO2kvQXHH6xSlZamE-JP8RvxdZNC0cTb3qLYkazr4-t7b-xzAPbLnAttS5q6sHmnzAufSsp8imx1xhmuvcPSwPlQ9C_Yp0t-uQW_2rsweKyy9YnRUduZwRr5Ac1Yhiw8XfFh_j1F1Sj8u9pKaKxgcep-_ggpW_1-8DHM71tKT47HvX7aqAqkJuBvmQbIOeMzJPJy1FKrOtZqVeoATGXK0pouzYWztqO8lEJpExIC5hU3omuk0lgADS5_h-GN1m3YOToefv7SIpjFdAoVxJuUD9OXKG8X3FEWds7mhiBVjB5MF4s0EoGqjT0xSgfcFO_-e2zzr33w5AHcbwJYcrhC3EPYctUjuBMPkpr6MQxG80lUQSKjJZYMa6IrSwYrUopy6gi2k96VnlQ1CU8h_iSHdhQW35j0olLIfFZFndMncHErhn0K29WscrtAuPRaci9kqTpMeyudFCbnAVjcISV-Au9agxWm4TJHSY1pgTkNWrcI1kWJTV6oBPbXnecrCo-bux2h5dddkHc7vpgtvhXNMi58mN1uqXjIAxXLZF4KamUuvXfMcUdpAnvtvBWNM6iLP9BN4M26OSxj_DejKze7rosuXhCO1YoEnq2meT0SGr7MQiSdQL4BgI2hbrZUk6tIFc4pz5RQz_8_rNdwtz8-PyvOBsPTF3AvgjJWmfZge7m4di9D3LUsXzVgJ_D1ttfXbwh-P3Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spinning+Strings+and+Integrable+Spin+Chains+in+the+AdS%2FCFT+Correspondence&rft.jtitle=Living+reviews+in+relativity&rft.au=Plefka%2C+Jan&rft.date=2005-01-01&rft.issn=2367-3613&rft.eissn=1433-8351&rft.volume=8&rft.issue=1&rft_id=info:doi/10.12942%2Flrr-2005-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_12942_lrr_2005_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-3613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-3613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-3613&client=summon |