The non-equilibrium attractor for kinetic theory in relaxation time approximation
A bstract I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments. Using a previously obtained exact solution to the relaxation-time approximation Boltzmann equation for a transversally homogeneous...
Saved in:
Published in | The journal of high energy physics Vol. 2018; no. 12; pp. 1 - 27 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2018
Springer Nature B.V Springer Berlin SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments. Using a previously obtained exact solution to the relaxation-time approximation Boltzmann equation for a transversally homogeneous and boost-invariant system subject to Bjorken flow, I derive an equation obeyed by all moments of the one-particle distribution function. Using numerical solutions, I show that, similar to the pressure anisotropy, all moments of the distribution function exhibit attractor-like behavior wherein all initial conditions converge to a universal solution after a short time with the exception of moments which are sensitive to modes with zero longitudinal momentum and high transverse momentum. In addition, I compute the exact solution for the distribution function itself on very fine lattices in momentum space and demonstrate that (a) an attractor for the full distribution function exists and (b) solutions with generic initial conditions relax to this solution, first at low momentum and later at high momentum. |
---|---|
AbstractList | I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments. Using a previously obtained exact solution to the relaxation-time approximation Boltzmann equation for a transversally homogeneous and boost-invariant system subject to Bjorken flow, I derive an equation obeyed by all moments of the one-particle distribution function. Using numerical solutions, I show that, similar to the pressure anisotropy, all moments of the distribution function exhibit attractor-like behavior wherein all initial conditions converge to a universal solution after a short time with the exception of moments which are sensitive to modes with zero longitudinal momentum and high transverse momentum. In addition, I compute the exact solution for the distribution function itself on very fine lattices in momentum space and demonstrate that (a) an attractor for the full distribution function exists and (b) solutions with generic initial conditions relax to this solution, first at low momentum and later at high momentum. Abstract I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments. Using a previously obtained exact solution to the relaxation-time approximation Boltzmann equation for a transversally homogeneous and boost-invariant system subject to Bjorken flow, I derive an equation obeyed by all moments of the one-particle distribution function. Using numerical solutions, I show that, similar to the pressure anisotropy, all moments of the distribution function exhibit attractor-like behavior wherein all initial conditions converge to a universal solution after a short time with the exception of moments which are sensitive to modes with zero longitudinal momentum and high transverse momentum. In addition, I compute the exact solution for the distribution function itself on very fine lattices in momentum space and demonstrate that (a) an attractor for the full distribution function exists and (b) solutions with generic initial conditions relax to this solution, first at low momentum and later at high momentum. A bstract I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments. Using a previously obtained exact solution to the relaxation-time approximation Boltzmann equation for a transversally homogeneous and boost-invariant system subject to Bjorken flow, I derive an equation obeyed by all moments of the one-particle distribution function. Using numerical solutions, I show that, similar to the pressure anisotropy, all moments of the distribution function exhibit attractor-like behavior wherein all initial conditions converge to a universal solution after a short time with the exception of moments which are sensitive to modes with zero longitudinal momentum and high transverse momentum. In addition, I compute the exact solution for the distribution function itself on very fine lattices in momentum space and demonstrate that (a) an attractor for the full distribution function exists and (b) solutions with generic initial conditions relax to this solution, first at low momentum and later at high momentum. |
ArticleNumber | 128 |
Author | Strickland, M. |
Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0003-0489-4278 surname: Strickland fullname: Strickland, M. email: mstrick6@kent.edu organization: Department of Physics, Kent State University |
BackLink | https://www.osti.gov/servlets/purl/1611989$$D View this record in Osti.gov |
BookMark | eNp9Uc1rFTEQD6WCbfXc66IXPaydyX4lRynVVgoq1HPIZid9ee5LXpM8aP9707dSi6CHkDDz-5jJ75gd-uCJsVOEDwgwnH25vPiG_B0HFO-RiwN2hMBlLdpBHj57v2THKa0BsEMJR-z7zYqqolTT3c7Nboxut6l0zlGbHGJly_npPGVnqryiEB8q56tIs77X2QVfZbehSm-3Mdy7zb70ir2wek70-vd9wn58urg5v6yvv36-Ov94XZsOIdcoEbEdjRzHYeIDDT237WTt1IFFLPWp77rJaC6N7tGSLr1uokZwkAT91Jywq0V3CnqttrHYxwcVtFP7Qoi3Sscy90zKAmhLZeWGQzuYdgRqWhp725MYrW6L1ptFK6TsVDIuk1mZ4D2ZrLBHlEIW0NsFVJa921HKah120ZcdFcdOChCibwrqbEGZGFKKZJ9GQ1CPQaklKPUYlCpBFUb3F6P477-ypODm__Bg4aXi4G8p_pnnX5RfuT2pMg |
CitedBy_id | crossref_primary_10_1140_epjc_s10052_020_7847_4 crossref_primary_10_1140_epjc_s10052_025_14029_9 crossref_primary_10_1140_epjc_s10052_025_14028_w crossref_primary_10_1103_PhysRevC_111_L021902 crossref_primary_10_1103_PhysRevResearch_2_043320 crossref_primary_10_1103_PhysRevD_107_094013 crossref_primary_10_1103_PhysRevLett_130_152301 crossref_primary_10_1103_PhysRevD_110_116020 crossref_primary_10_1103_PhysRevD_104_056022 crossref_primary_10_1103_PhysRevC_100_014904 crossref_primary_10_1007_JHEP12_2022_143 crossref_primary_10_61186_setee_2_2_144 crossref_primary_10_1088_1742_6596_1602_1_012018 crossref_primary_10_1103_PhysRevD_111_014001 crossref_primary_10_1088_1742_6596_1602_1_012017 crossref_primary_10_1016_j_ppnp_2023_104048 crossref_primary_10_1103_PhysRevC_108_064905 crossref_primary_10_3390_particles2020016 crossref_primary_10_1007_JHEP10_2019_069 crossref_primary_10_1007_s41365_020_00829_z crossref_primary_10_1103_PhysRevD_104_094049 crossref_primary_10_1007_JHEP07_2020_226 crossref_primary_10_1103_PhysRevC_109_L051901 crossref_primary_10_1103_PhysRevD_102_074017 crossref_primary_10_1103_PhysRevD_103_014011 crossref_primary_10_1103_PhysRevD_104_074012 crossref_primary_10_1103_PhysRevC_109_014901 crossref_primary_10_1103_RevModPhys_93_035003 crossref_primary_10_1103_PhysRevD_102_056003 crossref_primary_10_1103_PhysRevD_109_074020 crossref_primary_10_1103_PhysRevD_103_056010 crossref_primary_10_1103_PhysRevLett_127_122301 crossref_primary_10_1103_PhysRevD_102_014037 crossref_primary_10_1103_PhysRevLett_123_262301 crossref_primary_10_1140_epjc_s10052_022_10282_4 crossref_primary_10_1103_PhysRevLett_125_122302 crossref_primary_10_1007_JHEP05_2021_136 crossref_primary_10_1103_PhysRevC_110_015201 crossref_primary_10_1103_PhysRevD_108_L031504 crossref_primary_10_1103_PhysRevC_102_064910 crossref_primary_10_1103_PhysRevC_111_014913 crossref_primary_10_1103_PhysRevC_108_055203 crossref_primary_10_1142_S0218301321300010 crossref_primary_10_1103_PhysRevLett_125_132301 crossref_primary_10_1140_epjc_s10052_021_09832_z crossref_primary_10_1103_PhysRevC_101_054901 crossref_primary_10_1103_PhysRevLett_126_222301 crossref_primary_10_1103_PhysRevC_100_034901 crossref_primary_10_1103_PhysRevD_111_034033 crossref_primary_10_1103_PhysRevD_99_116012 crossref_primary_10_1103_PhysRevLett_124_152301 crossref_primary_10_1016_j_aop_2019_167993 crossref_primary_10_1140_epjc_s10052_024_13227_1 crossref_primary_10_1103_PhysRevC_102_064904 crossref_primary_10_1142_S0218301324300042 crossref_primary_10_1103_PhysRevC_106_044912 crossref_primary_10_1103_PhysRevD_102_031501 crossref_primary_10_3390_e24121790 crossref_primary_10_1103_PhysRevD_104_096005 crossref_primary_10_1051_epjconf_202429601020 crossref_primary_10_1103_PhysRevD_106_094024 crossref_primary_10_1103_PhysRevC_105_024910 crossref_primary_10_1103_PhysRevD_109_L091504 crossref_primary_10_1088_1361_6633_ac14c9 crossref_primary_10_1103_PhysRevLett_127_042301 crossref_primary_10_1103_PhysRevC_108_064913 crossref_primary_10_1103_PhysRevD_106_014016 crossref_primary_10_1103_PhysRevC_108_064911 crossref_primary_10_1051_epjconf_202429613004 crossref_primary_10_1103_PhysRevC_105_024911 |
Cites_doi | 10.1103/PhysRevLett.115.182301 10.1016/j.nuclphysa.2011.11.003 10.1016/j.ppnp.2018.05.004 10.1007/JHEP10(2016)155 10.1103/PhysRevLett.120.012301 10.1088/1126-6708/2009/10/043 10.1103/PhysRevLett.111.181601 10.1103/PhysRevLett.97.252301 10.1103/PhysRevLett.115.241602 10.1103/PhysRevLett.94.102303 10.1103/PhysRevLett.105.162501 10.1007/JHEP09(2013)026 10.1103/PhysRevLett.115.072501 10.1007/JHEP01(2017)026 10.1016/j.nuclphysa.2013.08.004 10.1016/S0370-1573(01)00061-8 10.1103/PhysRevLett.111.232301 10.1103/PhysRevLett.108.201602 10.1007/JHEP12(2017)079 10.1007/JHEP06(2017)154 10.1007/JHEP12(2011)044 10.1016/0550-3213(88)90035-1 10.1103/PhysRevLett.96.062302 10.1103/PhysRevD.68.036004 10.1103/PhysRevLett.94.072302 10.1088/1126-6708/2005/09/041 10.1016/j.nuclphysa.2010.08.011 10.1103/PhysRevD.70.025004 10.1007/JHEP11(2011)120 10.1016/S0370-2693(01)00191-5 10.1103/PhysRevLett.108.191601 10.1007/JHEP03(2016)146 10.1016/j.nuclphysa.2011.10.005 10.1088/0954-3899/42/4/045106 10.1016/0370-2693(84)91863-X 10.1088/1126-6708/2003/08/002 10.1103/PhysRevD.74.045011 10.1088/1361-6633/aaa091 10.1016/j.physletb.2017.11.059 10.1103/PhysRevLett.113.202301 10.1103/PhysRevLett.102.211601 10.1007/s12043-015-0972-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2018 – notice: Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved. |
CorporateAuthor | Kent State Univ., Kent, OH (United States) |
CorporateAuthor_xml | – sequence: 0 name: Kent State Univ., Kent, OH (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI DOA |
DOI | 10.1007/JHEP12(2018)128 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 27 |
ExternalDocumentID | oai_doaj_org_article_f00afe01532047c4b0e34eb6f6e8bfa4 1611989 10_1007_JHEP12_2018_128 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ H13 HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS AAYZJ AHBXF OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c510t-191114bc9bb7d27e762f4dffd50f11bc9d655dca29ca61feadff5de38209e06d3 |
IEDL.DBID | DOA |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:21:57 EDT 2025 Thu Dec 05 06:23:56 EST 2024 Fri Jul 25 20:52:43 EDT 2025 Tue Jul 01 03:54:03 EDT 2025 Thu Apr 24 23:00:16 EDT 2025 Fri Feb 21 02:29:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Heavy Ion Phenomenology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c510t-191114bc9bb7d27e762f4dffd50f11bc9d655dca29ca61feadff5de38209e06d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC) SC0013470 |
ORCID | 0000-0003-0489-4278 0000000304894278 |
OpenAccessLink | https://doaj.org/article/f00afe01532047c4b0e34eb6f6e8bfa4 |
PQID | 2159808863 |
PQPubID | 2034718 |
PageCount | 27 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f00afe01532047c4b0e34eb6f6e8bfa4 osti_scitechconnect_1611989 proquest_journals_2159808863 crossref_primary_10_1007_JHEP12_2018_128 crossref_citationtrail_10_1007_JHEP12_2018_128 springer_journals_10_1007_JHEP12_2018_128 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Berlin SpringerOpen |
Publisher_xml | – sequence: 0 name: Springer Berlin – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | AttemsMThermodynamics, transport and relaxation in non-conformal theoriesJHEP2016101552016JHEP...10..155A357858010.1007/JHEP10(2016)1551390.83151[arXiv:1603.01254] [INSPIRE] JaiswalARelativistic third-order dissipative fluid dynamics from kinetic theoryPhys. Rev.2013C 882013PhRvC..88b1903J[arXiv:1305.3480] [INSPIRE] HellerMPJanikRAWitaszczykPThe characteristics of thermalization of boost-invariant plasma from holographyPhys. Rev. Lett.20121082016022012PhRvL.108t1602H10.1103/PhysRevLett.108.201602[arXiv:1103.3452] [INSPIRE] FukushimaKGelisFThe evolving GlasmaNucl. Phys.2012A 8741082012NuPhA.874..108F10.1016/j.nuclphysa.2011.11.003[arXiv:1106.1396] [INSPIRE] van der ScheeWHolographic thermalization with radial flowPhys. Rev.2013D 872013PhRvD..87f1901V[arXiv:1211.2218] [INSPIRE] StricklandMNoronhaJDenicolGAnisotropic nonequilibrium hydrodynamic attractorPhys. Rev.2018D 972018PhRvD..97c6020S3877854[arXiv:1709.06644] [INSPIRE] BialasACzyżWBoost-invariant Boltzmann-Vlasov equations for relativistic quark-antiquark plasmaPhys. Rev.1984D 3023711984PhRvD..30.2371B[INSPIRE] HellerMPKurkelaASpalinskiMSvenssonVHydrodynamization in kinetic theory: Transient modes and the gradient expansionPhys. Rev.2018D 972018PhRvD..97i1503H[arXiv:1609.04803] [INSPIRE] BehtashACruz-CamachoCNMartinezMFar-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flowPhys. Rev.2018D 972018PhRvD..97d4041B3804328[arXiv:1711.01745] [INSPIRE] DenicolGSKoideTRischkeDHDissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theoryPhys. Rev. Lett.20101051625012010PhRvL.105p2501D10.1103/PhysRevLett.105.162501[arXiv:1004.5013] [INSPIRE] A. Rebhan, P. Romatschke and M. Strickland, Dynamics of quark-gluon-plasma instabilities in discretized hard-loop approximation, JHEP09 (2005) 041 [hep-ph/0505261] [INSPIRE]. AttemsMPaths to equilibrium in non-conformal collisionsJHEP2017061542017JHEP...06..154A368187910.1007/JHEP06(2017)1541380.83115[arXiv:1703.09681] [INSPIRE] FlorkowskiWMaksymiukERyblewskiRCoupled kinetic equations for fermions and bosons in the relaxation-time approximationPhys. Rev.2018C 972018PhRvC..97b4915F[arXiv:1710.07095] [INSPIRE] BergesJBoguslavskiKSchlichtingSNonlinear amplification of instabilities with longitudinal expansionPhys. Rev.2012D 852012PhRvD..85g6005B[arXiv:1201.3582] [INSPIRE] DenicolGSHeinzUWMartinezMNoronhaJStricklandMStudying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equationPhys. Rev.2014D 901250262014PhRvD..90l5026D[arXiv:1408.7048] [INSPIRE] CheslerPMYaffeLGHorizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasmaPhys. Rev. Lett.20091022116012009PhRvL.102u1601C251110910.1103/PhysRevLett.102.211601[arXiv:0812.2053] [INSPIRE] FlorkowskiWHellerMPSpalinskiMNew theories of relativistic hydrodynamics in the LHC eraRept. Prog. Phys.2018812018RPPh...81d6001F376959710.1088/1361-6633/aaa091[arXiv:1707.02282] [INSPIRE] FlorkowskiWMaksymiukERyblewskiRStricklandMExact solution of the (0 + 1)-dimensional Boltzmann equation for a massive gasPhys. Rev.2014C 892014PhRvC..89e4908F[arXiv:1402.7348] [INSPIRE] J. Noronha and G.S. Denicol, Transient Fluid Dynamics of the quark-gluon Plasma According to AdS/CFT, arXiv:1104.2415 [INSPIRE]. RomatschkePRelativistic Hydrodynamic Attractors with Broken Symmetries: Non-Conformal and Non-HomogeneousJHEP2017120792017JHEP...12..079R375671110.1007/JHEP12(2017)0791383.81348[arXiv:1710.03234] [INSPIRE] R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ‘Bottom up’ thermalization in heavy ion collisions, Phys. Lett.B 502 (2001) 51 [hep-ph/0009237] [INSPIRE]. P. Romatschke and A. Rebhan, Plasma Instabilities in an Anisotropically Expanding Geometry, Phys. Rev. Lett.97 (2006) 252301 [hep-ph/0605064] [INSPIRE]. RomatschkePRelativistic Fluid Dynamics Far From Local EquilibriumPhys. Rev. Lett.20181202018PhRvL.120a2301R10.1103/PhysRevLett.120.012301[arXiv:1704.08699] [INSPIRE] P. Romatschke and R. Venugopalan, The Unstable Glasma, Phys. Rev.D 74 (2006) 045011 [hep-ph/0605045] [INSPIRE]. FlorkowskiWMaksymiukERyblewskiRAnisotropic-hydrodynamics approach to a quark-gluon fluid mixturePhys. Rev.2018C 972018PhRvC..97a4904F[arXiv:1711.03872] [INSPIRE] KurkelaAZhuYIsotropization and hydrodynamization in weakly coupled heavy-ion collisionsPhys. Rev. Lett.20151151823012015PhRvL.115r2301K10.1103/PhysRevLett.115.182301[arXiv:1506.06647] [INSPIRE] HellerMPMateosDvan der ScheeWTrancanelliDStrong Coupling Isotropization of Non-Abelian Plasmas SimplifiedPhys. Rev. Lett.20121081916012012PhRvL.108s1601H10.1103/PhysRevLett.108.191601[arXiv:1202.0981] [INSPIRE] StricklandMThermalization and isotropization in heavy-ion collisionsPramana2015846712015Prama..84..671S10.1007/s12043-015-0972-1[arXiv:1312.2285] [INSPIRE] P. Romatschke and R. Venugopalan, Collective non-Abelian instabilities in a melting color glass condensate, Phys. Rev. Lett.96 (2006) 062302 [hep-ph/0510121] [INSPIRE]. MaksymiukEKinetic equations and anisotropic hydrodynamics for quark and gluon fluidsEPJ Web Conf.20181820207[arXiv:1712.01591] [INSPIRE] S. Mrowczynski, A. Rebhan and M. Strickland, Hard loop effective action for anisotropic plasmas, Phys. Rev.D 70 (2004) 025004 [hep-ph/0403256] [INSPIRE]. P.B. Arnold, J. Lenaghan and G.D. Moore, QCD plasma instabilities and bottom up thermalization, JHEP08 (2003) 002 [hep-ph/0307325] [INSPIRE]. BlaizotJ-PGelisFLiaoJ-FMcLerranLVenugopalanRBose-Einstein Condensation and Thermalization of the Quark Gluon PlasmaNucl. Phys.2012A 873682012NuPhA.873...68B10.1016/j.nuclphysa.2011.10.005[arXiv:1107.5296] [INSPIRE] AttemsMHolographic Collisions in Non-conformal TheoriesJHEP2017010262017JHEP...01..026A10.1007/JHEP01(2017)026[arXiv:1604.06439] [INSPIRE] KurkelaAMooreGDBjorken Flow, Plasma Instabilities and ThermalizationJHEP2011111202011JHEP...11..120K10.1007/JHEP11(2011)1201306.81352[arXiv:1108.4684] [INSPIRE] DenicolGSNoronhaJNiemiHRischkeDHOrigin of the Relaxation Time in Dissipative Fluid DynamicsPhys. Rev.2011D 832011PhRvD..83g4019D[arXiv:1102.4780] [INSPIRE] KeeganLKurkelaARomatschkePvan der ScheeWZhuYWeak and strong coupling equilibration in nonabelian gauge theoriesJHEP2016040312016JHEP...04..031K[arXiv:1512.05347] [INSPIRE] KurkelaAMooreGDThermalization in Weakly Coupled Nonabelian PlasmasJHEP2011120442011JHEP...12..044K10.1007/JHEP12(2011)0441306.81353[arXiv:1107.5050] [INSPIRE] FlorkowskiWJaiswalAMaksymiukERyblewskiRStricklandMRelativistic quantum transport coefficients for second-order viscous hydrodynamicsPhys. Rev.2015C 912015PhRvC..91e4907F[arXiv:1503.03226] [INSPIRE] HellerMPSpalinskiMHydrodynamics Beyond the Gradient Expansion: Resurgence and ResummationPhys. Rev. Lett.20151152015PhRvL.115g2501H10.1103/PhysRevLett.115.072501[arXiv:1503.07514] [INSPIRE] FlorkowskiWRyblewskiRStricklandMTesting viscous and anisotropic hydrodynamics in an exactly solvable casePhys. Rev.2013C 882013PhRvC..88b4903F[arXiv:1305.7234] [INSPIRE] CheslerPMColliding shock waves and hydrodynamics in small systemsPhys. Rev. Lett.20151152416022015PhRvL.115x1602C10.1103/PhysRevLett.115.241602[arXiv:1506.02209] [INSPIRE] A. Behtash, S. Kamata, M. Martinez and C.N. Cruz-Camacho, Non-perturbative rheological behavior of a far-from-equilibrium expanding plasma, arXiv:1805.07881 [INSPIRE]. SpalinskiMOn the hydrodynamic attractor of Yang-Mills plasmaPhys. Lett.2018B 7764682018PhLB..776..468S374150510.1016/j.physletb.2017.11.059[arXiv:1708.01921] [INSPIRE] FlorkowskiWMaksymiukEExact solution of the (0+1)-dimensional Boltzmann equation for massive Bose-Einstein and Fermi-Dirac gasesJ. Phys.2015G 422015JPhG...42d5106F10.1088/0954-3899/42/4/045106[arXiv:1411.3666] [INSPIRE] BaymGThermal equilibration in ultrarelativistic heavy ion collisionsPhys. Lett.1984B 138181984PhLB..138...18B10.1016/0370-2693(84)91863-X[INSPIRE] FlorkowskiWRyblewskiRHighly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisionsPhys. Rev.2011C 832011PhRvC..83c4907F[arXiv:1007.0130] [INSPIRE] TintiLFlorkowskiWProjection method and new formulation of leading-order anisotropic hydrodynamicsPhys. Rev.2014C 892014PhRvC..89c4907T[arXiv:1312.6614] [INSPIRE] CheslerPMHow big are the smallest drops of quark-gluon plasma?JHEP2016031462016JHEP...03..146C350163610.1007/JHEP03(2016)1461388.83343[arXiv:1601.01583] [INSPIRE] HellerMPMateosDvan der ScheeWTrianaMHolographic isotropization linearizedJHEP2013090262013JHEP...09..026H10.1007/JHEP09(2013)026[arXiv:1304.5172] [INSPIRE] HellerMPJanikRAWitaszczykPA numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization — an ADM formulationPhys. Rev.2012D 851260022012PhRvD..85l6002H[arXiv:1203.0755] [INSPIRE] DenicolGSHeinzUWMartinezMNoronhaJStricklandMNew Exact Solution of the Relativistic Boltzmann Equation and its Hydrodynamic LimitPhys. Rev. Lett.20141132023012014PhRvL.113t2301D10.1103/PhysRevLett.113.202301[arXiv:1408.5646] [INSPIRE] J.-P. Blaizot and E. Iancu, The Quark gluon plasma: Collective dynamics and hard thermal loops, Phys. Rept.359 (2002) 355 [hep-ph/0101103] [INSPIRE]. RebhanAStricklandMAttemsMInstabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulationsPhys. Rev.2008D 782008PhRvD..78d5023R[arXiv:0802.1714] [INSPIRE] A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-Abelian plasma instabilities, Phys. Rev. Lett.94 (2005) 102303 [hep-ph/0412016] [INSPIRE]. DenicolGSFlorkowskiWRyblewskiRStricklandMShear-bulk coupling in nonconformal hydrodynamicsPhys. Rev.2014C 902014PhRvC..90d4905D[arXiv:1407.4767] [INSPIRE] AttemsMRebhanAStricklandMInstabilities of an anisotropically expanding non-Abelian plasma: 3D+3V discretized hard-loop simulationsPhys. Rev.2013D 872013PhRvD..87b5010A[arXiv:1207.5795] [INSPIRE] JaiswalARelativistic dissipative hydrodynamics from kinetic theory with relaxation time approximationPhys. Rev.2013C 872013PhRvC..87e1901J[arXiv:1302.6311] [INSPIRE] AlqahtaniMNopous M Alqahtani (9641_CR70) 2018; 101 9641_CR49 GS Denicol (9641_CR58) 2010; 105 J-P Blaizot (9641_CR16) 2012; A 873 FS Bemfica (9641_CR41) 2018; D 98 9641_CR8 J Berges (9641_CR18) 2012; D 85 9641_CR9 W Florkowski (9641_CR45) 2018; C 97 9641_CR6 9641_CR7 MP Heller (9641_CR38) 2015; 115 A Bialas (9641_CR64) 1984; D 30 9641_CR4 M Strickland (9641_CR47) 2018; D 97 MP Heller (9641_CR72) 2018; D 97 9641_CR5 W Florkowski (9641_CR46) 2018; C 97 M Spalinski (9641_CR42) 2018; B 776 A Kurkela (9641_CR15) 2011; 11 M Strickland (9641_CR36) 2015; 84 W Florkowski (9641_CR63) 2015; C 91 G Beuf (9641_CR21) 2009; 10 9641_CR37 GS Denicol (9641_CR56) 2014; D 90 M Attems (9641_CR34) 2017; 01 W Florkowski (9641_CR67) 2011; C 83 M Martinez (9641_CR68) 2010; A 848 A Jaiswal (9641_CR61) 2013; C 88 W Florkowski (9641_CR54) 2015; G 42 J Casalderrey-Solana (9641_CR27) 2013; 111 A Jaiswal (9641_CR60) 2013; C 87 GS Denicol (9641_CR59) 2011; D 83 9641_CR71 L Tinti (9641_CR69) 2014; C 89 MP Heller (9641_CR25) 2012; 108 W van der Schee (9641_CR26) 2013; D 87 W Florkowski (9641_CR51) 2013; A 916 M Attems (9641_CR35) 2017; 06 GS Denicol (9641_CR55) 2014; 113 A Rebhan (9641_CR12) 2008; D 78 W Florkowski (9641_CR39) 2018; 81 W Florkowski (9641_CR53) 2014; C 89 P Romatschke (9641_CR40) 2018; 120 GS Denicol (9641_CR62) 2014; C 90 A Kurkela (9641_CR14) 2011; 12 A Kurkela (9641_CR31) 2015; 115 M Attems (9641_CR33) 2016; 10 MP Heller (9641_CR28) 2013; 09 A Bialas (9641_CR65) 1988; B 296 MP Heller (9641_CR23) 2012; 108 K Fukushima (9641_CR13) 2012; A 874 PM Chesler (9641_CR20) 2009; 102 9641_CR10 9641_CR11 M Attems (9641_CR17) 2013; D 87 D Almaalol (9641_CR48) 2018; C 97 9641_CR2 A Behtash (9641_CR44) 2018; D 97 9641_CR3 9641_CR1 PM Chesler (9641_CR30) 2015; 115 P Romatschke (9641_CR43) 2017; 12 W Florkowski (9641_CR52) 2013; C 88 9641_CR50 T Epelbaum (9641_CR19) 2013; 111 G Baym (9641_CR66) 1984; B 138 MP Heller (9641_CR24) 2012; D 85 PM Chesler (9641_CR22) 2010; D 82 PM Chesler (9641_CR32) 2016; 03 L Keegan (9641_CR29) 2016; 04 E Maksymiuk (9641_CR57) 2018; 18 |
References_xml | – reference: R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ‘Bottom up’ thermalization in heavy ion collisions, Phys. Lett.B 502 (2001) 51 [hep-ph/0009237] [INSPIRE]. – reference: van der ScheeWHolographic thermalization with radial flowPhys. Rev.2013D 872013PhRvD..87f1901V[arXiv:1211.2218] [INSPIRE] – reference: FlorkowskiWMaksymiukERyblewskiRAnisotropic-hydrodynamics approach to a quark-gluon fluid mixturePhys. Rev.2018C 972018PhRvC..97a4904F[arXiv:1711.03872] [INSPIRE] – reference: BialasACzyżWBoost-invariant Boltzmann-Vlasov equations for relativistic quark-antiquark plasmaPhys. Rev.1984D 3023711984PhRvD..30.2371B[INSPIRE] – reference: S. Mrowczynski, A. Rebhan and M. Strickland, Hard loop effective action for anisotropic plasmas, Phys. Rev.D 70 (2004) 025004 [hep-ph/0403256] [INSPIRE]. – reference: P. Romatschke and A. Rebhan, Plasma Instabilities in an Anisotropically Expanding Geometry, Phys. Rev. Lett.97 (2006) 252301 [hep-ph/0605064] [INSPIRE]. – reference: EpelbaumTGelisFPressure isotropization in high energy heavy ion collisionsPhys. Rev. Lett.20131112323012013PhRvL.111w2301E10.1103/PhysRevLett.111.232301[arXiv:1307.2214] [INSPIRE] – reference: KurkelaAMooreGDThermalization in Weakly Coupled Nonabelian PlasmasJHEP2011120442011JHEP...12..044K10.1007/JHEP12(2011)0441306.81353[arXiv:1107.5050] [INSPIRE] – reference: HellerMPJanikRAWitaszczykPThe characteristics of thermalization of boost-invariant plasma from holographyPhys. Rev. Lett.20121082016022012PhRvL.108t1602H10.1103/PhysRevLett.108.201602[arXiv:1103.3452] [INSPIRE] – reference: DenicolGSNoronhaJNiemiHRischkeDHOrigin of the Relaxation Time in Dissipative Fluid DynamicsPhys. Rev.2011D 832011PhRvD..83g4019D[arXiv:1102.4780] [INSPIRE] – reference: AttemsMRebhanAStricklandMInstabilities of an anisotropically expanding non-Abelian plasma: 3D+3V discretized hard-loop simulationsPhys. Rev.2013D 872013PhRvD..87b5010A[arXiv:1207.5795] [INSPIRE] – reference: CheslerPMYaffeLGBoost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theoryPhys. Rev.2010D 822010PhRvD..82b6006C[arXiv:0906.4426] [INSPIRE] – reference: Casalderrey-SolanaJHellerMPMateosDvan der ScheeWFrom full stopping to transparency in a holographic model of heavy ion collisionsPhys. Rev. Lett.20131111816012013PhRvL.111r1601C10.1103/PhysRevLett.111.181601[arXiv:1305.4919] [INSPIRE] – reference: RomatschkePRelativistic Hydrodynamic Attractors with Broken Symmetries: Non-Conformal and Non-HomogeneousJHEP2017120792017JHEP...12..079R375671110.1007/JHEP12(2017)0791383.81348[arXiv:1710.03234] [INSPIRE] – reference: P.B. Arnold, J. Lenaghan and G.D. Moore, QCD plasma instabilities and bottom up thermalization, JHEP08 (2003) 002 [hep-ph/0307325] [INSPIRE]. – reference: HellerMPMateosDvan der ScheeWTrianaMHolographic isotropization linearizedJHEP2013090262013JHEP...09..026H10.1007/JHEP09(2013)026[arXiv:1304.5172] [INSPIRE] – reference: HellerMPSpalinskiMHydrodynamics Beyond the Gradient Expansion: Resurgence and ResummationPhys. Rev. Lett.20151152015PhRvL.115g2501H10.1103/PhysRevLett.115.072501[arXiv:1503.07514] [INSPIRE] – reference: BaymGThermal equilibration in ultrarelativistic heavy ion collisionsPhys. Lett.1984B 138181984PhLB..138...18B10.1016/0370-2693(84)91863-X[INSPIRE] – reference: HellerMPKurkelaASpalinskiMSvenssonVHydrodynamization in kinetic theory: Transient modes and the gradient expansionPhys. Rev.2018D 972018PhRvD..97i1503H[arXiv:1609.04803] [INSPIRE] – reference: J. Noronha and G.S. Denicol, Transient Fluid Dynamics of the quark-gluon Plasma According to AdS/CFT, arXiv:1104.2415 [INSPIRE]. – reference: StricklandMNoronhaJDenicolGAnisotropic nonequilibrium hydrodynamic attractorPhys. Rev.2018D 972018PhRvD..97c6020S3877854[arXiv:1709.06644] [INSPIRE] – reference: BergesJBoguslavskiKSchlichtingSNonlinear amplification of instabilities with longitudinal expansionPhys. Rev.2012D 852012PhRvD..85g6005B[arXiv:1201.3582] [INSPIRE] – reference: KurkelaAZhuYIsotropization and hydrodynamization in weakly coupled heavy-ion collisionsPhys. Rev. Lett.20151151823012015PhRvL.115r2301K10.1103/PhysRevLett.115.182301[arXiv:1506.06647] [INSPIRE] – reference: P.B. Arnold, J. Lenaghan, G.D. Moore and L.G. Yaffe, Apparent thermalization due to plasma instabilities in quark-gluon plasma, Phys. Rev. Lett.94 (2005) 072302 [nucl-th/0409068] [INSPIRE]. – reference: CheslerPMHow big are the smallest drops of quark-gluon plasma?JHEP2016031462016JHEP...03..146C350163610.1007/JHEP03(2016)1461388.83343[arXiv:1601.01583] [INSPIRE] – reference: DenicolGSFlorkowskiWRyblewskiRStricklandMShear-bulk coupling in nonconformal hydrodynamicsPhys. Rev.2014C 902014PhRvC..90d4905D[arXiv:1407.4767] [INSPIRE] – reference: AlmaalolDStricklandMAnisotropic hydrodynamics with a scalar collisional kernelPhys. Rev.2018C 972018PhRvC..97d4911A[arXiv:1801.10173] [INSPIRE] – reference: DenicolGSHeinzUWMartinezMNoronhaJStricklandMStudying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equationPhys. Rev.2014D 901250262014PhRvD..90l5026D[arXiv:1408.7048] [INSPIRE] – reference: DenicolGSKoideTRischkeDHDissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theoryPhys. Rev. Lett.20101051625012010PhRvL.105p2501D10.1103/PhysRevLett.105.162501[arXiv:1004.5013] [INSPIRE] – reference: P. Romatschke and M. Strickland, Collective modes of an anisotropic quark gluon plasma, Phys. Rev.D 68 (2003) 036004 [hep-ph/0304092] [INSPIRE]. – reference: JaiswalARelativistic dissipative hydrodynamics from kinetic theory with relaxation time approximationPhys. Rev.2013C 872013PhRvC..87e1901J[arXiv:1302.6311] [INSPIRE] – reference: BehtashACruz-CamachoCNMartinezMFar-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flowPhys. Rev.2018D 972018PhRvD..97d4041B3804328[arXiv:1711.01745] [INSPIRE] – reference: RebhanAStricklandMAttemsMInstabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulationsPhys. Rev.2008D 782008PhRvD..78d5023R[arXiv:0802.1714] [INSPIRE] – reference: KeeganLKurkelaARomatschkePvan der ScheeWZhuYWeak and strong coupling equilibration in nonabelian gauge theoriesJHEP2016040312016JHEP...04..031K[arXiv:1512.05347] [INSPIRE] – reference: RomatschkePRelativistic Fluid Dynamics Far From Local EquilibriumPhys. Rev. Lett.20181202018PhRvL.120a2301R10.1103/PhysRevLett.120.012301[arXiv:1704.08699] [INSPIRE] – reference: MaksymiukEKinetic equations and anisotropic hydrodynamics for quark and gluon fluidsEPJ Web Conf.20181820207[arXiv:1712.01591] [INSPIRE] – reference: P. Romatschke and R. Venugopalan, The Unstable Glasma, Phys. Rev.D 74 (2006) 045011 [hep-ph/0605045] [INSPIRE]. – reference: P. Romatschke and R. Venugopalan, Collective non-Abelian instabilities in a melting color glass condensate, Phys. Rev. Lett.96 (2006) 062302 [hep-ph/0510121] [INSPIRE]. – reference: CheslerPMYaffeLGHorizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasmaPhys. Rev. Lett.20091022116012009PhRvL.102u1601C251110910.1103/PhysRevLett.102.211601[arXiv:0812.2053] [INSPIRE] – reference: BialasACzyżWDyrekAFlorkowskiWOscillations of quark-gluon Plasma Generated in Strong Color FieldsNucl. Phys.1988B 2966111988NuPhB.296..611B10.1016/0550-3213(88)90035-1[INSPIRE] – reference: AttemsMThermodynamics, transport and relaxation in non-conformal theoriesJHEP2016101552016JHEP...10..155A357858010.1007/JHEP10(2016)1551390.83151[arXiv:1603.01254] [INSPIRE] – reference: FukushimaKGelisFThe evolving GlasmaNucl. Phys.2012A 8741082012NuPhA.874..108F10.1016/j.nuclphysa.2011.11.003[arXiv:1106.1396] [INSPIRE] – reference: G.S. Denicol and J. Noronha, Hydrodynamic attractor and the fate of perturbative expansions in Gubser flow, arXiv:1804.04771 [INSPIRE]. – reference: A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-Abelian plasma instabilities, Phys. Rev. Lett.94 (2005) 102303 [hep-ph/0412016] [INSPIRE]. – reference: FlorkowskiWRyblewskiRStricklandMTesting viscous and anisotropic hydrodynamics in an exactly solvable casePhys. Rev.2013C 882013PhRvC..88b4903F[arXiv:1305.7234] [INSPIRE] – reference: FlorkowskiWMaksymiukEExact solution of the (0+1)-dimensional Boltzmann equation for massive Bose-Einstein and Fermi-Dirac gasesJ. Phys.2015G 422015JPhG...42d5106F10.1088/0954-3899/42/4/045106[arXiv:1411.3666] [INSPIRE] – reference: KurkelaAMooreGDBjorken Flow, Plasma Instabilities and ThermalizationJHEP2011111202011JHEP...11..120K10.1007/JHEP11(2011)1201306.81352[arXiv:1108.4684] [INSPIRE] – reference: JaiswalARelativistic third-order dissipative fluid dynamics from kinetic theoryPhys. Rev.2013C 882013PhRvC..88b1903J[arXiv:1305.3480] [INSPIRE] – reference: J.-P. Blaizot and E. Iancu, The Quark gluon plasma: Collective dynamics and hard thermal loops, Phys. Rept.359 (2002) 355 [hep-ph/0101103] [INSPIRE]. – reference: SpalinskiMOn the hydrodynamic attractor of Yang-Mills plasmaPhys. Lett.2018B 7764682018PhLB..776..468S374150510.1016/j.physletb.2017.11.059[arXiv:1708.01921] [INSPIRE] – reference: HellerMPMateosDvan der ScheeWTrancanelliDStrong Coupling Isotropization of Non-Abelian Plasmas SimplifiedPhys. Rev. Lett.20121081916012012PhRvL.108s1601H10.1103/PhysRevLett.108.191601[arXiv:1202.0981] [INSPIRE] – reference: AttemsMHolographic Collisions in Non-conformal TheoriesJHEP2017010262017JHEP...01..026A10.1007/JHEP01(2017)026[arXiv:1604.06439] [INSPIRE] – reference: FlorkowskiWRyblewskiRStricklandMAnisotropic Hydrodynamics for Rapidly Expanding SystemsNucl. Phys.2013A 9162492013NuPhA.916..249F10.1016/j.nuclphysa.2013.08.004[arXiv:1304.0665] [INSPIRE] – reference: FlorkowskiWMaksymiukERyblewskiRStricklandMExact solution of the (0 + 1)-dimensional Boltzmann equation for a massive gasPhys. Rev.2014C 892014PhRvC..89e4908F[arXiv:1402.7348] [INSPIRE] – reference: BeufGHellerMPJanikRAPeschanskiRBoost-invariant early time dynamics from AdS/CFTJHEP2009100432009JHEP...10..043B260745610.1088/1126-6708/2009/10/043[arXiv:0906.4423] [INSPIRE] – reference: M. Strickland, http://personal.kent.edu/~mstrick6/code/ (2017). – reference: FlorkowskiWHellerMPSpalinskiMNew theories of relativistic hydrodynamics in the LHC eraRept. Prog. Phys.2018812018RPPh...81d6001F376959710.1088/1361-6633/aaa091[arXiv:1707.02282] [INSPIRE] – reference: TintiLFlorkowskiWProjection method and new formulation of leading-order anisotropic hydrodynamicsPhys. Rev.2014C 892014PhRvC..89c4907T[arXiv:1312.6614] [INSPIRE] – reference: AlqahtaniMNopoushMStricklandMRelativistic anisotropic hydrodynamicsProg. Part. Nucl. Phys.20181012042018PrPNP.101..204A10.1016/j.ppnp.2018.05.004[arXiv:1712.03282] [INSPIRE] – reference: HellerMPJanikRAWitaszczykPA numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization — an ADM formulationPhys. Rev.2012D 851260022012PhRvD..85l6002H[arXiv:1203.0755] [INSPIRE] – reference: BemficaFSDisconziMMNoronhaJCausality and existence of solutions of relativistic viscous fluid dynamics with gravityPhys. Rev.2018D 981040642018PhRvD..98j4064B[arXiv:1708.06255] [INSPIRE] – reference: DenicolGSHeinzUWMartinezMNoronhaJStricklandMNew Exact Solution of the Relativistic Boltzmann Equation and its Hydrodynamic LimitPhys. Rev. Lett.20141132023012014PhRvL.113t2301D10.1103/PhysRevLett.113.202301[arXiv:1408.5646] [INSPIRE] – reference: FlorkowskiWMaksymiukERyblewskiRCoupled kinetic equations for fermions and bosons in the relaxation-time approximationPhys. Rev.2018C 972018PhRvC..97b4915F[arXiv:1710.07095] [INSPIRE] – reference: CheslerPMColliding shock waves and hydrodynamics in small systemsPhys. Rev. Lett.20151152416022015PhRvL.115x1602C10.1103/PhysRevLett.115.241602[arXiv:1506.02209] [INSPIRE] – reference: A. Rebhan, P. Romatschke and M. Strickland, Dynamics of quark-gluon-plasma instabilities in discretized hard-loop approximation, JHEP09 (2005) 041 [hep-ph/0505261] [INSPIRE]. – reference: MartinezMStricklandMDissipative Dynamics of Highly Anisotropic SystemsNucl. Phys.2010A 8481832010NuPhA.848..183M10.1016/j.nuclphysa.2010.08.011[arXiv:1007.0889] [INSPIRE] – reference: FlorkowskiWJaiswalAMaksymiukERyblewskiRStricklandMRelativistic quantum transport coefficients for second-order viscous hydrodynamicsPhys. Rev.2015C 912015PhRvC..91e4907F[arXiv:1503.03226] [INSPIRE] – reference: BlaizotJ-PGelisFLiaoJ-FMcLerranLVenugopalanRBose-Einstein Condensation and Thermalization of the Quark Gluon PlasmaNucl. Phys.2012A 873682012NuPhA.873...68B10.1016/j.nuclphysa.2011.10.005[arXiv:1107.5296] [INSPIRE] – reference: AttemsMPaths to equilibrium in non-conformal collisionsJHEP2017061542017JHEP...06..154A368187910.1007/JHEP06(2017)1541380.83115[arXiv:1703.09681] [INSPIRE] – reference: A. Behtash, S. Kamata, M. Martinez and C.N. Cruz-Camacho, Non-perturbative rheological behavior of a far-from-equilibrium expanding plasma, arXiv:1805.07881 [INSPIRE]. – reference: FlorkowskiWRyblewskiRHighly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisionsPhys. Rev.2011C 832011PhRvC..83c4907F[arXiv:1007.0130] [INSPIRE] – reference: StricklandMThermalization and isotropization in heavy-ion collisionsPramana2015846712015Prama..84..671S10.1007/s12043-015-0972-1[arXiv:1312.2285] [INSPIRE] – volume: D 87 year: 2013 ident: 9641_CR17 publication-title: Phys. Rev. – volume: 115 start-page: 182301 year: 2015 ident: 9641_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.182301 – volume: D 78 year: 2008 ident: 9641_CR12 publication-title: Phys. Rev. – volume: A 874 start-page: 108 year: 2012 ident: 9641_CR13 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysa.2011.11.003 – volume: D 82 year: 2010 ident: 9641_CR22 publication-title: Phys. Rev. – volume: 101 start-page: 204 year: 2018 ident: 9641_CR70 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2018.05.004 – volume: 10 start-page: 155 year: 2016 ident: 9641_CR33 publication-title: JHEP doi: 10.1007/JHEP10(2016)155 – volume: 120 year: 2018 ident: 9641_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.012301 – volume: 10 start-page: 043 year: 2009 ident: 9641_CR21 publication-title: JHEP doi: 10.1088/1126-6708/2009/10/043 – volume: D 90 start-page: 125026 year: 2014 ident: 9641_CR56 publication-title: Phys. Rev. – volume: 111 start-page: 181601 year: 2013 ident: 9641_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.181601 – ident: 9641_CR50 – volume: 18 start-page: 20207 year: 2018 ident: 9641_CR57 publication-title: EPJ Web Conf. – volume: C 97 year: 2018 ident: 9641_CR45 publication-title: Phys. Rev. – ident: 9641_CR11 doi: 10.1103/PhysRevLett.97.252301 – volume: C 88 year: 2013 ident: 9641_CR52 publication-title: Phys. Rev. – volume: C 89 year: 2014 ident: 9641_CR69 publication-title: Phys. Rev. – volume: 115 start-page: 241602 year: 2015 ident: 9641_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.241602 – ident: 9641_CR7 doi: 10.1103/PhysRevLett.94.102303 – volume: 105 start-page: 162501 year: 2010 ident: 9641_CR58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.162501 – volume: D 85 year: 2012 ident: 9641_CR18 publication-title: Phys. Rev. – volume: 09 start-page: 026 year: 2013 ident: 9641_CR28 publication-title: JHEP doi: 10.1007/JHEP09(2013)026 – volume: D 98 start-page: 104064 year: 2018 ident: 9641_CR41 publication-title: Phys. Rev. – volume: 115 year: 2015 ident: 9641_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.072501 – volume: C 83 year: 2011 ident: 9641_CR67 publication-title: Phys. Rev. – volume: 01 start-page: 026 year: 2017 ident: 9641_CR34 publication-title: JHEP doi: 10.1007/JHEP01(2017)026 – volume: C 97 year: 2018 ident: 9641_CR48 publication-title: Phys. Rev. – volume: A 916 start-page: 249 year: 2013 ident: 9641_CR51 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysa.2013.08.004 – ident: 9641_CR2 doi: 10.1016/S0370-1573(01)00061-8 – volume: 111 start-page: 232301 year: 2013 ident: 9641_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.232301 – volume: 108 start-page: 201602 year: 2012 ident: 9641_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.201602 – volume: 12 start-page: 079 year: 2017 ident: 9641_CR43 publication-title: JHEP doi: 10.1007/JHEP12(2017)079 – volume: 06 start-page: 154 year: 2017 ident: 9641_CR35 publication-title: JHEP doi: 10.1007/JHEP06(2017)154 – volume: 12 start-page: 044 year: 2011 ident: 9641_CR14 publication-title: JHEP doi: 10.1007/JHEP12(2011)044 – volume: B 296 start-page: 611 year: 1988 ident: 9641_CR65 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(88)90035-1 – ident: 9641_CR9 doi: 10.1103/PhysRevLett.96.062302 – volume: D 83 year: 2011 ident: 9641_CR59 publication-title: Phys. Rev. – ident: 9641_CR3 doi: 10.1103/PhysRevD.68.036004 – ident: 9641_CR5 doi: 10.1103/PhysRevLett.94.072302 – volume: C 88 year: 2013 ident: 9641_CR61 publication-title: Phys. Rev. – ident: 9641_CR8 doi: 10.1088/1126-6708/2005/09/041 – volume: A 848 start-page: 183 year: 2010 ident: 9641_CR68 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysa.2010.08.011 – ident: 9641_CR6 doi: 10.1103/PhysRevD.70.025004 – volume: 04 start-page: 031 year: 2016 ident: 9641_CR29 publication-title: JHEP – volume: C 91 year: 2015 ident: 9641_CR63 publication-title: Phys. Rev. – volume: D 30 start-page: 2371 year: 1984 ident: 9641_CR64 publication-title: Phys. Rev. – volume: 11 start-page: 120 year: 2011 ident: 9641_CR15 publication-title: JHEP doi: 10.1007/JHEP11(2011)120 – volume: C 90 year: 2014 ident: 9641_CR62 publication-title: Phys. Rev. – volume: D 97 year: 2018 ident: 9641_CR44 publication-title: Phys. Rev. – ident: 9641_CR1 doi: 10.1016/S0370-2693(01)00191-5 – volume: 108 start-page: 191601 year: 2012 ident: 9641_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.191601 – ident: 9641_CR49 – ident: 9641_CR71 – volume: 03 start-page: 146 year: 2016 ident: 9641_CR32 publication-title: JHEP doi: 10.1007/JHEP03(2016)146 – volume: C 97 year: 2018 ident: 9641_CR46 publication-title: Phys. Rev. – volume: D 97 year: 2018 ident: 9641_CR47 publication-title: Phys. Rev. – volume: A 873 start-page: 68 year: 2012 ident: 9641_CR16 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysa.2011.10.005 – volume: D 87 year: 2013 ident: 9641_CR26 publication-title: Phys. Rev. – volume: G 42 year: 2015 ident: 9641_CR54 publication-title: J. Phys. doi: 10.1088/0954-3899/42/4/045106 – volume: D 85 start-page: 126002 year: 2012 ident: 9641_CR24 publication-title: Phys. Rev. – volume: B 138 start-page: 18 year: 1984 ident: 9641_CR66 publication-title: Phys. Lett. doi: 10.1016/0370-2693(84)91863-X – volume: C 87 year: 2013 ident: 9641_CR60 publication-title: Phys. Rev. – ident: 9641_CR37 – ident: 9641_CR4 doi: 10.1088/1126-6708/2003/08/002 – volume: D 97 year: 2018 ident: 9641_CR72 publication-title: Phys. Rev. – ident: 9641_CR10 doi: 10.1103/PhysRevD.74.045011 – volume: 81 year: 2018 ident: 9641_CR39 publication-title: Rept. Prog. Phys. doi: 10.1088/1361-6633/aaa091 – volume: B 776 start-page: 468 year: 2018 ident: 9641_CR42 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2017.11.059 – volume: C 89 year: 2014 ident: 9641_CR53 publication-title: Phys. Rev. – volume: 113 start-page: 202301 year: 2014 ident: 9641_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.202301 – volume: 102 start-page: 211601 year: 2009 ident: 9641_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.211601 – volume: 84 start-page: 671 year: 2015 ident: 9641_CR36 publication-title: Pramana doi: 10.1007/s12043-015-0972-1 |
SSID | ssj0015190 |
Score | 2.6151595 |
Snippet | A
bstract
I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic... I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments.... Abstract I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic... |
SourceID | doaj osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Anisotropy Approximation Boltzmann transport equation Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Distribution functions Elementary Particles Exact solutions Heavy Ion Phenomenology High energy physics Initial conditions Kinetic theory Lattices (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Relaxation time Stress concentration String Theory Transverse momentum |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGX0vRB3aRBhx6SgxvZlmX7FJqyYQk0pKWB3IReU5a22WTXC-m_z4wsb5pAerFBloyY0cx8kubB2EelagApm1yWDh-hNnnbkeeUFY13RbAQKBr566mansuTi_oiHbgtk1vlqBOjovZzR2fkB2iauhZFQlWHV9c5VY2i29VUQuMp20QV3OLma_Nocnr2fX2PgPhEjAl9RHNwMp2cFeUeGr12v6AC7P_YopiyH19zFK17cPPBDWk0PMcv2YuEGPnngcVb7Em4fMWeRc9Nt3zNviGjOe7h83C9mkUH_tUfbvp-EQvpcMSk_BciSRzMY9DiXz675BTBchN5wqm4PI-ZxW9mQxjjG3Z-PPnxZZqnOgm5Q4nq84IUlrSus7bxZRNQv4H0AL4WUBTY7lVde2fKzhlVAK4dgNqHCo1_F4Ty1Vu2gfMM7xhXVEQ0BFlLYxFIgWkr1RS-BQcGxzYZ-zRSTLuURJxqWfzWY_rjgcSaSKyRxBnbWw-4GvJnPN71iFiw7kaJr2PDfPFTJznSIISBgIytSiEbJ60IlQxWgQqtBSMztk0M1IgfKAmuI28h12vEteQclrGdka86yepS362sjO2PvL77_Mhs3___V9vsOfUcHF922Ea_WIUPCF96u5vW6C1E-O8C priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS95AEB-sIvQirW1pfJQ9eNBDSh67m-SoonwIFYUK3pZ9jXy01fYzH9j_vjObxGLFQy9J2OzAMrMz81t2HgB7WitEKZtcVp4eUdm87ThyyhVN8GV0GDkb-cu5nl3Js2t1vQLllAuTot2nK8lkqadkt7PZyUVZ7ZPDag_IqL6CNUUHd97Ux5zgMF4cECAppgo-z4meOJ9Uo59ed6RLT_DlP1eiydOcvoGNESKKw0Gmb2El3m7CegrV9Pfv4JIkK-jQnsdfy3mK2F_-ELbvF6lzjiAQKr4RdCRikbIUf4v5reCUlYckBMHd5EUqJf4wH_IW38PV6cnX41k-NkbIPalQn5dsoaTznXNNqJpIBg1lQAyqwLKk8aCVCt5Wnbe6RNosiCrEmrx9Fwsd6g-wSuuMH0Fo7hoao1TSOkJOaNtaN2Vo0aMl2iaDzxPHjB-rhnPziu9mqnc8sNgwiw2xOIP9R4KfQ8GMl6cesQgep3Gl6zRwt7gxo-IYLAqLkQRbV4VsvHRFrGV0GnVsHVqZwTYL0BBg4Kq3nsODfG8IyHI0WAY7k1zNqJz3hlBO15J11XUGB5Os__5-YbVb_zF3G17z5xD2sgOr_WIZdwm89O5T2q5_AOvy6P0 priority: 102 providerName: Springer Nature |
Title | The non-equilibrium attractor for kinetic theory in relaxation time approximation |
URI | https://link.springer.com/article/10.1007/JHEP12(2018)128 https://www.proquest.com/docview/2159808863 https://www.osti.gov/servlets/purl/1611989 https://doaj.org/article/f00afe01532047c4b0e34eb6f6e8bfa4 |
Volume | 2018 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7ahEIvIUlb6jwWHXpIDm5kW5btY7LsZgk0pKULuQk9YWma5uGF9N93RrbzgtBLLjKWJSNmRppPaPQNwBcpyxCEqFKRWyx8qdO6ocgpwytnM2-Cp9vI307lbC5OzsvzR6m-KCasowfuBHcQONfBo9Mqci4qKwz3hfBGBulrE3RkAkWfN2ym-vMDxCV8IPLh1cHJbHKW5Xvo7Or9jBKvP_JBkaofH39wSj2Bmc9ORqPDma7DWo8U2WE3wg144y834V2M2LS3H-A7Kpjh3j3118tFDNxf_ma6bW9iAh2GWJT9QgSJnVm8rPiXLS4Z3Vy5i7pglFSeRUbxu0V3ffEjzKeTn-NZ2udHSC3OpDbNaKESxjbGVC6vPK5rQbgQXMlDlmG9k2XprM4bq2UW0GZCKJ0v0Ok3nktXfIIVHKf_DExS8lDvRSm0QQAVdF3IKnN1sEFj3yqBr4PElO3JwymHxYUaaI87ESsSsUIRJ7B33-Gq4814uekRqeC-GRFexwo0A9WbgfqfGSSwTQpUiBuI_NZSlJBtFeJZCgpLYGfQq-rn6K1CsNPUuMjKIoH9QdcPn18Y7dZrjHYb3tP_urCYHVhpb5Z-F8FNa0bwtp4ej2D1aHJ69gPfxrmgUo5H0cKxnOeH_wCuCPvR |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FIAQXxCpMAvQBpORg4qXdtg8IsWSYrAIpkXLr9IpGJDPJjEckP8U3UtW2J4AUbrnYku22WrV0Pbur6gG8FqLwnvMy5pnBgytUXNWUOaWT0prUae-oGnlvXwwP-fZRcbQEv_paGEqr7NfEsFDbiaF_5BsYmuoKXULk78_OY2KNot3VnkKjNYsdd_kTP9lm77Y-o37fZNlg8-DTMO5YBWKD9tfEKbk316bWurRZ6XA18Nx6b4vEpylet6IorFFZbZRIPUra-8K6HENl7RJhc3zvLbjN87wmj6oGXxa7FoiGkr59UFJubA83v6bZGobYaj0luvc_Il8gCMDTBB35L3D7z35sCHODB3C_w6fsQ2tQD2HJjR_BnZAnamaP4RuaFRtPxrE7n49CucD8lKmmmQbaHoYImP1A3IqDWSiRvGSjMaN6mYtgAYyo7FnoY34xaosmn8DhjcjvKSzjPN0zYIIoS53jBVcaYZtXVS7K1FbeeIVjywje9hKTpmtZTswZJ7JvttyKWJKIJYo4grXFgLO2W8f1j34kFSweozbb4cJk-l12Xit9kijvULF5lvDScJ24nDstvHCV9opHsEIKlIhWqOWuodwk00hE0ZSKFsFqr1fZrQwzeWXHEaz3ur66fc1sn___Va_g7vBgb1fubu3vrMA9GtWm3KzCcjOduxcInBr9Mlgrg-Obdo_f5pksiw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiKcwLbAHkNqDydper-0DQpQmSluIAqJSb4u9DxQBSZs4ov1r_Dpm1nYKSOXWiy3ZXsuax8633pn5AF5ImTonRBaKWOPBpmWYF5Q5VfHM6MhWzlI18oexHB2Lw5P0ZAN-dbUwlFbZzYl-ojZzTf_I-xiaihxdQiZ916ZFTPaHb07PQmKQop3Wjk6jMZEje_ETl2_L1wf7qOuXcTwcfH43CluGgVCjLdZhRK4uKl1UVWbizOLM4IRxzqTcRRFeNzJNjS7jQpcycih151JjEwybheXSJPjeG7CZ4aqI92BzbzCefFrvYSA24l0zIZ71D0eDSRTvYMDNdyMif_8jDnq6ADzN0a3_grr_7M76oDe8C3datMreNuZ1Dzbs7D7c9FmjevkAPqKRsdl8Ftqz1dQXD6x-sLKuF57EhyEeZt8QxeJg5gsmL9h0xqh65tzbAyNie-a7mp9PmxLKh3B8LRJ8BD38TvsYmCQCU2tFKsoKQZwr80RmkcmddiWOzQJ41UlM6baBOfFofFdd6-VGxIpErFDEAeysB5w2vTuufnSPVLB-jJpu-wvzxVfV-rBynJfOomKTmItMi4rbRNhKOmnzypUigC1SoELsQg14NWUq6VohpqbEtAC2O72qdp5YqkurDmC30_Xl7Su-9sn_X_UcbqFrqPcH46MtuE2DmvybbejVi5V9iiiqrp615srgy3V7yG-9aDId |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+non-equilibrium+attractor+for+kinetic+theory+in+relaxation+time+approximation&rft.jtitle=The+journal+of+high+energy+physics&rft.au=M.+Strickland&rft.date=2018-12-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2018&rft.issue=12&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1007%2FJHEP12%282018%29128&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f00afe01532047c4b0e34eb6f6e8bfa4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |