The non-equilibrium attractor for kinetic theory in relaxation time approximation

A bstract I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments. Using a previously obtained exact solution to the relaxation-time approximation Boltzmann equation for a transversally homogeneous...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2018; no. 12; pp. 1 - 27
Main Author Strickland, M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
Springer Nature B.V
Springer Berlin
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments. Using a previously obtained exact solution to the relaxation-time approximation Boltzmann equation for a transversally homogeneous and boost-invariant system subject to Bjorken flow, I derive an equation obeyed by all moments of the one-particle distribution function. Using numerical solutions, I show that, similar to the pressure anisotropy, all moments of the distribution function exhibit attractor-like behavior wherein all initial conditions converge to a universal solution after a short time with the exception of moments which are sensitive to modes with zero longitudinal momentum and high transverse momentum. In addition, I compute the exact solution for the distribution function itself on very fine lattices in momentum space and demonstrate that (a) an attractor for the full distribution function exists and (b) solutions with generic initial conditions relax to this solution, first at low momentum and later at high momentum.
AbstractList I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments. Using a previously obtained exact solution to the relaxation-time approximation Boltzmann equation for a transversally homogeneous and boost-invariant system subject to Bjorken flow, I derive an equation obeyed by all moments of the one-particle distribution function. Using numerical solutions, I show that, similar to the pressure anisotropy, all moments of the distribution function exhibit attractor-like behavior wherein all initial conditions converge to a universal solution after a short time with the exception of moments which are sensitive to modes with zero longitudinal momentum and high transverse momentum. In addition, I compute the exact solution for the distribution function itself on very fine lattices in momentum space and demonstrate that (a) an attractor for the full distribution function exists and (b) solutions with generic initial conditions relax to this solution, first at low momentum and later at high momentum.
Abstract I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments. Using a previously obtained exact solution to the relaxation-time approximation Boltzmann equation for a transversally homogeneous and boost-invariant system subject to Bjorken flow, I derive an equation obeyed by all moments of the one-particle distribution function. Using numerical solutions, I show that, similar to the pressure anisotropy, all moments of the distribution function exhibit attractor-like behavior wherein all initial conditions converge to a universal solution after a short time with the exception of moments which are sensitive to modes with zero longitudinal momentum and high transverse momentum. In addition, I compute the exact solution for the distribution function itself on very fine lattices in momentum space and demonstrate that (a) an attractor for the full distribution function exists and (b) solutions with generic initial conditions relax to this solution, first at low momentum and later at high momentum.
A bstract I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments. Using a previously obtained exact solution to the relaxation-time approximation Boltzmann equation for a transversally homogeneous and boost-invariant system subject to Bjorken flow, I derive an equation obeyed by all moments of the one-particle distribution function. Using numerical solutions, I show that, similar to the pressure anisotropy, all moments of the distribution function exhibit attractor-like behavior wherein all initial conditions converge to a universal solution after a short time with the exception of moments which are sensitive to modes with zero longitudinal momentum and high transverse momentum. In addition, I compute the exact solution for the distribution function itself on very fine lattices in momentum space and demonstrate that (a) an attractor for the full distribution function exists and (b) solutions with generic initial conditions relax to this solution, first at low momentum and later at high momentum.
ArticleNumber 128
Author Strickland, M.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0003-0489-4278
  surname: Strickland
  fullname: Strickland, M.
  email: mstrick6@kent.edu
  organization: Department of Physics, Kent State University
BackLink https://www.osti.gov/servlets/purl/1611989$$D View this record in Osti.gov
BookMark eNp9Uc1rFTEQD6WCbfXc66IXPaydyX4lRynVVgoq1HPIZid9ee5LXpM8aP9707dSi6CHkDDz-5jJ75gd-uCJsVOEDwgwnH25vPiG_B0HFO-RiwN2hMBlLdpBHj57v2THKa0BsEMJR-z7zYqqolTT3c7Nboxut6l0zlGbHGJly_npPGVnqryiEB8q56tIs77X2QVfZbehSm-3Mdy7zb70ir2wek70-vd9wn58urg5v6yvv36-Ov94XZsOIdcoEbEdjRzHYeIDDT237WTt1IFFLPWp77rJaC6N7tGSLr1uokZwkAT91Jywq0V3CnqttrHYxwcVtFP7Qoi3Sscy90zKAmhLZeWGQzuYdgRqWhp725MYrW6L1ptFK6TsVDIuk1mZ4D2ZrLBHlEIW0NsFVJa921HKah120ZcdFcdOChCibwrqbEGZGFKKZJ9GQ1CPQaklKPUYlCpBFUb3F6P477-ypODm__Bg4aXi4G8p_pnnX5RfuT2pMg
CitedBy_id crossref_primary_10_1140_epjc_s10052_020_7847_4
crossref_primary_10_1140_epjc_s10052_025_14029_9
crossref_primary_10_1140_epjc_s10052_025_14028_w
crossref_primary_10_1103_PhysRevC_111_L021902
crossref_primary_10_1103_PhysRevResearch_2_043320
crossref_primary_10_1103_PhysRevD_107_094013
crossref_primary_10_1103_PhysRevLett_130_152301
crossref_primary_10_1103_PhysRevD_110_116020
crossref_primary_10_1103_PhysRevD_104_056022
crossref_primary_10_1103_PhysRevC_100_014904
crossref_primary_10_1007_JHEP12_2022_143
crossref_primary_10_61186_setee_2_2_144
crossref_primary_10_1088_1742_6596_1602_1_012018
crossref_primary_10_1103_PhysRevD_111_014001
crossref_primary_10_1088_1742_6596_1602_1_012017
crossref_primary_10_1016_j_ppnp_2023_104048
crossref_primary_10_1103_PhysRevC_108_064905
crossref_primary_10_3390_particles2020016
crossref_primary_10_1007_JHEP10_2019_069
crossref_primary_10_1007_s41365_020_00829_z
crossref_primary_10_1103_PhysRevD_104_094049
crossref_primary_10_1007_JHEP07_2020_226
crossref_primary_10_1103_PhysRevC_109_L051901
crossref_primary_10_1103_PhysRevD_102_074017
crossref_primary_10_1103_PhysRevD_103_014011
crossref_primary_10_1103_PhysRevD_104_074012
crossref_primary_10_1103_PhysRevC_109_014901
crossref_primary_10_1103_RevModPhys_93_035003
crossref_primary_10_1103_PhysRevD_102_056003
crossref_primary_10_1103_PhysRevD_109_074020
crossref_primary_10_1103_PhysRevD_103_056010
crossref_primary_10_1103_PhysRevLett_127_122301
crossref_primary_10_1103_PhysRevD_102_014037
crossref_primary_10_1103_PhysRevLett_123_262301
crossref_primary_10_1140_epjc_s10052_022_10282_4
crossref_primary_10_1103_PhysRevLett_125_122302
crossref_primary_10_1007_JHEP05_2021_136
crossref_primary_10_1103_PhysRevC_110_015201
crossref_primary_10_1103_PhysRevD_108_L031504
crossref_primary_10_1103_PhysRevC_102_064910
crossref_primary_10_1103_PhysRevC_111_014913
crossref_primary_10_1103_PhysRevC_108_055203
crossref_primary_10_1142_S0218301321300010
crossref_primary_10_1103_PhysRevLett_125_132301
crossref_primary_10_1140_epjc_s10052_021_09832_z
crossref_primary_10_1103_PhysRevC_101_054901
crossref_primary_10_1103_PhysRevLett_126_222301
crossref_primary_10_1103_PhysRevC_100_034901
crossref_primary_10_1103_PhysRevD_111_034033
crossref_primary_10_1103_PhysRevD_99_116012
crossref_primary_10_1103_PhysRevLett_124_152301
crossref_primary_10_1016_j_aop_2019_167993
crossref_primary_10_1140_epjc_s10052_024_13227_1
crossref_primary_10_1103_PhysRevC_102_064904
crossref_primary_10_1142_S0218301324300042
crossref_primary_10_1103_PhysRevC_106_044912
crossref_primary_10_1103_PhysRevD_102_031501
crossref_primary_10_3390_e24121790
crossref_primary_10_1103_PhysRevD_104_096005
crossref_primary_10_1051_epjconf_202429601020
crossref_primary_10_1103_PhysRevD_106_094024
crossref_primary_10_1103_PhysRevC_105_024910
crossref_primary_10_1103_PhysRevD_109_L091504
crossref_primary_10_1088_1361_6633_ac14c9
crossref_primary_10_1103_PhysRevLett_127_042301
crossref_primary_10_1103_PhysRevC_108_064913
crossref_primary_10_1103_PhysRevD_106_014016
crossref_primary_10_1103_PhysRevC_108_064911
crossref_primary_10_1051_epjconf_202429613004
crossref_primary_10_1103_PhysRevC_105_024911
Cites_doi 10.1103/PhysRevLett.115.182301
10.1016/j.nuclphysa.2011.11.003
10.1016/j.ppnp.2018.05.004
10.1007/JHEP10(2016)155
10.1103/PhysRevLett.120.012301
10.1088/1126-6708/2009/10/043
10.1103/PhysRevLett.111.181601
10.1103/PhysRevLett.97.252301
10.1103/PhysRevLett.115.241602
10.1103/PhysRevLett.94.102303
10.1103/PhysRevLett.105.162501
10.1007/JHEP09(2013)026
10.1103/PhysRevLett.115.072501
10.1007/JHEP01(2017)026
10.1016/j.nuclphysa.2013.08.004
10.1016/S0370-1573(01)00061-8
10.1103/PhysRevLett.111.232301
10.1103/PhysRevLett.108.201602
10.1007/JHEP12(2017)079
10.1007/JHEP06(2017)154
10.1007/JHEP12(2011)044
10.1016/0550-3213(88)90035-1
10.1103/PhysRevLett.96.062302
10.1103/PhysRevD.68.036004
10.1103/PhysRevLett.94.072302
10.1088/1126-6708/2005/09/041
10.1016/j.nuclphysa.2010.08.011
10.1103/PhysRevD.70.025004
10.1007/JHEP11(2011)120
10.1016/S0370-2693(01)00191-5
10.1103/PhysRevLett.108.191601
10.1007/JHEP03(2016)146
10.1016/j.nuclphysa.2011.10.005
10.1088/0954-3899/42/4/045106
10.1016/0370-2693(84)91863-X
10.1088/1126-6708/2003/08/002
10.1103/PhysRevD.74.045011
10.1088/1361-6633/aaa091
10.1016/j.physletb.2017.11.059
10.1103/PhysRevLett.113.202301
10.1103/PhysRevLett.102.211601
10.1007/s12043-015-0972-1
ContentType Journal Article
Copyright The Author(s) 2018
Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2018
– notice: Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.
CorporateAuthor Kent State Univ., Kent, OH (United States)
CorporateAuthor_xml – sequence: 0
  name: Kent State Univ., Kent, OH (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP12(2018)128
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 27
ExternalDocumentID oai_doaj_org_article_f00afe01532047c4b0e34eb6f6e8bfa4
1611989
10_1007_JHEP12_2018_128
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
H13
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
AAYZJ
AHBXF
OIOZB
OTOTI
PUEGO
ID FETCH-LOGICAL-c510t-191114bc9bb7d27e762f4dffd50f11bc9d655dca29ca61feadff5de38209e06d3
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Wed Aug 27 01:21:57 EDT 2025
Thu Dec 05 06:23:56 EST 2024
Fri Jul 25 20:52:43 EDT 2025
Tue Jul 01 03:54:03 EDT 2025
Thu Apr 24 23:00:16 EDT 2025
Fri Feb 21 02:29:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Heavy Ion Phenomenology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-191114bc9bb7d27e762f4dffd50f11bc9d655dca29ca61feadff5de38209e06d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC)
SC0013470
ORCID 0000-0003-0489-4278
0000000304894278
OpenAccessLink https://doaj.org/article/f00afe01532047c4b0e34eb6f6e8bfa4
PQID 2159808863
PQPubID 2034718
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_f00afe01532047c4b0e34eb6f6e8bfa4
osti_scitechconnect_1611989
proquest_journals_2159808863
crossref_primary_10_1007_JHEP12_2018_128
crossref_citationtrail_10_1007_JHEP12_2018_128
springer_journals_10_1007_JHEP12_2018_128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Berlin
SpringerOpen
Publisher_xml – sequence: 0
  name: Springer Berlin
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References AttemsMThermodynamics, transport and relaxation in non-conformal theoriesJHEP2016101552016JHEP...10..155A357858010.1007/JHEP10(2016)1551390.83151[arXiv:1603.01254] [INSPIRE]
JaiswalARelativistic third-order dissipative fluid dynamics from kinetic theoryPhys. Rev.2013C 882013PhRvC..88b1903J[arXiv:1305.3480] [INSPIRE]
HellerMPJanikRAWitaszczykPThe characteristics of thermalization of boost-invariant plasma from holographyPhys. Rev. Lett.20121082016022012PhRvL.108t1602H10.1103/PhysRevLett.108.201602[arXiv:1103.3452] [INSPIRE]
FukushimaKGelisFThe evolving GlasmaNucl. Phys.2012A 8741082012NuPhA.874..108F10.1016/j.nuclphysa.2011.11.003[arXiv:1106.1396] [INSPIRE]
van der ScheeWHolographic thermalization with radial flowPhys. Rev.2013D 872013PhRvD..87f1901V[arXiv:1211.2218] [INSPIRE]
StricklandMNoronhaJDenicolGAnisotropic nonequilibrium hydrodynamic attractorPhys. Rev.2018D 972018PhRvD..97c6020S3877854[arXiv:1709.06644] [INSPIRE]
BialasACzyżWBoost-invariant Boltzmann-Vlasov equations for relativistic quark-antiquark plasmaPhys. Rev.1984D 3023711984PhRvD..30.2371B[INSPIRE]
HellerMPKurkelaASpalinskiMSvenssonVHydrodynamization in kinetic theory: Transient modes and the gradient expansionPhys. Rev.2018D 972018PhRvD..97i1503H[arXiv:1609.04803] [INSPIRE]
BehtashACruz-CamachoCNMartinezMFar-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flowPhys. Rev.2018D 972018PhRvD..97d4041B3804328[arXiv:1711.01745] [INSPIRE]
DenicolGSKoideTRischkeDHDissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theoryPhys. Rev. Lett.20101051625012010PhRvL.105p2501D10.1103/PhysRevLett.105.162501[arXiv:1004.5013] [INSPIRE]
A. Rebhan, P. Romatschke and M. Strickland, Dynamics of quark-gluon-plasma instabilities in discretized hard-loop approximation, JHEP09 (2005) 041 [hep-ph/0505261] [INSPIRE].
AttemsMPaths to equilibrium in non-conformal collisionsJHEP2017061542017JHEP...06..154A368187910.1007/JHEP06(2017)1541380.83115[arXiv:1703.09681] [INSPIRE]
FlorkowskiWMaksymiukERyblewskiRCoupled kinetic equations for fermions and bosons in the relaxation-time approximationPhys. Rev.2018C 972018PhRvC..97b4915F[arXiv:1710.07095] [INSPIRE]
BergesJBoguslavskiKSchlichtingSNonlinear amplification of instabilities with longitudinal expansionPhys. Rev.2012D 852012PhRvD..85g6005B[arXiv:1201.3582] [INSPIRE]
DenicolGSHeinzUWMartinezMNoronhaJStricklandMStudying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equationPhys. Rev.2014D 901250262014PhRvD..90l5026D[arXiv:1408.7048] [INSPIRE]
CheslerPMYaffeLGHorizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasmaPhys. Rev. Lett.20091022116012009PhRvL.102u1601C251110910.1103/PhysRevLett.102.211601[arXiv:0812.2053] [INSPIRE]
FlorkowskiWHellerMPSpalinskiMNew theories of relativistic hydrodynamics in the LHC eraRept. Prog. Phys.2018812018RPPh...81d6001F376959710.1088/1361-6633/aaa091[arXiv:1707.02282] [INSPIRE]
FlorkowskiWMaksymiukERyblewskiRStricklandMExact solution of the (0 + 1)-dimensional Boltzmann equation for a massive gasPhys. Rev.2014C 892014PhRvC..89e4908F[arXiv:1402.7348] [INSPIRE]
J. Noronha and G.S. Denicol, Transient Fluid Dynamics of the quark-gluon Plasma According to AdS/CFT, arXiv:1104.2415 [INSPIRE].
RomatschkePRelativistic Hydrodynamic Attractors with Broken Symmetries: Non-Conformal and Non-HomogeneousJHEP2017120792017JHEP...12..079R375671110.1007/JHEP12(2017)0791383.81348[arXiv:1710.03234] [INSPIRE]
R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ‘Bottom up’ thermalization in heavy ion collisions, Phys. Lett.B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].
P. Romatschke and A. Rebhan, Plasma Instabilities in an Anisotropically Expanding Geometry, Phys. Rev. Lett.97 (2006) 252301 [hep-ph/0605064] [INSPIRE].
RomatschkePRelativistic Fluid Dynamics Far From Local EquilibriumPhys. Rev. Lett.20181202018PhRvL.120a2301R10.1103/PhysRevLett.120.012301[arXiv:1704.08699] [INSPIRE]
P. Romatschke and R. Venugopalan, The Unstable Glasma, Phys. Rev.D 74 (2006) 045011 [hep-ph/0605045] [INSPIRE].
FlorkowskiWMaksymiukERyblewskiRAnisotropic-hydrodynamics approach to a quark-gluon fluid mixturePhys. Rev.2018C 972018PhRvC..97a4904F[arXiv:1711.03872] [INSPIRE]
KurkelaAZhuYIsotropization and hydrodynamization in weakly coupled heavy-ion collisionsPhys. Rev. Lett.20151151823012015PhRvL.115r2301K10.1103/PhysRevLett.115.182301[arXiv:1506.06647] [INSPIRE]
HellerMPMateosDvan der ScheeWTrancanelliDStrong Coupling Isotropization of Non-Abelian Plasmas SimplifiedPhys. Rev. Lett.20121081916012012PhRvL.108s1601H10.1103/PhysRevLett.108.191601[arXiv:1202.0981] [INSPIRE]
StricklandMThermalization and isotropization in heavy-ion collisionsPramana2015846712015Prama..84..671S10.1007/s12043-015-0972-1[arXiv:1312.2285] [INSPIRE]
P. Romatschke and R. Venugopalan, Collective non-Abelian instabilities in a melting color glass condensate, Phys. Rev. Lett.96 (2006) 062302 [hep-ph/0510121] [INSPIRE].
MaksymiukEKinetic equations and anisotropic hydrodynamics for quark and gluon fluidsEPJ Web Conf.20181820207[arXiv:1712.01591] [INSPIRE]
S. Mrowczynski, A. Rebhan and M. Strickland, Hard loop effective action for anisotropic plasmas, Phys. Rev.D 70 (2004) 025004 [hep-ph/0403256] [INSPIRE].
P.B. Arnold, J. Lenaghan and G.D. Moore, QCD plasma instabilities and bottom up thermalization, JHEP08 (2003) 002 [hep-ph/0307325] [INSPIRE].
BlaizotJ-PGelisFLiaoJ-FMcLerranLVenugopalanRBose-Einstein Condensation and Thermalization of the Quark Gluon PlasmaNucl. Phys.2012A 873682012NuPhA.873...68B10.1016/j.nuclphysa.2011.10.005[arXiv:1107.5296] [INSPIRE]
AttemsMHolographic Collisions in Non-conformal TheoriesJHEP2017010262017JHEP...01..026A10.1007/JHEP01(2017)026[arXiv:1604.06439] [INSPIRE]
KurkelaAMooreGDBjorken Flow, Plasma Instabilities and ThermalizationJHEP2011111202011JHEP...11..120K10.1007/JHEP11(2011)1201306.81352[arXiv:1108.4684] [INSPIRE]
DenicolGSNoronhaJNiemiHRischkeDHOrigin of the Relaxation Time in Dissipative Fluid DynamicsPhys. Rev.2011D 832011PhRvD..83g4019D[arXiv:1102.4780] [INSPIRE]
KeeganLKurkelaARomatschkePvan der ScheeWZhuYWeak and strong coupling equilibration in nonabelian gauge theoriesJHEP2016040312016JHEP...04..031K[arXiv:1512.05347] [INSPIRE]
KurkelaAMooreGDThermalization in Weakly Coupled Nonabelian PlasmasJHEP2011120442011JHEP...12..044K10.1007/JHEP12(2011)0441306.81353[arXiv:1107.5050] [INSPIRE]
FlorkowskiWJaiswalAMaksymiukERyblewskiRStricklandMRelativistic quantum transport coefficients for second-order viscous hydrodynamicsPhys. Rev.2015C 912015PhRvC..91e4907F[arXiv:1503.03226] [INSPIRE]
HellerMPSpalinskiMHydrodynamics Beyond the Gradient Expansion: Resurgence and ResummationPhys. Rev. Lett.20151152015PhRvL.115g2501H10.1103/PhysRevLett.115.072501[arXiv:1503.07514] [INSPIRE]
FlorkowskiWRyblewskiRStricklandMTesting viscous and anisotropic hydrodynamics in an exactly solvable casePhys. Rev.2013C 882013PhRvC..88b4903F[arXiv:1305.7234] [INSPIRE]
CheslerPMColliding shock waves and hydrodynamics in small systemsPhys. Rev. Lett.20151152416022015PhRvL.115x1602C10.1103/PhysRevLett.115.241602[arXiv:1506.02209] [INSPIRE]
A. Behtash, S. Kamata, M. Martinez and C.N. Cruz-Camacho, Non-perturbative rheological behavior of a far-from-equilibrium expanding plasma, arXiv:1805.07881 [INSPIRE].
SpalinskiMOn the hydrodynamic attractor of Yang-Mills plasmaPhys. Lett.2018B 7764682018PhLB..776..468S374150510.1016/j.physletb.2017.11.059[arXiv:1708.01921] [INSPIRE]
FlorkowskiWMaksymiukEExact solution of the (0+1)-dimensional Boltzmann equation for massive Bose-Einstein and Fermi-Dirac gasesJ. Phys.2015G 422015JPhG...42d5106F10.1088/0954-3899/42/4/045106[arXiv:1411.3666] [INSPIRE]
BaymGThermal equilibration in ultrarelativistic heavy ion collisionsPhys. Lett.1984B 138181984PhLB..138...18B10.1016/0370-2693(84)91863-X[INSPIRE]
FlorkowskiWRyblewskiRHighly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisionsPhys. Rev.2011C 832011PhRvC..83c4907F[arXiv:1007.0130] [INSPIRE]
TintiLFlorkowskiWProjection method and new formulation of leading-order anisotropic hydrodynamicsPhys. Rev.2014C 892014PhRvC..89c4907T[arXiv:1312.6614] [INSPIRE]
CheslerPMHow big are the smallest drops of quark-gluon plasma?JHEP2016031462016JHEP...03..146C350163610.1007/JHEP03(2016)1461388.83343[arXiv:1601.01583] [INSPIRE]
HellerMPMateosDvan der ScheeWTrianaMHolographic isotropization linearizedJHEP2013090262013JHEP...09..026H10.1007/JHEP09(2013)026[arXiv:1304.5172] [INSPIRE]
HellerMPJanikRAWitaszczykPA numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization — an ADM formulationPhys. Rev.2012D 851260022012PhRvD..85l6002H[arXiv:1203.0755] [INSPIRE]
DenicolGSHeinzUWMartinezMNoronhaJStricklandMNew Exact Solution of the Relativistic Boltzmann Equation and its Hydrodynamic LimitPhys. Rev. Lett.20141132023012014PhRvL.113t2301D10.1103/PhysRevLett.113.202301[arXiv:1408.5646] [INSPIRE]
J.-P. Blaizot and E. Iancu, The Quark gluon plasma: Collective dynamics and hard thermal loops, Phys. Rept.359 (2002) 355 [hep-ph/0101103] [INSPIRE].
RebhanAStricklandMAttemsMInstabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulationsPhys. Rev.2008D 782008PhRvD..78d5023R[arXiv:0802.1714] [INSPIRE]
A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-Abelian plasma instabilities, Phys. Rev. Lett.94 (2005) 102303 [hep-ph/0412016] [INSPIRE].
DenicolGSFlorkowskiWRyblewskiRStricklandMShear-bulk coupling in nonconformal hydrodynamicsPhys. Rev.2014C 902014PhRvC..90d4905D[arXiv:1407.4767] [INSPIRE]
AttemsMRebhanAStricklandMInstabilities of an anisotropically expanding non-Abelian plasma: 3D+3V discretized hard-loop simulationsPhys. Rev.2013D 872013PhRvD..87b5010A[arXiv:1207.5795] [INSPIRE]
JaiswalARelativistic dissipative hydrodynamics from kinetic theory with relaxation time approximationPhys. Rev.2013C 872013PhRvC..87e1901J[arXiv:1302.6311] [INSPIRE]
AlqahtaniMNopous
M Alqahtani (9641_CR70) 2018; 101
9641_CR49
GS Denicol (9641_CR58) 2010; 105
J-P Blaizot (9641_CR16) 2012; A 873
FS Bemfica (9641_CR41) 2018; D 98
9641_CR8
J Berges (9641_CR18) 2012; D 85
9641_CR9
W Florkowski (9641_CR45) 2018; C 97
9641_CR6
9641_CR7
MP Heller (9641_CR38) 2015; 115
A Bialas (9641_CR64) 1984; D 30
9641_CR4
M Strickland (9641_CR47) 2018; D 97
MP Heller (9641_CR72) 2018; D 97
9641_CR5
W Florkowski (9641_CR46) 2018; C 97
M Spalinski (9641_CR42) 2018; B 776
A Kurkela (9641_CR15) 2011; 11
M Strickland (9641_CR36) 2015; 84
W Florkowski (9641_CR63) 2015; C 91
G Beuf (9641_CR21) 2009; 10
9641_CR37
GS Denicol (9641_CR56) 2014; D 90
M Attems (9641_CR34) 2017; 01
W Florkowski (9641_CR67) 2011; C 83
M Martinez (9641_CR68) 2010; A 848
A Jaiswal (9641_CR61) 2013; C 88
W Florkowski (9641_CR54) 2015; G 42
J Casalderrey-Solana (9641_CR27) 2013; 111
A Jaiswal (9641_CR60) 2013; C 87
GS Denicol (9641_CR59) 2011; D 83
9641_CR71
L Tinti (9641_CR69) 2014; C 89
MP Heller (9641_CR25) 2012; 108
W van der Schee (9641_CR26) 2013; D 87
W Florkowski (9641_CR51) 2013; A 916
M Attems (9641_CR35) 2017; 06
GS Denicol (9641_CR55) 2014; 113
A Rebhan (9641_CR12) 2008; D 78
W Florkowski (9641_CR39) 2018; 81
W Florkowski (9641_CR53) 2014; C 89
P Romatschke (9641_CR40) 2018; 120
GS Denicol (9641_CR62) 2014; C 90
A Kurkela (9641_CR14) 2011; 12
A Kurkela (9641_CR31) 2015; 115
M Attems (9641_CR33) 2016; 10
MP Heller (9641_CR28) 2013; 09
A Bialas (9641_CR65) 1988; B 296
MP Heller (9641_CR23) 2012; 108
K Fukushima (9641_CR13) 2012; A 874
PM Chesler (9641_CR20) 2009; 102
9641_CR10
9641_CR11
M Attems (9641_CR17) 2013; D 87
D Almaalol (9641_CR48) 2018; C 97
9641_CR2
A Behtash (9641_CR44) 2018; D 97
9641_CR3
9641_CR1
PM Chesler (9641_CR30) 2015; 115
P Romatschke (9641_CR43) 2017; 12
W Florkowski (9641_CR52) 2013; C 88
9641_CR50
T Epelbaum (9641_CR19) 2013; 111
G Baym (9641_CR66) 1984; B 138
MP Heller (9641_CR24) 2012; D 85
PM Chesler (9641_CR22) 2010; D 82
PM Chesler (9641_CR32) 2016; 03
L Keegan (9641_CR29) 2016; 04
E Maksymiuk (9641_CR57) 2018; 18
References_xml – reference: R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ‘Bottom up’ thermalization in heavy ion collisions, Phys. Lett.B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].
– reference: van der ScheeWHolographic thermalization with radial flowPhys. Rev.2013D 872013PhRvD..87f1901V[arXiv:1211.2218] [INSPIRE]
– reference: FlorkowskiWMaksymiukERyblewskiRAnisotropic-hydrodynamics approach to a quark-gluon fluid mixturePhys. Rev.2018C 972018PhRvC..97a4904F[arXiv:1711.03872] [INSPIRE]
– reference: BialasACzyżWBoost-invariant Boltzmann-Vlasov equations for relativistic quark-antiquark plasmaPhys. Rev.1984D 3023711984PhRvD..30.2371B[INSPIRE]
– reference: S. Mrowczynski, A. Rebhan and M. Strickland, Hard loop effective action for anisotropic plasmas, Phys. Rev.D 70 (2004) 025004 [hep-ph/0403256] [INSPIRE].
– reference: P. Romatschke and A. Rebhan, Plasma Instabilities in an Anisotropically Expanding Geometry, Phys. Rev. Lett.97 (2006) 252301 [hep-ph/0605064] [INSPIRE].
– reference: EpelbaumTGelisFPressure isotropization in high energy heavy ion collisionsPhys. Rev. Lett.20131112323012013PhRvL.111w2301E10.1103/PhysRevLett.111.232301[arXiv:1307.2214] [INSPIRE]
– reference: KurkelaAMooreGDThermalization in Weakly Coupled Nonabelian PlasmasJHEP2011120442011JHEP...12..044K10.1007/JHEP12(2011)0441306.81353[arXiv:1107.5050] [INSPIRE]
– reference: HellerMPJanikRAWitaszczykPThe characteristics of thermalization of boost-invariant plasma from holographyPhys. Rev. Lett.20121082016022012PhRvL.108t1602H10.1103/PhysRevLett.108.201602[arXiv:1103.3452] [INSPIRE]
– reference: DenicolGSNoronhaJNiemiHRischkeDHOrigin of the Relaxation Time in Dissipative Fluid DynamicsPhys. Rev.2011D 832011PhRvD..83g4019D[arXiv:1102.4780] [INSPIRE]
– reference: AttemsMRebhanAStricklandMInstabilities of an anisotropically expanding non-Abelian plasma: 3D+3V discretized hard-loop simulationsPhys. Rev.2013D 872013PhRvD..87b5010A[arXiv:1207.5795] [INSPIRE]
– reference: CheslerPMYaffeLGBoost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theoryPhys. Rev.2010D 822010PhRvD..82b6006C[arXiv:0906.4426] [INSPIRE]
– reference: Casalderrey-SolanaJHellerMPMateosDvan der ScheeWFrom full stopping to transparency in a holographic model of heavy ion collisionsPhys. Rev. Lett.20131111816012013PhRvL.111r1601C10.1103/PhysRevLett.111.181601[arXiv:1305.4919] [INSPIRE]
– reference: RomatschkePRelativistic Hydrodynamic Attractors with Broken Symmetries: Non-Conformal and Non-HomogeneousJHEP2017120792017JHEP...12..079R375671110.1007/JHEP12(2017)0791383.81348[arXiv:1710.03234] [INSPIRE]
– reference: P.B. Arnold, J. Lenaghan and G.D. Moore, QCD plasma instabilities and bottom up thermalization, JHEP08 (2003) 002 [hep-ph/0307325] [INSPIRE].
– reference: HellerMPMateosDvan der ScheeWTrianaMHolographic isotropization linearizedJHEP2013090262013JHEP...09..026H10.1007/JHEP09(2013)026[arXiv:1304.5172] [INSPIRE]
– reference: HellerMPSpalinskiMHydrodynamics Beyond the Gradient Expansion: Resurgence and ResummationPhys. Rev. Lett.20151152015PhRvL.115g2501H10.1103/PhysRevLett.115.072501[arXiv:1503.07514] [INSPIRE]
– reference: BaymGThermal equilibration in ultrarelativistic heavy ion collisionsPhys. Lett.1984B 138181984PhLB..138...18B10.1016/0370-2693(84)91863-X[INSPIRE]
– reference: HellerMPKurkelaASpalinskiMSvenssonVHydrodynamization in kinetic theory: Transient modes and the gradient expansionPhys. Rev.2018D 972018PhRvD..97i1503H[arXiv:1609.04803] [INSPIRE]
– reference: J. Noronha and G.S. Denicol, Transient Fluid Dynamics of the quark-gluon Plasma According to AdS/CFT, arXiv:1104.2415 [INSPIRE].
– reference: StricklandMNoronhaJDenicolGAnisotropic nonequilibrium hydrodynamic attractorPhys. Rev.2018D 972018PhRvD..97c6020S3877854[arXiv:1709.06644] [INSPIRE]
– reference: BergesJBoguslavskiKSchlichtingSNonlinear amplification of instabilities with longitudinal expansionPhys. Rev.2012D 852012PhRvD..85g6005B[arXiv:1201.3582] [INSPIRE]
– reference: KurkelaAZhuYIsotropization and hydrodynamization in weakly coupled heavy-ion collisionsPhys. Rev. Lett.20151151823012015PhRvL.115r2301K10.1103/PhysRevLett.115.182301[arXiv:1506.06647] [INSPIRE]
– reference: P.B. Arnold, J. Lenaghan, G.D. Moore and L.G. Yaffe, Apparent thermalization due to plasma instabilities in quark-gluon plasma, Phys. Rev. Lett.94 (2005) 072302 [nucl-th/0409068] [INSPIRE].
– reference: CheslerPMHow big are the smallest drops of quark-gluon plasma?JHEP2016031462016JHEP...03..146C350163610.1007/JHEP03(2016)1461388.83343[arXiv:1601.01583] [INSPIRE]
– reference: DenicolGSFlorkowskiWRyblewskiRStricklandMShear-bulk coupling in nonconformal hydrodynamicsPhys. Rev.2014C 902014PhRvC..90d4905D[arXiv:1407.4767] [INSPIRE]
– reference: AlmaalolDStricklandMAnisotropic hydrodynamics with a scalar collisional kernelPhys. Rev.2018C 972018PhRvC..97d4911A[arXiv:1801.10173] [INSPIRE]
– reference: DenicolGSHeinzUWMartinezMNoronhaJStricklandMStudying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equationPhys. Rev.2014D 901250262014PhRvD..90l5026D[arXiv:1408.7048] [INSPIRE]
– reference: DenicolGSKoideTRischkeDHDissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theoryPhys. Rev. Lett.20101051625012010PhRvL.105p2501D10.1103/PhysRevLett.105.162501[arXiv:1004.5013] [INSPIRE]
– reference: P. Romatschke and M. Strickland, Collective modes of an anisotropic quark gluon plasma, Phys. Rev.D 68 (2003) 036004 [hep-ph/0304092] [INSPIRE].
– reference: JaiswalARelativistic dissipative hydrodynamics from kinetic theory with relaxation time approximationPhys. Rev.2013C 872013PhRvC..87e1901J[arXiv:1302.6311] [INSPIRE]
– reference: BehtashACruz-CamachoCNMartinezMFar-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flowPhys. Rev.2018D 972018PhRvD..97d4041B3804328[arXiv:1711.01745] [INSPIRE]
– reference: RebhanAStricklandMAttemsMInstabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulationsPhys. Rev.2008D 782008PhRvD..78d5023R[arXiv:0802.1714] [INSPIRE]
– reference: KeeganLKurkelaARomatschkePvan der ScheeWZhuYWeak and strong coupling equilibration in nonabelian gauge theoriesJHEP2016040312016JHEP...04..031K[arXiv:1512.05347] [INSPIRE]
– reference: RomatschkePRelativistic Fluid Dynamics Far From Local EquilibriumPhys. Rev. Lett.20181202018PhRvL.120a2301R10.1103/PhysRevLett.120.012301[arXiv:1704.08699] [INSPIRE]
– reference: MaksymiukEKinetic equations and anisotropic hydrodynamics for quark and gluon fluidsEPJ Web Conf.20181820207[arXiv:1712.01591] [INSPIRE]
– reference: P. Romatschke and R. Venugopalan, The Unstable Glasma, Phys. Rev.D 74 (2006) 045011 [hep-ph/0605045] [INSPIRE].
– reference: P. Romatschke and R. Venugopalan, Collective non-Abelian instabilities in a melting color glass condensate, Phys. Rev. Lett.96 (2006) 062302 [hep-ph/0510121] [INSPIRE].
– reference: CheslerPMYaffeLGHorizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasmaPhys. Rev. Lett.20091022116012009PhRvL.102u1601C251110910.1103/PhysRevLett.102.211601[arXiv:0812.2053] [INSPIRE]
– reference: BialasACzyżWDyrekAFlorkowskiWOscillations of quark-gluon Plasma Generated in Strong Color FieldsNucl. Phys.1988B 2966111988NuPhB.296..611B10.1016/0550-3213(88)90035-1[INSPIRE]
– reference: AttemsMThermodynamics, transport and relaxation in non-conformal theoriesJHEP2016101552016JHEP...10..155A357858010.1007/JHEP10(2016)1551390.83151[arXiv:1603.01254] [INSPIRE]
– reference: FukushimaKGelisFThe evolving GlasmaNucl. Phys.2012A 8741082012NuPhA.874..108F10.1016/j.nuclphysa.2011.11.003[arXiv:1106.1396] [INSPIRE]
– reference: G.S. Denicol and J. Noronha, Hydrodynamic attractor and the fate of perturbative expansions in Gubser flow, arXiv:1804.04771 [INSPIRE].
– reference: A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-Abelian plasma instabilities, Phys. Rev. Lett.94 (2005) 102303 [hep-ph/0412016] [INSPIRE].
– reference: FlorkowskiWRyblewskiRStricklandMTesting viscous and anisotropic hydrodynamics in an exactly solvable casePhys. Rev.2013C 882013PhRvC..88b4903F[arXiv:1305.7234] [INSPIRE]
– reference: FlorkowskiWMaksymiukEExact solution of the (0+1)-dimensional Boltzmann equation for massive Bose-Einstein and Fermi-Dirac gasesJ. Phys.2015G 422015JPhG...42d5106F10.1088/0954-3899/42/4/045106[arXiv:1411.3666] [INSPIRE]
– reference: KurkelaAMooreGDBjorken Flow, Plasma Instabilities and ThermalizationJHEP2011111202011JHEP...11..120K10.1007/JHEP11(2011)1201306.81352[arXiv:1108.4684] [INSPIRE]
– reference: JaiswalARelativistic third-order dissipative fluid dynamics from kinetic theoryPhys. Rev.2013C 882013PhRvC..88b1903J[arXiv:1305.3480] [INSPIRE]
– reference: J.-P. Blaizot and E. Iancu, The Quark gluon plasma: Collective dynamics and hard thermal loops, Phys. Rept.359 (2002) 355 [hep-ph/0101103] [INSPIRE].
– reference: SpalinskiMOn the hydrodynamic attractor of Yang-Mills plasmaPhys. Lett.2018B 7764682018PhLB..776..468S374150510.1016/j.physletb.2017.11.059[arXiv:1708.01921] [INSPIRE]
– reference: HellerMPMateosDvan der ScheeWTrancanelliDStrong Coupling Isotropization of Non-Abelian Plasmas SimplifiedPhys. Rev. Lett.20121081916012012PhRvL.108s1601H10.1103/PhysRevLett.108.191601[arXiv:1202.0981] [INSPIRE]
– reference: AttemsMHolographic Collisions in Non-conformal TheoriesJHEP2017010262017JHEP...01..026A10.1007/JHEP01(2017)026[arXiv:1604.06439] [INSPIRE]
– reference: FlorkowskiWRyblewskiRStricklandMAnisotropic Hydrodynamics for Rapidly Expanding SystemsNucl. Phys.2013A 9162492013NuPhA.916..249F10.1016/j.nuclphysa.2013.08.004[arXiv:1304.0665] [INSPIRE]
– reference: FlorkowskiWMaksymiukERyblewskiRStricklandMExact solution of the (0 + 1)-dimensional Boltzmann equation for a massive gasPhys. Rev.2014C 892014PhRvC..89e4908F[arXiv:1402.7348] [INSPIRE]
– reference: BeufGHellerMPJanikRAPeschanskiRBoost-invariant early time dynamics from AdS/CFTJHEP2009100432009JHEP...10..043B260745610.1088/1126-6708/2009/10/043[arXiv:0906.4423] [INSPIRE]
– reference: M. Strickland, http://personal.kent.edu/~mstrick6/code/ (2017).
– reference: FlorkowskiWHellerMPSpalinskiMNew theories of relativistic hydrodynamics in the LHC eraRept. Prog. Phys.2018812018RPPh...81d6001F376959710.1088/1361-6633/aaa091[arXiv:1707.02282] [INSPIRE]
– reference: TintiLFlorkowskiWProjection method and new formulation of leading-order anisotropic hydrodynamicsPhys. Rev.2014C 892014PhRvC..89c4907T[arXiv:1312.6614] [INSPIRE]
– reference: AlqahtaniMNopoushMStricklandMRelativistic anisotropic hydrodynamicsProg. Part. Nucl. Phys.20181012042018PrPNP.101..204A10.1016/j.ppnp.2018.05.004[arXiv:1712.03282] [INSPIRE]
– reference: HellerMPJanikRAWitaszczykPA numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization — an ADM formulationPhys. Rev.2012D 851260022012PhRvD..85l6002H[arXiv:1203.0755] [INSPIRE]
– reference: BemficaFSDisconziMMNoronhaJCausality and existence of solutions of relativistic viscous fluid dynamics with gravityPhys. Rev.2018D 981040642018PhRvD..98j4064B[arXiv:1708.06255] [INSPIRE]
– reference: DenicolGSHeinzUWMartinezMNoronhaJStricklandMNew Exact Solution of the Relativistic Boltzmann Equation and its Hydrodynamic LimitPhys. Rev. Lett.20141132023012014PhRvL.113t2301D10.1103/PhysRevLett.113.202301[arXiv:1408.5646] [INSPIRE]
– reference: FlorkowskiWMaksymiukERyblewskiRCoupled kinetic equations for fermions and bosons in the relaxation-time approximationPhys. Rev.2018C 972018PhRvC..97b4915F[arXiv:1710.07095] [INSPIRE]
– reference: CheslerPMColliding shock waves and hydrodynamics in small systemsPhys. Rev. Lett.20151152416022015PhRvL.115x1602C10.1103/PhysRevLett.115.241602[arXiv:1506.02209] [INSPIRE]
– reference: A. Rebhan, P. Romatschke and M. Strickland, Dynamics of quark-gluon-plasma instabilities in discretized hard-loop approximation, JHEP09 (2005) 041 [hep-ph/0505261] [INSPIRE].
– reference: MartinezMStricklandMDissipative Dynamics of Highly Anisotropic SystemsNucl. Phys.2010A 8481832010NuPhA.848..183M10.1016/j.nuclphysa.2010.08.011[arXiv:1007.0889] [INSPIRE]
– reference: FlorkowskiWJaiswalAMaksymiukERyblewskiRStricklandMRelativistic quantum transport coefficients for second-order viscous hydrodynamicsPhys. Rev.2015C 912015PhRvC..91e4907F[arXiv:1503.03226] [INSPIRE]
– reference: BlaizotJ-PGelisFLiaoJ-FMcLerranLVenugopalanRBose-Einstein Condensation and Thermalization of the Quark Gluon PlasmaNucl. Phys.2012A 873682012NuPhA.873...68B10.1016/j.nuclphysa.2011.10.005[arXiv:1107.5296] [INSPIRE]
– reference: AttemsMPaths to equilibrium in non-conformal collisionsJHEP2017061542017JHEP...06..154A368187910.1007/JHEP06(2017)1541380.83115[arXiv:1703.09681] [INSPIRE]
– reference: A. Behtash, S. Kamata, M. Martinez and C.N. Cruz-Camacho, Non-perturbative rheological behavior of a far-from-equilibrium expanding plasma, arXiv:1805.07881 [INSPIRE].
– reference: FlorkowskiWRyblewskiRHighly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisionsPhys. Rev.2011C 832011PhRvC..83c4907F[arXiv:1007.0130] [INSPIRE]
– reference: StricklandMThermalization and isotropization in heavy-ion collisionsPramana2015846712015Prama..84..671S10.1007/s12043-015-0972-1[arXiv:1312.2285] [INSPIRE]
– volume: D 87
  year: 2013
  ident: 9641_CR17
  publication-title: Phys. Rev.
– volume: 115
  start-page: 182301
  year: 2015
  ident: 9641_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.182301
– volume: D 78
  year: 2008
  ident: 9641_CR12
  publication-title: Phys. Rev.
– volume: A 874
  start-page: 108
  year: 2012
  ident: 9641_CR13
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysa.2011.11.003
– volume: D 82
  year: 2010
  ident: 9641_CR22
  publication-title: Phys. Rev.
– volume: 101
  start-page: 204
  year: 2018
  ident: 9641_CR70
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2018.05.004
– volume: 10
  start-page: 155
  year: 2016
  ident: 9641_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP10(2016)155
– volume: 120
  year: 2018
  ident: 9641_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.012301
– volume: 10
  start-page: 043
  year: 2009
  ident: 9641_CR21
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/043
– volume: D 90
  start-page: 125026
  year: 2014
  ident: 9641_CR56
  publication-title: Phys. Rev.
– volume: 111
  start-page: 181601
  year: 2013
  ident: 9641_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.181601
– ident: 9641_CR50
– volume: 18
  start-page: 20207
  year: 2018
  ident: 9641_CR57
  publication-title: EPJ Web Conf.
– volume: C 97
  year: 2018
  ident: 9641_CR45
  publication-title: Phys. Rev.
– ident: 9641_CR11
  doi: 10.1103/PhysRevLett.97.252301
– volume: C 88
  year: 2013
  ident: 9641_CR52
  publication-title: Phys. Rev.
– volume: C 89
  year: 2014
  ident: 9641_CR69
  publication-title: Phys. Rev.
– volume: 115
  start-page: 241602
  year: 2015
  ident: 9641_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.241602
– ident: 9641_CR7
  doi: 10.1103/PhysRevLett.94.102303
– volume: 105
  start-page: 162501
  year: 2010
  ident: 9641_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.162501
– volume: D 85
  year: 2012
  ident: 9641_CR18
  publication-title: Phys. Rev.
– volume: 09
  start-page: 026
  year: 2013
  ident: 9641_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP09(2013)026
– volume: D 98
  start-page: 104064
  year: 2018
  ident: 9641_CR41
  publication-title: Phys. Rev.
– volume: 115
  year: 2015
  ident: 9641_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.072501
– volume: C 83
  year: 2011
  ident: 9641_CR67
  publication-title: Phys. Rev.
– volume: 01
  start-page: 026
  year: 2017
  ident: 9641_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP01(2017)026
– volume: C 97
  year: 2018
  ident: 9641_CR48
  publication-title: Phys. Rev.
– volume: A 916
  start-page: 249
  year: 2013
  ident: 9641_CR51
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysa.2013.08.004
– ident: 9641_CR2
  doi: 10.1016/S0370-1573(01)00061-8
– volume: 111
  start-page: 232301
  year: 2013
  ident: 9641_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.232301
– volume: 108
  start-page: 201602
  year: 2012
  ident: 9641_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.201602
– volume: 12
  start-page: 079
  year: 2017
  ident: 9641_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP12(2017)079
– volume: 06
  start-page: 154
  year: 2017
  ident: 9641_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP06(2017)154
– volume: 12
  start-page: 044
  year: 2011
  ident: 9641_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP12(2011)044
– volume: B 296
  start-page: 611
  year: 1988
  ident: 9641_CR65
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(88)90035-1
– ident: 9641_CR9
  doi: 10.1103/PhysRevLett.96.062302
– volume: D 83
  year: 2011
  ident: 9641_CR59
  publication-title: Phys. Rev.
– ident: 9641_CR3
  doi: 10.1103/PhysRevD.68.036004
– ident: 9641_CR5
  doi: 10.1103/PhysRevLett.94.072302
– volume: C 88
  year: 2013
  ident: 9641_CR61
  publication-title: Phys. Rev.
– ident: 9641_CR8
  doi: 10.1088/1126-6708/2005/09/041
– volume: A 848
  start-page: 183
  year: 2010
  ident: 9641_CR68
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysa.2010.08.011
– ident: 9641_CR6
  doi: 10.1103/PhysRevD.70.025004
– volume: 04
  start-page: 031
  year: 2016
  ident: 9641_CR29
  publication-title: JHEP
– volume: C 91
  year: 2015
  ident: 9641_CR63
  publication-title: Phys. Rev.
– volume: D 30
  start-page: 2371
  year: 1984
  ident: 9641_CR64
  publication-title: Phys. Rev.
– volume: 11
  start-page: 120
  year: 2011
  ident: 9641_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP11(2011)120
– volume: C 90
  year: 2014
  ident: 9641_CR62
  publication-title: Phys. Rev.
– volume: D 97
  year: 2018
  ident: 9641_CR44
  publication-title: Phys. Rev.
– ident: 9641_CR1
  doi: 10.1016/S0370-2693(01)00191-5
– volume: 108
  start-page: 191601
  year: 2012
  ident: 9641_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.191601
– ident: 9641_CR49
– ident: 9641_CR71
– volume: 03
  start-page: 146
  year: 2016
  ident: 9641_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP03(2016)146
– volume: C 97
  year: 2018
  ident: 9641_CR46
  publication-title: Phys. Rev.
– volume: D 97
  year: 2018
  ident: 9641_CR47
  publication-title: Phys. Rev.
– volume: A 873
  start-page: 68
  year: 2012
  ident: 9641_CR16
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysa.2011.10.005
– volume: D 87
  year: 2013
  ident: 9641_CR26
  publication-title: Phys. Rev.
– volume: G 42
  year: 2015
  ident: 9641_CR54
  publication-title: J. Phys.
  doi: 10.1088/0954-3899/42/4/045106
– volume: D 85
  start-page: 126002
  year: 2012
  ident: 9641_CR24
  publication-title: Phys. Rev.
– volume: B 138
  start-page: 18
  year: 1984
  ident: 9641_CR66
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(84)91863-X
– volume: C 87
  year: 2013
  ident: 9641_CR60
  publication-title: Phys. Rev.
– ident: 9641_CR37
– ident: 9641_CR4
  doi: 10.1088/1126-6708/2003/08/002
– volume: D 97
  year: 2018
  ident: 9641_CR72
  publication-title: Phys. Rev.
– ident: 9641_CR10
  doi: 10.1103/PhysRevD.74.045011
– volume: 81
  year: 2018
  ident: 9641_CR39
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/aaa091
– volume: B 776
  start-page: 468
  year: 2018
  ident: 9641_CR42
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2017.11.059
– volume: C 89
  year: 2014
  ident: 9641_CR53
  publication-title: Phys. Rev.
– volume: 113
  start-page: 202301
  year: 2014
  ident: 9641_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.202301
– volume: 102
  start-page: 211601
  year: 2009
  ident: 9641_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.211601
– volume: 84
  start-page: 671
  year: 2015
  ident: 9641_CR36
  publication-title: Pramana
  doi: 10.1007/s12043-015-0972-1
SSID ssj0015190
Score 2.6151595
Snippet A bstract I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic...
I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic treatments....
Abstract I demonstrate that the concept of a non-equilibrium attractor can be extended beyond the lowest-order moments typically considered in hydrodynamic...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anisotropy
Approximation
Boltzmann transport equation
Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Distribution functions
Elementary Particles
Exact solutions
Heavy Ion Phenomenology
High energy physics
Initial conditions
Kinetic theory
Lattices (mathematics)
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Relaxation time
Stress concentration
String Theory
Transverse momentum
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGX0vRB3aRBhx6SgxvZlmX7FJqyYQk0pKWB3IReU5a22WTXC-m_z4wsb5pAerFBloyY0cx8kubB2EelagApm1yWDh-hNnnbkeeUFY13RbAQKBr566mansuTi_oiHbgtk1vlqBOjovZzR2fkB2iauhZFQlWHV9c5VY2i29VUQuMp20QV3OLma_Nocnr2fX2PgPhEjAl9RHNwMp2cFeUeGr12v6AC7P_YopiyH19zFK17cPPBDWk0PMcv2YuEGPnngcVb7Em4fMWeRc9Nt3zNviGjOe7h83C9mkUH_tUfbvp-EQvpcMSk_BciSRzMY9DiXz675BTBchN5wqm4PI-ZxW9mQxjjG3Z-PPnxZZqnOgm5Q4nq84IUlrSus7bxZRNQv4H0AL4WUBTY7lVde2fKzhlVAK4dgNqHCo1_F4Ty1Vu2gfMM7xhXVEQ0BFlLYxFIgWkr1RS-BQcGxzYZ-zRSTLuURJxqWfzWY_rjgcSaSKyRxBnbWw-4GvJnPN71iFiw7kaJr2PDfPFTJznSIISBgIytSiEbJ60IlQxWgQqtBSMztk0M1IgfKAmuI28h12vEteQclrGdka86yepS362sjO2PvL77_Mhs3___V9vsOfUcHF922Ea_WIUPCF96u5vW6C1E-O8C
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS95AEB-sIvQirW1pfJQ9eNBDSh67m-SoonwIFYUK3pZ9jXy01fYzH9j_vjObxGLFQy9J2OzAMrMz81t2HgB7WitEKZtcVp4eUdm87ThyyhVN8GV0GDkb-cu5nl3Js2t1vQLllAuTot2nK8lkqadkt7PZyUVZ7ZPDag_IqL6CNUUHd97Ux5zgMF4cECAppgo-z4meOJ9Uo59ed6RLT_DlP1eiydOcvoGNESKKw0Gmb2El3m7CegrV9Pfv4JIkK-jQnsdfy3mK2F_-ELbvF6lzjiAQKr4RdCRikbIUf4v5reCUlYckBMHd5EUqJf4wH_IW38PV6cnX41k-NkbIPalQn5dsoaTznXNNqJpIBg1lQAyqwLKk8aCVCt5Wnbe6RNosiCrEmrx9Fwsd6g-wSuuMH0Fo7hoao1TSOkJOaNtaN2Vo0aMl2iaDzxPHjB-rhnPziu9mqnc8sNgwiw2xOIP9R4KfQ8GMl6cesQgep3Gl6zRwt7gxo-IYLAqLkQRbV4VsvHRFrGV0GnVsHVqZwTYL0BBg4Kq3nsODfG8IyHI0WAY7k1zNqJz3hlBO15J11XUGB5Os__5-YbVb_zF3G17z5xD2sgOr_WIZdwm89O5T2q5_AOvy6P0
  priority: 102
  providerName: Springer Nature
Title The non-equilibrium attractor for kinetic theory in relaxation time approximation
URI https://link.springer.com/article/10.1007/JHEP12(2018)128
https://www.proquest.com/docview/2159808863
https://www.osti.gov/servlets/purl/1611989
https://doaj.org/article/f00afe01532047c4b0e34eb6f6e8bfa4
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7ahEIvIUlb6jwWHXpIDm5kW5btY7LsZgk0pKULuQk9YWma5uGF9N93RrbzgtBLLjKWJSNmRppPaPQNwBcpyxCEqFKRWyx8qdO6ocgpwytnM2-Cp9vI307lbC5OzsvzR6m-KCasowfuBHcQONfBo9Mqci4qKwz3hfBGBulrE3RkAkWfN2ym-vMDxCV8IPLh1cHJbHKW5Xvo7Or9jBKvP_JBkaofH39wSj2Bmc9ORqPDma7DWo8U2WE3wg144y834V2M2LS3H-A7Kpjh3j3118tFDNxf_ma6bW9iAh2GWJT9QgSJnVm8rPiXLS4Z3Vy5i7pglFSeRUbxu0V3ffEjzKeTn-NZ2udHSC3OpDbNaKESxjbGVC6vPK5rQbgQXMlDlmG9k2XprM4bq2UW0GZCKJ0v0Ok3nktXfIIVHKf_DExS8lDvRSm0QQAVdF3IKnN1sEFj3yqBr4PElO3JwymHxYUaaI87ESsSsUIRJ7B33-Gq4814uekRqeC-GRFexwo0A9WbgfqfGSSwTQpUiBuI_NZSlJBtFeJZCgpLYGfQq-rn6K1CsNPUuMjKIoH9QdcPn18Y7dZrjHYb3tP_urCYHVhpb5Z-F8FNa0bwtp4ej2D1aHJ69gPfxrmgUo5H0cKxnOeH_wCuCPvR
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FIAQXxCpMAvQBpORg4qXdtg8IsWSYrAIpkXLr9IpGJDPJjEckP8U3UtW2J4AUbrnYku22WrV0Pbur6gG8FqLwnvMy5pnBgytUXNWUOaWT0prUae-oGnlvXwwP-fZRcbQEv_paGEqr7NfEsFDbiaF_5BsYmuoKXULk78_OY2KNot3VnkKjNYsdd_kTP9lm77Y-o37fZNlg8-DTMO5YBWKD9tfEKbk316bWurRZ6XA18Nx6b4vEpylet6IorFFZbZRIPUra-8K6HENl7RJhc3zvLbjN87wmj6oGXxa7FoiGkr59UFJubA83v6bZGobYaj0luvc_Il8gCMDTBB35L3D7z35sCHODB3C_w6fsQ2tQD2HJjR_BnZAnamaP4RuaFRtPxrE7n49CucD8lKmmmQbaHoYImP1A3IqDWSiRvGSjMaN6mYtgAYyo7FnoY34xaosmn8DhjcjvKSzjPN0zYIIoS53jBVcaYZtXVS7K1FbeeIVjywje9hKTpmtZTswZJ7JvttyKWJKIJYo4grXFgLO2W8f1j34kFSweozbb4cJk-l12Xit9kijvULF5lvDScJ24nDstvHCV9opHsEIKlIhWqOWuodwk00hE0ZSKFsFqr1fZrQwzeWXHEaz3ur66fc1sn___Va_g7vBgb1fubu3vrMA9GtWm3KzCcjOduxcInBr9Mlgrg-Obdo_f5pksiw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiKcwLbAHkNqDydper-0DQpQmSluIAqJSb4u9DxQBSZs4ov1r_Dpm1nYKSOXWiy3ZXsuax8633pn5AF5ImTonRBaKWOPBpmWYF5Q5VfHM6MhWzlI18oexHB2Lw5P0ZAN-dbUwlFbZzYl-ojZzTf_I-xiaihxdQiZ916ZFTPaHb07PQmKQop3Wjk6jMZEje_ETl2_L1wf7qOuXcTwcfH43CluGgVCjLdZhRK4uKl1UVWbizOLM4IRxzqTcRRFeNzJNjS7jQpcycih151JjEwybheXSJPjeG7CZ4aqI92BzbzCefFrvYSA24l0zIZ71D0eDSRTvYMDNdyMif_8jDnq6ADzN0a3_grr_7M76oDe8C3datMreNuZ1Dzbs7D7c9FmjevkAPqKRsdl8Ftqz1dQXD6x-sLKuF57EhyEeZt8QxeJg5gsmL9h0xqh65tzbAyNie-a7mp9PmxLKh3B8LRJ8BD38TvsYmCQCU2tFKsoKQZwr80RmkcmddiWOzQJ41UlM6baBOfFofFdd6-VGxIpErFDEAeysB5w2vTuufnSPVLB-jJpu-wvzxVfV-rBynJfOomKTmItMi4rbRNhKOmnzypUigC1SoELsQg14NWUq6VohpqbEtAC2O72qdp5YqkurDmC30_Xl7Su-9sn_X_UcbqFrqPcH46MtuE2DmvybbejVi5V9iiiqrp615srgy3V7yG-9aDId
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+non-equilibrium+attractor+for+kinetic+theory+in+relaxation+time+approximation&rft.jtitle=The+journal+of+high+energy+physics&rft.au=M.+Strickland&rft.date=2018-12-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2018&rft.issue=12&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1007%2FJHEP12%282018%29128&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f00afe01532047c4b0e34eb6f6e8bfa4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon