Archaeal Diversity of Upland Rice Field Soils Assessed by the Terminal Restriction Fragment Length Polymorphism Method Combined with Real Time Quantitative-PCR and a Clone Library Analysis

The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in multitemplate PCR, a real-time PCR assay was carried out using a quenching fluorescence dye primer and amplification efficiency was monitored. Then...

Full description

Saved in:
Bibliographic Details
Published inMicrobes and Environments Vol. 23; no. 3; pp. 237 - 243
Main Authors Komatsuzaki, Masakazu, Nishizawa, Tomoyasu, Kaneko, Nobuhiro, Ohta, Hiroyuki
Format Journal Article
LanguageEnglish
Published Japan Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles 01.01.2008
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1342-6311
1347-4405
DOI10.1264/jsme2.23.237

Cover

Loading…
Abstract The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in multitemplate PCR, a real-time PCR assay was carried out using a quenching fluorescence dye primer and amplification efficiency was monitored. Then terminal-restriction fragment length polymorphism (T-RFLP) profiling was performed using the PCR product with minimized PCR bias. This method was applied to an analysis of the diversity of the archaeal community in an upland rice field under different tillage systems and winter cover cropping. Terminal restriction fragments (T-RFs) of PCR-amplified archaeal 16S rRNA genes were assigned to the gene sequences recovered from the same soil by using an archaeal 16S rRNA gene clone library. Our results indicated that soil archaeal members were not influenced but the relative abundance of archaeal species particularly those belonging to Crenarchaeota which changed between the tillage and non-tillage treatments.
AbstractList The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in multitemplate PCR, a real-time PCR assay was carried out using a quenching fluorescence dye primer and amplification efficiency was monitored. Then terminal-restriction fragment length polymorphism (T-RFLP) profiling was performed using the PCR product with minimized PCR bias. This method was applied to an analysis of the diversity of the archaeal community in an upland rice field under different tillage systems and winter cover cropping. Terminal restriction fragments (T-RFs) of PCR-amplified archaeal 16S rRNA genes were assigned to the gene sequences recovered from the same soil by using an archaeal 16S rRNA gene clone library. Our results indicated that soil archaeal members were not influenced but the relative abundance of archaeal species particularly those belonging to Crenarchaeota which changed between the tillage and non-tillage treatments.
The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in multitemplate PCR, a real-time PCR assay was carried out using a quenching fluorescence dye primer and amplification efficiency was monitored. Then terminal-restriction fragment length polymorphism (T-RFLP) profiling was performed using the PCR product with minimized PCR bias. This method was applied to an analysis of the diversity of the archaeal community in an upland rice field under different tillage systems and winter cover cropping. Terminal restriction fragments (T-RFs) of PCR-amplified archaeal 16S rRNA genes were assigned to the gene sequences recovered from the same soil by using an archaeal 16S rRNA gene clone library. Our results indicated that soil archaeal members were not influenced but the relative abundance of archaeal species particularly those belonging to Crenarchaeota which changed between the tillage and non-tillage treatments.The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in multitemplate PCR, a real-time PCR assay was carried out using a quenching fluorescence dye primer and amplification efficiency was monitored. Then terminal-restriction fragment length polymorphism (T-RFLP) profiling was performed using the PCR product with minimized PCR bias. This method was applied to an analysis of the diversity of the archaeal community in an upland rice field under different tillage systems and winter cover cropping. Terminal restriction fragments (T-RFs) of PCR-amplified archaeal 16S rRNA genes were assigned to the gene sequences recovered from the same soil by using an archaeal 16S rRNA gene clone library. Our results indicated that soil archaeal members were not influenced but the relative abundance of archaeal species particularly those belonging to Crenarchaeota which changed between the tillage and non-tillage treatments.
Author Ohta, Hiroyuki
Komatsuzaki, Masakazu
Kaneko, Nobuhiro
Nishizawa, Tomoyasu
Author_xml – sequence: 1
  fullname: Komatsuzaki, Masakazu
  organization: Institute for Global Change Adaptation Science, Ibaraki University
– sequence: 1
  fullname: Nishizawa, Tomoyasu
  organization: College of Agriculture, Ibaraki University
– sequence: 1
  fullname: Kaneko, Nobuhiro
  organization: Graduate School of Environment and Information Science, Yokohama National University
– sequence: 1
  fullname: Ohta, Hiroyuki
  organization: Institute for Global Change Adaptation Science, Ibaraki University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21558714$$D View this record in MEDLINE/PubMed
BookMark eNp9kl2LEzEUhgdZcT_0zmsJCHrjrElmkpnebalWhYpr7V4PmcxJmzKT1CRV-t_8cZ62a4UFhQM5Ic_5enMuszPnHWTZc0avGZfl23UcgF_zAq16lF2woqzysqTi7ODzXBaMnWeXMa4pLQpR8SfZOWdC1BUrL7Jf46BXClRP3tkfEKJNO-INudv0ynVkbjWQqYW-I9-87SMZxwhoHWl3JK2ALCAM1mH0HGIKVifrHZkGtRzAJTIDt0wrcuv73eDDZmXjQD5DWvmOTPzQWoeJflok5vsGFnYA8nWrXLJJJewmv53Myb4NRSY9Dk1mtg0q7MgYK-6ijU-zx0b1EZ7dn1fZ3fT9YvIxn3358GkynuVaMJpyxrpKFiAoB6ZLZoSRpjV4bdHhUkpTM1A1M5RzU9W6k6xuDVWCaS5HghZX2etj3k3w37c4aTPYqKFHjcBvY1NLybES25Ov_kuyUVXKmksEXz4A134bcC5kSllVJRc1R-rFPbVtB-iaTbADCtD8-T8E3hwBHXyMAcwJYbTZr0dzWI-GF2gV4vwBrg9ae5eCsv2_gm6OQeuY1BJOFVRIVvfwF97jTS3o6PSEqxUacMVvlnDW3g
CitedBy_id crossref_primary_10_1590_1519_6984_247529
crossref_primary_10_1264_jsme2_ME14115
crossref_primary_10_2174_1874285801509010160
crossref_primary_10_1007_s10333_017_0627_6
crossref_primary_10_1264_jsme2_ME09104
crossref_primary_10_1016_j_rhisph_2021_100422
crossref_primary_10_1264_jsme2_ME09139
crossref_primary_10_1016_j_gca_2010_02_006
crossref_primary_10_1038_srep19687
crossref_primary_10_1007_s10310_011_0266_5
crossref_primary_10_1134_S0026261715040128
crossref_primary_10_4265_bio_24_39
crossref_primary_10_1007_s12275_012_2105_6
crossref_primary_10_1038_s41598_018_20633_5
crossref_primary_10_1264_jsme2_ME10108
crossref_primary_10_1264_jsme2_ME11207
crossref_primary_10_1264_jsme2_ME19041
crossref_primary_10_3390_microorganisms11020260
crossref_primary_10_1080_00380768_2019_1666648
crossref_primary_10_1264_jsme2_ME11330
crossref_primary_10_1264_jsme2_ME13142
crossref_primary_10_1264_jsme2_ME11131
crossref_primary_10_2521_jswtb_46_47
Cites_doi 10.1093/nar/30.9.2083
10.1007/s00792-007-0121-y
10.1093/nar/29.6.e34
10.1264/jsme2.23.159
10.1264/jsme2.22.223
10.1128/AEM.63.11.4516-4522.1997
10.1016/j.mimet.2006.11.012
10.1263/jbb.96.317
10.1093/nar/24.11.2080
10.1046/j.1462-2920.2000.00081.x
10.1111/j.1574-6941.2008.00466.x
10.1101/gr.3.3.186
10.1073/pnas.0708857105
10.1016/j.mimet.2004.12.011
10.1073/pnas.94.1.277
10.1128/AEM.70.12.7545-7549.2004
10.1128/AEM.62.2.625-630.1996
10.1128/AEM.69.1.320-326.2003
10.1093/nar/22.22.4673
10.1128/AEM.64.11.4522-4529.1998
10.1016/j.femsec.2004.05.006
10.1111/j.1574-6941.2006.00209.x
10.1264/jsme2.22.365
10.1186/1471-2105-7-57
10.1264/jsme2.23.73
10.1038/nrmicro1159
10.1128/AEM.00062-07
10.1111/j.1574-6941.2007.00427.x
10.1128/AEM.64.10.3724-3730.1998
10.1264/jsme2.23.201
10.1128/AEM.67.8.3753-3755.2001
10.1016/S0167-7012(03)00003-4
10.1038/nature04983
10.1128/JB.180.19.5003-5009.1998
ContentType Journal Article
Copyright Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology
Copyright Japan Science and Technology Agency 2008
Copyright_xml – notice: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology
– notice: Copyright Japan Science and Technology Agency 2008
DBID AAYXX
CITATION
NPM
7QL
C1K
F1W
H95
L.G
M7N
7T7
8FD
FR3
P64
7X8
DOI 10.1264/jsme2.23.237
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1347-4405
EndPage 243
ExternalDocumentID 3155394071
21558714
10_1264_jsme2_23_237
article_jsme2_23_3_23_8509_article_char_en
Genre Journal Article
GroupedDBID 123
2WC
53G
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
HYE
JSF
JSH
KQ8
M48
OK1
PGMZT
RJT
RPM
RZJ
TKC
TR2
WBO
~02
AAYXX
CITATION
NPM
7QL
C1K
F1W
H95
L.G
M7N
7T7
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c510t-11d763e502e1c41f5f6fbf502bf6f2666f81ea81f022f78cd618bf0a51c269503
ISSN 1342-6311
IngestDate Fri Jul 11 04:46:39 EDT 2025
Thu Jul 10 22:13:26 EDT 2025
Mon Jun 30 08:36:58 EDT 2025
Thu Apr 03 07:05:58 EDT 2025
Tue Jul 01 03:52:08 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Wed Sep 03 06:09:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c510t-11d763e502e1c41f5f6fbf502bf6f2666f81ea81f022f78cd618bf0a51c269503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jsme2/23/3/23_8509/_article/-char/en
PMID 21558714
PQID 1467742582
PQPubID 1976392
PageCount 7
ParticipantIDs proquest_miscellaneous_866251010
proquest_miscellaneous_19746826
proquest_journals_1467742582
pubmed_primary_21558714
crossref_primary_10_1264_jsme2_23_237
crossref_citationtrail_10_1264_jsme2_23_237
jstage_primary_article_jsme2_23_3_23_8509_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Miyagi
PublicationTitle Microbes and Environments
PublicationTitleAlternate Microbes Environ.
PublicationYear 2008
Publisher Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
– name: Japan Science and Technology Agency
References 25) Rudolph, C., C. Moissl, R. Henneberger, and R. Huber. 2004. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol. Ecol. 50:1-11.
1) Bintrim, S.B., T.J. Donohue, J. Handelsman, G.P. Roberts, and R.M. Goodman. 1997. Molecular phylogeny of Archaea from soil. Proc. Natl. Acad. Sci. USA 94:277-282.
11) Kanagawa, T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96:317-323.
7) Ikeda, S., H. Tsurumaru, S. Wakai, C. Noritake, K. Fujishiro, M. Akasaka, and K. Ando. 2008. Evaluation of the effects of different additives in improving the DNA extraction yield and quality from andosol. Microbes Environ. 23:159-166.
21) Osborn, A.M., E.R. Moore, and K.N. Timmis. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2:39-50.
26) Saito, A., M. Kawahara, S. Ikeda, M. Ishimine, S. Akao, and K. Minamisawa. 2008. Broad distribution and phylogeny of anaerobic endophytes of cluster XIVa clostridia in plant species including crops. Microbes Environ. 23:73-80.
6) Hoshino-Takada, Y., and A. Hasebe. 2005. DNA extraction from soil. J. Environ. Biotechnol. 5:43-53.
4) Hartmann, M., and F. Widmer. 2008. Reliability for detecting composition and changes of microbial communities by T-RFLP genetic profiling. FEMS Microbiol. Ecol. 63:249-260.
36) Yu, Y., M. Breitbart, P. McNairnie, and F. Rohwer. 2006. FastGroupII: A web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioiform. 7:57
9) Jensen, M.A., and N. Straus. 1993. Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. PCR Methods Appl. 3:186-194.
33) Thompson, J.R., L.A. Marcelino, and M.F. Polz. 2002. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by `reconditioning PCR'. Nucleic Acids Res. 30:2083-2088.
17) Liu, W.-T., T.L. Marsh, H. Cheng, and L.J. Forney, 1997. Characterization of microbial diversity by determining teminal restraiction fragment length polymorphism of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516-4522.
28) Schleper, C., G. Jurgens, and M. Jonuscheit. 2005. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 3:479-488.
32) Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
20) Nakagawa, T., K. Mori, C. Kato, R. Takahashi, and T. Tokuyama. 2007. Distribution of cold-adapted ammonia-oxidizing microorganisms in the deep-ocean of the Northeastern Japan Sea. Microbes Environ. 22:365-372.
35) Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267.
19) Mathieu-Daude, F., J. Welsh, T. Vogt, and M. McClelland. 1996. DNA rehybridization during PCR: the 'Cot effect' and its consequences. Nucleic Acids Res. 24:2080-2086.
8) Ishii, K., and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753-3755.
29) Stahl, D.A., and R. Amann. 1991. Development and application of nucleic acid probes. p. 205-248 In E. Stackebrendt, and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. Wiley, Cichester, England.
13) Kurata, S., T. Kanagawa, K. Yamada, M. Torimura, T. Yokomaku, Y. Kamagata, and R. Kurane. 2001. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer. Nucleic Acids Res. 29:e34.
14) Kurata, S., T. Kanagawa, Y. Magariyama, K. Takatsu, K. Yamada, T. Yokomaku, and Y. Kamagata. 2004. Reevaluation and reduction of a PCR bias caused by reannealing of templates. Appl. Environ. Microbiol. 70:7545-7549.
12) Kaplan, C.W., and C.L. Kitts. 2003. Variation between observed and true terminal restriction fragment length is dependent on true T-RF length and purine content. J. Microbiol. Methods 54:121-125.
5) Hatzenpichler, R., E.V. Lebedeva, E. Spieck, K. Stoecker, A. Richter, H. Daims, and M. Wagner. 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc. Natl. Acad. Sci. USA 105:2134-2139.
31) Suzuki, M., M.S. Rappe, and S.J. Giovannoni. 1998. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl. Environ. Microbiol. 64:4522-4529.
18) Lueders, T., and M.W. Friedrich. 2003. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl. Environ. Microbiol. 69:320-326.
34) Valenzuela-Encinas, C., I. Neria-González, R. Alcántara-Hernández, J. Enríquez-Aragón, I. Estrada-Alvarado, C. Hernández-Rodríguez, L. Dendooven, and R. Marsch. 2008. Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247-254.
10) Kamimura, S., T. Hagi, S. Kurata, K. Takatsu, H. Sogo, T. Hoshino, and K. Nakamura. 2007. Evaluation of quenching probe (QProbe)-PCR assay for quantification of the koi herpes virus (KHV). Microbes Environ. 22:223-231.
3) Hartmann, M., B. Frey, R. Kölliker, and F. Widmer. 2005. Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. J. Microbiol. Methods 61:349-360.
16) Leininger, S., T. Urich, M. Schloter, L. Schwark, J. Oi, G.W. Nicol, J.I. Prosser, S.C. Schuster, and C. Schleper, 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806-809.
23) Polz, M.F., and C.M. Cavanaugh. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724-3730.
24) Reigstad, L.J., A. Richte, H. Daims, T. Urich, L. Schwark, and C. Schleper. 2008. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbial. Ecol. 64:167-174.
15) Kvist, T., B.K. Ahring, and P. Westermann. 2007. Archaeal diversity in Icelandic hot springs. FEMS Microbiol. Ecol. 59:71-80.
27) Schleper, C., E.F. DeLong, C.M. Preston, R.A. Feldman, K.Y. Wu, and R.V. Swanson. 1998. Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 180:5003-5009.
30) Suzuki, M.T., and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625-630.
2) Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11:783-791.
22) Pandey, J., K. Ganesan, and R.K. Jain. 2007. Variations in T-RFLP profiles with differing chemistries of fluorescent dyes used for labeling the PCR primers. J. Microbiol. Methods 68:633-638.
37) Zhaorigetu, M. Komatsuzaki, Y. Sato, and H. Ohta. 2008. Relationships between fungal biomass and nitrous oxide emission in upland rice soils under no tillage and cover cropping systems. Microbes Environ. 23:201-208.
22
24
25
26
28
29
(17) 1997; 63
SCHLEPER C (27) 1998; 180
10
POLZ M F (23) 1998; 64
32
11
33
12
34
13
35
14
36
15
37
16
(30) 1996; 62
18
19
SUZUKI M (31) 1998; 64
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 34) Valenzuela-Encinas, C., I. Neria-González, R. Alcántara-Hernández, J. Enríquez-Aragón, I. Estrada-Alvarado, C. Hernández-Rodríguez, L. Dendooven, and R. Marsch. 2008. Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247-254.
– reference: 5) Hatzenpichler, R., E.V. Lebedeva, E. Spieck, K. Stoecker, A. Richter, H. Daims, and M. Wagner. 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc. Natl. Acad. Sci. USA 105:2134-2139.
– reference: 18) Lueders, T., and M.W. Friedrich. 2003. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl. Environ. Microbiol. 69:320-326.
– reference: 6) Hoshino-Takada, Y., and A. Hasebe. 2005. DNA extraction from soil. J. Environ. Biotechnol. 5:43-53.
– reference: 26) Saito, A., M. Kawahara, S. Ikeda, M. Ishimine, S. Akao, and K. Minamisawa. 2008. Broad distribution and phylogeny of anaerobic endophytes of cluster XIVa clostridia in plant species including crops. Microbes Environ. 23:73-80.
– reference: 7) Ikeda, S., H. Tsurumaru, S. Wakai, C. Noritake, K. Fujishiro, M. Akasaka, and K. Ando. 2008. Evaluation of the effects of different additives in improving the DNA extraction yield and quality from andosol. Microbes Environ. 23:159-166.
– reference: 29) Stahl, D.A., and R. Amann. 1991. Development and application of nucleic acid probes. p. 205-248 In E. Stackebrendt, and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. Wiley, Cichester, England.
– reference: 2) Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11:783-791.
– reference: 15) Kvist, T., B.K. Ahring, and P. Westermann. 2007. Archaeal diversity in Icelandic hot springs. FEMS Microbiol. Ecol. 59:71-80.
– reference: 14) Kurata, S., T. Kanagawa, Y. Magariyama, K. Takatsu, K. Yamada, T. Yokomaku, and Y. Kamagata. 2004. Reevaluation and reduction of a PCR bias caused by reannealing of templates. Appl. Environ. Microbiol. 70:7545-7549.
– reference: 13) Kurata, S., T. Kanagawa, K. Yamada, M. Torimura, T. Yokomaku, Y. Kamagata, and R. Kurane. 2001. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer. Nucleic Acids Res. 29:e34.
– reference: 8) Ishii, K., and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753-3755.
– reference: 1) Bintrim, S.B., T.J. Donohue, J. Handelsman, G.P. Roberts, and R.M. Goodman. 1997. Molecular phylogeny of Archaea from soil. Proc. Natl. Acad. Sci. USA 94:277-282.
– reference: 17) Liu, W.-T., T.L. Marsh, H. Cheng, and L.J. Forney, 1997. Characterization of microbial diversity by determining teminal restraiction fragment length polymorphism of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516-4522.
– reference: 25) Rudolph, C., C. Moissl, R. Henneberger, and R. Huber. 2004. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol. Ecol. 50:1-11.
– reference: 28) Schleper, C., G. Jurgens, and M. Jonuscheit. 2005. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 3:479-488.
– reference: 11) Kanagawa, T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96:317-323.
– reference: 32) Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
– reference: 22) Pandey, J., K. Ganesan, and R.K. Jain. 2007. Variations in T-RFLP profiles with differing chemistries of fluorescent dyes used for labeling the PCR primers. J. Microbiol. Methods 68:633-638.
– reference: 27) Schleper, C., E.F. DeLong, C.M. Preston, R.A. Feldman, K.Y. Wu, and R.V. Swanson. 1998. Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 180:5003-5009.
– reference: 37) Zhaorigetu, M. Komatsuzaki, Y. Sato, and H. Ohta. 2008. Relationships between fungal biomass and nitrous oxide emission in upland rice soils under no tillage and cover cropping systems. Microbes Environ. 23:201-208.
– reference: 19) Mathieu-Daude, F., J. Welsh, T. Vogt, and M. McClelland. 1996. DNA rehybridization during PCR: the 'Cot effect' and its consequences. Nucleic Acids Res. 24:2080-2086.
– reference: 33) Thompson, J.R., L.A. Marcelino, and M.F. Polz. 2002. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by `reconditioning PCR'. Nucleic Acids Res. 30:2083-2088.
– reference: 35) Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267.
– reference: 12) Kaplan, C.W., and C.L. Kitts. 2003. Variation between observed and true terminal restriction fragment length is dependent on true T-RF length and purine content. J. Microbiol. Methods 54:121-125.
– reference: 20) Nakagawa, T., K. Mori, C. Kato, R. Takahashi, and T. Tokuyama. 2007. Distribution of cold-adapted ammonia-oxidizing microorganisms in the deep-ocean of the Northeastern Japan Sea. Microbes Environ. 22:365-372.
– reference: 21) Osborn, A.M., E.R. Moore, and K.N. Timmis. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2:39-50.
– reference: 23) Polz, M.F., and C.M. Cavanaugh. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724-3730.
– reference: 9) Jensen, M.A., and N. Straus. 1993. Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. PCR Methods Appl. 3:186-194.
– reference: 10) Kamimura, S., T. Hagi, S. Kurata, K. Takatsu, H. Sogo, T. Hoshino, and K. Nakamura. 2007. Evaluation of quenching probe (QProbe)-PCR assay for quantification of the koi herpes virus (KHV). Microbes Environ. 22:223-231.
– reference: 24) Reigstad, L.J., A. Richte, H. Daims, T. Urich, L. Schwark, and C. Schleper. 2008. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbial. Ecol. 64:167-174.
– reference: 3) Hartmann, M., B. Frey, R. Kölliker, and F. Widmer. 2005. Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. J. Microbiol. Methods 61:349-360.
– reference: 31) Suzuki, M., M.S. Rappe, and S.J. Giovannoni. 1998. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl. Environ. Microbiol. 64:4522-4529.
– reference: 36) Yu, Y., M. Breitbart, P. McNairnie, and F. Rohwer. 2006. FastGroupII: A web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioiform. 7:57
– reference: 4) Hartmann, M., and F. Widmer. 2008. Reliability for detecting composition and changes of microbial communities by T-RFLP genetic profiling. FEMS Microbiol. Ecol. 63:249-260.
– reference: 30) Suzuki, M.T., and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625-630.
– reference: 16) Leininger, S., T. Urich, M. Schloter, L. Schwark, J. Oi, G.W. Nicol, J.I. Prosser, S.C. Schuster, and C. Schleper, 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806-809.
– ident: 2
– ident: 33
  doi: 10.1093/nar/30.9.2083
– ident: 34
  doi: 10.1007/s00792-007-0121-y
– ident: 13
  doi: 10.1093/nar/29.6.e34
– ident: 7
  doi: 10.1264/jsme2.23.159
– ident: 10
  doi: 10.1264/jsme2.22.223
– volume: 63
  start-page: 4516
  issn: 0099-2240
  issue: 11
  year: 1997
  ident: 17
  doi: 10.1128/AEM.63.11.4516-4522.1997
– ident: 22
  doi: 10.1016/j.mimet.2006.11.012
– ident: 11
  doi: 10.1263/jbb.96.317
– ident: 19
  doi: 10.1093/nar/24.11.2080
– ident: 21
  doi: 10.1046/j.1462-2920.2000.00081.x
– ident: 24
  doi: 10.1111/j.1574-6941.2008.00466.x
– ident: 9
  doi: 10.1101/gr.3.3.186
– ident: 5
  doi: 10.1073/pnas.0708857105
– ident: 3
  doi: 10.1016/j.mimet.2004.12.011
– ident: 1
  doi: 10.1073/pnas.94.1.277
– ident: 14
  doi: 10.1128/AEM.70.12.7545-7549.2004
– volume: 62
  start-page: 625
  issn: 0099-2240
  issue: 2
  year: 1996
  ident: 30
  doi: 10.1128/AEM.62.2.625-630.1996
– ident: 18
  doi: 10.1128/AEM.69.1.320-326.2003
– ident: 32
  doi: 10.1093/nar/22.22.4673
– volume: 64
  start-page: 4522
  issn: 0099-2240
  issue: 11
  year: 1998
  ident: 31
  doi: 10.1128/AEM.64.11.4522-4529.1998
– ident: 25
  doi: 10.1016/j.femsec.2004.05.006
– ident: 15
  doi: 10.1111/j.1574-6941.2006.00209.x
– ident: 20
  doi: 10.1264/jsme2.22.365
– ident: 36
  doi: 10.1186/1471-2105-7-57
– ident: 26
  doi: 10.1264/jsme2.23.73
– ident: 29
– ident: 28
  doi: 10.1038/nrmicro1159
– ident: 35
  doi: 10.1128/AEM.00062-07
– ident: 4
  doi: 10.1111/j.1574-6941.2007.00427.x
– volume: 64
  start-page: 3724
  issn: 0099-2240
  issue: 10
  year: 1998
  ident: 23
  doi: 10.1128/AEM.64.10.3724-3730.1998
– ident: 37
  doi: 10.1264/jsme2.23.201
– ident: 6
– ident: 8
  doi: 10.1128/AEM.67.8.3753-3755.2001
– ident: 12
  doi: 10.1016/S0167-7012(03)00003-4
– ident: 16
  doi: 10.1038/nature04983
– volume: 180
  start-page: 5003
  issn: 0021-9193
  issue: 19
  year: 1998
  ident: 27
  doi: 10.1128/JB.180.19.5003-5009.1998
SSID ssj0033572
Score 1.8538811
Snippet The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 237
SubjectTerms Agricultural practices
Cover crops
Crenarchaeota
Freshwater
Oryza sativa
quenching fluorescence dye
real-time quantitative PCR
Relative abundance
soil Archaea
T-RFLP
Tillage
Title Archaeal Diversity of Upland Rice Field Soils Assessed by the Terminal Restriction Fragment Length Polymorphism Method Combined with Real Time Quantitative-PCR and a Clone Library Analysis
URI https://www.jstage.jst.go.jp/article/jsme2/23/3/23_8509/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/21558714
https://www.proquest.com/docview/1467742582
https://www.proquest.com/docview/19746826
https://www.proquest.com/docview/866251010
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Microbes and Environments, 2008, Vol.23(3), pp.237-243
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF61BSQuiDeBAnOAU-QSP9axj6hKVbUEQUml3qy1s25Ck7iqbZXkt_EX-E_M7K63bmmlAhfLscf2RrPfPHbnwdi7Xh7kcSxSx829wKF2Fk4kXe7kccol6k93PKZ85-HncPcw2DviR2vrv1pRS3WVbmWra_NK_oWreA35Slmyf8FZ-1K8gOfIXzwih_F4Kx5T2VghleBqRVccns5U1iGKgO4OBah1vxXTWdnV-7vG4qSWPjoOhorrU_MO3TMcDdljFR_wSS6OqwnFxy3nBTKDmmkMVbtpkiHoTzdx6wc0AMokoQDRhcpZw9E4X7YPdCHY7vasQEvWJEjYKihtq3hIUYGp1OWiB63UO6sOCjSsy3oldJPtoSjFiVjVrU2VyXQlzpUhPCrmxVKU9ua-WMiTQu9RpfUE320XlifadN7Fa8v6ZHppBSS6sgKyh1YFdeu0ca4UO6TGTXsOg0zXsqIi8NdREgca8gvKkZiek3z9lzdSt6nK0Jv4V52jUl7_CIWTDn5UZ3JeIDNnsrVI6_qB54S-UUeyudZ3gqDH2zpM52wbrPpthaRL6hjbxtMlsf5Qm2gVk9os59Lb8vwt-9ClQuRmmieKLPH8xKdDhBZn0tyiTEEE5jq746HXRnpy_6vd1PN9rnqp2T9l8lDw4x_an75kId79jk7SsbzZ_1N24Oghe2AcOPiox_KIrcnFY3bPcOsJ-9lgEiwmochBYxIIk6AwCQqT0GAS0iUgJqHBJLQwCQ0mQWMS2pgEjUloMAmESSBMAmESrmISaBgCFCbBYBIaTD5lhzuD0fauYzqkOBnq0spx3THaB5L3POlmgZvzPMzTHH-meIKmd5hHrhSRm6OlnvejbBy6UZr3BHczL4x5z3_GNhb4vRcM8DmU1hlHcU1FQH0Rp1k09nmILjiP-bjDug1Xksy0D6AuNrOElhGQhxfzAnnYYe8t9akum3MDXawZbKluP8s6bLOZE4kRyiWtZKBD6_HI67C39jaqTNoHRdwVNdLE_SCMvLDD4AaKKAw9MlZ6HfZcTzY7PnSReNR3g5f_MfJX7P6FHNtkG9VZLV-jb1OlbxRifgOBM2Nk
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Archaeal+Diversity+of+Upland+Rice+Field+Soils+Assessed+by+the+Terminal+Restriction+Fragment+Length+Polymorphism+Method+Combined+with+Real+Time+Quantitative-PCR+and+a+Clone+Library+Analysis&rft.jtitle=Microbes+and+Environments&rft.au=Komatsuzaki%2C+Masakazu&rft.au=Nishizawa%2C+Tomoyasu&rft.au=Kaneko%2C+Nobuhiro&rft.au=Ohta%2C+Hiroyuki&rft.date=2008-01-01&rft.pub=Japanese+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Soil+Microbiology+%2F+Taiwan+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Plant+Microbe+Interactions+%2F+Japanese+Society+for+Extremophiles&rft.issn=1342-6311&rft.eissn=1347-4405&rft.volume=23&rft.issue=3&rft.spage=237&rft.epage=243&rft_id=info:doi/10.1264%2Fjsme2.23.237&rft.externalDocID=article_jsme2_23_3_23_8509_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-6311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-6311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-6311&client=summon