Archaeal Diversity of Upland Rice Field Soils Assessed by the Terminal Restriction Fragment Length Polymorphism Method Combined with Real Time Quantitative-PCR and a Clone Library Analysis
The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in multitemplate PCR, a real-time PCR assay was carried out using a quenching fluorescence dye primer and amplification efficiency was monitored. Then...
Saved in:
Published in | Microbes and Environments Vol. 23; no. 3; pp. 237 - 243 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
01.01.2008
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1342-6311 1347-4405 |
DOI | 10.1264/jsme2.23.237 |
Cover
Loading…
Abstract | The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in multitemplate PCR, a real-time PCR assay was carried out using a quenching fluorescence dye primer and amplification efficiency was monitored. Then terminal-restriction fragment length polymorphism (T-RFLP) profiling was performed using the PCR product with minimized PCR bias. This method was applied to an analysis of the diversity of the archaeal community in an upland rice field under different tillage systems and winter cover cropping. Terminal restriction fragments (T-RFs) of PCR-amplified archaeal 16S rRNA genes were assigned to the gene sequences recovered from the same soil by using an archaeal 16S rRNA gene clone library. Our results indicated that soil archaeal members were not influenced but the relative abundance of archaeal species particularly those belonging to Crenarchaeota which changed between the tillage and non-tillage treatments. |
---|---|
AbstractList | The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in multitemplate PCR, a real-time PCR assay was carried out using a quenching fluorescence dye primer and amplification efficiency was monitored. Then terminal-restriction fragment length polymorphism (T-RFLP) profiling was performed using the PCR product with minimized PCR bias. This method was applied to an analysis of the diversity of the archaeal community in an upland rice field under different tillage systems and winter cover cropping. Terminal restriction fragments (T-RFs) of PCR-amplified archaeal 16S rRNA genes were assigned to the gene sequences recovered from the same soil by using an archaeal 16S rRNA gene clone library. Our results indicated that soil archaeal members were not influenced but the relative abundance of archaeal species particularly those belonging to Crenarchaeota which changed between the tillage and non-tillage treatments. The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in multitemplate PCR, a real-time PCR assay was carried out using a quenching fluorescence dye primer and amplification efficiency was monitored. Then terminal-restriction fragment length polymorphism (T-RFLP) profiling was performed using the PCR product with minimized PCR bias. This method was applied to an analysis of the diversity of the archaeal community in an upland rice field under different tillage systems and winter cover cropping. Terminal restriction fragments (T-RFs) of PCR-amplified archaeal 16S rRNA genes were assigned to the gene sequences recovered from the same soil by using an archaeal 16S rRNA gene clone library. Our results indicated that soil archaeal members were not influenced but the relative abundance of archaeal species particularly those belonging to Crenarchaeota which changed between the tillage and non-tillage treatments.The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in multitemplate PCR, a real-time PCR assay was carried out using a quenching fluorescence dye primer and amplification efficiency was monitored. Then terminal-restriction fragment length polymorphism (T-RFLP) profiling was performed using the PCR product with minimized PCR bias. This method was applied to an analysis of the diversity of the archaeal community in an upland rice field under different tillage systems and winter cover cropping. Terminal restriction fragments (T-RFs) of PCR-amplified archaeal 16S rRNA genes were assigned to the gene sequences recovered from the same soil by using an archaeal 16S rRNA gene clone library. Our results indicated that soil archaeal members were not influenced but the relative abundance of archaeal species particularly those belonging to Crenarchaeota which changed between the tillage and non-tillage treatments. |
Author | Ohta, Hiroyuki Komatsuzaki, Masakazu Kaneko, Nobuhiro Nishizawa, Tomoyasu |
Author_xml | – sequence: 1 fullname: Komatsuzaki, Masakazu organization: Institute for Global Change Adaptation Science, Ibaraki University – sequence: 1 fullname: Nishizawa, Tomoyasu organization: College of Agriculture, Ibaraki University – sequence: 1 fullname: Kaneko, Nobuhiro organization: Graduate School of Environment and Information Science, Yokohama National University – sequence: 1 fullname: Ohta, Hiroyuki organization: Institute for Global Change Adaptation Science, Ibaraki University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21558714$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl2LEzEUhgdZcT_0zmsJCHrjrElmkpnebalWhYpr7V4PmcxJmzKT1CRV-t_8cZ62a4UFhQM5Ic_5enMuszPnHWTZc0avGZfl23UcgF_zAq16lF2woqzysqTi7ODzXBaMnWeXMa4pLQpR8SfZOWdC1BUrL7Jf46BXClRP3tkfEKJNO-INudv0ynVkbjWQqYW-I9-87SMZxwhoHWl3JK2ALCAM1mH0HGIKVifrHZkGtRzAJTIDt0wrcuv73eDDZmXjQD5DWvmOTPzQWoeJflok5vsGFnYA8nWrXLJJJewmv53Myb4NRSY9Dk1mtg0q7MgYK-6ijU-zx0b1EZ7dn1fZ3fT9YvIxn3358GkynuVaMJpyxrpKFiAoB6ZLZoSRpjV4bdHhUkpTM1A1M5RzU9W6k6xuDVWCaS5HghZX2etj3k3w37c4aTPYqKFHjcBvY1NLybES25Ov_kuyUVXKmksEXz4A134bcC5kSllVJRc1R-rFPbVtB-iaTbADCtD8-T8E3hwBHXyMAcwJYbTZr0dzWI-GF2gV4vwBrg9ae5eCsv2_gm6OQeuY1BJOFVRIVvfwF97jTS3o6PSEqxUacMVvlnDW3g |
CitedBy_id | crossref_primary_10_1590_1519_6984_247529 crossref_primary_10_1264_jsme2_ME14115 crossref_primary_10_2174_1874285801509010160 crossref_primary_10_1007_s10333_017_0627_6 crossref_primary_10_1264_jsme2_ME09104 crossref_primary_10_1016_j_rhisph_2021_100422 crossref_primary_10_1264_jsme2_ME09139 crossref_primary_10_1016_j_gca_2010_02_006 crossref_primary_10_1038_srep19687 crossref_primary_10_1007_s10310_011_0266_5 crossref_primary_10_1134_S0026261715040128 crossref_primary_10_4265_bio_24_39 crossref_primary_10_1007_s12275_012_2105_6 crossref_primary_10_1038_s41598_018_20633_5 crossref_primary_10_1264_jsme2_ME10108 crossref_primary_10_1264_jsme2_ME11207 crossref_primary_10_1264_jsme2_ME19041 crossref_primary_10_3390_microorganisms11020260 crossref_primary_10_1080_00380768_2019_1666648 crossref_primary_10_1264_jsme2_ME11330 crossref_primary_10_1264_jsme2_ME13142 crossref_primary_10_1264_jsme2_ME11131 crossref_primary_10_2521_jswtb_46_47 |
Cites_doi | 10.1093/nar/30.9.2083 10.1007/s00792-007-0121-y 10.1093/nar/29.6.e34 10.1264/jsme2.23.159 10.1264/jsme2.22.223 10.1128/AEM.63.11.4516-4522.1997 10.1016/j.mimet.2006.11.012 10.1263/jbb.96.317 10.1093/nar/24.11.2080 10.1046/j.1462-2920.2000.00081.x 10.1111/j.1574-6941.2008.00466.x 10.1101/gr.3.3.186 10.1073/pnas.0708857105 10.1016/j.mimet.2004.12.011 10.1073/pnas.94.1.277 10.1128/AEM.70.12.7545-7549.2004 10.1128/AEM.62.2.625-630.1996 10.1128/AEM.69.1.320-326.2003 10.1093/nar/22.22.4673 10.1128/AEM.64.11.4522-4529.1998 10.1016/j.femsec.2004.05.006 10.1111/j.1574-6941.2006.00209.x 10.1264/jsme2.22.365 10.1186/1471-2105-7-57 10.1264/jsme2.23.73 10.1038/nrmicro1159 10.1128/AEM.00062-07 10.1111/j.1574-6941.2007.00427.x 10.1128/AEM.64.10.3724-3730.1998 10.1264/jsme2.23.201 10.1128/AEM.67.8.3753-3755.2001 10.1016/S0167-7012(03)00003-4 10.1038/nature04983 10.1128/JB.180.19.5003-5009.1998 |
ContentType | Journal Article |
Copyright | Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology Copyright Japan Science and Technology Agency 2008 |
Copyright_xml | – notice: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology – notice: Copyright Japan Science and Technology Agency 2008 |
DBID | AAYXX CITATION NPM 7QL C1K F1W H95 L.G M7N 7T7 8FD FR3 P64 7X8 |
DOI | 10.1264/jsme2.23.237 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Sciences and Pollution Management Technology Research Database Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1347-4405 |
EndPage | 243 |
ExternalDocumentID | 3155394071 21558714 10_1264_jsme2_23_237 article_jsme2_23_3_23_8509_article_char_en |
Genre | Journal Article |
GroupedDBID | 123 2WC 53G ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z HYE JSF JSH KQ8 M48 OK1 PGMZT RJT RPM RZJ TKC TR2 WBO ~02 AAYXX CITATION NPM 7QL C1K F1W H95 L.G M7N 7T7 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c510t-11d763e502e1c41f5f6fbf502bf6f2666f81ea81f022f78cd618bf0a51c269503 |
ISSN | 1342-6311 |
IngestDate | Fri Jul 11 04:46:39 EDT 2025 Thu Jul 10 22:13:26 EDT 2025 Mon Jun 30 08:36:58 EDT 2025 Thu Apr 03 07:05:58 EDT 2025 Tue Jul 01 03:52:08 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Wed Sep 03 06:09:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c510t-11d763e502e1c41f5f6fbf502bf6f2666f81ea81f022f78cd618bf0a51c269503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jsme2/23/3/23_8509/_article/-char/en |
PMID | 21558714 |
PQID | 1467742582 |
PQPubID | 1976392 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_866251010 proquest_miscellaneous_19746826 proquest_journals_1467742582 pubmed_primary_21558714 crossref_primary_10_1264_jsme2_23_237 crossref_citationtrail_10_1264_jsme2_23_237 jstage_primary_article_jsme2_23_3_23_8509_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-01-01 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Miyagi |
PublicationTitle | Microbes and Environments |
PublicationTitleAlternate | Microbes Environ. |
PublicationYear | 2008 |
Publisher | Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles – name: Japan Science and Technology Agency |
References | 25) Rudolph, C., C. Moissl, R. Henneberger, and R. Huber. 2004. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol. Ecol. 50:1-11. 1) Bintrim, S.B., T.J. Donohue, J. Handelsman, G.P. Roberts, and R.M. Goodman. 1997. Molecular phylogeny of Archaea from soil. Proc. Natl. Acad. Sci. USA 94:277-282. 11) Kanagawa, T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96:317-323. 7) Ikeda, S., H. Tsurumaru, S. Wakai, C. Noritake, K. Fujishiro, M. Akasaka, and K. Ando. 2008. Evaluation of the effects of different additives in improving the DNA extraction yield and quality from andosol. Microbes Environ. 23:159-166. 21) Osborn, A.M., E.R. Moore, and K.N. Timmis. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2:39-50. 26) Saito, A., M. Kawahara, S. Ikeda, M. Ishimine, S. Akao, and K. Minamisawa. 2008. Broad distribution and phylogeny of anaerobic endophytes of cluster XIVa clostridia in plant species including crops. Microbes Environ. 23:73-80. 6) Hoshino-Takada, Y., and A. Hasebe. 2005. DNA extraction from soil. J. Environ. Biotechnol. 5:43-53. 4) Hartmann, M., and F. Widmer. 2008. Reliability for detecting composition and changes of microbial communities by T-RFLP genetic profiling. FEMS Microbiol. Ecol. 63:249-260. 36) Yu, Y., M. Breitbart, P. McNairnie, and F. Rohwer. 2006. FastGroupII: A web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioiform. 7:57 9) Jensen, M.A., and N. Straus. 1993. Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. PCR Methods Appl. 3:186-194. 33) Thompson, J.R., L.A. Marcelino, and M.F. Polz. 2002. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by `reconditioning PCR'. Nucleic Acids Res. 30:2083-2088. 17) Liu, W.-T., T.L. Marsh, H. Cheng, and L.J. Forney, 1997. Characterization of microbial diversity by determining teminal restraiction fragment length polymorphism of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516-4522. 28) Schleper, C., G. Jurgens, and M. Jonuscheit. 2005. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 3:479-488. 32) Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. 20) Nakagawa, T., K. Mori, C. Kato, R. Takahashi, and T. Tokuyama. 2007. Distribution of cold-adapted ammonia-oxidizing microorganisms in the deep-ocean of the Northeastern Japan Sea. Microbes Environ. 22:365-372. 35) Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267. 19) Mathieu-Daude, F., J. Welsh, T. Vogt, and M. McClelland. 1996. DNA rehybridization during PCR: the 'Cot effect' and its consequences. Nucleic Acids Res. 24:2080-2086. 8) Ishii, K., and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753-3755. 29) Stahl, D.A., and R. Amann. 1991. Development and application of nucleic acid probes. p. 205-248 In E. Stackebrendt, and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. Wiley, Cichester, England. 13) Kurata, S., T. Kanagawa, K. Yamada, M. Torimura, T. Yokomaku, Y. Kamagata, and R. Kurane. 2001. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer. Nucleic Acids Res. 29:e34. 14) Kurata, S., T. Kanagawa, Y. Magariyama, K. Takatsu, K. Yamada, T. Yokomaku, and Y. Kamagata. 2004. Reevaluation and reduction of a PCR bias caused by reannealing of templates. Appl. Environ. Microbiol. 70:7545-7549. 12) Kaplan, C.W., and C.L. Kitts. 2003. Variation between observed and true terminal restriction fragment length is dependent on true T-RF length and purine content. J. Microbiol. Methods 54:121-125. 5) Hatzenpichler, R., E.V. Lebedeva, E. Spieck, K. Stoecker, A. Richter, H. Daims, and M. Wagner. 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc. Natl. Acad. Sci. USA 105:2134-2139. 31) Suzuki, M., M.S. Rappe, and S.J. Giovannoni. 1998. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl. Environ. Microbiol. 64:4522-4529. 18) Lueders, T., and M.W. Friedrich. 2003. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl. Environ. Microbiol. 69:320-326. 34) Valenzuela-Encinas, C., I. Neria-González, R. Alcántara-Hernández, J. Enríquez-Aragón, I. Estrada-Alvarado, C. Hernández-Rodríguez, L. Dendooven, and R. Marsch. 2008. Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247-254. 10) Kamimura, S., T. Hagi, S. Kurata, K. Takatsu, H. Sogo, T. Hoshino, and K. Nakamura. 2007. Evaluation of quenching probe (QProbe)-PCR assay for quantification of the koi herpes virus (KHV). Microbes Environ. 22:223-231. 3) Hartmann, M., B. Frey, R. Kölliker, and F. Widmer. 2005. Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. J. Microbiol. Methods 61:349-360. 16) Leininger, S., T. Urich, M. Schloter, L. Schwark, J. Oi, G.W. Nicol, J.I. Prosser, S.C. Schuster, and C. Schleper, 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806-809. 23) Polz, M.F., and C.M. Cavanaugh. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724-3730. 24) Reigstad, L.J., A. Richte, H. Daims, T. Urich, L. Schwark, and C. Schleper. 2008. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbial. Ecol. 64:167-174. 15) Kvist, T., B.K. Ahring, and P. Westermann. 2007. Archaeal diversity in Icelandic hot springs. FEMS Microbiol. Ecol. 59:71-80. 27) Schleper, C., E.F. DeLong, C.M. Preston, R.A. Feldman, K.Y. Wu, and R.V. Swanson. 1998. Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 180:5003-5009. 30) Suzuki, M.T., and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625-630. 2) Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11:783-791. 22) Pandey, J., K. Ganesan, and R.K. Jain. 2007. Variations in T-RFLP profiles with differing chemistries of fluorescent dyes used for labeling the PCR primers. J. Microbiol. Methods 68:633-638. 37) Zhaorigetu, M. Komatsuzaki, Y. Sato, and H. Ohta. 2008. Relationships between fungal biomass and nitrous oxide emission in upland rice soils under no tillage and cover cropping systems. Microbes Environ. 23:201-208. 22 24 25 26 28 29 (17) 1997; 63 SCHLEPER C (27) 1998; 180 10 POLZ M F (23) 1998; 64 32 11 33 12 34 13 35 14 36 15 37 16 (30) 1996; 62 18 19 SUZUKI M (31) 1998; 64 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 34) Valenzuela-Encinas, C., I. Neria-González, R. Alcántara-Hernández, J. Enríquez-Aragón, I. Estrada-Alvarado, C. Hernández-Rodríguez, L. Dendooven, and R. Marsch. 2008. Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247-254. – reference: 5) Hatzenpichler, R., E.V. Lebedeva, E. Spieck, K. Stoecker, A. Richter, H. Daims, and M. Wagner. 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc. Natl. Acad. Sci. USA 105:2134-2139. – reference: 18) Lueders, T., and M.W. Friedrich. 2003. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl. Environ. Microbiol. 69:320-326. – reference: 6) Hoshino-Takada, Y., and A. Hasebe. 2005. DNA extraction from soil. J. Environ. Biotechnol. 5:43-53. – reference: 26) Saito, A., M. Kawahara, S. Ikeda, M. Ishimine, S. Akao, and K. Minamisawa. 2008. Broad distribution and phylogeny of anaerobic endophytes of cluster XIVa clostridia in plant species including crops. Microbes Environ. 23:73-80. – reference: 7) Ikeda, S., H. Tsurumaru, S. Wakai, C. Noritake, K. Fujishiro, M. Akasaka, and K. Ando. 2008. Evaluation of the effects of different additives in improving the DNA extraction yield and quality from andosol. Microbes Environ. 23:159-166. – reference: 29) Stahl, D.A., and R. Amann. 1991. Development and application of nucleic acid probes. p. 205-248 In E. Stackebrendt, and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. Wiley, Cichester, England. – reference: 2) Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11:783-791. – reference: 15) Kvist, T., B.K. Ahring, and P. Westermann. 2007. Archaeal diversity in Icelandic hot springs. FEMS Microbiol. Ecol. 59:71-80. – reference: 14) Kurata, S., T. Kanagawa, Y. Magariyama, K. Takatsu, K. Yamada, T. Yokomaku, and Y. Kamagata. 2004. Reevaluation and reduction of a PCR bias caused by reannealing of templates. Appl. Environ. Microbiol. 70:7545-7549. – reference: 13) Kurata, S., T. Kanagawa, K. Yamada, M. Torimura, T. Yokomaku, Y. Kamagata, and R. Kurane. 2001. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer. Nucleic Acids Res. 29:e34. – reference: 8) Ishii, K., and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753-3755. – reference: 1) Bintrim, S.B., T.J. Donohue, J. Handelsman, G.P. Roberts, and R.M. Goodman. 1997. Molecular phylogeny of Archaea from soil. Proc. Natl. Acad. Sci. USA 94:277-282. – reference: 17) Liu, W.-T., T.L. Marsh, H. Cheng, and L.J. Forney, 1997. Characterization of microbial diversity by determining teminal restraiction fragment length polymorphism of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516-4522. – reference: 25) Rudolph, C., C. Moissl, R. Henneberger, and R. Huber. 2004. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol. Ecol. 50:1-11. – reference: 28) Schleper, C., G. Jurgens, and M. Jonuscheit. 2005. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 3:479-488. – reference: 11) Kanagawa, T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96:317-323. – reference: 32) Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. – reference: 22) Pandey, J., K. Ganesan, and R.K. Jain. 2007. Variations in T-RFLP profiles with differing chemistries of fluorescent dyes used for labeling the PCR primers. J. Microbiol. Methods 68:633-638. – reference: 27) Schleper, C., E.F. DeLong, C.M. Preston, R.A. Feldman, K.Y. Wu, and R.V. Swanson. 1998. Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 180:5003-5009. – reference: 37) Zhaorigetu, M. Komatsuzaki, Y. Sato, and H. Ohta. 2008. Relationships between fungal biomass and nitrous oxide emission in upland rice soils under no tillage and cover cropping systems. Microbes Environ. 23:201-208. – reference: 19) Mathieu-Daude, F., J. Welsh, T. Vogt, and M. McClelland. 1996. DNA rehybridization during PCR: the 'Cot effect' and its consequences. Nucleic Acids Res. 24:2080-2086. – reference: 33) Thompson, J.R., L.A. Marcelino, and M.F. Polz. 2002. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by `reconditioning PCR'. Nucleic Acids Res. 30:2083-2088. – reference: 35) Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267. – reference: 12) Kaplan, C.W., and C.L. Kitts. 2003. Variation between observed and true terminal restriction fragment length is dependent on true T-RF length and purine content. J. Microbiol. Methods 54:121-125. – reference: 20) Nakagawa, T., K. Mori, C. Kato, R. Takahashi, and T. Tokuyama. 2007. Distribution of cold-adapted ammonia-oxidizing microorganisms in the deep-ocean of the Northeastern Japan Sea. Microbes Environ. 22:365-372. – reference: 21) Osborn, A.M., E.R. Moore, and K.N. Timmis. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2:39-50. – reference: 23) Polz, M.F., and C.M. Cavanaugh. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724-3730. – reference: 9) Jensen, M.A., and N. Straus. 1993. Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. PCR Methods Appl. 3:186-194. – reference: 10) Kamimura, S., T. Hagi, S. Kurata, K. Takatsu, H. Sogo, T. Hoshino, and K. Nakamura. 2007. Evaluation of quenching probe (QProbe)-PCR assay for quantification of the koi herpes virus (KHV). Microbes Environ. 22:223-231. – reference: 24) Reigstad, L.J., A. Richte, H. Daims, T. Urich, L. Schwark, and C. Schleper. 2008. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbial. Ecol. 64:167-174. – reference: 3) Hartmann, M., B. Frey, R. Kölliker, and F. Widmer. 2005. Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. J. Microbiol. Methods 61:349-360. – reference: 31) Suzuki, M., M.S. Rappe, and S.J. Giovannoni. 1998. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl. Environ. Microbiol. 64:4522-4529. – reference: 36) Yu, Y., M. Breitbart, P. McNairnie, and F. Rohwer. 2006. FastGroupII: A web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioiform. 7:57 – reference: 4) Hartmann, M., and F. Widmer. 2008. Reliability for detecting composition and changes of microbial communities by T-RFLP genetic profiling. FEMS Microbiol. Ecol. 63:249-260. – reference: 30) Suzuki, M.T., and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625-630. – reference: 16) Leininger, S., T. Urich, M. Schloter, L. Schwark, J. Oi, G.W. Nicol, J.I. Prosser, S.C. Schuster, and C. Schleper, 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806-809. – ident: 2 – ident: 33 doi: 10.1093/nar/30.9.2083 – ident: 34 doi: 10.1007/s00792-007-0121-y – ident: 13 doi: 10.1093/nar/29.6.e34 – ident: 7 doi: 10.1264/jsme2.23.159 – ident: 10 doi: 10.1264/jsme2.22.223 – volume: 63 start-page: 4516 issn: 0099-2240 issue: 11 year: 1997 ident: 17 doi: 10.1128/AEM.63.11.4516-4522.1997 – ident: 22 doi: 10.1016/j.mimet.2006.11.012 – ident: 11 doi: 10.1263/jbb.96.317 – ident: 19 doi: 10.1093/nar/24.11.2080 – ident: 21 doi: 10.1046/j.1462-2920.2000.00081.x – ident: 24 doi: 10.1111/j.1574-6941.2008.00466.x – ident: 9 doi: 10.1101/gr.3.3.186 – ident: 5 doi: 10.1073/pnas.0708857105 – ident: 3 doi: 10.1016/j.mimet.2004.12.011 – ident: 1 doi: 10.1073/pnas.94.1.277 – ident: 14 doi: 10.1128/AEM.70.12.7545-7549.2004 – volume: 62 start-page: 625 issn: 0099-2240 issue: 2 year: 1996 ident: 30 doi: 10.1128/AEM.62.2.625-630.1996 – ident: 18 doi: 10.1128/AEM.69.1.320-326.2003 – ident: 32 doi: 10.1093/nar/22.22.4673 – volume: 64 start-page: 4522 issn: 0099-2240 issue: 11 year: 1998 ident: 31 doi: 10.1128/AEM.64.11.4522-4529.1998 – ident: 25 doi: 10.1016/j.femsec.2004.05.006 – ident: 15 doi: 10.1111/j.1574-6941.2006.00209.x – ident: 20 doi: 10.1264/jsme2.22.365 – ident: 36 doi: 10.1186/1471-2105-7-57 – ident: 26 doi: 10.1264/jsme2.23.73 – ident: 29 – ident: 28 doi: 10.1038/nrmicro1159 – ident: 35 doi: 10.1128/AEM.00062-07 – ident: 4 doi: 10.1111/j.1574-6941.2007.00427.x – volume: 64 start-page: 3724 issn: 0099-2240 issue: 10 year: 1998 ident: 23 doi: 10.1128/AEM.64.10.3724-3730.1998 – ident: 37 doi: 10.1264/jsme2.23.201 – ident: 6 – ident: 8 doi: 10.1128/AEM.67.8.3753-3755.2001 – ident: 12 doi: 10.1016/S0167-7012(03)00003-4 – ident: 16 doi: 10.1038/nature04983 – volume: 180 start-page: 5003 issn: 0021-9193 issue: 19 year: 1998 ident: 27 doi: 10.1128/JB.180.19.5003-5009.1998 |
SSID | ssj0033572 |
Score | 1.8538811 |
Snippet | The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 237 |
SubjectTerms | Agricultural practices Cover crops Crenarchaeota Freshwater Oryza sativa quenching fluorescence dye real-time quantitative PCR Relative abundance soil Archaea T-RFLP Tillage |
Title | Archaeal Diversity of Upland Rice Field Soils Assessed by the Terminal Restriction Fragment Length Polymorphism Method Combined with Real Time Quantitative-PCR and a Clone Library Analysis |
URI | https://www.jstage.jst.go.jp/article/jsme2/23/3/23_8509/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/21558714 https://www.proquest.com/docview/1467742582 https://www.proquest.com/docview/19746826 https://www.proquest.com/docview/866251010 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Microbes and Environments, 2008, Vol.23(3), pp.237-243 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF61BSQuiDeBAnOAU-QSP9axj6hKVbUEQUml3qy1s25Ck7iqbZXkt_EX-E_M7K63bmmlAhfLscf2RrPfPHbnwdi7Xh7kcSxSx829wKF2Fk4kXe7kccol6k93PKZ85-HncPcw2DviR2vrv1pRS3WVbmWra_NK_oWreA35Slmyf8FZ-1K8gOfIXzwih_F4Kx5T2VghleBqRVccns5U1iGKgO4OBah1vxXTWdnV-7vG4qSWPjoOhorrU_MO3TMcDdljFR_wSS6OqwnFxy3nBTKDmmkMVbtpkiHoTzdx6wc0AMokoQDRhcpZw9E4X7YPdCHY7vasQEvWJEjYKihtq3hIUYGp1OWiB63UO6sOCjSsy3oldJPtoSjFiVjVrU2VyXQlzpUhPCrmxVKU9ua-WMiTQu9RpfUE320XlifadN7Fa8v6ZHppBSS6sgKyh1YFdeu0ca4UO6TGTXsOg0zXsqIi8NdREgca8gvKkZiek3z9lzdSt6nK0Jv4V52jUl7_CIWTDn5UZ3JeIDNnsrVI6_qB54S-UUeyudZ3gqDH2zpM52wbrPpthaRL6hjbxtMlsf5Qm2gVk9os59Lb8vwt-9ClQuRmmieKLPH8xKdDhBZn0tyiTEEE5jq746HXRnpy_6vd1PN9rnqp2T9l8lDw4x_an75kId79jk7SsbzZ_1N24Oghe2AcOPiox_KIrcnFY3bPcOsJ-9lgEiwmochBYxIIk6AwCQqT0GAS0iUgJqHBJLQwCQ0mQWMS2pgEjUloMAmESSBMAmESrmISaBgCFCbBYBIaTD5lhzuD0fauYzqkOBnq0spx3THaB5L3POlmgZvzPMzTHH-meIKmd5hHrhSRm6OlnvejbBy6UZr3BHczL4x5z3_GNhb4vRcM8DmU1hlHcU1FQH0Rp1k09nmILjiP-bjDug1Xksy0D6AuNrOElhGQhxfzAnnYYe8t9akum3MDXawZbKluP8s6bLOZE4kRyiWtZKBD6_HI67C39jaqTNoHRdwVNdLE_SCMvLDD4AaKKAw9MlZ6HfZcTzY7PnSReNR3g5f_MfJX7P6FHNtkG9VZLV-jb1OlbxRifgOBM2Nk |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Archaeal+Diversity+of+Upland+Rice+Field+Soils+Assessed+by+the+Terminal+Restriction+Fragment+Length+Polymorphism+Method+Combined+with+Real+Time+Quantitative-PCR+and+a+Clone+Library+Analysis&rft.jtitle=Microbes+and+Environments&rft.au=Komatsuzaki%2C+Masakazu&rft.au=Nishizawa%2C+Tomoyasu&rft.au=Kaneko%2C+Nobuhiro&rft.au=Ohta%2C+Hiroyuki&rft.date=2008-01-01&rft.pub=Japanese+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Soil+Microbiology+%2F+Taiwan+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Plant+Microbe+Interactions+%2F+Japanese+Society+for+Extremophiles&rft.issn=1342-6311&rft.eissn=1347-4405&rft.volume=23&rft.issue=3&rft.spage=237&rft.epage=243&rft_id=info:doi/10.1264%2Fjsme2.23.237&rft.externalDocID=article_jsme2_23_3_23_8509_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-6311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-6311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-6311&client=summon |