Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods

Subject‐specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 33; no. 3; pp. 609 - 627
Main Authors Churchill, Nathan W., Oder, Anita, Abdi, Hervé, Tam, Fred, Lee, Wayne, Thomas, Christopher, Ween, Jon E., Graham, Simon J., Strother, Stephen C.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.03.2012
Wiley-Liss
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.21238

Cover

Loading…
Abstract Subject‐specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data‐driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747–771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three‐way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89–95). It is shown that the quality of brain activation maps may be significantly limited by sub‐optimal choices of data preprocessing steps (or “pipeline”) in a clinical task‐design, an fMRI adaptation of the widely used Trail‐Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject‐dependant effects, and that individually‐optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual‐subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
AbstractList Subject‐specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data‐driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747–771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three‐way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89–95). It is shown that the quality of brain activation maps may be significantly limited by sub‐optimal choices of data preprocessing steps (or “pipeline”) in a clinical task‐design, an fMRI adaptation of the widely used Trail‐Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject‐dependant effects, and that individually‐optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual‐subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747-771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89-95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or "pipeline") in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods.
Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747-771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89-95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or "pipeline") in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods.Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747-771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89-95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or "pipeline") in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods.
Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747-771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89-95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or "pipeline") in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group ( 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Author Churchill, Nathan W.
Ween, Jon E.
Strother, Stephen C.
Abdi, Hervé
Tam, Fred
Graham, Simon J.
Thomas, Christopher
Oder, Anita
Lee, Wayne
AuthorAffiliation 6 Posluns Centre for Stroke and Cognition, Kunin‐Lunenfeld Applied Research Unit, Baycrest, Toronto, Ontario, Canada
8 Imaging Research, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
5 Nova Scotia Cancer Center, Halifax, Nova Scotia, Canada
4 Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
3 School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
1 Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
2 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
7 Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
AuthorAffiliation_xml – name: 3 School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
– name: 5 Nova Scotia Cancer Center, Halifax, Nova Scotia, Canada
– name: 8 Imaging Research, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
– name: 7 Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
– name: 1 Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
– name: 4 Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
– name: 6 Posluns Centre for Stroke and Cognition, Kunin‐Lunenfeld Applied Research Unit, Baycrest, Toronto, Ontario, Canada
– name: 2 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
Author_xml – sequence: 1
  givenname: Nathan W.
  surname: Churchill
  fullname: Churchill, Nathan W.
  email: nchurchill@rotman-baycrest.on.ca
  organization: Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
– sequence: 2
  givenname: Anita
  surname: Oder
  fullname: Oder, Anita
  organization: Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
– sequence: 3
  givenname: Hervé
  surname: Abdi
  fullname: Abdi, Hervé
  organization: School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
– sequence: 4
  givenname: Fred
  surname: Tam
  fullname: Tam, Fred
  organization: Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
– sequence: 5
  givenname: Wayne
  surname: Lee
  fullname: Lee, Wayne
  organization: Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
– sequence: 6
  givenname: Christopher
  surname: Thomas
  fullname: Thomas, Christopher
  organization: Nova Scotia Cancer Center, Halifax, Nova Scotia, Canada
– sequence: 7
  givenname: Jon E.
  surname: Ween
  fullname: Ween, Jon E.
  organization: Posluns Centre for Stroke and Cognition, Kunin-Lunenfeld Applied Research Unit, Baycrest, Toronto, Ontario, Canada
– sequence: 8
  givenname: Simon J.
  surname: Graham
  fullname: Graham, Simon J.
  organization: Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
– sequence: 9
  givenname: Stephen C.
  surname: Strother
  fullname: Strother, Stephen C.
  organization: Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25502152$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21455942$$D View this record in MEDLINE/PubMed
BookMark eNp9kttu1DAQhiNURA9wwQugSAhVXGTrQ5zEN5WgQFuppRzK4c7yOpNdL46d2gmwvASvjNPdLlAJJFu2Nd__azwzu8mWdRaS5CFGE4wQOZhP2wnBhFZ3kh2MeJkhzOnWeC9YxvMSbye7ISwQwpghfC_ZJjhnjOdkJ_l50fW61T-0naWdh847BSGML2nruKVZBh3STndgtIWQNs6nY9xAFobpAlSfNufvTidpXO_7KJK-TntoO-elSVvXa2evvbp5dHLGzbSKAet0gFQ576PDiLTQz10d7id3G2kCPFife8mHVy8vj06ys4vj06NnZ5liGFUZy0upCGsKpmrVQJkjVDYceFMXQGUBaCopk7XKq5IBVFhRhRWnqIqiitRA95LDlW83TFuoFdg-5is6r1vpl8JJLf6OWD0XM_dV5BWvOEPRYH9t4N3VAKEXrQ4KjJEW3BAEJxjnhBEeyce3yIUbfKxsEJjhkrICERypR38mtMnkplUReLIGZIgVbLy0SoffHGPRho3c0xWnvAvBQ7NBMBLjuIg4LuJ6XCJ7cItVupdjP-Kftfmf4ps2sPy3tTh5fn6jyFYKHXr4vlFI_0UUJS2Z-PT6WOC35ONn_uKNuKS_APxE4yY
CitedBy_id crossref_primary_10_1093_cercor_bhab286
crossref_primary_10_3389_fninf_2024_1420315
crossref_primary_10_1038_d41586_020_01282_z
crossref_primary_10_3389_fnins_2016_00461
crossref_primary_10_3389_fnins_2019_00821
crossref_primary_10_3390_brainsci13020260
crossref_primary_10_1016_j_dcn_2019_100630
crossref_primary_10_1038_s41597_022_01694_8
crossref_primary_10_1016_j_neuroimage_2016_08_008
crossref_primary_10_3389_fnhum_2018_00030
crossref_primary_10_1016_j_neuroimage_2012_01_137
crossref_primary_10_3389_fpsyt_2021_617997
crossref_primary_10_1002_ana_23844
crossref_primary_10_1016_j_neuroimage_2021_118197
crossref_primary_10_1038_sdata_2014_49
crossref_primary_10_1016_j_clinimag_2020_06_034
crossref_primary_10_1016_j_rx_2017_12_007
crossref_primary_10_3389_fnins_2016_00515
crossref_primary_10_1155_2018_2740817
crossref_primary_10_1371_journal_pone_0106498
crossref_primary_10_1371_journal_pone_0105169
crossref_primary_10_1038_s41598_023_34645_3
crossref_primary_10_1080_01621459_2014_922886
crossref_primary_10_1016_j_neuroimage_2012_07_004
crossref_primary_10_1016_j_nicl_2019_101654
crossref_primary_10_1016_j_neuroimage_2017_09_014
crossref_primary_10_1002_brb3_1617
crossref_primary_10_3389_fnins_2019_00825
crossref_primary_10_1155_2013_796183
crossref_primary_10_3389_fnhum_2018_00029
crossref_primary_10_1016_j_neuroimage_2013_10_062
crossref_primary_10_1371_journal_pone_0149547
crossref_primary_10_1002_hbm_22421
crossref_primary_10_1016_j_jneumeth_2014_10_024
crossref_primary_10_1186_s40708_024_00223_0
crossref_primary_10_3389_fnhum_2019_00097
crossref_primary_10_1109_TMI_2014_2374074
crossref_primary_10_1016_j_jagp_2019_03_020
crossref_primary_10_1152_jn_01000_2012
crossref_primary_10_1371_journal_pone_0094412
crossref_primary_10_1016_j_neuroimage_2019_05_055
crossref_primary_10_1016_j_neuroimage_2021_118170
crossref_primary_10_1186_s12915_022_01286_3
crossref_primary_10_1002_hbm_25456
crossref_primary_10_1016_j_neubiorev_2024_105846
crossref_primary_10_1038_srep30895
crossref_primary_10_1016_j_neuroimage_2022_119623
crossref_primary_10_1371_journal_pcbi_1005209
crossref_primary_10_52294_001c_124518
crossref_primary_10_1007_s10071_016_0983_4
crossref_primary_10_1002_hbm_24635
crossref_primary_10_1177_2514183X20974231
crossref_primary_10_1002_hbm_24038
crossref_primary_10_1002_hbm_24797
crossref_primary_10_1109_TBDATA_2017_2734883
crossref_primary_10_3389_fnhum_2015_00113
crossref_primary_10_1016_j_rxeng_2018_04_001
crossref_primary_10_1016_j_neuroimage_2017_01_021
crossref_primary_10_1109_JBHI_2015_2439685
crossref_primary_10_1136_jnnp_2015_310307
crossref_primary_10_4018_ijehmc_2014040101
crossref_primary_10_1016_j_neuroimage_2014_03_074
crossref_primary_10_3389_fradi_2021_789632
crossref_primary_10_1016_j_neuroimage_2017_02_028
crossref_primary_10_1590_0100_6045_2021_v44n1_av
crossref_primary_10_1016_j_neuroimage_2017_05_007
crossref_primary_10_1523_ENEURO_0286_23_2024
crossref_primary_10_1093_schbul_sby026
crossref_primary_10_3389_fnhum_2017_00496
crossref_primary_10_1016_j_neuroimage_2012_08_052
crossref_primary_10_1111_nyas_13717
crossref_primary_10_1016_j_neuroimage_2016_12_018
Cites_doi 10.1002/hbm.20379
10.1006/nimg.2000.0728
10.1016/j.neuroimage.2004.07.022
10.1038/jcbfm.1991.47
10.1006/nimg.2001.1037
10.1097/00004728-199801000-00027
10.1016/0022-3956(75)90026-6
10.1016/j.neuroimage.2005.02.021
10.1016/S1053-8119(09)71160-7
10.1006/cbmr.1996.0014
10.1073/pnas.0308627101
10.1016/S0730-725X(01)00418-0
10.1037/1040-3590.13.2.230
10.1006/nimg.1995.1019
10.1371/journal.pcbi.1000106
10.1002/hbm.20219
10.1098/rstb.2005.1634
10.1007/s12021-008-9014-1
10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
10.1016/S1053-8119(03)00116-2
10.1162/jocn.2006.18.2.227
10.1016/j.neuroimage.2004.07.051
10.1016/j.mri.2008.05.021
10.2307/2347233
10.1002/(SICI)1097-0193(1999)7:1<38::AID-HBM4>3.0.CO;2-Q
10.1006/nimg.2002.1200
10.1002/hbm.460030303
10.1016/j.neuroimage.2009.11.039
10.1002/hbm.460030306
10.1016/0028-3932(71)90067-4
10.1006/nimg.2001.0869
10.1016/j.compmedimag.2007.04.002
10.1007/978-3-7908-2604-3_10
10.1038/nn.2303
10.1016/j.neuroimage.2009.06.033
10.1016/j.neuroimage.2008.05.019
10.1006/nimg.2002.1113
10.1016/j.neuroimage.2008.11.008
10.1002/mrm.1910340211
10.1161/01.STR.0000237236.88823.47
10.1006/nimg.2002.1053
10.1016/j.neuroimage.2008.09.029
10.1016/j.neuroimage.2005.05.058
10.1016/j.neuroimage.2006.02.048
10.1007/978-3-540-39903-2_108
10.1016/j.foodqual.2006.09.003
10.1002/(SICI)1522-2594(199905)41:5<964::AID-MRM16>3.0.CO;2-D
10.1006/cviu.1999.0815
10.1006/nimg.2001.1034
10.2307/2984123
10.1016/j.neuroimage.2005.01.048
10.1007/978-3-540-27816-0_25
10.1002/hbm.20268
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.21238
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Optimizing Temporal Preprocessing for fMRI
EISSN 1097-0193
EndPage 627
ExternalDocumentID PMC4898950
3278352021
21455942
25502152
10_1002_hbm_21238
HBM21238
ark_67375_WNG_1Q2VX9DP_T
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: James S. McDonnell Foundation
– fundername: HSF
  funderid: NA6391
– fundername: Baycrest Neurovascular Fellowship
– fundername: CIHR
  funderid: MOP84483
– fundername: NSERC
– fundername: Heart and Stroke Foundation of Ontario (Centre for Stroke Recovery)
– fundername: CIHR
  grantid: 84447-1
– fundername: CIHR
  grantid: MOP84483
– fundername: HSF
  grantid: NA6391
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5108-547ac25f65cdcfe74007f9e9fd6e3a6e0ba35adc4875ee81c3c1c9308c2582de3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 14:14:02 EDT 2025
Fri Jul 11 08:57:46 EDT 2025
Sat Jul 26 02:31:38 EDT 2025
Mon Jul 21 06:04:03 EDT 2025
Mon Jul 21 09:16:46 EDT 2025
Tue Jul 01 04:25:58 EDT 2025
Thu Apr 24 22:53:14 EDT 2025
Wed Jan 22 16:22:03 EST 2025
Wed Oct 30 09:48:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Human
Motion
Nervous system diseases
Head
Radiodiagnosis
Noise
preprocessing
head motion
physiological noise
Multivariate analysis
data-driven metrics
Nuclear magnetic resonance imaging
Optimization
BOLD fMRI
Models
Corrections
model optimization
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5108-547ac25f65cdcfe74007f9e9fd6e3a6e0ba35adc4875ee81c3c1c9308c2582de3
Notes NSERC
Baycrest Neurovascular Fellowship
istex:ABAA9523AA6C90FFFF8AC99A745545A4440ED9F2
ArticleID:HBM21238
HSF - No. NA6391
CIHR - No. MOP84483
James S. McDonnell Foundation
Heart and Stroke Foundation of Ontario (Centre for Stroke Recovery)
ark:/67375/WNG-1Q2VX9DP-T
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.21238?download=true
PMID 21455942
PQID 1517356021
PQPubID 996345
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4898950
proquest_miscellaneous_921142529
proquest_journals_1517356021
pubmed_primary_21455942
pascalfrancis_primary_25502152
crossref_primary_10_1002_hbm_21238
crossref_citationtrail_10_1002_hbm_21238
wiley_primary_10_1002_hbm_21238_HBM21238
istex_primary_ark_67375_WNG_1Q2VX9DP_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2012
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: March 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
John Wiley & Sons, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: John Wiley & Sons, Inc
References Greicius MD, Srivastava G, Reiss AL, Menon V ( 2004): Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci 101: 4637-4642.
Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G ( 2006): Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci 18: 227-241.
Moeller JR, Strother SC ( 1991): A regional covariance approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 11: A121-A135.
Guimond A, Meunier J, Thirion J ( 2000): Average brain models: A convergence study. Comput Vis Imag Understanding 77: 192-210.
Poline JB, Strother SC, Dehaene-Lambertz G, Egan GF, Lancaster JL ( 2006): Motivation and synthesis of the FIAC experiment: reproducibility of fMRI results across expert analyses. Hum Brain Mapp 27: 351-359.
Bannister PR, Brady JM, Jenkinson M ( 2004): TIGER-A New Model for Spatio-Temporal Realignment of FMRI Data. Berlin, Heidelberg: Springer-Verlag.
Folstein MF, Folstein SE, McHugh PR ( 1975): "Mini-mental state": A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189-198.
Mardia K, Kent J, Bibby J ( 1979): Multivariate Analysis. London, United Kingdom: Academic Press.
Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173.
Glover GH, Li TQ, Ress D ( 2001): Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44: 162-167.
Chang C, Cunningham JP, Glover GH ( 2009): Influence of heart rate on the BOLD signal: The cardiac response function. Neuroimage 44: 857-886.
Kim B, Boes JL, Bland PH, Chenevert TL, Meyer CR ( 1999): Motion correction in fMRI via registration of individual slices into an anatomical volume. Magn Reson Med 41: 964-972.
Strother SC, LaConte S, Hansen LK, Anderson J, Zhang J, Pulapura S, Rottenberg D ( 2004): Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis. NeuroImage 23: S196-S207.
Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA ( 2009): The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 47: 1092-1104.
Cochran WG ( 1937): Problems arising in the analysis of a series of similar experiments. J R Stat Soc Supp 4: 102-118.
Genovese CR, Lazar NA, Nichols T ( 2001): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15: 870-878.
Rombouts S, Barkhof F, Hoogenraad F, Sprenger M, Valk J, Scheltens P ( 1997): Test-retest analysis with functional MR of the activated area in the human visual cortex. AJNR 18: 1317-1322.
Ollinger JM, Oakes TR, Alexander AL, Haeberli F, Dalton KM, Davidson RJ ( 2009): The secret life of motion covariates. NeuroImage 47: S122.
Shaw ME, Strother SC, Gavrilescu M, Podzebenko K, Waites A, Watson J, Anderson J, Jackson G, Egan G ( 2003): Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics. NeuroImage 19: 988-1001.
Ardekani BA, Bachman AH, Helpern JA ( 2001): A quantitative comparison of motion detection algorithms in fMRI. Magn Reson Imaging 19: 959-963.
Kay KN, David SV, Prenger RJ, Hansen KA, Gallant JL ( 2007): Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fMRI. Hum Brain Map 29: 142-156.
Army Individual Test Battery ( 1944): Manual of Directions and Scoring. Washington, DC: War Department, Adjutant General's Office.
Della-Maggiore V, Chau W, Peres-Neto PR, McIntosh AR ( 2002): An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data. NeuroImage 17: 19-28.
Jones TB, Bandettini PA, Birn RM ( 2008): Integration of motion correction and physiological noise regression in fMRI. NeuroImage 42:582-590.
Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW ( 1995): Motion detection and correction in functional MR imaging. Hum Brain Mapp 3: 224-235.
Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE, Powers WJ, DeCarli C, Merino JG, Kalaria RN, Vinters HV, Holtzman DM, Rosenberg GA, Dichgans M, Marler JR, Leblanc GG ( 2006): National institute of neurological disorders and stroke-Canadian stroke network vascular cognitive impairment harmonization standards. Stroke 37: 2220-2241.
Birn RM, Diamond JB, Smith MA, Bandettini PA ( 2006): Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31: 1536-1548.
Conover WJ ( 1999): Practical Nonparametric Statistics, 3rd ed. Weinheim: Wiley.
Bullmore ET, Brammer MJ, Rabe-Hesketh S ( 1999): Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7: 38-48.
Orchard J, Atkins MS ( 2003): Iterating Registration and Activation Detection to Overcome Activation Bias in fMRI Motion Estimates. Berlin, Heidelberg: Springer-Verlag.
Thomas CG, Harshman RA, Menon RS ( 2002): Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 17: 1521-1537.
LaConte S, Strother S, Cherkassky V, Anderson J, Hua X ( 2005): Support vector machines for temporal classification of block design fMRI data. NeuroImage 26: 317-329.
Liu TL, Frank LR, Wong EC, Buxton RB ( 2001): Detection power, estimation efficiency, and predictability in event-related fMRI. NeuroImage 13: 759-773.
Evans JW, Todd RW, Taylor MJ, Strother SC ( 2010): Group specific optimization of fMRI processing steps for child and adult data. NeuroImage 50:479-490
Zhang J, Anderson JR, Liang L, Pulapura SK, Gatewood L, Rottenberg DA, Strother SC ( 2009): Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second- level CVA. Magn Reson Imaging 27: 264-278.
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy R, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM ( 2004): Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23: 208-219.
Beckmann CF, DeLuca M, Devlin JT, Smith SM ( 2005): Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360: 1001-1013.
Lund TE, Nbrgaard ND, Rostrup E, Rowe JB, Paulson OB ( 2005): Motion or activity: Their role in intra- and inter-subject variation in fMRI. NeuroImage 26: 960-964.
Hu X, Le TH, Parrish T, Erhard P ( 1995): Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34: 201-212.
Friston KJ, Frith CD, Frackowiak RSJ, Turner R ( 1995b): Characterizing dynamic brain responses with fMRI: A multivariate approach. NeuroImage 2: 166-172.
Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI ( 2009): Circular analysis in systems neuroscience: The dangers of double dipping. Nat Neurosci 12: 535-540.
Stuss DT, Bisschop SM, Alexander MP, Levine B, Katz D, Izukawa D ( 2001): The trails making test: A study in focal lesion patients. Psychol Assess 13: 230-239.
Freire L, Mangin JF ( 2001): Motion correction algorithms may create spurious brain activations in the absence of subject motion. NeuroImage 14: 709-722.
Johnstone T, Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR ( 2006): Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27: 779-788.
Zhang J, Liang L, Anderson JR, Gatewood L, Rottenberg DA, Strother SC ( 2008): A java-based fmri processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines. Neuroinformatics 6: 123-134.
Robert P, Escoufier Y ( 1976): A unifying tool for linear multivariate statistical methods: the RV-coefficient. Applied Statistics, 25: 257-265.
Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ ( 1995a): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189.
Woods RP, Grafton ST, Cherry SR Mazziotta JC ( 1998): Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assisted Tomogr 22: 139-152.
Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97-113.
Abdi H, Dunlop JP, Williams LJ ( 2009): How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the Bootstrap and 3-way multidimensional scaling (DISTATIS). NeuroImage 45: 89-95.
Abdi H, Valentin D, Chollet S, Chrea C ( 2007): Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications. Food Qual Prefer 18: 627-664.
Sarty GE ( 2007): Computing Brain Activation Maps from fMRI Time-Series Images. Cambridge University Press, Cambridge, UK.
Strother SC, Anderson J, Hansen LK, Kjems U, Kustra R, Sidtis J, Frutiger S, Muley S, LaConte S, Rottenberg D ( 2002): The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework. NeuroImage 15: 747-771.
Morgan VL, Dawant BM, Li Y, Pickens DR ( 2007): Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Comput Med Imaging Graph 31: 436-446.
Tanabe J, Miller D, Tregellas J, Freedman R, Meyer FG ( 2002): Comparison of detrending methods for optimal fMRI preprocessing. NeuroImage 15: 902-907.
Oakes TR, Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson AJ ( 2005): Comparison of fMRI motion correction software tools. NeuroImage 28: 529-543.
McIntosh AR, Kovacevic N, Itier RJ ( 2008): Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput Biol
2009; 45
2009; 44
2002; 17
2009; 47
2002; 15
1976; 25
2006; 31
1991; 11
1995; 34
2004; 23
2006; 37
1975; 12
1999; 41
2008; 6
1995b; 2
2003; 19
2008; 4
2001; 44
2005; 26
2007; 31
2005; 28
1979
2009; 48
2009; 12
2007; 29
1971; 9
1996; 29
2006; 27
2001; 19
1997; 18
2001; 15
2001; 13
2001; 14
1937; 4
1944
2004; 101
2007; 18
2010
2006; 18
2007
2004
2003
1999; 7
1995; 3
2009; 27
1998; 22
1999
2005; 360
1995a; 2
2000; 77
2008; 42
2010; 50
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
Glover GH (e_1_2_5_22_1) 2001; 44
Army Individual Test Battery (e_1_2_5_5_1) 1944
e_1_2_5_63_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
Yourganov G (e_1_2_5_61_1)
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_32_1
e_1_2_5_55_1
Sarty GE (e_1_2_5_50_1) 2007
e_1_2_5_3_1
e_1_2_5_19_1
Murphy K (e_1_2_5_42_1) 2009; 47
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
Conover WJ (e_1_2_5_13_1) 1999
e_1_2_5_28_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_43_1
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_20_1
e_1_2_5_41_1
Mardia K (e_1_2_5_37_1) 1979
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
Rombouts S (e_1_2_5_49_1) 1997; 18
e_1_2_5_31_1
e_1_2_5_52_1
References_xml – reference: Genovese CR, Lazar NA, Nichols T ( 2001): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15: 870-878.
– reference: Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy R, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM ( 2004): Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23: 208-219.
– reference: Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173.
– reference: Birn RM, Diamond JB, Smith MA, Bandettini PA ( 2006): Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31: 1536-1548.
– reference: Freire L, Mangin JF ( 2001): Motion correction algorithms may create spurious brain activations in the absence of subject motion. NeuroImage 14: 709-722.
– reference: Strother SC, LaConte S, Hansen LK, Anderson J, Zhang J, Pulapura S, Rottenberg D ( 2004): Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis. NeuroImage 23: S196-S207.
– reference: Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI ( 2009): Circular analysis in systems neuroscience: The dangers of double dipping. Nat Neurosci 12: 535-540.
– reference: Friston KJ, Frith CD, Frackowiak RSJ, Turner R ( 1995b): Characterizing dynamic brain responses with fMRI: A multivariate approach. NeuroImage 2: 166-172.
– reference: Sarty GE ( 2007): Computing Brain Activation Maps from fMRI Time-Series Images. Cambridge University Press, Cambridge, UK.
– reference: Orchard J, Atkins MS ( 2003): Iterating Registration and Activation Detection to Overcome Activation Bias in fMRI Motion Estimates. Berlin, Heidelberg: Springer-Verlag.
– reference: Conover WJ ( 1999): Practical Nonparametric Statistics, 3rd ed. Weinheim: Wiley.
– reference: Bannister PR, Brady JM, Jenkinson M ( 2004): TIGER-A New Model for Spatio-Temporal Realignment of FMRI Data. Berlin, Heidelberg: Springer-Verlag.
– reference: Johnstone T, Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR ( 2006): Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27: 779-788.
– reference: Zhang J, Anderson JR, Liang L, Pulapura SK, Gatewood L, Rottenberg DA, Strother SC ( 2009): Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second- level CVA. Magn Reson Imaging 27: 264-278.
– reference: Guimond A, Meunier J, Thirion J ( 2000): Average brain models: A convergence study. Comput Vis Imag Understanding 77: 192-210.
– reference: McIntosh AR, Kovacevic N, Itier RJ ( 2008): Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput Biol 4: e1000106.
– reference: Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW ( 1995): Motion detection and correction in functional MR imaging. Hum Brain Mapp 3: 224-235.
– reference: Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ ( 1995a): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189.
– reference: Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G ( 2006): Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci 18: 227-241.
– reference: Greicius MD, Srivastava G, Reiss AL, Menon V ( 2004): Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci 101: 4637-4642.
– reference: Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA ( 2009): The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 47: 1092-1104.
– reference: Ardekani BA, Bachman AH, Helpern JA ( 2001): A quantitative comparison of motion detection algorithms in fMRI. Magn Reson Imaging 19: 959-963.
– reference: Zhang J, Liang L, Anderson JR, Gatewood L, Rottenberg DA, Strother SC ( 2008): A java-based fmri processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines. Neuroinformatics 6: 123-134.
– reference: Cochran WG ( 1937): Problems arising in the analysis of a series of similar experiments. J R Stat Soc Supp 4: 102-118.
– reference: Robert P, Escoufier Y ( 1976): A unifying tool for linear multivariate statistical methods: the RV-coefficient. Applied Statistics, 25: 257-265.
– reference: Thomas CG, Harshman RA, Menon RS ( 2002): Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 17: 1521-1537.
– reference: Jones TB, Bandettini PA, Birn RM ( 2008): Integration of motion correction and physiological noise regression in fMRI. NeuroImage 42:582-590.
– reference: LaConte S, Strother S, Cherkassky V, Anderson J, Hua X ( 2005): Support vector machines for temporal classification of block design fMRI data. NeuroImage 26: 317-329.
– reference: Poline JB, Strother SC, Dehaene-Lambertz G, Egan GF, Lancaster JL ( 2006): Motivation and synthesis of the FIAC experiment: reproducibility of fMRI results across expert analyses. Hum Brain Mapp 27: 351-359.
– reference: Della-Maggiore V, Chau W, Peres-Neto PR, McIntosh AR ( 2002): An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data. NeuroImage 17: 19-28.
– reference: Beckmann CF, DeLuca M, Devlin JT, Smith SM ( 2005): Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360: 1001-1013.
– reference: Yourganov G, Chen X, Lukic A, Grady C, Small S, Wernick M, Strother SC: Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data. Neuroimage (in press).
– reference: Moeller JR, Strother SC ( 1991): A regional covariance approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 11: A121-A135.
– reference: Glover GH, Li TQ, Ress D ( 2001): Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44: 162-167.
– reference: Mardia K, Kent J, Bibby J ( 1979): Multivariate Analysis. London, United Kingdom: Academic Press.
– reference: Army Individual Test Battery ( 1944): Manual of Directions and Scoring. Washington, DC: War Department, Adjutant General's Office.
– reference: Evans JW, Todd RW, Taylor MJ, Strother SC ( 2010): Group specific optimization of fMRI processing steps for child and adult data. NeuroImage 50:479-490
– reference: Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE, Powers WJ, DeCarli C, Merino JG, Kalaria RN, Vinters HV, Holtzman DM, Rosenberg GA, Dichgans M, Marler JR, Leblanc GG ( 2006): National institute of neurological disorders and stroke-Canadian stroke network vascular cognitive impairment harmonization standards. Stroke 37: 2220-2241.
– reference: Folstein MF, Folstein SE, McHugh PR ( 1975): "Mini-mental state": A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189-198.
– reference: Miller MB, Donovan CL, Van Horn JD, German E, Sokol-Hessner P, Wolford GL ( 2009): Unique and persistent individual patterns of brain activity across different memory retrieval tasks. Neuroimage 48: 625-635.
– reference: Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97-113.
– reference: Kay KN, David SV, Prenger RJ, Hansen KA, Gallant JL ( 2007): Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fMRI. Hum Brain Map 29: 142-156.
– reference: Hu X, Le TH, Parrish T, Erhard P ( 1995): Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34: 201-212.
– reference: Chang C, Cunningham JP, Glover GH ( 2009): Influence of heart rate on the BOLD signal: The cardiac response function. Neuroimage 44: 857-886.
– reference: Abdi H, Valentin D, Chollet S, Chrea C ( 2007): Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications. Food Qual Prefer 18: 627-664.
– reference: Shaw ME, Strother SC, Gavrilescu M, Podzebenko K, Waites A, Watson J, Anderson J, Jackson G, Egan G ( 2003): Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics. NeuroImage 19: 988-1001.
– reference: Strother SC, Anderson J, Hansen LK, Kjems U, Kustra R, Sidtis J, Frutiger S, Muley S, LaConte S, Rottenberg D ( 2002): The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework. NeuroImage 15: 747-771.
– reference: Liu TL, Frank LR, Wong EC, Buxton RB ( 2001): Detection power, estimation efficiency, and predictability in event-related fMRI. NeuroImage 13: 759-773.
– reference: Kim B, Boes JL, Bland PH, Chenevert TL, Meyer CR ( 1999): Motion correction in fMRI via registration of individual slices into an anatomical volume. Magn Reson Med 41: 964-972.
– reference: Lund TE, Nbrgaard ND, Rostrup E, Rowe JB, Paulson OB ( 2005): Motion or activity: Their role in intra- and inter-subject variation in fMRI. NeuroImage 26: 960-964.
– reference: Woods RP, Grafton ST, Cherry SR Mazziotta JC ( 1998): Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assisted Tomogr 22: 139-152.
– reference: Abdi H, Dunlop JP, Williams LJ ( 2009): How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the Bootstrap and 3-way multidimensional scaling (DISTATIS). NeuroImage 45: 89-95.
– reference: Tanabe J, Miller D, Tregellas J, Freedman R, Meyer FG ( 2002): Comparison of detrending methods for optimal fMRI preprocessing. NeuroImage 15: 902-907.
– reference: Stuss DT, Bisschop SM, Alexander MP, Levine B, Katz D, Izukawa D ( 2001): The trails making test: A study in focal lesion patients. Psychol Assess 13: 230-239.
– reference: Bullmore ET, Brammer MJ, Rabe-Hesketh S ( 1999): Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7: 38-48.
– reference: Oakes TR, Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson AJ ( 2005): Comparison of fMRI motion correction software tools. NeuroImage 28: 529-543.
– reference: Ollinger JM, Oakes TR, Alexander AL, Haeberli F, Dalton KM, Davidson RJ ( 2009): The secret life of motion covariates. NeuroImage 47: S122.
– reference: Morgan VL, Dawant BM, Li Y, Pickens DR ( 2007): Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Comput Med Imaging Graph 31: 436-446.
– reference: Rombouts S, Barkhof F, Hoogenraad F, Sprenger M, Valk J, Scheltens P ( 1997): Test-retest analysis with functional MR of the activated area in the human visual cortex. AJNR 18: 1317-1322.
– volume: 37
  start-page: 2220
  year: 2006
  end-page: 2241
  article-title: National institute of neurological disorders and stroke—Canadian stroke network vascular cognitive impairment harmonization standards
  publication-title: Stroke
– volume: 6
  start-page: 123
  year: 2008
  end-page: 134
  article-title: A java‐based fmri processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis‐based pipelines
  publication-title: Neuroinformatics
– volume: 26
  start-page: 960
  year: 2005
  end-page: 964
  article-title: Motion or activity: Their role in intra‐ and inter‐subject variation in fMRI
  publication-title: NeuroImage
– volume: 4
  start-page: e1000106
  year: 2008
  article-title: Increased brain signal variability accompanies lower behavioral variability in development
  publication-title: PLoS Comput Biol
– volume: 27
  start-page: 264
  year: 2009
  end-page: 278
  article-title: Evaluation and optimization of fMRI single‐subject processing pipelines with NPAIRS and second‐ level CVA
  publication-title: Magn Reson Imaging
– volume: 2
  start-page: 165
  year: 1995a
  end-page: 189
  article-title: Spatial registration and normalization of images
  publication-title: Hum Brain Mapp
– volume: 34
  start-page: 201
  year: 1995
  end-page: 212
  article-title: Retrospective estimation and correction of physiological fluctuation in functional MRI
  publication-title: Magn Reson Med
– volume: 22
  start-page: 139
  year: 1998
  end-page: 152
  article-title: Automated image registration: I. General methods and intrasubject, intramodality validation
  publication-title: J Comput Assisted Tomogr
– volume: 77
  start-page: 192
  year: 2000
  end-page: 210
  article-title: Average brain models: A convergence study
  publication-title: Comput Vis Imag Understanding
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput Biomed Res
– year: 1979
– volume: 23
  start-page: 208
  year: 2004
  end-page: 219
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– volume: 101
  start-page: 4637
  year: 2004
  end-page: 4642
  article-title: Default‐mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI
  publication-title: Proc Natl Acad Sci
– volume: 13
  start-page: 230
  year: 2001
  end-page: 239
  article-title: The trails making test: A study in focal lesion patients
  publication-title: Psychol Assess
– volume: 26
  start-page: 317
  year: 2005
  end-page: 329
  article-title: Support vector machines for temporal classification of block design fMRI data
  publication-title: NeuroImage
– start-page: 152
  year: 2010
– volume: 48
  start-page: 625
  year: 2009
  end-page: 635
  article-title: Unique and persistent individual patterns of brain activity across different memory retrieval tasks
  publication-title: Neuroimage
– year: 2004
– volume: 44
  start-page: 162
  year: 2001
  end-page: 167
  article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
  publication-title: Magn Reson Med
– volume: 15
  start-page: 902
  year: 2002
  end-page: 907
  article-title: Comparison of detrending methods for optimal fMRI preprocessing
  publication-title: NeuroImage
– volume: 7
  start-page: 38
  year: 1999
  end-page: 48
  article-title: Methods for diagnosis and treatment of stimulus‐correlated motion in generic brain activation studies using fMRI
  publication-title: Hum Brain Mapp
– volume: 42
  start-page: 582
  year: 2008
  end-page: 590
  article-title: Integration of motion correction and physiological noise regression in fMRI
  publication-title: NeuroImage
– volume: 29
  start-page: 142
  year: 2007
  end-page: 156
  article-title: Modeling low‐frequency fluctuation and hemodynamic response timecourse in event‐related fMRI
  publication-title: Hum Brain Map
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  article-title: “Mini‐mental state”: A practical method for grading the cognitive state of patients for the clinician
  publication-title: J Psychiatr Res
– volume: 12
  start-page: 535
  year: 2009
  end-page: 540
  article-title: Circular analysis in systems neuroscience: The dangers of double dipping
  publication-title: Nat Neurosci
– volume: 27
  start-page: 779
  year: 2006
  end-page: 788
  article-title: Motion correction and the use of motion covariates in multiple‐subject fMRI analysis
  publication-title: Hum Brain Mapp
– volume: 18
  start-page: 227
  year: 2006
  end-page: 241
  article-title: Age‐related changes in brain activity across the adult lifespan
  publication-title: J Cogn Neurosci
– volume: 47
  start-page: 1092
  year: 2009
  end-page: 1104
  article-title: The impact of global signal regression on resting state correlations: Are anti‐correlated networks introduced?
  publication-title: Neuroimage
– volume: 19
  start-page: 959
  year: 2001
  end-page: 963
  article-title: A quantitative comparison of motion detection algorithms in fMRI
  publication-title: Magn Reson Imaging
– volume: 25
  start-page: 257
  year: 1976
  end-page: 265
  article-title: A unifying tool for linear multivariate statistical methods: the RV‐coefficient
  publication-title: Applied Statistics
– volume: 15
  start-page: 747
  year: 2002
  end-page: 771
  article-title: The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework
  publication-title: NeuroImage
– year: 2007
– volume: 17
  start-page: 1521
  year: 2002
  end-page: 1537
  article-title: Noise reduction in BOLD‐based fMRI using component analysis
  publication-title: Neuroimage
– year: 2003
– volume: 19
  start-page: 988
  year: 2003
  end-page: 1001
  article-title: Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data‐driven performance metrics
  publication-title: NeuroImage
– volume: 13
  start-page: 759
  year: 2001
  end-page: 773
  article-title: Detection power, estimation efficiency, and predictability in event‐related fMRI
  publication-title: NeuroImage
– volume: 18
  start-page: 1317
  year: 1997
  end-page: 1322
  article-title: Test‐retest analysis with functional MR of the activated area in the human visual cortex
  publication-title: AJNR
– volume: 4
  start-page: 102
  year: 1937
  end-page: 118
  article-title: Problems arising in the analysis of a series of similar experiments
  publication-title: J R Stat Soc Supp
– volume: 41
  start-page: 964
  year: 1999
  end-page: 972
  article-title: Motion correction in fMRI via registration of individual slices into an anatomical volume
  publication-title: Magn Reson Med
– volume: 28
  start-page: 529
  year: 2005
  end-page: 543
  article-title: Comparison of fMRI motion correction software tools
  publication-title: NeuroImage
– volume: 14
  start-page: 709
  year: 2001
  end-page: 722
  article-title: Motion correction algorithms may create spurious brain activations in the absence of subject motion
  publication-title: NeuroImage
– volume: 23
  start-page: S196
  year: 2004
  end-page: S207
  article-title: Optimizing the fMRI data‐processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis
  publication-title: NeuroImage
– year: 1944
– volume: 31
  start-page: 1536
  year: 2006
  end-page: 1548
  article-title: Separating respiratory‐variation‐related fluctuations from neuronal‐activity‐related fluctuations in fMRI
  publication-title: NeuroImage
– year: 2010
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  article-title: Investigations into resting‐state connectivity using independent component analysis
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 50
  start-page: 479
  year: 2010
  end-page: 490
  article-title: Group specific optimization of fMRI processing steps for child and adult data
  publication-title: NeuroImage
– volume: 17
  start-page: 19
  year: 2002
  end-page: 28
  article-title: An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data
  publication-title: NeuroImage
– volume: 15
  start-page: 870
  year: 2001
  end-page: 878
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: NeuroImage
– volume: 45
  start-page: 89
  year: 2009
  end-page: 95
  article-title: How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the Bootstrap and 3‐way multidimensional scaling (DISTATIS)
  publication-title: NeuroImage
– volume: 44
  start-page: 857
  year: 2009
  end-page: 886
  article-title: Influence of heart rate on the BOLD signal: The cardiac response function
  publication-title: Neuroimage
– volume: 11
  start-page: A121
  year: 1991
  end-page: A135
  article-title: A regional covariance approach to the analysis of functional patterns in positron emission tomographic data
  publication-title: J Cereb Blood Flow Metab
– volume: 47
  start-page: S122
  year: 2009
  article-title: The secret life of motion covariates
  publication-title: NeuroImage
– article-title: Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data
  publication-title: Neuroimage
– volume: 2
  start-page: 166
  year: 1995b
  end-page: 172
  article-title: Characterizing dynamic brain responses with fMRI: A multivariate approach
  publication-title: NeuroImage
– volume: 3
  start-page: 224
  year: 1995
  end-page: 235
  article-title: Motion detection and correction in functional MR imaging
  publication-title: Hum Brain Mapp
– volume: 31
  start-page: 436
  year: 2007
  end-page: 446
  article-title: Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus‐correlated motion
  publication-title: Comput Med Imaging Graph
– volume: 27
  start-page: 351
  year: 2006
  end-page: 359
  article-title: Motivation and synthesis of the FIAC experiment: reproducibility of fMRI results across expert analyses
  publication-title: Hum Brain Mapp
– volume: 18
  start-page: 627
  year: 2007
  end-page: 664
  article-title: Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications
  publication-title: Food Qual Prefer
– volume: 9
  start-page: 97
  year: 1971
  end-page: 113
  article-title: The assessment and analysis of handedness: The Edinburgh inventory
  publication-title: Neuropsychologia
– year: 1999
– ident: e_1_2_5_31_1
  doi: 10.1002/hbm.20379
– volume-title: Computing Brain Activation Maps from fMRI Time‐Series Images
  year: 2007
  ident: e_1_2_5_50_1
– ident: e_1_2_5_35_1
  doi: 10.1006/nimg.2000.0728
– ident: e_1_2_5_54_1
  doi: 10.1016/j.neuroimage.2004.07.022
– ident: e_1_2_5_40_1
  doi: 10.1038/jcbfm.1991.47
– ident: e_1_2_5_57_1
– ident: e_1_2_5_21_1
  doi: 10.1006/nimg.2001.1037
– ident: e_1_2_5_60_1
  doi: 10.1097/00004728-199801000-00027
– ident: e_1_2_5_17_1
  doi: 10.1016/0022-3956(75)90026-6
– ident: e_1_2_5_36_1
  doi: 10.1016/j.neuroimage.2005.02.021
– ident: e_1_2_5_45_1
  doi: 10.1016/S1053-8119(09)71160-7
– ident: e_1_2_5_14_1
  doi: 10.1006/cbmr.1996.0014
– ident: e_1_2_5_24_1
  doi: 10.1073/pnas.0308627101
– ident: e_1_2_5_4_1
  doi: 10.1016/S0730-725X(01)00418-0
– ident: e_1_2_5_11_1
– ident: e_1_2_5_56_1
  doi: 10.1037/1040-3590.13.2.230
– ident: e_1_2_5_20_1
  doi: 10.1006/nimg.1995.1019
– ident: e_1_2_5_38_1
  doi: 10.1371/journal.pcbi.1000106
– ident: e_1_2_5_29_1
  doi: 10.1002/hbm.20219
– ident: e_1_2_5_7_1
  doi: 10.1098/rstb.2005.1634
– ident: e_1_2_5_62_1
  doi: 10.1007/s12021-008-9014-1
– volume: 47
  start-page: 1092
  year: 2009
  ident: e_1_2_5_42_1
  article-title: The impact of global signal regression on resting state correlations: Are anti‐correlated networks introduced?
  publication-title: Neuroimage
– ident: e_1_2_5_61_1
  article-title: Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data
  publication-title: Neuroimage
– volume: 44
  start-page: 162
  year: 2001
  ident: e_1_2_5_22_1
  article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
  publication-title: Magn Reson Med
  doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
– volume: 18
  start-page: 1317
  year: 1997
  ident: e_1_2_5_49_1
  article-title: Test‐retest analysis with functional MR of the activated area in the human visual cortex
  publication-title: AJNR
– ident: e_1_2_5_51_1
  doi: 10.1016/S1053-8119(03)00116-2
– ident: e_1_2_5_23_1
  doi: 10.1162/jocn.2006.18.2.227
– ident: e_1_2_5_52_1
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_5_63_1
  doi: 10.1016/j.mri.2008.05.021
– ident: e_1_2_5_48_1
  doi: 10.2307/2347233
– ident: e_1_2_5_9_1
  doi: 10.1002/(SICI)1097-0193(1999)7:1<38::AID-HBM4>3.0.CO;2-Q
– ident: e_1_2_5_59_1
  doi: 10.1006/nimg.2002.1200
– ident: e_1_2_5_19_1
  doi: 10.1002/hbm.460030303
– ident: e_1_2_5_16_1
  doi: 10.1016/j.neuroimage.2009.11.039
– volume-title: Multivariate Analysis
  year: 1979
  ident: e_1_2_5_37_1
– ident: e_1_2_5_28_1
  doi: 10.1002/hbm.460030306
– ident: e_1_2_5_44_1
  doi: 10.1016/0028-3932(71)90067-4
– ident: e_1_2_5_18_1
  doi: 10.1006/nimg.2001.0869
– volume-title: Practical Nonparametric Statistics
  year: 1999
  ident: e_1_2_5_13_1
– ident: e_1_2_5_41_1
  doi: 10.1016/j.compmedimag.2007.04.002
– ident: e_1_2_5_55_1
  doi: 10.1007/978-3-7908-2604-3_10
– ident: e_1_2_5_33_1
  doi: 10.1038/nn.2303
– ident: e_1_2_5_39_1
  doi: 10.1016/j.neuroimage.2009.06.033
– ident: e_1_2_5_30_1
  doi: 10.1016/j.neuroimage.2008.05.019
– ident: e_1_2_5_15_1
  doi: 10.1006/nimg.2002.1113
– ident: e_1_2_5_3_1
  doi: 10.1016/j.neuroimage.2008.11.008
– ident: e_1_2_5_27_1
  doi: 10.1002/mrm.1910340211
– ident: e_1_2_5_26_1
  doi: 10.1161/01.STR.0000237236.88823.47
– ident: e_1_2_5_58_1
  doi: 10.1006/nimg.2002.1053
– ident: e_1_2_5_10_1
  doi: 10.1016/j.neuroimage.2008.09.029
– ident: e_1_2_5_43_1
  doi: 10.1016/j.neuroimage.2005.05.058
– ident: e_1_2_5_8_1
  doi: 10.1016/j.neuroimage.2006.02.048
– ident: e_1_2_5_46_1
  doi: 10.1007/978-3-540-39903-2_108
– ident: e_1_2_5_2_1
  doi: 10.1016/j.foodqual.2006.09.003
– ident: e_1_2_5_32_1
  doi: 10.1002/(SICI)1522-2594(199905)41:5<964::AID-MRM16>3.0.CO;2-D
– volume-title: Manual of Directions and Scoring
  year: 1944
  ident: e_1_2_5_5_1
– ident: e_1_2_5_25_1
  doi: 10.1006/cviu.1999.0815
– ident: e_1_2_5_53_1
  doi: 10.1006/nimg.2001.1034
– ident: e_1_2_5_12_1
  doi: 10.2307/2984123
– ident: e_1_2_5_34_1
  doi: 10.1016/j.neuroimage.2005.01.048
– ident: e_1_2_5_6_1
  doi: 10.1007/978-3-540-27816-0_25
– ident: e_1_2_5_47_1
  doi: 10.1002/hbm.20268
SSID ssj0011501
Score 2.3418627
Snippet Subject‐specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the...
Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 609
SubjectTerms Adult
Algorithms
Biological and medical sciences
BOLD fMRI
data-driven metrics
Female
head motion
Humans
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - methods
Male
Medical sciences
Miscellaneous
model optimization
Models, Statistical
Motion
multivariate analysis
Nervous system
Neuropharmacology
Pharmacology. Drug treatments
physiological noise
preprocessing
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Reproducibility of Results
Software
Title Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods
URI https://api.istex.fr/ark:/67375/WNG-1Q2VX9DP-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21238
https://www.ncbi.nlm.nih.gov/pubmed/21455942
https://www.proquest.com/docview/1517356021
https://www.proquest.com/docview/921142529
https://pubmed.ncbi.nlm.nih.gov/PMC4898950
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTUK8wNi4BMZkITTxkq5xrhZP4zIKUgeMDfowybIdR6vWptHSSrAnfgL8RX4J59hJRmFICKmVUtmxmqPPx5-dc75DyGOeSMy_ZL6J8tSPMs18nsG8gtWikHAVaYW5w8ODZHAcvRnFoxXytM2FcfoQ3YEbzgzrr3GCS1XvXoqGnqppD_0uJvpirBYSosNOOgqJjt1swRLrc_DArapQn-12dy6tRWto1s8YGylrME_h6lpcRTz_jJ_8ldfahWn_JjlpH8nFo5z1FnPV0xe_qT3-5zOvkxsNYaV7DmG3yIopN8jmXgmb9ekXukNtCKk9m98g14bNm_pN8v0t-KLp-AJWRlqhcqbNR8Bfsszh66RQaDWuMCHe1BTIM8X2ifnx9Vu9UHg-RIvh4esehc-H5sSDNlJaE-rKD9nRqvYvIOBoORvXhmqsOmJzNqgrkl3fJsf7L4-eD_ym_IOvwVFkfhylUrO4SGKd68KkWMG94IYXeWJCmZi-ApjJXOOWy5gs0KEONA_7gDdAX27CO2S1nJXmHqFFJhVQnVRpE0V5wFWm04gBKuIc66X1PfKkBYLQjTY6luiYCKfqzARYXljLe-RR17VygiBXddqxaOp6yPMzjKBLY_Hp4JUI3rOPI_7inTjyyPYS3LobYKdnSw57ZKvFn2i8Sy2ApaUhUFUWeIR2zeAX8GWPLM1sUQvOMEs6Ztwjdx1aL8dGcXoewdjpEo67Dig5vtxSjk-t9HiE1UZjtJeF6d8tIAbPhvbi_r93fUCuAx1lLsJvi6zOzxfmIVC-udq2c_snFsBWSg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0amwS88LHBCIxhITTxkq5xkyaWeBkfo4O1wOhGXyYrcRytWptWSyvBnvgJ8Bf5JdxrJxmFISGkVkplx2qujq-vnXvPAXgi2jHVX3JX-2no-pHirohwXuFqkcV45auEaoe7vXbn0H8zCAZL8KyqhbH8EPWBG80M469pgtOB9PYFa-hJMm6Q442uwAopepsN1UFNHkWhjtlu4SLrCvTBFa9Qk2_Xty6sRitk2M-UHRkXaKDMKltcFnr-mUH5a2Rrlqbdm3BcPZTNSDltzGdJQ53_xvf4v099C26UMSvbsSC7DUs6X4W1nRz36-MvbIuZLFJzPL8KV7vly_o1-P4O3dF4eI6LI5sSeaYpSaBfcZ7i17KhsOlwSjXxumAYPzNqH-kfX78V84SOiFjWPdhrMPx8LA89WMmmNWJWgciMNq3-AmGO5ZNhoZki4RFTtsGsTnZxBw53X_VfdNxSAcJV6CsiN_DDWPEgawcqVZkOScQ9E1pkaVu34rZuJoi0OFW069I68lRLeUq0mgg5BGCqW3dhOZ_k-h6wLIoTjHbCRGnfTz2RRCr0OcIiSEkyrenA0woJUpX06KTSMZKW2JlLtLw0lnfgcd11ajlBLuu0ZeBU94jPTimJLgzkp95r6X3gRwPx8r3sO7C5gLf6BtzsGdVhBzYqAMrSwRQSA7WwhdEq9xxgdTO6BnrfE-d6Mi-k4FQoHXDhwLqF68XYxE8vfBw7XABy3YFYxxdb8uGJYR_3SXA0IHsZnP7dArLzvGsu7v9710dwrdPv7sv9vd7bB3Ado1NuE_42YHl2NtcPMQKcJZtmov8EM79aZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbGJk184WXjJTCGhdDEl3SN67xYfBqU0gEtY2zQD0hW4jhatTaNllaCfeInwF_kl3BnJxmFISGkVkrli9WcHt-dnbvnCHksghjrL5mreRq6PFLMFRGsK_AWWQxXXCVYOzwYBv1j_mrkj1bI07oWxvJDNAduuDKMvcYFXqTZ7gVp6EkybaHdja6QNR60I4R097DhjsJIx-y2wMe6AkxwTSvUZrvNrUvOaA31-hmTI-MS9JPZxhaXRZ5_JlD-Gtgaz9S7Tj7Vz2QTUk5bi3nSUue_0T3-50PfINeqiJXuWYjdJCs63yCbezns1qdf6A41OaTmcH6DrA-qV_Wb5PtbMEbT8Tm4RlogdaYpSMBfcZ7C13Kh0GJcYEW8LilEzxTHJ_rH12_lIsEDIpoNDvdbFD7vqyMPWnFpTajtP2RmK-q_gIij-Wxcaqqw7Ygp2qC2S3Z5ixz3Xhw977tV_wdXgaWIXJ-HsWJ-FvgqVZkOsYV7JrTI0kB34kC3E8BZnCrcc2kdeaqjPCU6bQAcwC_VndtkNZ_l-i6hWRQnEOuEidKcp55IIhVyBqjwU2yY1nbIkxoIUlXk6NijYyItrTOToHlpNO-QR41oYRlBLhPaMWhqJOKzU0yhC335cfhSeu_Yh5HoHsgjh2wvwa25AbZ6puewQ7Zq_MnKvJQSwrSwA7Eq8xxCm2EwDPi2J871bFFKwbBM2mfCIXcsWi_mRnZ6wWHucAnHjQByji-P5OMTwz3Osd2oj_oyMP27BmT_2cBc3Pt30Ydk_aDbk2_2h6_vk6sQmjKb7bdFVudnC_0Awr95sm2W-U8SuVkd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+preprocessing+and+analysis+pipelines+for+single%E2%80%90subject+fMRI.+I.+Standard+temporal+motion+and+physiological+noise+correction+methods&rft.jtitle=Human+brain+mapping&rft.au=Churchill%2C+Nathan+W.&rft.au=Oder%2C+Anita&rft.au=Abdi%2C+Herv%C3%A9&rft.au=Tam%2C+Fred&rft.date=2012-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=33&rft.issue=3&rft.spage=609&rft.epage=627&rft_id=info:doi/10.1002%2Fhbm.21238&rft_id=info%3Apmid%2F21455942&rft.externalDocID=PMC4898950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon