Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods
Subject‐specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present...
Saved in:
Published in | Human brain mapping Vol. 33; no. 3; pp. 609 - 627 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.03.2012
Wiley-Liss John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.21238 |
Cover
Loading…
Abstract | Subject‐specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data‐driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747–771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three‐way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89–95). It is shown that the quality of brain activation maps may be significantly limited by sub‐optimal choices of data preprocessing steps (or “pipeline”) in a clinical task‐design, an fMRI adaptation of the widely used Trail‐Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject‐dependant effects, and that individually‐optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual‐subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. |
---|---|
AbstractList | Subject‐specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data‐driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747–771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three‐way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89–95). It is shown that the quality of brain activation maps may be significantly limited by sub‐optimal choices of data preprocessing steps (or “pipeline”) in a clinical task‐design, an fMRI adaptation of the widely used Trail‐Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject‐dependant effects, and that individually‐optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual‐subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747-771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89-95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or "pipeline") in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747-771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89-95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or "pipeline") in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods.Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747-771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89-95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or "pipeline") in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747-771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89-95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or "pipeline") in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group ( 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] |
Author | Churchill, Nathan W. Ween, Jon E. Strother, Stephen C. Abdi, Hervé Tam, Fred Graham, Simon J. Thomas, Christopher Oder, Anita Lee, Wayne |
AuthorAffiliation | 6 Posluns Centre for Stroke and Cognition, Kunin‐Lunenfeld Applied Research Unit, Baycrest, Toronto, Ontario, Canada 8 Imaging Research, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada 5 Nova Scotia Cancer Center, Halifax, Nova Scotia, Canada 4 Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada 3 School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 1 Rotman Research Institute, Baycrest, Toronto, Ontario, Canada 2 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada 7 Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada |
AuthorAffiliation_xml | – name: 3 School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas – name: 5 Nova Scotia Cancer Center, Halifax, Nova Scotia, Canada – name: 8 Imaging Research, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada – name: 7 Division of Neurology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada – name: 1 Rotman Research Institute, Baycrest, Toronto, Ontario, Canada – name: 4 Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada – name: 6 Posluns Centre for Stroke and Cognition, Kunin‐Lunenfeld Applied Research Unit, Baycrest, Toronto, Ontario, Canada – name: 2 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada |
Author_xml | – sequence: 1 givenname: Nathan W. surname: Churchill fullname: Churchill, Nathan W. email: nchurchill@rotman-baycrest.on.ca organization: Rotman Research Institute, Baycrest, Toronto, Ontario, Canada – sequence: 2 givenname: Anita surname: Oder fullname: Oder, Anita organization: Rotman Research Institute, Baycrest, Toronto, Ontario, Canada – sequence: 3 givenname: Hervé surname: Abdi fullname: Abdi, Hervé organization: School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas – sequence: 4 givenname: Fred surname: Tam fullname: Tam, Fred organization: Rotman Research Institute, Baycrest, Toronto, Ontario, Canada – sequence: 5 givenname: Wayne surname: Lee fullname: Lee, Wayne organization: Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada – sequence: 6 givenname: Christopher surname: Thomas fullname: Thomas, Christopher organization: Nova Scotia Cancer Center, Halifax, Nova Scotia, Canada – sequence: 7 givenname: Jon E. surname: Ween fullname: Ween, Jon E. organization: Posluns Centre for Stroke and Cognition, Kunin-Lunenfeld Applied Research Unit, Baycrest, Toronto, Ontario, Canada – sequence: 8 givenname: Simon J. surname: Graham fullname: Graham, Simon J. organization: Rotman Research Institute, Baycrest, Toronto, Ontario, Canada – sequence: 9 givenname: Stephen C. surname: Strother fullname: Strother, Stephen C. organization: Rotman Research Institute, Baycrest, Toronto, Ontario, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25502152$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21455942$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kttu1DAQhiNURA9wwQugSAhVXGTrQ5zEN5WgQFuppRzK4c7yOpNdL46d2gmwvASvjNPdLlAJJFu2Nd__azwzu8mWdRaS5CFGE4wQOZhP2wnBhFZ3kh2MeJkhzOnWeC9YxvMSbye7ISwQwpghfC_ZJjhnjOdkJ_l50fW61T-0naWdh847BSGML2nruKVZBh3STndgtIWQNs6nY9xAFobpAlSfNufvTidpXO_7KJK-TntoO-elSVvXa2evvbp5dHLGzbSKAet0gFQ576PDiLTQz10d7id3G2kCPFife8mHVy8vj06ys4vj06NnZ5liGFUZy0upCGsKpmrVQJkjVDYceFMXQGUBaCopk7XKq5IBVFhRhRWnqIqiitRA95LDlW83TFuoFdg-5is6r1vpl8JJLf6OWD0XM_dV5BWvOEPRYH9t4N3VAKEXrQ4KjJEW3BAEJxjnhBEeyce3yIUbfKxsEJjhkrICERypR38mtMnkplUReLIGZIgVbLy0SoffHGPRho3c0xWnvAvBQ7NBMBLjuIg4LuJ6XCJ7cItVupdjP-Kftfmf4ps2sPy3tTh5fn6jyFYKHXr4vlFI_0UUJS2Z-PT6WOC35ONn_uKNuKS_APxE4yY |
CitedBy_id | crossref_primary_10_1093_cercor_bhab286 crossref_primary_10_3389_fninf_2024_1420315 crossref_primary_10_1038_d41586_020_01282_z crossref_primary_10_3389_fnins_2016_00461 crossref_primary_10_3389_fnins_2019_00821 crossref_primary_10_3390_brainsci13020260 crossref_primary_10_1016_j_dcn_2019_100630 crossref_primary_10_1038_s41597_022_01694_8 crossref_primary_10_1016_j_neuroimage_2016_08_008 crossref_primary_10_3389_fnhum_2018_00030 crossref_primary_10_1016_j_neuroimage_2012_01_137 crossref_primary_10_3389_fpsyt_2021_617997 crossref_primary_10_1002_ana_23844 crossref_primary_10_1016_j_neuroimage_2021_118197 crossref_primary_10_1038_sdata_2014_49 crossref_primary_10_1016_j_clinimag_2020_06_034 crossref_primary_10_1016_j_rx_2017_12_007 crossref_primary_10_3389_fnins_2016_00515 crossref_primary_10_1155_2018_2740817 crossref_primary_10_1371_journal_pone_0106498 crossref_primary_10_1371_journal_pone_0105169 crossref_primary_10_1038_s41598_023_34645_3 crossref_primary_10_1080_01621459_2014_922886 crossref_primary_10_1016_j_neuroimage_2012_07_004 crossref_primary_10_1016_j_nicl_2019_101654 crossref_primary_10_1016_j_neuroimage_2017_09_014 crossref_primary_10_1002_brb3_1617 crossref_primary_10_3389_fnins_2019_00825 crossref_primary_10_1155_2013_796183 crossref_primary_10_3389_fnhum_2018_00029 crossref_primary_10_1016_j_neuroimage_2013_10_062 crossref_primary_10_1371_journal_pone_0149547 crossref_primary_10_1002_hbm_22421 crossref_primary_10_1016_j_jneumeth_2014_10_024 crossref_primary_10_1186_s40708_024_00223_0 crossref_primary_10_3389_fnhum_2019_00097 crossref_primary_10_1109_TMI_2014_2374074 crossref_primary_10_1016_j_jagp_2019_03_020 crossref_primary_10_1152_jn_01000_2012 crossref_primary_10_1371_journal_pone_0094412 crossref_primary_10_1016_j_neuroimage_2019_05_055 crossref_primary_10_1016_j_neuroimage_2021_118170 crossref_primary_10_1186_s12915_022_01286_3 crossref_primary_10_1002_hbm_25456 crossref_primary_10_1016_j_neubiorev_2024_105846 crossref_primary_10_1038_srep30895 crossref_primary_10_1016_j_neuroimage_2022_119623 crossref_primary_10_1371_journal_pcbi_1005209 crossref_primary_10_52294_001c_124518 crossref_primary_10_1007_s10071_016_0983_4 crossref_primary_10_1002_hbm_24635 crossref_primary_10_1177_2514183X20974231 crossref_primary_10_1002_hbm_24038 crossref_primary_10_1002_hbm_24797 crossref_primary_10_1109_TBDATA_2017_2734883 crossref_primary_10_3389_fnhum_2015_00113 crossref_primary_10_1016_j_rxeng_2018_04_001 crossref_primary_10_1016_j_neuroimage_2017_01_021 crossref_primary_10_1109_JBHI_2015_2439685 crossref_primary_10_1136_jnnp_2015_310307 crossref_primary_10_4018_ijehmc_2014040101 crossref_primary_10_1016_j_neuroimage_2014_03_074 crossref_primary_10_3389_fradi_2021_789632 crossref_primary_10_1016_j_neuroimage_2017_02_028 crossref_primary_10_1590_0100_6045_2021_v44n1_av crossref_primary_10_1016_j_neuroimage_2017_05_007 crossref_primary_10_1523_ENEURO_0286_23_2024 crossref_primary_10_1093_schbul_sby026 crossref_primary_10_3389_fnhum_2017_00496 crossref_primary_10_1016_j_neuroimage_2012_08_052 crossref_primary_10_1111_nyas_13717 crossref_primary_10_1016_j_neuroimage_2016_12_018 |
Cites_doi | 10.1002/hbm.20379 10.1006/nimg.2000.0728 10.1016/j.neuroimage.2004.07.022 10.1038/jcbfm.1991.47 10.1006/nimg.2001.1037 10.1097/00004728-199801000-00027 10.1016/0022-3956(75)90026-6 10.1016/j.neuroimage.2005.02.021 10.1016/S1053-8119(09)71160-7 10.1006/cbmr.1996.0014 10.1073/pnas.0308627101 10.1016/S0730-725X(01)00418-0 10.1037/1040-3590.13.2.230 10.1006/nimg.1995.1019 10.1371/journal.pcbi.1000106 10.1002/hbm.20219 10.1098/rstb.2005.1634 10.1007/s12021-008-9014-1 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1016/S1053-8119(03)00116-2 10.1162/jocn.2006.18.2.227 10.1016/j.neuroimage.2004.07.051 10.1016/j.mri.2008.05.021 10.2307/2347233 10.1002/(SICI)1097-0193(1999)7:1<38::AID-HBM4>3.0.CO;2-Q 10.1006/nimg.2002.1200 10.1002/hbm.460030303 10.1016/j.neuroimage.2009.11.039 10.1002/hbm.460030306 10.1016/0028-3932(71)90067-4 10.1006/nimg.2001.0869 10.1016/j.compmedimag.2007.04.002 10.1007/978-3-7908-2604-3_10 10.1038/nn.2303 10.1016/j.neuroimage.2009.06.033 10.1016/j.neuroimage.2008.05.019 10.1006/nimg.2002.1113 10.1016/j.neuroimage.2008.11.008 10.1002/mrm.1910340211 10.1161/01.STR.0000237236.88823.47 10.1006/nimg.2002.1053 10.1016/j.neuroimage.2008.09.029 10.1016/j.neuroimage.2005.05.058 10.1016/j.neuroimage.2006.02.048 10.1007/978-3-540-39903-2_108 10.1016/j.foodqual.2006.09.003 10.1002/(SICI)1522-2594(199905)41:5<964::AID-MRM16>3.0.CO;2-D 10.1006/cviu.1999.0815 10.1006/nimg.2001.1034 10.2307/2984123 10.1016/j.neuroimage.2005.01.048 10.1007/978-3-540-27816-0_25 10.1002/hbm.20268 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.21238 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Optimizing Temporal Preprocessing for fMRI |
EISSN | 1097-0193 |
EndPage | 627 |
ExternalDocumentID | PMC4898950 3278352021 21455942 25502152 10_1002_hbm_21238 HBM21238 ark_67375_WNG_1Q2VX9DP_T |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: James S. McDonnell Foundation – fundername: HSF funderid: NA6391 – fundername: Baycrest Neurovascular Fellowship – fundername: CIHR funderid: MOP84483 – fundername: NSERC – fundername: Heart and Stroke Foundation of Ontario (Centre for Stroke Recovery) – fundername: CIHR grantid: 84447-1 – fundername: CIHR grantid: MOP84483 – fundername: HSF grantid: NA6391 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5108-547ac25f65cdcfe74007f9e9fd6e3a6e0ba35adc4875ee81c3c1c9308c2582de3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 14:14:02 EDT 2025 Fri Jul 11 08:57:46 EDT 2025 Sat Jul 26 02:31:38 EDT 2025 Mon Jul 21 06:04:03 EDT 2025 Mon Jul 21 09:16:46 EDT 2025 Tue Jul 01 04:25:58 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Wed Jan 22 16:22:03 EST 2025 Wed Oct 30 09:48:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Human Motion Nervous system diseases Head Radiodiagnosis Noise preprocessing head motion physiological noise Multivariate analysis data-driven metrics Nuclear magnetic resonance imaging Optimization BOLD fMRI Models Corrections model optimization |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5108-547ac25f65cdcfe74007f9e9fd6e3a6e0ba35adc4875ee81c3c1c9308c2582de3 |
Notes | NSERC Baycrest Neurovascular Fellowship istex:ABAA9523AA6C90FFFF8AC99A745545A4440ED9F2 ArticleID:HBM21238 HSF - No. NA6391 CIHR - No. MOP84483 James S. McDonnell Foundation Heart and Stroke Foundation of Ontario (Centre for Stroke Recovery) ark:/67375/WNG-1Q2VX9DP-T ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.21238?download=true |
PMID | 21455942 |
PQID | 1517356021 |
PQPubID | 996345 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4898950 proquest_miscellaneous_921142529 proquest_journals_1517356021 pubmed_primary_21455942 pascalfrancis_primary_25502152 crossref_primary_10_1002_hbm_21238 crossref_citationtrail_10_1002_hbm_21238 wiley_primary_10_1002_hbm_21238_HBM21238 istex_primary_ark_67375_WNG_1Q2VX9DP_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2012 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: March 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss John Wiley & Sons, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss – name: John Wiley & Sons, Inc |
References | Greicius MD, Srivastava G, Reiss AL, Menon V ( 2004): Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci 101: 4637-4642. Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G ( 2006): Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci 18: 227-241. Moeller JR, Strother SC ( 1991): A regional covariance approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 11: A121-A135. Guimond A, Meunier J, Thirion J ( 2000): Average brain models: A convergence study. Comput Vis Imag Understanding 77: 192-210. Poline JB, Strother SC, Dehaene-Lambertz G, Egan GF, Lancaster JL ( 2006): Motivation and synthesis of the FIAC experiment: reproducibility of fMRI results across expert analyses. Hum Brain Mapp 27: 351-359. Bannister PR, Brady JM, Jenkinson M ( 2004): TIGER-A New Model for Spatio-Temporal Realignment of FMRI Data. Berlin, Heidelberg: Springer-Verlag. Folstein MF, Folstein SE, McHugh PR ( 1975): "Mini-mental state": A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189-198. Mardia K, Kent J, Bibby J ( 1979): Multivariate Analysis. London, United Kingdom: Academic Press. Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173. Glover GH, Li TQ, Ress D ( 2001): Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44: 162-167. Chang C, Cunningham JP, Glover GH ( 2009): Influence of heart rate on the BOLD signal: The cardiac response function. Neuroimage 44: 857-886. Kim B, Boes JL, Bland PH, Chenevert TL, Meyer CR ( 1999): Motion correction in fMRI via registration of individual slices into an anatomical volume. Magn Reson Med 41: 964-972. Strother SC, LaConte S, Hansen LK, Anderson J, Zhang J, Pulapura S, Rottenberg D ( 2004): Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis. NeuroImage 23: S196-S207. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA ( 2009): The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 47: 1092-1104. Cochran WG ( 1937): Problems arising in the analysis of a series of similar experiments. J R Stat Soc Supp 4: 102-118. Genovese CR, Lazar NA, Nichols T ( 2001): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15: 870-878. Rombouts S, Barkhof F, Hoogenraad F, Sprenger M, Valk J, Scheltens P ( 1997): Test-retest analysis with functional MR of the activated area in the human visual cortex. AJNR 18: 1317-1322. Ollinger JM, Oakes TR, Alexander AL, Haeberli F, Dalton KM, Davidson RJ ( 2009): The secret life of motion covariates. NeuroImage 47: S122. Shaw ME, Strother SC, Gavrilescu M, Podzebenko K, Waites A, Watson J, Anderson J, Jackson G, Egan G ( 2003): Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics. NeuroImage 19: 988-1001. Ardekani BA, Bachman AH, Helpern JA ( 2001): A quantitative comparison of motion detection algorithms in fMRI. Magn Reson Imaging 19: 959-963. Kay KN, David SV, Prenger RJ, Hansen KA, Gallant JL ( 2007): Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fMRI. Hum Brain Map 29: 142-156. Army Individual Test Battery ( 1944): Manual of Directions and Scoring. Washington, DC: War Department, Adjutant General's Office. Della-Maggiore V, Chau W, Peres-Neto PR, McIntosh AR ( 2002): An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data. NeuroImage 17: 19-28. Jones TB, Bandettini PA, Birn RM ( 2008): Integration of motion correction and physiological noise regression in fMRI. NeuroImage 42:582-590. Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW ( 1995): Motion detection and correction in functional MR imaging. Hum Brain Mapp 3: 224-235. Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE, Powers WJ, DeCarli C, Merino JG, Kalaria RN, Vinters HV, Holtzman DM, Rosenberg GA, Dichgans M, Marler JR, Leblanc GG ( 2006): National institute of neurological disorders and stroke-Canadian stroke network vascular cognitive impairment harmonization standards. Stroke 37: 2220-2241. Birn RM, Diamond JB, Smith MA, Bandettini PA ( 2006): Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31: 1536-1548. Conover WJ ( 1999): Practical Nonparametric Statistics, 3rd ed. Weinheim: Wiley. Bullmore ET, Brammer MJ, Rabe-Hesketh S ( 1999): Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7: 38-48. Orchard J, Atkins MS ( 2003): Iterating Registration and Activation Detection to Overcome Activation Bias in fMRI Motion Estimates. Berlin, Heidelberg: Springer-Verlag. Thomas CG, Harshman RA, Menon RS ( 2002): Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 17: 1521-1537. LaConte S, Strother S, Cherkassky V, Anderson J, Hua X ( 2005): Support vector machines for temporal classification of block design fMRI data. NeuroImage 26: 317-329. Liu TL, Frank LR, Wong EC, Buxton RB ( 2001): Detection power, estimation efficiency, and predictability in event-related fMRI. NeuroImage 13: 759-773. Evans JW, Todd RW, Taylor MJ, Strother SC ( 2010): Group specific optimization of fMRI processing steps for child and adult data. NeuroImage 50:479-490 Zhang J, Anderson JR, Liang L, Pulapura SK, Gatewood L, Rottenberg DA, Strother SC ( 2009): Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second- level CVA. Magn Reson Imaging 27: 264-278. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy R, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM ( 2004): Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23: 208-219. Beckmann CF, DeLuca M, Devlin JT, Smith SM ( 2005): Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360: 1001-1013. Lund TE, Nbrgaard ND, Rostrup E, Rowe JB, Paulson OB ( 2005): Motion or activity: Their role in intra- and inter-subject variation in fMRI. NeuroImage 26: 960-964. Hu X, Le TH, Parrish T, Erhard P ( 1995): Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34: 201-212. Friston KJ, Frith CD, Frackowiak RSJ, Turner R ( 1995b): Characterizing dynamic brain responses with fMRI: A multivariate approach. NeuroImage 2: 166-172. Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI ( 2009): Circular analysis in systems neuroscience: The dangers of double dipping. Nat Neurosci 12: 535-540. Stuss DT, Bisschop SM, Alexander MP, Levine B, Katz D, Izukawa D ( 2001): The trails making test: A study in focal lesion patients. Psychol Assess 13: 230-239. Freire L, Mangin JF ( 2001): Motion correction algorithms may create spurious brain activations in the absence of subject motion. NeuroImage 14: 709-722. Johnstone T, Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR ( 2006): Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27: 779-788. Zhang J, Liang L, Anderson JR, Gatewood L, Rottenberg DA, Strother SC ( 2008): A java-based fmri processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines. Neuroinformatics 6: 123-134. Robert P, Escoufier Y ( 1976): A unifying tool for linear multivariate statistical methods: the RV-coefficient. Applied Statistics, 25: 257-265. Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ ( 1995a): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189. Woods RP, Grafton ST, Cherry SR Mazziotta JC ( 1998): Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assisted Tomogr 22: 139-152. Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97-113. Abdi H, Dunlop JP, Williams LJ ( 2009): How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the Bootstrap and 3-way multidimensional scaling (DISTATIS). NeuroImage 45: 89-95. Abdi H, Valentin D, Chollet S, Chrea C ( 2007): Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications. Food Qual Prefer 18: 627-664. Sarty GE ( 2007): Computing Brain Activation Maps from fMRI Time-Series Images. Cambridge University Press, Cambridge, UK. Strother SC, Anderson J, Hansen LK, Kjems U, Kustra R, Sidtis J, Frutiger S, Muley S, LaConte S, Rottenberg D ( 2002): The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework. NeuroImage 15: 747-771. Morgan VL, Dawant BM, Li Y, Pickens DR ( 2007): Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Comput Med Imaging Graph 31: 436-446. Tanabe J, Miller D, Tregellas J, Freedman R, Meyer FG ( 2002): Comparison of detrending methods for optimal fMRI preprocessing. NeuroImage 15: 902-907. Oakes TR, Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson AJ ( 2005): Comparison of fMRI motion correction software tools. NeuroImage 28: 529-543. McIntosh AR, Kovacevic N, Itier RJ ( 2008): Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput Biol 2009; 45 2009; 44 2002; 17 2009; 47 2002; 15 1976; 25 2006; 31 1991; 11 1995; 34 2004; 23 2006; 37 1975; 12 1999; 41 2008; 6 1995b; 2 2003; 19 2008; 4 2001; 44 2005; 26 2007; 31 2005; 28 1979 2009; 48 2009; 12 2007; 29 1971; 9 1996; 29 2006; 27 2001; 19 1997; 18 2001; 15 2001; 13 2001; 14 1937; 4 1944 2004; 101 2007; 18 2010 2006; 18 2007 2004 2003 1999; 7 1995; 3 2009; 27 1998; 22 1999 2005; 360 1995a; 2 2000; 77 2008; 42 2010; 50 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 Glover GH (e_1_2_5_22_1) 2001; 44 Army Individual Test Battery (e_1_2_5_5_1) 1944 e_1_2_5_63_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 Yourganov G (e_1_2_5_61_1) e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_32_1 e_1_2_5_55_1 Sarty GE (e_1_2_5_50_1) 2007 e_1_2_5_3_1 e_1_2_5_19_1 Murphy K (e_1_2_5_42_1) 2009; 47 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 Conover WJ (e_1_2_5_13_1) 1999 e_1_2_5_28_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_43_1 e_1_2_5_60_1 e_1_2_5_62_1 e_1_2_5_20_1 e_1_2_5_41_1 Mardia K (e_1_2_5_37_1) 1979 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 Rombouts S (e_1_2_5_49_1) 1997; 18 e_1_2_5_31_1 e_1_2_5_52_1 |
References_xml | – reference: Genovese CR, Lazar NA, Nichols T ( 2001): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15: 870-878. – reference: Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy R, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM ( 2004): Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23: 208-219. – reference: Cox RW ( 1996): AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162-173. – reference: Birn RM, Diamond JB, Smith MA, Bandettini PA ( 2006): Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31: 1536-1548. – reference: Freire L, Mangin JF ( 2001): Motion correction algorithms may create spurious brain activations in the absence of subject motion. NeuroImage 14: 709-722. – reference: Strother SC, LaConte S, Hansen LK, Anderson J, Zhang J, Pulapura S, Rottenberg D ( 2004): Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis. NeuroImage 23: S196-S207. – reference: Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI ( 2009): Circular analysis in systems neuroscience: The dangers of double dipping. Nat Neurosci 12: 535-540. – reference: Friston KJ, Frith CD, Frackowiak RSJ, Turner R ( 1995b): Characterizing dynamic brain responses with fMRI: A multivariate approach. NeuroImage 2: 166-172. – reference: Sarty GE ( 2007): Computing Brain Activation Maps from fMRI Time-Series Images. Cambridge University Press, Cambridge, UK. – reference: Orchard J, Atkins MS ( 2003): Iterating Registration and Activation Detection to Overcome Activation Bias in fMRI Motion Estimates. Berlin, Heidelberg: Springer-Verlag. – reference: Conover WJ ( 1999): Practical Nonparametric Statistics, 3rd ed. Weinheim: Wiley. – reference: Bannister PR, Brady JM, Jenkinson M ( 2004): TIGER-A New Model for Spatio-Temporal Realignment of FMRI Data. Berlin, Heidelberg: Springer-Verlag. – reference: Johnstone T, Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR ( 2006): Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27: 779-788. – reference: Zhang J, Anderson JR, Liang L, Pulapura SK, Gatewood L, Rottenberg DA, Strother SC ( 2009): Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second- level CVA. Magn Reson Imaging 27: 264-278. – reference: Guimond A, Meunier J, Thirion J ( 2000): Average brain models: A convergence study. Comput Vis Imag Understanding 77: 192-210. – reference: McIntosh AR, Kovacevic N, Itier RJ ( 2008): Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput Biol 4: e1000106. – reference: Jiang A, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW ( 1995): Motion detection and correction in functional MR imaging. Hum Brain Mapp 3: 224-235. – reference: Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ ( 1995a): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189. – reference: Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G ( 2006): Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci 18: 227-241. – reference: Greicius MD, Srivastava G, Reiss AL, Menon V ( 2004): Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci 101: 4637-4642. – reference: Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA ( 2009): The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 47: 1092-1104. – reference: Ardekani BA, Bachman AH, Helpern JA ( 2001): A quantitative comparison of motion detection algorithms in fMRI. Magn Reson Imaging 19: 959-963. – reference: Zhang J, Liang L, Anderson JR, Gatewood L, Rottenberg DA, Strother SC ( 2008): A java-based fmri processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines. Neuroinformatics 6: 123-134. – reference: Cochran WG ( 1937): Problems arising in the analysis of a series of similar experiments. J R Stat Soc Supp 4: 102-118. – reference: Robert P, Escoufier Y ( 1976): A unifying tool for linear multivariate statistical methods: the RV-coefficient. Applied Statistics, 25: 257-265. – reference: Thomas CG, Harshman RA, Menon RS ( 2002): Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 17: 1521-1537. – reference: Jones TB, Bandettini PA, Birn RM ( 2008): Integration of motion correction and physiological noise regression in fMRI. NeuroImage 42:582-590. – reference: LaConte S, Strother S, Cherkassky V, Anderson J, Hua X ( 2005): Support vector machines for temporal classification of block design fMRI data. NeuroImage 26: 317-329. – reference: Poline JB, Strother SC, Dehaene-Lambertz G, Egan GF, Lancaster JL ( 2006): Motivation and synthesis of the FIAC experiment: reproducibility of fMRI results across expert analyses. Hum Brain Mapp 27: 351-359. – reference: Della-Maggiore V, Chau W, Peres-Neto PR, McIntosh AR ( 2002): An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data. NeuroImage 17: 19-28. – reference: Beckmann CF, DeLuca M, Devlin JT, Smith SM ( 2005): Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360: 1001-1013. – reference: Yourganov G, Chen X, Lukic A, Grady C, Small S, Wernick M, Strother SC: Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data. Neuroimage (in press). – reference: Moeller JR, Strother SC ( 1991): A regional covariance approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 11: A121-A135. – reference: Glover GH, Li TQ, Ress D ( 2001): Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44: 162-167. – reference: Mardia K, Kent J, Bibby J ( 1979): Multivariate Analysis. London, United Kingdom: Academic Press. – reference: Army Individual Test Battery ( 1944): Manual of Directions and Scoring. Washington, DC: War Department, Adjutant General's Office. – reference: Evans JW, Todd RW, Taylor MJ, Strother SC ( 2010): Group specific optimization of fMRI processing steps for child and adult data. NeuroImage 50:479-490 – reference: Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE, Powers WJ, DeCarli C, Merino JG, Kalaria RN, Vinters HV, Holtzman DM, Rosenberg GA, Dichgans M, Marler JR, Leblanc GG ( 2006): National institute of neurological disorders and stroke-Canadian stroke network vascular cognitive impairment harmonization standards. Stroke 37: 2220-2241. – reference: Folstein MF, Folstein SE, McHugh PR ( 1975): "Mini-mental state": A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189-198. – reference: Miller MB, Donovan CL, Van Horn JD, German E, Sokol-Hessner P, Wolford GL ( 2009): Unique and persistent individual patterns of brain activity across different memory retrieval tasks. Neuroimage 48: 625-635. – reference: Oldfield RC ( 1971): The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97-113. – reference: Kay KN, David SV, Prenger RJ, Hansen KA, Gallant JL ( 2007): Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fMRI. Hum Brain Map 29: 142-156. – reference: Hu X, Le TH, Parrish T, Erhard P ( 1995): Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34: 201-212. – reference: Chang C, Cunningham JP, Glover GH ( 2009): Influence of heart rate on the BOLD signal: The cardiac response function. Neuroimage 44: 857-886. – reference: Abdi H, Valentin D, Chollet S, Chrea C ( 2007): Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications. Food Qual Prefer 18: 627-664. – reference: Shaw ME, Strother SC, Gavrilescu M, Podzebenko K, Waites A, Watson J, Anderson J, Jackson G, Egan G ( 2003): Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics. NeuroImage 19: 988-1001. – reference: Strother SC, Anderson J, Hansen LK, Kjems U, Kustra R, Sidtis J, Frutiger S, Muley S, LaConte S, Rottenberg D ( 2002): The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework. NeuroImage 15: 747-771. – reference: Liu TL, Frank LR, Wong EC, Buxton RB ( 2001): Detection power, estimation efficiency, and predictability in event-related fMRI. NeuroImage 13: 759-773. – reference: Kim B, Boes JL, Bland PH, Chenevert TL, Meyer CR ( 1999): Motion correction in fMRI via registration of individual slices into an anatomical volume. Magn Reson Med 41: 964-972. – reference: Lund TE, Nbrgaard ND, Rostrup E, Rowe JB, Paulson OB ( 2005): Motion or activity: Their role in intra- and inter-subject variation in fMRI. NeuroImage 26: 960-964. – reference: Woods RP, Grafton ST, Cherry SR Mazziotta JC ( 1998): Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assisted Tomogr 22: 139-152. – reference: Abdi H, Dunlop JP, Williams LJ ( 2009): How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the Bootstrap and 3-way multidimensional scaling (DISTATIS). NeuroImage 45: 89-95. – reference: Tanabe J, Miller D, Tregellas J, Freedman R, Meyer FG ( 2002): Comparison of detrending methods for optimal fMRI preprocessing. NeuroImage 15: 902-907. – reference: Stuss DT, Bisschop SM, Alexander MP, Levine B, Katz D, Izukawa D ( 2001): The trails making test: A study in focal lesion patients. Psychol Assess 13: 230-239. – reference: Bullmore ET, Brammer MJ, Rabe-Hesketh S ( 1999): Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7: 38-48. – reference: Oakes TR, Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson AJ ( 2005): Comparison of fMRI motion correction software tools. NeuroImage 28: 529-543. – reference: Ollinger JM, Oakes TR, Alexander AL, Haeberli F, Dalton KM, Davidson RJ ( 2009): The secret life of motion covariates. NeuroImage 47: S122. – reference: Morgan VL, Dawant BM, Li Y, Pickens DR ( 2007): Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Comput Med Imaging Graph 31: 436-446. – reference: Rombouts S, Barkhof F, Hoogenraad F, Sprenger M, Valk J, Scheltens P ( 1997): Test-retest analysis with functional MR of the activated area in the human visual cortex. AJNR 18: 1317-1322. – volume: 37 start-page: 2220 year: 2006 end-page: 2241 article-title: National institute of neurological disorders and stroke—Canadian stroke network vascular cognitive impairment harmonization standards publication-title: Stroke – volume: 6 start-page: 123 year: 2008 end-page: 134 article-title: A java‐based fmri processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis‐based pipelines publication-title: Neuroinformatics – volume: 26 start-page: 960 year: 2005 end-page: 964 article-title: Motion or activity: Their role in intra‐ and inter‐subject variation in fMRI publication-title: NeuroImage – volume: 4 start-page: e1000106 year: 2008 article-title: Increased brain signal variability accompanies lower behavioral variability in development publication-title: PLoS Comput Biol – volume: 27 start-page: 264 year: 2009 end-page: 278 article-title: Evaluation and optimization of fMRI single‐subject processing pipelines with NPAIRS and second‐ level CVA publication-title: Magn Reson Imaging – volume: 2 start-page: 165 year: 1995a end-page: 189 article-title: Spatial registration and normalization of images publication-title: Hum Brain Mapp – volume: 34 start-page: 201 year: 1995 end-page: 212 article-title: Retrospective estimation and correction of physiological fluctuation in functional MRI publication-title: Magn Reson Med – volume: 22 start-page: 139 year: 1998 end-page: 152 article-title: Automated image registration: I. General methods and intrasubject, intramodality validation publication-title: J Comput Assisted Tomogr – volume: 77 start-page: 192 year: 2000 end-page: 210 article-title: Average brain models: A convergence study publication-title: Comput Vis Imag Understanding – volume: 29 start-page: 162 year: 1996 end-page: 173 article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput Biomed Res – year: 1979 – volume: 23 start-page: 208 year: 2004 end-page: 219 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage – volume: 101 start-page: 4637 year: 2004 end-page: 4642 article-title: Default‐mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI publication-title: Proc Natl Acad Sci – volume: 13 start-page: 230 year: 2001 end-page: 239 article-title: The trails making test: A study in focal lesion patients publication-title: Psychol Assess – volume: 26 start-page: 317 year: 2005 end-page: 329 article-title: Support vector machines for temporal classification of block design fMRI data publication-title: NeuroImage – start-page: 152 year: 2010 – volume: 48 start-page: 625 year: 2009 end-page: 635 article-title: Unique and persistent individual patterns of brain activity across different memory retrieval tasks publication-title: Neuroimage – year: 2004 – volume: 44 start-page: 162 year: 2001 end-page: 167 article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn Reson Med – volume: 15 start-page: 902 year: 2002 end-page: 907 article-title: Comparison of detrending methods for optimal fMRI preprocessing publication-title: NeuroImage – volume: 7 start-page: 38 year: 1999 end-page: 48 article-title: Methods for diagnosis and treatment of stimulus‐correlated motion in generic brain activation studies using fMRI publication-title: Hum Brain Mapp – volume: 42 start-page: 582 year: 2008 end-page: 590 article-title: Integration of motion correction and physiological noise regression in fMRI publication-title: NeuroImage – volume: 29 start-page: 142 year: 2007 end-page: 156 article-title: Modeling low‐frequency fluctuation and hemodynamic response timecourse in event‐related fMRI publication-title: Hum Brain Map – volume: 12 start-page: 189 year: 1975 end-page: 198 article-title: “Mini‐mental state”: A practical method for grading the cognitive state of patients for the clinician publication-title: J Psychiatr Res – volume: 12 start-page: 535 year: 2009 end-page: 540 article-title: Circular analysis in systems neuroscience: The dangers of double dipping publication-title: Nat Neurosci – volume: 27 start-page: 779 year: 2006 end-page: 788 article-title: Motion correction and the use of motion covariates in multiple‐subject fMRI analysis publication-title: Hum Brain Mapp – volume: 18 start-page: 227 year: 2006 end-page: 241 article-title: Age‐related changes in brain activity across the adult lifespan publication-title: J Cogn Neurosci – volume: 47 start-page: 1092 year: 2009 end-page: 1104 article-title: The impact of global signal regression on resting state correlations: Are anti‐correlated networks introduced? publication-title: Neuroimage – volume: 19 start-page: 959 year: 2001 end-page: 963 article-title: A quantitative comparison of motion detection algorithms in fMRI publication-title: Magn Reson Imaging – volume: 25 start-page: 257 year: 1976 end-page: 265 article-title: A unifying tool for linear multivariate statistical methods: the RV‐coefficient publication-title: Applied Statistics – volume: 15 start-page: 747 year: 2002 end-page: 771 article-title: The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework publication-title: NeuroImage – year: 2007 – volume: 17 start-page: 1521 year: 2002 end-page: 1537 article-title: Noise reduction in BOLD‐based fMRI using component analysis publication-title: Neuroimage – year: 2003 – volume: 19 start-page: 988 year: 2003 end-page: 1001 article-title: Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data‐driven performance metrics publication-title: NeuroImage – volume: 13 start-page: 759 year: 2001 end-page: 773 article-title: Detection power, estimation efficiency, and predictability in event‐related fMRI publication-title: NeuroImage – volume: 18 start-page: 1317 year: 1997 end-page: 1322 article-title: Test‐retest analysis with functional MR of the activated area in the human visual cortex publication-title: AJNR – volume: 4 start-page: 102 year: 1937 end-page: 118 article-title: Problems arising in the analysis of a series of similar experiments publication-title: J R Stat Soc Supp – volume: 41 start-page: 964 year: 1999 end-page: 972 article-title: Motion correction in fMRI via registration of individual slices into an anatomical volume publication-title: Magn Reson Med – volume: 28 start-page: 529 year: 2005 end-page: 543 article-title: Comparison of fMRI motion correction software tools publication-title: NeuroImage – volume: 14 start-page: 709 year: 2001 end-page: 722 article-title: Motion correction algorithms may create spurious brain activations in the absence of subject motion publication-title: NeuroImage – volume: 23 start-page: S196 year: 2004 end-page: S207 article-title: Optimizing the fMRI data‐processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis publication-title: NeuroImage – year: 1944 – volume: 31 start-page: 1536 year: 2006 end-page: 1548 article-title: Separating respiratory‐variation‐related fluctuations from neuronal‐activity‐related fluctuations in fMRI publication-title: NeuroImage – year: 2010 – volume: 360 start-page: 1001 year: 2005 end-page: 1013 article-title: Investigations into resting‐state connectivity using independent component analysis publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 50 start-page: 479 year: 2010 end-page: 490 article-title: Group specific optimization of fMRI processing steps for child and adult data publication-title: NeuroImage – volume: 17 start-page: 19 year: 2002 end-page: 28 article-title: An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data publication-title: NeuroImage – volume: 15 start-page: 870 year: 2001 end-page: 878 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: NeuroImage – volume: 45 start-page: 89 year: 2009 end-page: 95 article-title: How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the Bootstrap and 3‐way multidimensional scaling (DISTATIS) publication-title: NeuroImage – volume: 44 start-page: 857 year: 2009 end-page: 886 article-title: Influence of heart rate on the BOLD signal: The cardiac response function publication-title: Neuroimage – volume: 11 start-page: A121 year: 1991 end-page: A135 article-title: A regional covariance approach to the analysis of functional patterns in positron emission tomographic data publication-title: J Cereb Blood Flow Metab – volume: 47 start-page: S122 year: 2009 article-title: The secret life of motion covariates publication-title: NeuroImage – article-title: Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data publication-title: Neuroimage – volume: 2 start-page: 166 year: 1995b end-page: 172 article-title: Characterizing dynamic brain responses with fMRI: A multivariate approach publication-title: NeuroImage – volume: 3 start-page: 224 year: 1995 end-page: 235 article-title: Motion detection and correction in functional MR imaging publication-title: Hum Brain Mapp – volume: 31 start-page: 436 year: 2007 end-page: 446 article-title: Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus‐correlated motion publication-title: Comput Med Imaging Graph – volume: 27 start-page: 351 year: 2006 end-page: 359 article-title: Motivation and synthesis of the FIAC experiment: reproducibility of fMRI results across expert analyses publication-title: Hum Brain Mapp – volume: 18 start-page: 627 year: 2007 end-page: 664 article-title: Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications publication-title: Food Qual Prefer – volume: 9 start-page: 97 year: 1971 end-page: 113 article-title: The assessment and analysis of handedness: The Edinburgh inventory publication-title: Neuropsychologia – year: 1999 – ident: e_1_2_5_31_1 doi: 10.1002/hbm.20379 – volume-title: Computing Brain Activation Maps from fMRI Time‐Series Images year: 2007 ident: e_1_2_5_50_1 – ident: e_1_2_5_35_1 doi: 10.1006/nimg.2000.0728 – ident: e_1_2_5_54_1 doi: 10.1016/j.neuroimage.2004.07.022 – ident: e_1_2_5_40_1 doi: 10.1038/jcbfm.1991.47 – ident: e_1_2_5_57_1 – ident: e_1_2_5_21_1 doi: 10.1006/nimg.2001.1037 – ident: e_1_2_5_60_1 doi: 10.1097/00004728-199801000-00027 – ident: e_1_2_5_17_1 doi: 10.1016/0022-3956(75)90026-6 – ident: e_1_2_5_36_1 doi: 10.1016/j.neuroimage.2005.02.021 – ident: e_1_2_5_45_1 doi: 10.1016/S1053-8119(09)71160-7 – ident: e_1_2_5_14_1 doi: 10.1006/cbmr.1996.0014 – ident: e_1_2_5_24_1 doi: 10.1073/pnas.0308627101 – ident: e_1_2_5_4_1 doi: 10.1016/S0730-725X(01)00418-0 – ident: e_1_2_5_11_1 – ident: e_1_2_5_56_1 doi: 10.1037/1040-3590.13.2.230 – ident: e_1_2_5_20_1 doi: 10.1006/nimg.1995.1019 – ident: e_1_2_5_38_1 doi: 10.1371/journal.pcbi.1000106 – ident: e_1_2_5_29_1 doi: 10.1002/hbm.20219 – ident: e_1_2_5_7_1 doi: 10.1098/rstb.2005.1634 – ident: e_1_2_5_62_1 doi: 10.1007/s12021-008-9014-1 – volume: 47 start-page: 1092 year: 2009 ident: e_1_2_5_42_1 article-title: The impact of global signal regression on resting state correlations: Are anti‐correlated networks introduced? publication-title: Neuroimage – ident: e_1_2_5_61_1 article-title: Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data publication-title: Neuroimage – volume: 44 start-page: 162 year: 2001 ident: e_1_2_5_22_1 article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn Reson Med doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – volume: 18 start-page: 1317 year: 1997 ident: e_1_2_5_49_1 article-title: Test‐retest analysis with functional MR of the activated area in the human visual cortex publication-title: AJNR – ident: e_1_2_5_51_1 doi: 10.1016/S1053-8119(03)00116-2 – ident: e_1_2_5_23_1 doi: 10.1162/jocn.2006.18.2.227 – ident: e_1_2_5_52_1 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_2_5_63_1 doi: 10.1016/j.mri.2008.05.021 – ident: e_1_2_5_48_1 doi: 10.2307/2347233 – ident: e_1_2_5_9_1 doi: 10.1002/(SICI)1097-0193(1999)7:1<38::AID-HBM4>3.0.CO;2-Q – ident: e_1_2_5_59_1 doi: 10.1006/nimg.2002.1200 – ident: e_1_2_5_19_1 doi: 10.1002/hbm.460030303 – ident: e_1_2_5_16_1 doi: 10.1016/j.neuroimage.2009.11.039 – volume-title: Multivariate Analysis year: 1979 ident: e_1_2_5_37_1 – ident: e_1_2_5_28_1 doi: 10.1002/hbm.460030306 – ident: e_1_2_5_44_1 doi: 10.1016/0028-3932(71)90067-4 – ident: e_1_2_5_18_1 doi: 10.1006/nimg.2001.0869 – volume-title: Practical Nonparametric Statistics year: 1999 ident: e_1_2_5_13_1 – ident: e_1_2_5_41_1 doi: 10.1016/j.compmedimag.2007.04.002 – ident: e_1_2_5_55_1 doi: 10.1007/978-3-7908-2604-3_10 – ident: e_1_2_5_33_1 doi: 10.1038/nn.2303 – ident: e_1_2_5_39_1 doi: 10.1016/j.neuroimage.2009.06.033 – ident: e_1_2_5_30_1 doi: 10.1016/j.neuroimage.2008.05.019 – ident: e_1_2_5_15_1 doi: 10.1006/nimg.2002.1113 – ident: e_1_2_5_3_1 doi: 10.1016/j.neuroimage.2008.11.008 – ident: e_1_2_5_27_1 doi: 10.1002/mrm.1910340211 – ident: e_1_2_5_26_1 doi: 10.1161/01.STR.0000237236.88823.47 – ident: e_1_2_5_58_1 doi: 10.1006/nimg.2002.1053 – ident: e_1_2_5_10_1 doi: 10.1016/j.neuroimage.2008.09.029 – ident: e_1_2_5_43_1 doi: 10.1016/j.neuroimage.2005.05.058 – ident: e_1_2_5_8_1 doi: 10.1016/j.neuroimage.2006.02.048 – ident: e_1_2_5_46_1 doi: 10.1007/978-3-540-39903-2_108 – ident: e_1_2_5_2_1 doi: 10.1016/j.foodqual.2006.09.003 – ident: e_1_2_5_32_1 doi: 10.1002/(SICI)1522-2594(199905)41:5<964::AID-MRM16>3.0.CO;2-D – volume-title: Manual of Directions and Scoring year: 1944 ident: e_1_2_5_5_1 – ident: e_1_2_5_25_1 doi: 10.1006/cviu.1999.0815 – ident: e_1_2_5_53_1 doi: 10.1006/nimg.2001.1034 – ident: e_1_2_5_12_1 doi: 10.2307/2984123 – ident: e_1_2_5_34_1 doi: 10.1016/j.neuroimage.2005.01.048 – ident: e_1_2_5_6_1 doi: 10.1007/978-3-540-27816-0_25 – ident: e_1_2_5_47_1 doi: 10.1002/hbm.20268 |
SSID | ssj0011501 |
Score | 2.3418627 |
Snippet | Subject‐specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the... Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 609 |
SubjectTerms | Adult Algorithms Biological and medical sciences BOLD fMRI data-driven metrics Female head motion Humans Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - methods Male Medical sciences Miscellaneous model optimization Models, Statistical Motion multivariate analysis Nervous system Neuropharmacology Pharmacology. Drug treatments physiological noise preprocessing Radiodiagnosis. Nmr imagery. Nmr spectrometry Reproducibility of Results Software |
Title | Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods |
URI | https://api.istex.fr/ark:/67375/WNG-1Q2VX9DP-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21238 https://www.ncbi.nlm.nih.gov/pubmed/21455942 https://www.proquest.com/docview/1517356021 https://www.proquest.com/docview/921142529 https://pubmed.ncbi.nlm.nih.gov/PMC4898950 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTUK8wNi4BMZkITTxkq5xrhZP4zIKUgeMDfowybIdR6vWptHSSrAnfgL8RX4J59hJRmFICKmVUtmxmqPPx5-dc75DyGOeSMy_ZL6J8tSPMs18nsG8gtWikHAVaYW5w8ODZHAcvRnFoxXytM2FcfoQ3YEbzgzrr3GCS1XvXoqGnqppD_0uJvpirBYSosNOOgqJjt1swRLrc_DArapQn-12dy6tRWto1s8YGylrME_h6lpcRTz_jJ_8ldfahWn_JjlpH8nFo5z1FnPV0xe_qT3-5zOvkxsNYaV7DmG3yIopN8jmXgmb9ekXukNtCKk9m98g14bNm_pN8v0t-KLp-AJWRlqhcqbNR8Bfsszh66RQaDWuMCHe1BTIM8X2ifnx9Vu9UHg-RIvh4esehc-H5sSDNlJaE-rKD9nRqvYvIOBoORvXhmqsOmJzNqgrkl3fJsf7L4-eD_ym_IOvwVFkfhylUrO4SGKd68KkWMG94IYXeWJCmZi-ApjJXOOWy5gs0KEONA_7gDdAX27CO2S1nJXmHqFFJhVQnVRpE0V5wFWm04gBKuIc66X1PfKkBYLQjTY6luiYCKfqzARYXljLe-RR17VygiBXddqxaOp6yPMzjKBLY_Hp4JUI3rOPI_7inTjyyPYS3LobYKdnSw57ZKvFn2i8Sy2ApaUhUFUWeIR2zeAX8GWPLM1sUQvOMEs6Ztwjdx1aL8dGcXoewdjpEo67Dig5vtxSjk-t9HiE1UZjtJeF6d8tIAbPhvbi_r93fUCuAx1lLsJvi6zOzxfmIVC-udq2c_snFsBWSg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0amwS88LHBCIxhITTxkq5xkyaWeBkfo4O1wOhGXyYrcRytWptWSyvBnvgJ8Bf5JdxrJxmFISGkVkplx2qujq-vnXvPAXgi2jHVX3JX-2no-pHirohwXuFqkcV45auEaoe7vXbn0H8zCAZL8KyqhbH8EPWBG80M469pgtOB9PYFa-hJMm6Q442uwAopepsN1UFNHkWhjtlu4SLrCvTBFa9Qk2_Xty6sRitk2M-UHRkXaKDMKltcFnr-mUH5a2Rrlqbdm3BcPZTNSDltzGdJQ53_xvf4v099C26UMSvbsSC7DUs6X4W1nRz36-MvbIuZLFJzPL8KV7vly_o1-P4O3dF4eI6LI5sSeaYpSaBfcZ7i17KhsOlwSjXxumAYPzNqH-kfX78V84SOiFjWPdhrMPx8LA89WMmmNWJWgciMNq3-AmGO5ZNhoZki4RFTtsGsTnZxBw53X_VfdNxSAcJV6CsiN_DDWPEgawcqVZkOScQ9E1pkaVu34rZuJoi0OFW069I68lRLeUq0mgg5BGCqW3dhOZ_k-h6wLIoTjHbCRGnfTz2RRCr0OcIiSEkyrenA0woJUpX06KTSMZKW2JlLtLw0lnfgcd11ajlBLuu0ZeBU94jPTimJLgzkp95r6X3gRwPx8r3sO7C5gLf6BtzsGdVhBzYqAMrSwRQSA7WwhdEq9xxgdTO6BnrfE-d6Mi-k4FQoHXDhwLqF68XYxE8vfBw7XABy3YFYxxdb8uGJYR_3SXA0IHsZnP7dArLzvGsu7v9710dwrdPv7sv9vd7bB3Ado1NuE_42YHl2NtcPMQKcJZtmov8EM79aZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbGJk184WXjJTCGhdDEl3SN67xYfBqU0gEtY2zQD0hW4jhatTaNllaCfeInwF_kl3BnJxmFISGkVkrli9WcHt-dnbvnCHksghjrL5mreRq6PFLMFRGsK_AWWQxXXCVYOzwYBv1j_mrkj1bI07oWxvJDNAduuDKMvcYFXqTZ7gVp6EkybaHdja6QNR60I4R097DhjsJIx-y2wMe6AkxwTSvUZrvNrUvOaA31-hmTI-MS9JPZxhaXRZ5_JlD-Gtgaz9S7Tj7Vz2QTUk5bi3nSUue_0T3-50PfINeqiJXuWYjdJCs63yCbezns1qdf6A41OaTmcH6DrA-qV_Wb5PtbMEbT8Tm4RlogdaYpSMBfcZ7C13Kh0GJcYEW8LilEzxTHJ_rH12_lIsEDIpoNDvdbFD7vqyMPWnFpTajtP2RmK-q_gIij-Wxcaqqw7Ygp2qC2S3Z5ixz3Xhw977tV_wdXgaWIXJ-HsWJ-FvgqVZkOsYV7JrTI0kB34kC3E8BZnCrcc2kdeaqjPCU6bQAcwC_VndtkNZ_l-i6hWRQnEOuEidKcp55IIhVyBqjwU2yY1nbIkxoIUlXk6NijYyItrTOToHlpNO-QR41oYRlBLhPaMWhqJOKzU0yhC335cfhSeu_Yh5HoHsgjh2wvwa25AbZ6puewQ7Zq_MnKvJQSwrSwA7Eq8xxCm2EwDPi2J871bFFKwbBM2mfCIXcsWi_mRnZ6wWHucAnHjQByji-P5OMTwz3Osd2oj_oyMP27BmT_2cBc3Pt30Ydk_aDbk2_2h6_vk6sQmjKb7bdFVudnC_0Awr95sm2W-U8SuVkd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+preprocessing+and+analysis+pipelines+for+single%E2%80%90subject+fMRI.+I.+Standard+temporal+motion+and+physiological+noise+correction+methods&rft.jtitle=Human+brain+mapping&rft.au=Churchill%2C+Nathan+W.&rft.au=Oder%2C+Anita&rft.au=Abdi%2C+Herv%C3%A9&rft.au=Tam%2C+Fred&rft.date=2012-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=33&rft.issue=3&rft.spage=609&rft.epage=627&rft_id=info:doi/10.1002%2Fhbm.21238&rft_id=info%3Apmid%2F21455942&rft.externalDocID=PMC4898950 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |