Upconversion of Reductants

The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reaction...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 17; pp. 5532 - 5550
Main Authors Syroeshkin, Mikhail A., Kuriakose, Febin, Saverina, Evgeniya A., Timofeeva, Vladislava A., Egorov, Mikhail P., Alabugin, Igor V.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 16.04.2019
Wiley-VCH Verlag
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20–25 kcal mol−1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron‐upconverting systems—dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide‐based medicines, firefly luminescence, and reductive repair of DNA photodamage. Electrons and photons are essential chemical “currencies” that are commonly traded in chemical transformations. The many applications of photon upconversion raises the question of the possibility of “electron upconversion”. This Review describes the two common types of electron‐upconverting systems: dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds).
AbstractList The many applications of photon upconversion-conversion of low-energy photons into high-energy photons-raises the question of the possibility of "electron upconversion". In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20-25 kcal mol of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron-upconverting systems-dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three-electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide-based medicines, firefly luminescence, and reductive repair of DNA photodamage.
The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20–25 kcal mol−1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron‐upconverting systems—dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide‐based medicines, firefly luminescence, and reductive repair of DNA photodamage.
The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20–25 kcal mol−1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron‐upconverting systems—dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide‐based medicines, firefly luminescence, and reductive repair of DNA photodamage. Electrons and photons are essential chemical “currencies” that are commonly traded in chemical transformations. The many applications of photon upconversion raises the question of the possibility of “electron upconversion”. This Review describes the two common types of electron‐upconverting systems: dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds).
The many applications of photon upconversion-conversion of low-energy photons into high-energy photons-raises the question of the possibility of "electron upconversion". In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20-25 kcal mol-1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron-upconverting systems-dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three-electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide-based medicines, firefly luminescence, and reductive repair of DNA photodamage.The many applications of photon upconversion-conversion of low-energy photons into high-energy photons-raises the question of the possibility of "electron upconversion". In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20-25 kcal mol-1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron-upconverting systems-dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three-electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide-based medicines, firefly luminescence, and reductive repair of DNA photodamage.
The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20–25 kcal mol −1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron‐upconverting systems—dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide‐based medicines, firefly luminescence, and reductive repair of DNA photodamage.
Author Alabugin, Igor V.
Syroeshkin, Mikhail A.
Kuriakose, Febin
Egorov, Mikhail P.
Saverina, Evgeniya A.
Timofeeva, Vladislava A.
Author_xml – sequence: 1
  givenname: Mikhail A.
  surname: Syroeshkin
  fullname: Syroeshkin, Mikhail A.
  email: syroeshkin@ioc.ac.ru
  organization: N. D. Zelinsky Institute of Organic Chemistry
– sequence: 2
  givenname: Febin
  surname: Kuriakose
  fullname: Kuriakose, Febin
  organization: Florida State University
– sequence: 3
  givenname: Evgeniya A.
  surname: Saverina
  fullname: Saverina, Evgeniya A.
  organization: University of Rennes 1
– sequence: 4
  givenname: Vladislava A.
  surname: Timofeeva
  fullname: Timofeeva, Vladislava A.
  organization: N. D. Zelinsky Institute of Organic Chemistry
– sequence: 5
  givenname: Mikhail P.
  surname: Egorov
  fullname: Egorov, Mikhail P.
  organization: N. D. Zelinsky Institute of Organic Chemistry
– sequence: 6
  givenname: Igor V.
  orcidid: 0000-0001-9289-3819
  surname: Alabugin
  fullname: Alabugin, Igor V.
  email: alabugin@chem.fsu.edu
  organization: Florida State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30063285$$D View this record in MEDLINE/PubMed
https://univ-rennes.hal.science/hal-02090017$$DView record in HAL
BookMark eNqFkU1LAzEQhoNU7IdePXiQghc9bJ18NdljKdUWioLYc8hms7hlu6mb3Ur_vSmtFQriISQMz5Nh5u2iVulKi9A1hgEGII-6zO2AAJYgCBNnqIM5wREVgrbCm1EaCclxG3W9XwZeShheoDYFGFIieQfdLNbGlRtb-dyVfZf132zamFqXtb9E55kuvL063D20eJq8j6fR_PV5Nh7NI8MxiCi1Iok1poyKGLMskeEQA8xAEqeJMUTHQxAMS2liTim3WUykHXLNQ0WkgvbQw_7fD12odZWvdLVVTudqOpqrXQ0IxABYbHBg7_fsunKfjfW1WuXe2KLQpXWNVwQkSBpoCOjdCbp0TVWGSRQhwAmjXLJA3R6oJlnZ9Nj_Z0MBGOwBUznvK5sdEQxqF4HaRaCOEQSBnQgmr3Ud1ltXOi_-1uK99pUXdvtPEzV6mU1-3W_Pw5ac
CitedBy_id crossref_primary_10_1021_jacs_3c06106
crossref_primary_10_1002_anie_202116888
crossref_primary_10_1021_acssuschemeng_2c02597
crossref_primary_10_1166_sam_2024_4682
crossref_primary_10_1016_j_tetlet_2019_03_054
crossref_primary_10_1002_anie_201908788
crossref_primary_10_1021_acs_chemrev_0c00278
crossref_primary_10_1055_a_2153_6594
crossref_primary_10_1021_jacs_4c05987
crossref_primary_10_1002_ange_201905814
crossref_primary_10_1002_asia_201900213
crossref_primary_10_1021_acs_joc_1c01296
crossref_primary_10_31857_S0514749223120017
crossref_primary_10_5796_electrochemistry_23_67079
crossref_primary_10_1002_ejoc_202300603
crossref_primary_10_1002_ange_202007549
crossref_primary_10_1002_adsc_202001255
crossref_primary_10_1021_jacs_1c01356
crossref_primary_10_1002_cjoc_202400854
crossref_primary_10_1021_acs_jpca_0c04792
crossref_primary_10_3390_molecules26185429
crossref_primary_10_1016_j_mencom_2024_01_033
crossref_primary_10_1007_s11426_019_9611_x
crossref_primary_10_1021_jacs_4c10422
crossref_primary_10_1039_D1RA02691G
crossref_primary_10_1039_D2SC01342H
crossref_primary_10_1039_C9CC00035F
crossref_primary_10_1134_S1070428023120011
crossref_primary_10_1002_ange_202116888
crossref_primary_10_5059_yukigoseikyokaishi_82_867
crossref_primary_10_1007_s11172_022_3570_7
crossref_primary_10_1039_C9SC04846D
crossref_primary_10_3390_chemistry5040172
crossref_primary_10_1021_acs_orglett_1c03501
crossref_primary_10_1002_adsc_201901503
crossref_primary_10_1021_jacs_4c14255
crossref_primary_10_1021_acs_joc_9b00503
crossref_primary_10_1039_D0SC03220D
crossref_primary_10_1021_jacs_0c00190
crossref_primary_10_1186_s12951_023_02163_z
crossref_primary_10_1016_j_mencom_2020_09_003
crossref_primary_10_1021_acsomega_0c00509
crossref_primary_10_1021_acs_chemrev_1c00582
crossref_primary_10_1021_acs_jpcc_4c00538
crossref_primary_10_1039_C9SC06511C
crossref_primary_10_1002_anie_202007549
crossref_primary_10_1007_s11172_024_4366_8
crossref_primary_10_1126_science_abq2622
crossref_primary_10_1038_s41557_023_01135_y
crossref_primary_10_1007_s11172_023_4067_8
crossref_primary_10_1039_D1OB01568K
crossref_primary_10_1039_D2QO00710J
crossref_primary_10_3367_UFNe_2021_09_039054
crossref_primary_10_1021_acs_joc_9b02937
crossref_primary_10_1039_D0SC01939A
crossref_primary_10_1039_D1CS00193K
crossref_primary_10_1002_ange_201908788
crossref_primary_10_1002_anie_202103085
crossref_primary_10_1021_jacs_9b12343
crossref_primary_10_1021_acs_orglett_9b02487
crossref_primary_10_1002_adsc_202100674
crossref_primary_10_1002_ange_202103085
crossref_primary_10_1055_a_2044_2140
crossref_primary_10_1039_D4SC04011B
crossref_primary_10_1002_anie_201905814
crossref_primary_10_1038_s41467_025_57991_4
crossref_primary_10_1021_acs_chemrev_4c00808
Cites_doi 10.1021/jo100449m
10.1002/ange.201005129
10.1038/nature02242
10.1021/ja00375a016
10.1021/ja043295f
10.1021/ja016885b
10.1016/S0065-3160(08)60140-9
10.1002/adsc.201700104
10.1021/ja902675g
10.1002/chem.200902023
10.1021/jo3028246
10.1021/ja016905
10.1126/science.1258232
10.1021/ja00757a071
10.1038/nnano.2014.92
10.1002/ange.201711104
10.1021/jacs.7b07519
10.1021/ja963360o
10.1021/acs.accounts.8b00026
10.1002/anie.201812418
10.1002/anie.201802710
10.1021/ja00298a009
10.1021/ac00248a014
10.1002/anie.201703004
10.1002/anie.201601930
10.1016/S0040-4039(00)94597-0
10.1126/science.1239176
10.1039/b809356c
10.1016/j.drudis.2009.05.008
10.1002/anie.201306082
10.1002/ange.201610699
10.1002/anie.201800749
10.1002/anie.201802532
10.1002/anie.201408516
10.1002/ange.201505090
10.1002/anie.201804873
10.1021/ja029664u
10.1002/anie.201700413
10.1002/anie.201511847
10.1002/anie.201706534
10.1021/acs.chemrev.6b00057
10.3762/bjoc.10.97
10.1002/anie.201610699
10.1002/anie.201712732
10.1021/acs.accounts.6b00288
10.1038/355796a0
10.1021/ol8019764
10.1002/ange.201408516
10.1021/ja1080822
10.1002/chem.201700085
10.1002/ange.201802532
10.1002/anie.201505090
10.1021/acs.accounts.6b00280
10.1002/poc.3744
10.1002/ange.201801112
10.1021/acs.accounts.6b00304
10.1039/C7OB02209C
10.1002/anie.201708497
10.1039/C5SC02402A
10.1039/b301909h
10.1021/acs.accounts.6b00270
10.1021/ja030543j
10.1021/jacs.6b08540
10.1002/anie.201806296
10.1002/ange.201101597
10.1002/anie.200353264
10.1039/C3CS60353A
10.1063/pt.5.031109
10.1021/acs.accounts.6b00293
10.1021/ja056730u
10.1002/ange.201802710
10.1021/acs.accounts.6b00229
10.1002/anie.201706554
10.1002/ange.201710397
10.1002/anie.201800421
10.1021/ja803094u
10.1021/ja306621n
10.1021/acs.accounts.6b00259
10.1002/anie.201204162
10.1002/anie.201711467
10.1002/chem.200701740
10.1002/ange.201703004
10.1021/acs.accounts.6b00351
10.1002/ange.201306082
10.1039/c2md00277a
10.1038/nchem.862
10.1002/ange.201601930
10.3762/bjoc.10.6
10.1038/374013a0
10.1021/jo00062a007
10.1021/jo500071u
10.1039/c3cs60464k
10.1021/acs.chemrev.7b00656
10.1021/ol503574k
10.1002/ange.201700413
10.1002/9781118906378
10.1021/ja103050x
10.1038/nchem.2031
10.1039/C6SC02117D
10.1002/anie.201709523
10.1021/ja070023e
10.1002/anie.201005129
10.1039/C5SC02185E
10.1002/ejoc.201201656
10.1021/ja5101036
10.1021/acs.joc.7b00822
10.1351/pac198052122591
10.1007/s00044-016-1736-2
10.1002/ange.201008220
10.1038/nature06637
10.3390/molecules22111881
10.1002/anie.201801112
10.1021/acs.accounts.6b00227
10.1021/ac9902392
10.1002/anie.201711060
10.1002/anie.201800951
10.1002/anie.201711104
10.1021/cr4000682
10.1021/jo00359a035
10.1126/science.279.5358.1891
10.1002/ange.201708497
10.1002/ange.201709523
10.1002/ange.201511847
10.1002/ange.200353264
10.1002/ange.201806296
10.1021/ja507517g
10.1002/ange.201800421
10.1002/ange.201803102
10.1002/anie.201101597
10.1039/C3SC52315B
10.1016/j.ccr.2010.01.003
10.1002/anie.201008220
10.1002/ange.201800749
10.1021/ja00899a004
10.1021/ar7000843
10.1021/acs.joc.6b01449
10.1002/ange.201706554
10.1111/bph.13532
10.1021/ja036380g
10.1002/ange.201804873
10.1002/anie.201710397
10.1038/nchem.687
10.1002/ange.201711060
10.1002/ange.201800951
10.1002/ange.201706534
10.1002/cmdc.201700804
10.1002/ange.201711467
10.1021/j100659a019
10.1002/ange.201204162
10.1021/ol0172065
10.1002/ange.201712732
10.1016/j.electacta.2016.01.127
10.1021/acs.chemrev.7b00649
10.1039/C7SC02175E
10.1126/science.1251511
10.1021/ja302979t
10.1021/acs.jpca.7b08081
10.1016/j.mencom.2017.11.014
10.1002/poc.3725
10.1021/acs.joc.5b00515
10.1021/ar50061a004
10.1021/acs.accounts.6b00272
10.1016/j.chemphys.2005.09.029
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
1XC
DOI 10.1002/anie.201807247
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 5550
ExternalDocumentID oai_HAL_hal_02090017v1
30063285
10_1002_anie_201807247
ANIE201807247
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Directorate for Mathematical and Physical Sciences
  funderid: 1800329
– fundername: Russian Science Foundation
  funderid: 17-73-20281
– fundername: Russian Science Foundation
  grantid: 17-73-20281
– fundername: Directorate for Mathematical and Physical Sciences
  grantid: 1800329
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
1XC
ID FETCH-LOGICAL-c5107-de7b9a13437914fb84fb2c04c0b9dbcc2a96074188c95335ef928e65a588c7d73
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Wed Jul 02 06:34:51 EDT 2025
Fri Jul 11 01:31:48 EDT 2025
Fri Jul 25 10:36:29 EDT 2025
Wed Feb 19 02:31:02 EST 2025
Thu Jul 10 08:05:55 EDT 2025
Thu Apr 24 23:00:04 EDT 2025
Wed Jan 22 16:53:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords fragmentations
upconversion
photoredox catalysis
reductants
electron transfer
radical anions
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5107-de7b9a13437914fb84fb2c04c0b9dbcc2a96074188c95335ef928e65a588c7d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9289-3819
PMID 30063285
PQID 2205243584
PQPubID 946352
PageCount 19
ParticipantIDs hal_primary_oai_HAL_hal_02090017v1
proquest_miscellaneous_2080839000
proquest_journals_2205243584
pubmed_primary_30063285
crossref_primary_10_1002_anie_201807247
crossref_citationtrail_10_1002_anie_201807247
wiley_primary_10_1002_anie_201807247_ANIE201807247
PublicationCentury 2000
PublicationDate April 16, 2019
PublicationDateYYYYMMDD 2019-04-16
PublicationDate_xml – month: 04
  year: 2019
  text: April 16, 2019
  day: 16
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2014 2014 2016 2016; 5 136 55 128
2010; 16
2018 2018 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018; 57 130 57 130 57 130 57 130 58 131 57 130 116 81 49 49 49 49 49 49 49 49 49 56 129 56 129 56 129 56 129 56 129 57 130 57 130 57 130 57 130 57 130
1982; 18
1997; 119
1982; 54
2015 2005; 80 127
2009 2012 2014 2017 2017 2017 2018 2017; 14 3 10 56 129 22 13 26
1982; 104
2008; 6
1995; 374
1963 1972; 85 76
2014; 61
2014; 136
2017; 30
2012; 134
1992; 355
2016 2013 2001; 7 78 123
2018 2018 2018 2018 2018 2017; 57 130 57 130 118 1
2017; 121
2014; 9
2010; 2
2003; 125
2017 2018 2018; 8 57 130
2016; 191
2006; 128
2014; 10
2010; 75
2014 2016 2016; 6 55 128
2015; 6
2007; 129
2004 2004; 43 116
1986; 51
2015 2015 2016; 54 127 49
1972 1973 2013; 94 6
2017; 27
2017; 23
2008; 14
2011 2011 2008 2010 2010 2017 2015 2017 2017 2017; 50 123 10 132 132 82 17 15 23 359
2002; 4
2017; 174
2003
2016 2013 2003; 138 113 125
1985; 107
2014 2010 2014; 343 2 43
2004 1990; 126 31
2017; 139
2014; 43
2006 2009; 324 131
2011 2011 2012 2012; 50 123 51 124
1993; 58
1980; 52
2018; 118
2002; 124
2010; 254
2014; 79
2016
2018; 51
2011 2011; 50 123
2008; 41
1999; 71
2008; 452
1998 2004; 279 427
2013 2013 2016 2016 2017 2017; 52 125 55 128 56 129
2008; 130
2014; 346
2014; 344
e_1_2_10_1_38
e_1_2_10_44_3
e_1_2_10_1_39
e_1_2_10_44_2
e_1_2_10_1_36
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_1_37
e_1_2_10_1_34
e_1_2_10_1_35
e_1_2_10_1_32
e_1_2_10_40_1
e_1_2_10_1_33
e_1_2_10_1_30
e_1_2_10_1_31
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_74_2
e_1_2_10_6_1
e_1_2_10_74_3
e_1_2_10_55_1
e_1_2_10_1_29
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_55_2
e_1_2_10_55_3
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_1_43
e_1_2_10_51_1
e_1_2_10_1_41
e_1_2_10_1_42
e_1_2_10_1_40
e_1_2_10_48_6
e_1_2_10_29_1
e_1_2_10_48_5
e_1_2_10_63_1
e_1_2_10_48_4
e_1_2_10_63_2
e_1_2_10_48_3
e_1_2_10_48_2
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_44_4
e_1_2_10_1_16
e_1_2_10_1_17
e_1_2_10_45_1
e_1_2_10_1_14
e_1_2_10_1_15
e_1_2_10_22_1
e_1_2_10_1_12
e_1_2_10_1_13
e_1_2_10_41_1
e_1_2_10_1_10
e_1_2_10_1_11
e_1_2_10_71_1
e_1_2_10_71_2
e_1_2_10_71_3
e_1_2_10_3_2
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_38_1
e_1_2_10_34_4
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_34_3
e_1_2_10_1_27
e_1_2_10_57_2
e_1_2_10_1_28
e_1_2_10_1_25
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_1_26
e_1_2_10_1_23
e_1_2_10_1_24
e_1_2_10_1_21
e_1_2_10_1_22
e_1_2_10_1_20
e_1_2_10_60_1
e_1_2_10_64_1
e_1_2_10_64_2
e_1_2_10_49_1
e_1_2_10_64_3
e_1_2_10_1_18
e_1_2_10_64_4
e_1_2_10_1_19
e_1_2_10_26_1
e_1_2_10_64_5
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_3
e_1_2_10_42_2
e_1_2_10_42_1
e_1_2_10_43_10
Mendkovich A. S. (e_1_2_10_11_1) 2014; 61
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_39_3
e_1_2_10_39_2
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_31_8
e_1_2_10_8_1
e_1_2_10_12_3
e_1_2_10_31_7
e_1_2_10_31_6
e_1_2_10_57_1
e_1_2_10_34_2
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_30_1
e_1_2_10_61_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_27_2
e_1_2_10_46_2
e_1_2_10_43_4
e_1_2_10_24_1
e_1_2_10_43_3
e_1_2_10_43_2
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_1_1
e_1_2_10_1_2
e_1_2_10_73_1
e_1_2_10_1_3
e_1_2_10_1_4
e_1_2_10_1_5
e_1_2_10_54_1
e_1_2_10_1_6
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_36_3
e_1_2_10_1_7
e_1_2_10_36_2
e_1_2_10_1_8
e_1_2_10_36_1
e_1_2_10_1_9
e_1_2_10_9_2
e_1_2_10_12_1
e_1_2_10_31_5
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_12_2
e_1_2_10_31_4
e_1_2_10_59_1
e_1_2_10_31_3
e_1_2_10_59_2
e_1_2_10_31_2
e_1_2_10_31_1
e_1_2_10_50_1
Plesniak M. P. (e_1_2_10_64_6) 2017; 1
e_1_2_10_62_1
e_1_2_10_43_9
e_1_2_10_43_8
e_1_2_10_28_1
e_1_2_10_43_7
e_1_2_10_66_1
e_1_2_10_43_6
e_1_2_10_43_5
e_1_2_10_47_1
References_xml – volume: 128
  start-page: 6595
  year: 2006
  end-page: 6604
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 611
  year: 2002
  end-page: 613
  publication-title: Org. Lett.
– volume: 50 123 51 124
  start-page: 4119 4205 8003 8127
  year: 2011 2011 2012 2012
  end-page: 4122 4208 8007 8131
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 130
  start-page: 9214
  year: 2008
  end-page: 9215
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 7761
  year: 2017
  end-page: 7767
  publication-title: J. Phys. Chem. A
– volume: 18
  start-page: 187
  year: 1982
  end-page: 238
  publication-title: Adv. Phys. Org. Chem.
– volume: 355
  start-page: 796
  year: 1992
  end-page: 802
  publication-title: Nature
– volume: 126 31
  start-page: 1634 667
  year: 2004 1990
  end-page: 1635 668
  publication-title: J. Am. Chem. Soc. Tetrahedron Lett.
– volume: 27
  start-page: 580
  year: 2017
  end-page: 582
  publication-title: Mendeleev Commun.
– volume: 138 113 125
  start-page: 15617 7089 4495
  year: 2016 2013 2003
  end-page: 15628 7129 4509
  publication-title: J. Am. Chem. Soc. Chem. Rev. J. Am. Chem. Soc.
– volume: 10
  start-page: 981
  year: 2014
  end-page: 989
  publication-title: Beilstein J. Org. Chem.
– volume: 51
  start-page: 1206
  year: 2018
  end-page: 1219
  publication-title: Acc. Chem. Res.
– volume: 94 6
  start-page: 660 25 2505
  year: 1972 1973 2013
  end-page: 661 31 2527
  publication-title: J. Am. Chem. Soc. Acc. Chem. Res. Eur. J. Org. Chem.
– volume: 129
  start-page: 4795
  year: 2007
  end-page: 4799
  publication-title: J. Am. Chem. Soc.
– volume: 279 427
  start-page: 1891 607
  year: 1998 2004
  end-page: 1895 612
  publication-title: Science Nature
– volume: 51
  start-page: 1563
  year: 1986
  end-page: 1570
  publication-title: J. Org. Chem.
– volume: 80 127
  start-page: 3745 8667
  year: 2015 2005
  end-page: 3751 8679
  publication-title: J. Org. Chem. J. Am. Chem. Soc.
– volume: 139
  start-page: 16210
  year: 2017
  end-page: 16221
  publication-title: J. Am. Chem. Soc.
– volume: 374
  start-page: 13
  year: 1995
  publication-title: Nature
– volume: 14
  start-page: 1698
  year: 2008
  end-page: 1709
  publication-title: Chem. Eur. J.
– volume: 79
  start-page: 3731
  year: 2014
  end-page: 3746
  publication-title: J. Org. Chem.
– start-page: 1246
  year: 2003
  end-page: 1247
  publication-title: Chem. Commun.
– volume: 125
  start-page: 14905
  year: 2003
  end-page: 14916
  publication-title: J. Am. Chem. Soc.
– volume: 54 127 49
  start-page: 2270 2298 2316
  year: 2015 2015 2016
  end-page: 2274 2302 2327
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Acc. Chem. Res.
– volume: 134
  start-page: 16370
  year: 2012
  end-page: 16378
  publication-title: J. Am. Chem. Soc.
– volume: 7 78 123
  start-page: 6387 2626 11314
  year: 2016 2013 2001
  end-page: 6393 2638 11315
  publication-title: Chem. Sci. J. Org. Chem. J. Am. Chem. Soc.
– volume: 324 131
  start-page: 40 11320
  year: 2006 2009
  end-page: 56 11322
  publication-title: Chem. Phys. J. Am. Chem. Soc.
– volume: 30
  start-page: 3744
  year: 2017
  publication-title: J. Phys. Org. Chem.
– volume: 8 57 130
  start-page: 6888 814 822
  year: 2017 2018 2018
  end-page: 6892 817 825
  publication-title: Chem. Sci. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41
  start-page: 69
  year: 2008
  end-page: 77
  publication-title: Acc. Chem. Res.
– volume: 254
  start-page: 2560
  year: 2010
  end-page: 2573
  publication-title: Coord. Chem. Rev.
– volume: 118
  start-page: 6927
  year: 2018
  end-page: 6974
  publication-title: Chem. Rev.
– volume: 61
  start-page: 246
  year: 2014
  end-page: 254
  publication-title: Acta Chim. Slov.
– volume: 346
  start-page: 725
  year: 2014
  end-page: 728
  publication-title: Science
– volume: 6
  start-page: 6783
  year: 2015
  end-page: 6791
  publication-title: Chem. Sci.
– volume: 85 76
  start-page: 2360 2176
  year: 1963 1972
  end-page: 2364 2178
  publication-title: J. Am. Chem. Soc. J. Phys. Chem.
– volume: 6 55 128
  start-page: 765 58 58
  year: 2014 2016 2016
  end-page: 773 102 106
  publication-title: Nat. Chem. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130 57 130 57 130 57 130 58 131 57 130 116 81 49 49 49 49 49 49 49 49 49 56 129 56 129 56 129 56 129 56 129 57 130 57 130 57 130 57 130 57 130
  start-page: 8316 8449 13784 13980 8027 8159 9501 9645 1586 1600 6667 6777 10075 6898 2307 2261 2273 2295 1924 1980 1997 1566 1546 13361 13546 8544 8664 14212 14400 15644 15850 4545 4616 3990 4054 5369 5467 4622 4712 2469 2494 1371 1385
  year: 2018 2018 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018
  end-page: 8320 8453 13789 13985 8031 8163 9504 9648 1604 1619 6671 6781 10166 6926 2315 2272 2283 2306 1936 1989 2006 1577 1556 13365 13550 8549 8669 14216 14404 15648 15854 4548 4619 3994 4058 1375 1389
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Chem. Rev. J. Org. Chem. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 178
  year: 2010
  end-page: 188
  publication-title: Chem. Eur. J.
– volume: 107
  start-page: 3451
  year: 1985
  end-page: 3459
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1044
  year: 2010
  end-page: 1049
  publication-title: Nat. Chem.
– volume: 9
  start-page: 327
  year: 2014
  end-page: 328
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 3354
  year: 2008
  end-page: 3361
  publication-title: Org. Biomol. Chem.
– volume: 6
  start-page: 5426
  year: 2015
  end-page: 5434
  publication-title: Chem. Sci.
– year: 2016
– volume: 52 125 55 128 56 129
  start-page: 10792 10992 6749 6861 13275 13459
  year: 2013 2013 2016 2016 2017 2017
  end-page: 10795 10995 6752 6864 13278 13462
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 2591
  year: 1980
  end-page: 2608
  publication-title: Pure Appl. Chem.
– volume: 452
  start-page: 239
  year: 2008
  end-page: 242
  publication-title: Nature
– volume: 43
  start-page: 2680
  year: 2014
  end-page: 2700
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 2670
  year: 1993
  end-page: 2677
  publication-title: J. Org. Chem.
– volume: 71
  start-page: 4081
  year: 1999
  end-page: 4087
  publication-title: Anal. Chem.
– volume: 134
  start-page: 11632
  year: 2012
  end-page: 11639
  publication-title: J. Am. Chem. Soc.
– volume: 5 136 55 128
  start-page: 476 17818 4492 4568
  year: 2014 2014 2016 2016
  end-page: 482 17826 4496 4572
  publication-title: Chem. Sci. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50 123
  start-page: 4671 4767
  year: 2011 2011
  end-page: 4674 4770
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 104
  start-page: 3034
  year: 1982
  end-page: 3043
  publication-title: J. Am. Chem. Soc.
– volume: 174
  start-page: 1647
  year: 2017
  end-page: 1669
  publication-title: Br. J. Pharmacol.
– volume: 344
  start-page: 392
  year: 2014
  end-page: 396
  publication-title: Science
– volume: 136
  start-page: 15263
  year: 2014
  end-page: 15269
  publication-title: J. Am. Chem. Soc.
– volume: 191
  start-page: 962
  year: 2016
  end-page: 973
  publication-title: Electrochim. Acta
– volume: 30
  start-page: 3725
  year: 2017
  publication-title: J. Phys. Org. Chem.
– volume: 14 3 10 56 129 22 13 26
  start-page: 793 281 34 4955 5037 1881 902 170
  year: 2009 2012 2014 2017 2017 2017 2018 2017
  end-page: 803 297 114 4959 5041 908 179
  publication-title: Drug Discovery Today MedChemComm Beilstein J. Org. Chem. Angew. Chem. Int. Ed. Angew. Chem. Molecules ChemMedChem Med. Chem. Res.
– volume: 75
  start-page: 3678
  year: 2010
  end-page: 3684
  publication-title: J. Org. Chem.
– volume: 23
  start-page: 9091
  year: 2017
  end-page: 9097
  publication-title: Chem. Eur. J.
– volume: 124
  start-page: 11167
  year: 2002
  end-page: 11181
  publication-title: J. Am. Chem. Soc.
– volume: 43 116
  start-page: 1848 1884
  year: 2004 2004
  end-page: 1851 1887
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 119
  start-page: 1971
  year: 1997
  end-page: 1977
  publication-title: J. Am. Chem. Soc.
– volume: 57 130 57 130 118 1
  start-page: 5594 5694 6018 6124 4817 1
  year: 2018 2018 2018 2018 2018 2017
  end-page: 5619 5721 6041 6149 4833 16
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Chem. Rev. Nat. Rev.
– volume: 50 123 10 132 132 82 17 15 23 359
  start-page: 5018 5122 4673 15537 16737 8325 386 8810 9091 1672
  year: 2011 2011 2008 2010 2010 2017 2015 2017 2017 2017
  end-page: 5022 5127 4676 15539 16740 8333 389 8819 9097 1677
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Org. Lett. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Org. Chem. Org. Lett. Org. Biomol. Chem. Chem. Eur. J. Adv. Synth. Catal.
– volume: 54
  start-page: 1720
  year: 1982
  end-page: 1724
  publication-title: Anal. Chem.
– volume: 343 2 43
  start-page: 985 527 2492
  year: 2014 2010 2014
  end-page: 532 2521
  publication-title: Science Nat. Chem. Chem. Soc. Rev.
– ident: e_1_2_10_26_1
  doi: 10.1021/jo100449m
– ident: e_1_2_10_34_2
  doi: 10.1002/ange.201005129
– ident: e_1_2_10_63_2
  doi: 10.1038/nature02242
– ident: e_1_2_10_41_1
  doi: 10.1021/ja00375a016
– ident: e_1_2_10_27_2
  doi: 10.1021/ja043295f
– ident: e_1_2_10_74_3
  doi: 10.1021/ja016885b
– ident: e_1_2_10_25_1
  doi: 10.1016/S0065-3160(08)60140-9
– ident: e_1_2_10_43_10
  doi: 10.1002/adsc.201700104
– ident: e_1_2_10_9_2
  doi: 10.1021/ja902675g
– ident: e_1_2_10_18_1
  doi: 10.1002/chem.200902023
– ident: e_1_2_10_74_2
  doi: 10.1021/jo3028246
– ident: e_1_2_10_4_1
  doi: 10.1021/ja016905
– ident: e_1_2_10_5_1
  doi: 10.1126/science.1258232
– ident: e_1_2_10_39_1
  doi: 10.1021/ja00757a071
– ident: e_1_2_10_72_1
  doi: 10.1038/nnano.2014.92
– ident: e_1_2_10_1_43
  doi: 10.1002/ange.201711104
– volume: 61
  start-page: 246
  year: 2014
  ident: e_1_2_10_11_1
  publication-title: Acta Chim. Slov.
– ident: e_1_2_10_35_1
  doi: 10.1021/jacs.7b07519
– ident: e_1_2_10_60_1
  doi: 10.1021/ja963360o
– ident: e_1_2_10_19_1
  doi: 10.1021/acs.accounts.8b00026
– ident: e_1_2_10_1_9
  doi: 10.1002/anie.201812418
– ident: e_1_2_10_1_11
  doi: 10.1002/anie.201802710
– ident: e_1_2_10_45_1
  doi: 10.1021/ja00298a009
– ident: e_1_2_10_32_1
  doi: 10.1021/ac00248a014
– ident: e_1_2_10_1_26
  doi: 10.1002/anie.201703004
– ident: e_1_2_10_48_3
  doi: 10.1002/anie.201601930
– ident: e_1_2_10_57_2
  doi: 10.1016/S0040-4039(00)94597-0
– ident: e_1_2_10_71_1
  doi: 10.1126/science.1239176
– ident: e_1_2_10_15_1
  doi: 10.1039/b809356c
– ident: e_1_2_10_31_1
  doi: 10.1016/j.drudis.2009.05.008
– ident: e_1_2_10_48_1
  doi: 10.1002/anie.201306082
– ident: e_1_2_10_31_5
  doi: 10.1002/ange.201610699
– ident: e_1_2_10_1_36
  doi: 10.1002/anie.201800749
– ident: e_1_2_10_1_5
  doi: 10.1002/anie.201802532
– ident: e_1_2_10_55_1
  doi: 10.1002/anie.201408516
– ident: e_1_2_10_42_3
  doi: 10.1002/ange.201505090
– ident: e_1_2_10_1_7
  doi: 10.1002/anie.201804873
– ident: e_1_2_10_7_1
– ident: e_1_2_10_36_3
  doi: 10.1021/ja029664u
– ident: e_1_2_10_1_32
  doi: 10.1002/anie.201700413
– ident: e_1_2_10_44_3
  doi: 10.1002/anie.201511847
– ident: e_1_2_10_48_5
  doi: 10.1002/anie.201706534
– ident: e_1_2_10_1_13
  doi: 10.1021/acs.chemrev.6b00057
– ident: e_1_2_10_51_1
  doi: 10.3762/bjoc.10.97
– ident: e_1_2_10_31_4
  doi: 10.1002/anie.201610699
– ident: e_1_2_10_64_3
  doi: 10.1002/anie.201712732
– ident: e_1_2_10_1_19
  doi: 10.1021/acs.accounts.6b00288
– ident: e_1_2_10_62_1
  doi: 10.1038/355796a0
– ident: e_1_2_10_43_3
  doi: 10.1021/ol8019764
– ident: e_1_2_10_55_2
  doi: 10.1002/ange.201408516
– ident: e_1_2_10_43_4
  doi: 10.1021/ja1080822
– ident: e_1_2_10_50_1
  doi: 10.1002/chem.201700085
– ident: e_1_2_10_1_6
  doi: 10.1002/ange.201802532
– ident: e_1_2_10_42_2
  doi: 10.1002/anie.201505090
– ident: e_1_2_10_1_15
  doi: 10.1021/acs.accounts.6b00280
– ident: e_1_2_10_10_1
  doi: 10.1002/poc.3744
– ident: e_1_2_10_1_2
  doi: 10.1002/ange.201801112
– ident: e_1_2_10_1_21
  doi: 10.1021/acs.accounts.6b00304
– ident: e_1_2_10_43_8
  doi: 10.1039/C7OB02209C
– ident: e_1_2_10_1_24
  doi: 10.1002/anie.201708497
– ident: e_1_2_10_20_1
  doi: 10.1039/C5SC02402A
– ident: e_1_2_10_17_1
  doi: 10.1039/b301909h
– ident: e_1_2_10_1_18
  doi: 10.1021/acs.accounts.6b00270
– ident: e_1_2_10_43_9
  doi: 10.1002/chem.201700085
– ident: e_1_2_10_57_1
  doi: 10.1021/ja030543j
– ident: e_1_2_10_36_1
  doi: 10.1021/jacs.6b08540
– ident: e_1_2_10_1_3
  doi: 10.1002/anie.201806296
– ident: e_1_2_10_43_2
  doi: 10.1002/ange.201101597
– ident: e_1_2_10_59_1
  doi: 10.1002/anie.200353264
– ident: e_1_2_10_73_1
  doi: 10.1039/C3CS60353A
– ident: e_1_2_10_29_1
  doi: 10.1063/pt.5.031109
– ident: e_1_2_10_55_3
  doi: 10.1021/acs.accounts.6b00293
– ident: e_1_2_10_68_1
  doi: 10.1021/ja056730u
– ident: e_1_2_10_1_12
  doi: 10.1002/ange.201802710
– ident: e_1_2_10_1_22
  doi: 10.1021/acs.accounts.6b00229
– ident: e_1_2_10_1_28
  doi: 10.1002/anie.201706554
– ident: e_1_2_10_12_3
  doi: 10.1002/ange.201710397
– ident: e_1_2_10_1_34
  doi: 10.1002/anie.201800421
– ident: e_1_2_10_6_1
– ident: e_1_2_10_56_1
  doi: 10.1021/ja803094u
– ident: e_1_2_10_67_1
  doi: 10.1021/ja306621n
– ident: e_1_2_10_1_17
  doi: 10.1021/acs.accounts.6b00259
– ident: e_1_2_10_34_3
  doi: 10.1002/anie.201204162
– ident: e_1_2_10_1_40
  doi: 10.1002/anie.201711467
– ident: e_1_2_10_16_1
  doi: 10.1002/chem.200701740
– ident: e_1_2_10_1_27
  doi: 10.1002/ange.201703004
– ident: e_1_2_10_1_16
  doi: 10.1021/acs.accounts.6b00351
– ident: e_1_2_10_48_2
  doi: 10.1002/ange.201306082
– ident: e_1_2_10_31_2
  doi: 10.1039/c2md00277a
– ident: e_1_2_10_47_1
  doi: 10.1038/nchem.862
– ident: e_1_2_10_48_4
  doi: 10.1002/ange.201601930
– ident: e_1_2_10_31_3
  doi: 10.3762/bjoc.10.6
– ident: e_1_2_10_61_1
  doi: 10.1038/374013a0
– ident: e_1_2_10_13_1
  doi: 10.1021/jo00062a007
– ident: e_1_2_10_65_1
  doi: 10.1021/jo500071u
– ident: e_1_2_10_71_3
  doi: 10.1039/c3cs60464k
– ident: e_1_2_10_64_5
  doi: 10.1021/acs.chemrev.7b00656
– ident: e_1_2_10_43_7
  doi: 10.1021/ol503574k
– ident: e_1_2_10_1_33
  doi: 10.1002/ange.201700413
– ident: e_1_2_10_22_1
  doi: 10.1002/9781118906378
– ident: e_1_2_10_43_5
  doi: 10.1021/ja103050x
– ident: e_1_2_10_42_1
  doi: 10.1038/nchem.2031
– ident: e_1_2_10_74_1
  doi: 10.1039/C6SC02117D
– ident: e_1_2_10_1_30
  doi: 10.1002/anie.201709523
– ident: e_1_2_10_38_1
  doi: 10.1021/ja070023e
– ident: e_1_2_10_34_1
  doi: 10.1002/anie.201005129
– ident: e_1_2_10_54_1
  doi: 10.1039/C5SC02185E
– ident: e_1_2_10_39_3
  doi: 10.1002/ejoc.201201656
– ident: e_1_2_10_44_2
  doi: 10.1021/ja5101036
– ident: e_1_2_10_43_6
  doi: 10.1021/acs.joc.7b00822
– ident: e_1_2_10_23_1
  doi: 10.1351/pac198052122591
– ident: e_1_2_10_31_8
  doi: 10.1007/s00044-016-1736-2
– ident: e_1_2_10_46_2
  doi: 10.1002/ange.201008220
– ident: e_1_2_10_49_1
  doi: 10.1038/nature06637
– ident: e_1_2_10_31_6
  doi: 10.3390/molecules22111881
– ident: e_1_2_10_1_1
  doi: 10.1002/anie.201801112
– ident: e_1_2_10_1_20
  doi: 10.1021/acs.accounts.6b00227
– ident: e_1_2_10_52_1
  doi: 10.1021/ac9902392
– ident: e_1_2_10_64_1
  doi: 10.1002/anie.201711060
– ident: e_1_2_10_1_38
  doi: 10.1002/anie.201800951
– ident: e_1_2_10_1_42
  doi: 10.1002/anie.201711104
– ident: e_1_2_10_36_2
  doi: 10.1021/cr4000682
– ident: e_1_2_10_14_1
  doi: 10.1021/jo00359a035
– ident: e_1_2_10_63_1
  doi: 10.1126/science.279.5358.1891
– ident: e_1_2_10_1_25
  doi: 10.1002/ange.201708497
– ident: e_1_2_10_1_31
  doi: 10.1002/ange.201709523
– ident: e_1_2_10_44_4
  doi: 10.1002/ange.201511847
– ident: e_1_2_10_59_2
  doi: 10.1002/ange.200353264
– ident: e_1_2_10_1_4
  doi: 10.1002/ange.201806296
– ident: e_1_2_10_40_1
  doi: 10.1021/ja507517g
– ident: e_1_2_10_1_35
  doi: 10.1002/ange.201800421
– ident: e_1_2_10_1_10
  doi: 10.1002/ange.201803102
– ident: e_1_2_10_43_1
  doi: 10.1002/anie.201101597
– ident: e_1_2_10_44_1
  doi: 10.1039/C3SC52315B
– ident: e_1_2_10_2_1
  doi: 10.1016/j.ccr.2010.01.003
– ident: e_1_2_10_46_1
  doi: 10.1002/anie.201008220
– ident: e_1_2_10_1_37
  doi: 10.1002/ange.201800749
– ident: e_1_2_10_3_1
  doi: 10.1021/ja00899a004
– ident: e_1_2_10_30_1
  doi: 10.1021/ar7000843
– ident: e_1_2_10_1_14
  doi: 10.1021/acs.joc.6b01449
– ident: e_1_2_10_1_29
  doi: 10.1002/ange.201706554
– ident: e_1_2_10_33_1
  doi: 10.1111/bph.13532
– ident: e_1_2_10_66_1
  doi: 10.1021/ja036380g
– ident: e_1_2_10_1_8
  doi: 10.1002/ange.201804873
– ident: e_1_2_10_12_2
  doi: 10.1002/anie.201710397
– ident: e_1_2_10_71_2
  doi: 10.1038/nchem.687
– ident: e_1_2_10_64_2
  doi: 10.1002/ange.201711060
– ident: e_1_2_10_1_39
  doi: 10.1002/ange.201800951
– ident: e_1_2_10_48_6
  doi: 10.1002/ange.201706534
– ident: e_1_2_10_31_7
  doi: 10.1002/cmdc.201700804
– ident: e_1_2_10_1_41
  doi: 10.1002/ange.201711467
– ident: e_1_2_10_3_2
  doi: 10.1021/j100659a019
– ident: e_1_2_10_8_1
– ident: e_1_2_10_34_4
  doi: 10.1002/ange.201204162
– ident: e_1_2_10_58_1
  doi: 10.1021/ol0172065
– ident: e_1_2_10_64_4
  doi: 10.1002/ange.201712732
– ident: e_1_2_10_69_1
  doi: 10.1016/j.electacta.2016.01.127
– ident: e_1_2_10_24_1
  doi: 10.1021/acs.chemrev.7b00649
– ident: e_1_2_10_12_1
  doi: 10.1039/C7SC02175E
– ident: e_1_2_10_53_1
  doi: 10.1126/science.1251511
– ident: e_1_2_10_28_1
  doi: 10.1021/ja302979t
– ident: e_1_2_10_37_1
  doi: 10.1021/acs.jpca.7b08081
– volume: 1
  start-page: 1
  year: 2017
  ident: e_1_2_10_64_6
  publication-title: Nat. Rev.
– ident: e_1_2_10_70_1
  doi: 10.1016/j.mencom.2017.11.014
– ident: e_1_2_10_21_1
  doi: 10.1002/poc.3725
– ident: e_1_2_10_27_1
  doi: 10.1021/acs.joc.5b00515
– ident: e_1_2_10_39_2
  doi: 10.1021/ar50061a004
– ident: e_1_2_10_1_23
  doi: 10.1021/acs.accounts.6b00272
– ident: e_1_2_10_9_1
  doi: 10.1016/j.chemphys.2005.09.029
SSID ssj0028806
Score 2.5245342
SecondaryResourceType review_article
Snippet The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron...
The many applications of photon upconversion-conversion of low-energy photons into high-energy photons-raises the question of the possibility of "electron...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5532
SubjectTerms Cascades
Chemical reactions
Chemical Sciences
Deoxyribonucleic acid
DNA
DNA repair
electron transfer
Electrons
Fireflies
fragmentations
Free energy
Organic chemistry
Peroxide
Photons
photoredox catalysis
radical anions
Redox potential
reductants
Upconversion
Title Upconversion of Reductants
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201807247
https://www.ncbi.nlm.nih.gov/pubmed/30063285
https://www.proquest.com/docview/2205243584
https://www.proquest.com/docview/2080839000
https://univ-rennes.hal.science/hal-02090017
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60F734fqQ-iCJ4Spts3sdSWqpoD8VCb8vuZoOgpMW2Hvz1zuSlVUTQQyDZzJJ9z5fdmW8ArnSiVRgrbbkubd2kTmqJxI8s7QYaAT6zw4T2O-6HwWDs3U78yScv_oIfot5wo5mRr9c0wYWctz9IQ8kDm0yzIjtkHrmTk8EWoaJRzR_FcHAW7kWua1EU-oq10Wbt1ewrWmn9kWwivwPOVfyaK6D-Noiq6IXdyVNruZAt9faF1fE_dduBrRKdmp1iOO3Cms72YKNbBYXbh-Z4ltup55ts5jQ1R0T9SpGI5wcw7vceugOrDK9gKZyIoZXoUMbCcYmR0PFSGeHFlO0pW8aJVIoJ_LshcptIkQ2qr9OYRTrwhY8p2IXuITSyaaaPwRRK4mKRSDsS0kuYjFPPJx5-lE5lImMDrKp5uSq5xykExjMvWJMZpxrzusYGXNfys4J140fJS-ytWojIsgedO05pCIRjUsKvjgGnVWfycorOOXkYMwSLkWfARf0am5NOTESmp0uUQTyNCBLVhgFHxSCoP-USumORbwDLu_KXgvLO8KZXPzX_kukENvE-P8tyglNoLF6W-gwh0UKe58P-HbkG_rM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHvDi-1FERWPiqdBuW9oeCUKKAgcCibdNd7uNiQaIgAd_vTN9GTTGRA89dDub7mu6X2dnvgG4UZGSri-VbllkuonNWA8jx9OV1VQI8JnhRmTvGAybwcS-f3Ryb0KKhUn5IQqDG2lG8r0mBSeDdOOTNZRCsMk3yzNcZrubsEVpvYk-_25UMEgxXJ5pgJFl6ZSHPudtNFhjvf7avrT5RF6R3yHnOoJNtqDuLoi88annyXN9tRR1-f6F1_FfvduDnQyg1lrpitqHDTU9gHI7zwt3CJXJPHFVT-xstVlcGxH7KyUjXhzBpNsZtwM9y7CgS9RFV4-UK_zQtIiU0LRj4eHFpGFLQ_iRkJKF-IND_DaeJDdUR8U-81TTCR0swVm0jqE0nU3VKdRCKfB7EQnDC4UdMeHHtkNU_Cgdi0j4Guj5-HKZ0Y9TFowXnhInM0495kWPNbgt5Ocp8caPktc4XYUQ8WUHrT6nMsTCPu3Db6YG1Xw2eaalC05BxgzxomdrcFU8xuGkQ5NwqmYrlEFIjSASdw4NTtJVULzKIoDHPEcDlszlLw3lrWGvU9xV_lLpEsrBeNDn_d7w4Qy2sTw52jKbVSgtX1fqHBHSUlwkOvABt8oC3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6sgnrx_YjPKoKntMnmfSy1pWotUiz0tmQfQVDaYlsP_npnkiZaRQQ95JDNLNnXZL_MznwDcKGVlkEktek4ZLpJ7MSMlRea2vE1AnxmBYrsHXcdv9Vzb_pe_1MUf8YPURjcSDPS7zUp-Egl1Q_SUIrAJtes0AqYG5RgyfWtiJI3XHULAimGqzOLL3Ick9LQ57SNFqvO15_blkqP5BT5HXHOA9h0B2quQ5y3PXM8eapMJ6Ii377QOv6ncxuwNoOn5Vq2njZhQQ-2YKWeZ4XbhoPeKHVUT61s5WFS7hL3K6UiHu9Ar9l4qLfMWX4FU6ImBqbSgYhi2yFKQttNRIgXk5YrLREpISWL8feG2G1CSU6onk4iFmrfiz0swTl0dmFxMBzofSjHUuDXQgkrjIWrmIgS1yMifpROhBKRAWY-vFzOyMcpB8Yzz2iTGace86LHBlwW8qOMduNHyXOcrUKI2LJbtTanMkTCEe3Cr7YBR_lk8pmOjjmFGDNEi6FrwFnxGIeTjkzigR5OUQYBNUJI3DcM2MsWQfEqh-AdCz0DWDqVvzSU1zrXjeLu4C-VTmH5_qrJ29ed20NYxeL0XMv2j2Bx8jLVxwiPJuIk1YB3ndYBjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upconversion+of+Reductants&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Syroeshkin%2C+Mikhail+A&rft.au=Kuriakose%2C+Febin&rft.au=Saverina%2C+Evgeniya+A&rft.au=Timofeeva%2C+Vladislava+A&rft.date=2019-04-16&rft.eissn=1521-3773&rft.volume=58&rft.issue=17&rft.spage=5532&rft_id=info:doi/10.1002%2Fanie.201807247&rft_id=info%3Apmid%2F30063285&rft.externalDocID=30063285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon