Upconversion of Reductants
The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reaction...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 17; pp. 5532 - 5550 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
16.04.2019
Wiley-VCH Verlag |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20–25 kcal mol−1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron‐upconverting systems—dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide‐based medicines, firefly luminescence, and reductive repair of DNA photodamage.
Electrons and photons are essential chemical “currencies” that are commonly traded in chemical transformations. The many applications of photon upconversion raises the question of the possibility of “electron upconversion”. This Review describes the two common types of electron‐upconverting systems: dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). |
---|---|
AbstractList | The many applications of photon upconversion-conversion of low-energy photons into high-energy photons-raises the question of the possibility of "electron upconversion". In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20-25 kcal mol
of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron-upconverting systems-dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three-electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide-based medicines, firefly luminescence, and reductive repair of DNA photodamage. The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20–25 kcal mol−1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron‐upconverting systems—dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide‐based medicines, firefly luminescence, and reductive repair of DNA photodamage. The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20–25 kcal mol−1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron‐upconverting systems—dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide‐based medicines, firefly luminescence, and reductive repair of DNA photodamage. Electrons and photons are essential chemical “currencies” that are commonly traded in chemical transformations. The many applications of photon upconversion raises the question of the possibility of “electron upconversion”. This Review describes the two common types of electron‐upconverting systems: dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). The many applications of photon upconversion-conversion of low-energy photons into high-energy photons-raises the question of the possibility of "electron upconversion". In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20-25 kcal mol-1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron-upconverting systems-dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three-electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide-based medicines, firefly luminescence, and reductive repair of DNA photodamage.The many applications of photon upconversion-conversion of low-energy photons into high-energy photons-raises the question of the possibility of "electron upconversion". In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20-25 kcal mol-1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron-upconverting systems-dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three-electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide-based medicines, firefly luminescence, and reductive repair of DNA photodamage. The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron upconversion”. In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20–25 kcal mol −1 of additional redox potential, thus creating powerful reductants under mild conditions. We will present the two common types of electron‐upconverting systems—dissociative (based on unimolecular fragmentations) and associative (based on the bimolecular formation of three‐electron bonds). The possible utility of reductant upconversion encompasses redox chain reactions in electrocatalytic processes, photoredox cascades, design of peroxide‐based medicines, firefly luminescence, and reductive repair of DNA photodamage. |
Author | Alabugin, Igor V. Syroeshkin, Mikhail A. Kuriakose, Febin Egorov, Mikhail P. Saverina, Evgeniya A. Timofeeva, Vladislava A. |
Author_xml | – sequence: 1 givenname: Mikhail A. surname: Syroeshkin fullname: Syroeshkin, Mikhail A. email: syroeshkin@ioc.ac.ru organization: N. D. Zelinsky Institute of Organic Chemistry – sequence: 2 givenname: Febin surname: Kuriakose fullname: Kuriakose, Febin organization: Florida State University – sequence: 3 givenname: Evgeniya A. surname: Saverina fullname: Saverina, Evgeniya A. organization: University of Rennes 1 – sequence: 4 givenname: Vladislava A. surname: Timofeeva fullname: Timofeeva, Vladislava A. organization: N. D. Zelinsky Institute of Organic Chemistry – sequence: 5 givenname: Mikhail P. surname: Egorov fullname: Egorov, Mikhail P. organization: N. D. Zelinsky Institute of Organic Chemistry – sequence: 6 givenname: Igor V. orcidid: 0000-0001-9289-3819 surname: Alabugin fullname: Alabugin, Igor V. email: alabugin@chem.fsu.edu organization: Florida State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30063285$$D View this record in MEDLINE/PubMed https://univ-rennes.hal.science/hal-02090017$$DView record in HAL |
BookMark | eNqFkU1LAzEQhoNU7IdePXiQghc9bJ18NdljKdUWioLYc8hms7hlu6mb3Ur_vSmtFQriISQMz5Nh5u2iVulKi9A1hgEGII-6zO2AAJYgCBNnqIM5wREVgrbCm1EaCclxG3W9XwZeShheoDYFGFIieQfdLNbGlRtb-dyVfZf132zamFqXtb9E55kuvL063D20eJq8j6fR_PV5Nh7NI8MxiCi1Iok1poyKGLMskeEQA8xAEqeJMUTHQxAMS2liTim3WUykHXLNQ0WkgvbQw_7fD12odZWvdLVVTudqOpqrXQ0IxABYbHBg7_fsunKfjfW1WuXe2KLQpXWNVwQkSBpoCOjdCbp0TVWGSRQhwAmjXLJA3R6oJlnZ9Nj_Z0MBGOwBUznvK5sdEQxqF4HaRaCOEQSBnQgmr3Ud1ltXOi_-1uK99pUXdvtPEzV6mU1-3W_Pw5ac |
CitedBy_id | crossref_primary_10_1021_jacs_3c06106 crossref_primary_10_1002_anie_202116888 crossref_primary_10_1021_acssuschemeng_2c02597 crossref_primary_10_1166_sam_2024_4682 crossref_primary_10_1016_j_tetlet_2019_03_054 crossref_primary_10_1002_anie_201908788 crossref_primary_10_1021_acs_chemrev_0c00278 crossref_primary_10_1055_a_2153_6594 crossref_primary_10_1021_jacs_4c05987 crossref_primary_10_1002_ange_201905814 crossref_primary_10_1002_asia_201900213 crossref_primary_10_1021_acs_joc_1c01296 crossref_primary_10_31857_S0514749223120017 crossref_primary_10_5796_electrochemistry_23_67079 crossref_primary_10_1002_ejoc_202300603 crossref_primary_10_1002_ange_202007549 crossref_primary_10_1002_adsc_202001255 crossref_primary_10_1021_jacs_1c01356 crossref_primary_10_1002_cjoc_202400854 crossref_primary_10_1021_acs_jpca_0c04792 crossref_primary_10_3390_molecules26185429 crossref_primary_10_1016_j_mencom_2024_01_033 crossref_primary_10_1007_s11426_019_9611_x crossref_primary_10_1021_jacs_4c10422 crossref_primary_10_1039_D1RA02691G crossref_primary_10_1039_D2SC01342H crossref_primary_10_1039_C9CC00035F crossref_primary_10_1134_S1070428023120011 crossref_primary_10_1002_ange_202116888 crossref_primary_10_5059_yukigoseikyokaishi_82_867 crossref_primary_10_1007_s11172_022_3570_7 crossref_primary_10_1039_C9SC04846D crossref_primary_10_3390_chemistry5040172 crossref_primary_10_1021_acs_orglett_1c03501 crossref_primary_10_1002_adsc_201901503 crossref_primary_10_1021_jacs_4c14255 crossref_primary_10_1021_acs_joc_9b00503 crossref_primary_10_1039_D0SC03220D crossref_primary_10_1021_jacs_0c00190 crossref_primary_10_1186_s12951_023_02163_z crossref_primary_10_1016_j_mencom_2020_09_003 crossref_primary_10_1021_acsomega_0c00509 crossref_primary_10_1021_acs_chemrev_1c00582 crossref_primary_10_1021_acs_jpcc_4c00538 crossref_primary_10_1039_C9SC06511C crossref_primary_10_1002_anie_202007549 crossref_primary_10_1007_s11172_024_4366_8 crossref_primary_10_1126_science_abq2622 crossref_primary_10_1038_s41557_023_01135_y crossref_primary_10_1007_s11172_023_4067_8 crossref_primary_10_1039_D1OB01568K crossref_primary_10_1039_D2QO00710J crossref_primary_10_3367_UFNe_2021_09_039054 crossref_primary_10_1021_acs_joc_9b02937 crossref_primary_10_1039_D0SC01939A crossref_primary_10_1039_D1CS00193K crossref_primary_10_1002_ange_201908788 crossref_primary_10_1002_anie_202103085 crossref_primary_10_1021_jacs_9b12343 crossref_primary_10_1021_acs_orglett_9b02487 crossref_primary_10_1002_adsc_202100674 crossref_primary_10_1002_ange_202103085 crossref_primary_10_1055_a_2044_2140 crossref_primary_10_1039_D4SC04011B crossref_primary_10_1002_anie_201905814 crossref_primary_10_1038_s41467_025_57991_4 crossref_primary_10_1021_acs_chemrev_4c00808 |
Cites_doi | 10.1021/jo100449m 10.1002/ange.201005129 10.1038/nature02242 10.1021/ja00375a016 10.1021/ja043295f 10.1021/ja016885b 10.1016/S0065-3160(08)60140-9 10.1002/adsc.201700104 10.1021/ja902675g 10.1002/chem.200902023 10.1021/jo3028246 10.1021/ja016905 10.1126/science.1258232 10.1021/ja00757a071 10.1038/nnano.2014.92 10.1002/ange.201711104 10.1021/jacs.7b07519 10.1021/ja963360o 10.1021/acs.accounts.8b00026 10.1002/anie.201812418 10.1002/anie.201802710 10.1021/ja00298a009 10.1021/ac00248a014 10.1002/anie.201703004 10.1002/anie.201601930 10.1016/S0040-4039(00)94597-0 10.1126/science.1239176 10.1039/b809356c 10.1016/j.drudis.2009.05.008 10.1002/anie.201306082 10.1002/ange.201610699 10.1002/anie.201800749 10.1002/anie.201802532 10.1002/anie.201408516 10.1002/ange.201505090 10.1002/anie.201804873 10.1021/ja029664u 10.1002/anie.201700413 10.1002/anie.201511847 10.1002/anie.201706534 10.1021/acs.chemrev.6b00057 10.3762/bjoc.10.97 10.1002/anie.201610699 10.1002/anie.201712732 10.1021/acs.accounts.6b00288 10.1038/355796a0 10.1021/ol8019764 10.1002/ange.201408516 10.1021/ja1080822 10.1002/chem.201700085 10.1002/ange.201802532 10.1002/anie.201505090 10.1021/acs.accounts.6b00280 10.1002/poc.3744 10.1002/ange.201801112 10.1021/acs.accounts.6b00304 10.1039/C7OB02209C 10.1002/anie.201708497 10.1039/C5SC02402A 10.1039/b301909h 10.1021/acs.accounts.6b00270 10.1021/ja030543j 10.1021/jacs.6b08540 10.1002/anie.201806296 10.1002/ange.201101597 10.1002/anie.200353264 10.1039/C3CS60353A 10.1063/pt.5.031109 10.1021/acs.accounts.6b00293 10.1021/ja056730u 10.1002/ange.201802710 10.1021/acs.accounts.6b00229 10.1002/anie.201706554 10.1002/ange.201710397 10.1002/anie.201800421 10.1021/ja803094u 10.1021/ja306621n 10.1021/acs.accounts.6b00259 10.1002/anie.201204162 10.1002/anie.201711467 10.1002/chem.200701740 10.1002/ange.201703004 10.1021/acs.accounts.6b00351 10.1002/ange.201306082 10.1039/c2md00277a 10.1038/nchem.862 10.1002/ange.201601930 10.3762/bjoc.10.6 10.1038/374013a0 10.1021/jo00062a007 10.1021/jo500071u 10.1039/c3cs60464k 10.1021/acs.chemrev.7b00656 10.1021/ol503574k 10.1002/ange.201700413 10.1002/9781118906378 10.1021/ja103050x 10.1038/nchem.2031 10.1039/C6SC02117D 10.1002/anie.201709523 10.1021/ja070023e 10.1002/anie.201005129 10.1039/C5SC02185E 10.1002/ejoc.201201656 10.1021/ja5101036 10.1021/acs.joc.7b00822 10.1351/pac198052122591 10.1007/s00044-016-1736-2 10.1002/ange.201008220 10.1038/nature06637 10.3390/molecules22111881 10.1002/anie.201801112 10.1021/acs.accounts.6b00227 10.1021/ac9902392 10.1002/anie.201711060 10.1002/anie.201800951 10.1002/anie.201711104 10.1021/cr4000682 10.1021/jo00359a035 10.1126/science.279.5358.1891 10.1002/ange.201708497 10.1002/ange.201709523 10.1002/ange.201511847 10.1002/ange.200353264 10.1002/ange.201806296 10.1021/ja507517g 10.1002/ange.201800421 10.1002/ange.201803102 10.1002/anie.201101597 10.1039/C3SC52315B 10.1016/j.ccr.2010.01.003 10.1002/anie.201008220 10.1002/ange.201800749 10.1021/ja00899a004 10.1021/ar7000843 10.1021/acs.joc.6b01449 10.1002/ange.201706554 10.1111/bph.13532 10.1021/ja036380g 10.1002/ange.201804873 10.1002/anie.201710397 10.1038/nchem.687 10.1002/ange.201711060 10.1002/ange.201800951 10.1002/ange.201706534 10.1002/cmdc.201700804 10.1002/ange.201711467 10.1021/j100659a019 10.1002/ange.201204162 10.1021/ol0172065 10.1002/ange.201712732 10.1016/j.electacta.2016.01.127 10.1021/acs.chemrev.7b00649 10.1039/C7SC02175E 10.1126/science.1251511 10.1021/ja302979t 10.1021/acs.jpca.7b08081 10.1016/j.mencom.2017.11.014 10.1002/poc.3725 10.1021/acs.joc.5b00515 10.1021/ar50061a004 10.1021/acs.accounts.6b00272 10.1016/j.chemphys.2005.09.029 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 1XC |
DOI | 10.1002/anie.201807247 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 5550 |
ExternalDocumentID | oai_HAL_hal_02090017v1 30063285 10_1002_anie_201807247 ANIE201807247 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Directorate for Mathematical and Physical Sciences funderid: 1800329 – fundername: Russian Science Foundation funderid: 17-73-20281 – fundername: Russian Science Foundation grantid: 17-73-20281 – fundername: Directorate for Mathematical and Physical Sciences grantid: 1800329 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 1XC |
ID | FETCH-LOGICAL-c5107-de7b9a13437914fb84fb2c04c0b9dbcc2a96074188c95335ef928e65a588c7d73 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Wed Jul 02 06:34:51 EDT 2025 Fri Jul 11 01:31:48 EDT 2025 Fri Jul 25 10:36:29 EDT 2025 Wed Feb 19 02:31:02 EST 2025 Thu Jul 10 08:05:55 EDT 2025 Thu Apr 24 23:00:04 EDT 2025 Wed Jan 22 16:53:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | fragmentations upconversion photoredox catalysis reductants electron transfer radical anions |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5107-de7b9a13437914fb84fb2c04c0b9dbcc2a96074188c95335ef928e65a588c7d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9289-3819 |
PMID | 30063285 |
PQID | 2205243584 |
PQPubID | 946352 |
PageCount | 19 |
ParticipantIDs | hal_primary_oai_HAL_hal_02090017v1 proquest_miscellaneous_2080839000 proquest_journals_2205243584 pubmed_primary_30063285 crossref_primary_10_1002_anie_201807247 crossref_citationtrail_10_1002_anie_201807247 wiley_primary_10_1002_anie_201807247_ANIE201807247 |
PublicationCentury | 2000 |
PublicationDate | April 16, 2019 |
PublicationDateYYYYMMDD | 2019-04-16 |
PublicationDate_xml | – month: 04 year: 2019 text: April 16, 2019 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | 2014 2014 2016 2016; 5 136 55 128 2010; 16 2018 2018 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018; 57 130 57 130 57 130 57 130 58 131 57 130 116 81 49 49 49 49 49 49 49 49 49 56 129 56 129 56 129 56 129 56 129 57 130 57 130 57 130 57 130 57 130 1982; 18 1997; 119 1982; 54 2015 2005; 80 127 2009 2012 2014 2017 2017 2017 2018 2017; 14 3 10 56 129 22 13 26 1982; 104 2008; 6 1995; 374 1963 1972; 85 76 2014; 61 2014; 136 2017; 30 2012; 134 1992; 355 2016 2013 2001; 7 78 123 2018 2018 2018 2018 2018 2017; 57 130 57 130 118 1 2017; 121 2014; 9 2010; 2 2003; 125 2017 2018 2018; 8 57 130 2016; 191 2006; 128 2014; 10 2010; 75 2014 2016 2016; 6 55 128 2015; 6 2007; 129 2004 2004; 43 116 1986; 51 2015 2015 2016; 54 127 49 1972 1973 2013; 94 6 2017; 27 2017; 23 2008; 14 2011 2011 2008 2010 2010 2017 2015 2017 2017 2017; 50 123 10 132 132 82 17 15 23 359 2002; 4 2017; 174 2003 2016 2013 2003; 138 113 125 1985; 107 2014 2010 2014; 343 2 43 2004 1990; 126 31 2017; 139 2014; 43 2006 2009; 324 131 2011 2011 2012 2012; 50 123 51 124 1993; 58 1980; 52 2018; 118 2002; 124 2010; 254 2014; 79 2016 2018; 51 2011 2011; 50 123 2008; 41 1999; 71 2008; 452 1998 2004; 279 427 2013 2013 2016 2016 2017 2017; 52 125 55 128 56 129 2008; 130 2014; 346 2014; 344 e_1_2_10_1_38 e_1_2_10_44_3 e_1_2_10_1_39 e_1_2_10_44_2 e_1_2_10_1_36 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_1_37 e_1_2_10_1_34 e_1_2_10_1_35 e_1_2_10_1_32 e_1_2_10_40_1 e_1_2_10_1_33 e_1_2_10_1_30 e_1_2_10_1_31 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_74_2 e_1_2_10_6_1 e_1_2_10_74_3 e_1_2_10_55_1 e_1_2_10_1_29 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_55_2 e_1_2_10_55_3 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_1_43 e_1_2_10_51_1 e_1_2_10_1_41 e_1_2_10_1_42 e_1_2_10_1_40 e_1_2_10_48_6 e_1_2_10_29_1 e_1_2_10_48_5 e_1_2_10_63_1 e_1_2_10_48_4 e_1_2_10_63_2 e_1_2_10_48_3 e_1_2_10_48_2 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_44_4 e_1_2_10_1_16 e_1_2_10_1_17 e_1_2_10_45_1 e_1_2_10_1_14 e_1_2_10_1_15 e_1_2_10_22_1 e_1_2_10_1_12 e_1_2_10_1_13 e_1_2_10_41_1 e_1_2_10_1_10 e_1_2_10_1_11 e_1_2_10_71_1 e_1_2_10_71_2 e_1_2_10_71_3 e_1_2_10_3_2 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_38_1 e_1_2_10_34_4 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_34_3 e_1_2_10_1_27 e_1_2_10_57_2 e_1_2_10_1_28 e_1_2_10_1_25 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_1_26 e_1_2_10_1_23 e_1_2_10_1_24 e_1_2_10_1_21 e_1_2_10_1_22 e_1_2_10_1_20 e_1_2_10_60_1 e_1_2_10_64_1 e_1_2_10_64_2 e_1_2_10_49_1 e_1_2_10_64_3 e_1_2_10_1_18 e_1_2_10_64_4 e_1_2_10_1_19 e_1_2_10_26_1 e_1_2_10_64_5 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_3 e_1_2_10_42_2 e_1_2_10_42_1 e_1_2_10_43_10 Mendkovich A. S. (e_1_2_10_11_1) 2014; 61 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_39_3 e_1_2_10_39_2 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_31_8 e_1_2_10_8_1 e_1_2_10_12_3 e_1_2_10_31_7 e_1_2_10_31_6 e_1_2_10_57_1 e_1_2_10_34_2 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_30_1 e_1_2_10_61_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_27_2 e_1_2_10_46_2 e_1_2_10_43_4 e_1_2_10_24_1 e_1_2_10_43_3 e_1_2_10_43_2 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_1_1 e_1_2_10_1_2 e_1_2_10_73_1 e_1_2_10_1_3 e_1_2_10_1_4 e_1_2_10_1_5 e_1_2_10_54_1 e_1_2_10_1_6 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_36_3 e_1_2_10_1_7 e_1_2_10_36_2 e_1_2_10_1_8 e_1_2_10_36_1 e_1_2_10_1_9 e_1_2_10_9_2 e_1_2_10_12_1 e_1_2_10_31_5 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_12_2 e_1_2_10_31_4 e_1_2_10_59_1 e_1_2_10_31_3 e_1_2_10_59_2 e_1_2_10_31_2 e_1_2_10_31_1 e_1_2_10_50_1 Plesniak M. P. (e_1_2_10_64_6) 2017; 1 e_1_2_10_62_1 e_1_2_10_43_9 e_1_2_10_43_8 e_1_2_10_28_1 e_1_2_10_43_7 e_1_2_10_66_1 e_1_2_10_43_6 e_1_2_10_43_5 e_1_2_10_47_1 |
References_xml | – volume: 128 start-page: 6595 year: 2006 end-page: 6604 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 611 year: 2002 end-page: 613 publication-title: Org. Lett. – volume: 50 123 51 124 start-page: 4119 4205 8003 8127 year: 2011 2011 2012 2012 end-page: 4122 4208 8007 8131 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. – volume: 130 start-page: 9214 year: 2008 end-page: 9215 publication-title: J. Am. Chem. Soc. – volume: 121 start-page: 7761 year: 2017 end-page: 7767 publication-title: J. Phys. Chem. A – volume: 18 start-page: 187 year: 1982 end-page: 238 publication-title: Adv. Phys. Org. Chem. – volume: 355 start-page: 796 year: 1992 end-page: 802 publication-title: Nature – volume: 126 31 start-page: 1634 667 year: 2004 1990 end-page: 1635 668 publication-title: J. Am. Chem. Soc. Tetrahedron Lett. – volume: 27 start-page: 580 year: 2017 end-page: 582 publication-title: Mendeleev Commun. – volume: 138 113 125 start-page: 15617 7089 4495 year: 2016 2013 2003 end-page: 15628 7129 4509 publication-title: J. Am. Chem. Soc. Chem. Rev. J. Am. Chem. Soc. – volume: 10 start-page: 981 year: 2014 end-page: 989 publication-title: Beilstein J. Org. Chem. – volume: 51 start-page: 1206 year: 2018 end-page: 1219 publication-title: Acc. Chem. Res. – volume: 94 6 start-page: 660 25 2505 year: 1972 1973 2013 end-page: 661 31 2527 publication-title: J. Am. Chem. Soc. Acc. Chem. Res. Eur. J. Org. Chem. – volume: 129 start-page: 4795 year: 2007 end-page: 4799 publication-title: J. Am. Chem. Soc. – volume: 279 427 start-page: 1891 607 year: 1998 2004 end-page: 1895 612 publication-title: Science Nature – volume: 51 start-page: 1563 year: 1986 end-page: 1570 publication-title: J. Org. Chem. – volume: 80 127 start-page: 3745 8667 year: 2015 2005 end-page: 3751 8679 publication-title: J. Org. Chem. J. Am. Chem. Soc. – volume: 139 start-page: 16210 year: 2017 end-page: 16221 publication-title: J. Am. Chem. Soc. – volume: 374 start-page: 13 year: 1995 publication-title: Nature – volume: 14 start-page: 1698 year: 2008 end-page: 1709 publication-title: Chem. Eur. J. – volume: 79 start-page: 3731 year: 2014 end-page: 3746 publication-title: J. Org. Chem. – start-page: 1246 year: 2003 end-page: 1247 publication-title: Chem. Commun. – volume: 125 start-page: 14905 year: 2003 end-page: 14916 publication-title: J. Am. Chem. Soc. – volume: 54 127 49 start-page: 2270 2298 2316 year: 2015 2015 2016 end-page: 2274 2302 2327 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Acc. Chem. Res. – volume: 134 start-page: 16370 year: 2012 end-page: 16378 publication-title: J. Am. Chem. Soc. – volume: 7 78 123 start-page: 6387 2626 11314 year: 2016 2013 2001 end-page: 6393 2638 11315 publication-title: Chem. Sci. J. Org. Chem. J. Am. Chem. Soc. – volume: 324 131 start-page: 40 11320 year: 2006 2009 end-page: 56 11322 publication-title: Chem. Phys. J. Am. Chem. Soc. – volume: 30 start-page: 3744 year: 2017 publication-title: J. Phys. Org. Chem. – volume: 8 57 130 start-page: 6888 814 822 year: 2017 2018 2018 end-page: 6892 817 825 publication-title: Chem. Sci. Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 start-page: 69 year: 2008 end-page: 77 publication-title: Acc. Chem. Res. – volume: 254 start-page: 2560 year: 2010 end-page: 2573 publication-title: Coord. Chem. Rev. – volume: 118 start-page: 6927 year: 2018 end-page: 6974 publication-title: Chem. Rev. – volume: 61 start-page: 246 year: 2014 end-page: 254 publication-title: Acta Chim. Slov. – volume: 346 start-page: 725 year: 2014 end-page: 728 publication-title: Science – volume: 6 start-page: 6783 year: 2015 end-page: 6791 publication-title: Chem. Sci. – volume: 85 76 start-page: 2360 2176 year: 1963 1972 end-page: 2364 2178 publication-title: J. Am. Chem. Soc. J. Phys. Chem. – volume: 6 55 128 start-page: 765 58 58 year: 2014 2016 2016 end-page: 773 102 106 publication-title: Nat. Chem. Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 57 130 57 130 57 130 58 131 57 130 116 81 49 49 49 49 49 49 49 49 49 56 129 56 129 56 129 56 129 56 129 57 130 57 130 57 130 57 130 57 130 start-page: 8316 8449 13784 13980 8027 8159 9501 9645 1586 1600 6667 6777 10075 6898 2307 2261 2273 2295 1924 1980 1997 1566 1546 13361 13546 8544 8664 14212 14400 15644 15850 4545 4616 3990 4054 5369 5467 4622 4712 2469 2494 1371 1385 year: 2018 2018 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 end-page: 8320 8453 13789 13985 8031 8163 9504 9648 1604 1619 6671 6781 10166 6926 2315 2272 2283 2306 1936 1989 2006 1577 1556 13365 13550 8549 8669 14216 14404 15648 15854 4548 4619 3994 4058 1375 1389 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Chem. Rev. J. Org. Chem. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Acc. Chem. Res. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 178 year: 2010 end-page: 188 publication-title: Chem. Eur. J. – volume: 107 start-page: 3451 year: 1985 end-page: 3459 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1044 year: 2010 end-page: 1049 publication-title: Nat. Chem. – volume: 9 start-page: 327 year: 2014 end-page: 328 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 3354 year: 2008 end-page: 3361 publication-title: Org. Biomol. Chem. – volume: 6 start-page: 5426 year: 2015 end-page: 5434 publication-title: Chem. Sci. – year: 2016 – volume: 52 125 55 128 56 129 start-page: 10792 10992 6749 6861 13275 13459 year: 2013 2013 2016 2016 2017 2017 end-page: 10795 10995 6752 6864 13278 13462 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 2591 year: 1980 end-page: 2608 publication-title: Pure Appl. Chem. – volume: 452 start-page: 239 year: 2008 end-page: 242 publication-title: Nature – volume: 43 start-page: 2680 year: 2014 end-page: 2700 publication-title: Chem. Soc. Rev. – volume: 58 start-page: 2670 year: 1993 end-page: 2677 publication-title: J. Org. Chem. – volume: 71 start-page: 4081 year: 1999 end-page: 4087 publication-title: Anal. Chem. – volume: 134 start-page: 11632 year: 2012 end-page: 11639 publication-title: J. Am. Chem. Soc. – volume: 5 136 55 128 start-page: 476 17818 4492 4568 year: 2014 2014 2016 2016 end-page: 482 17826 4496 4572 publication-title: Chem. Sci. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 123 start-page: 4671 4767 year: 2011 2011 end-page: 4674 4770 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 104 start-page: 3034 year: 1982 end-page: 3043 publication-title: J. Am. Chem. Soc. – volume: 174 start-page: 1647 year: 2017 end-page: 1669 publication-title: Br. J. Pharmacol. – volume: 344 start-page: 392 year: 2014 end-page: 396 publication-title: Science – volume: 136 start-page: 15263 year: 2014 end-page: 15269 publication-title: J. Am. Chem. Soc. – volume: 191 start-page: 962 year: 2016 end-page: 973 publication-title: Electrochim. Acta – volume: 30 start-page: 3725 year: 2017 publication-title: J. Phys. Org. Chem. – volume: 14 3 10 56 129 22 13 26 start-page: 793 281 34 4955 5037 1881 902 170 year: 2009 2012 2014 2017 2017 2017 2018 2017 end-page: 803 297 114 4959 5041 908 179 publication-title: Drug Discovery Today MedChemComm Beilstein J. Org. Chem. Angew. Chem. Int. Ed. Angew. Chem. Molecules ChemMedChem Med. Chem. Res. – volume: 75 start-page: 3678 year: 2010 end-page: 3684 publication-title: J. Org. Chem. – volume: 23 start-page: 9091 year: 2017 end-page: 9097 publication-title: Chem. Eur. J. – volume: 124 start-page: 11167 year: 2002 end-page: 11181 publication-title: J. Am. Chem. Soc. – volume: 43 116 start-page: 1848 1884 year: 2004 2004 end-page: 1851 1887 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 1971 year: 1997 end-page: 1977 publication-title: J. Am. Chem. Soc. – volume: 57 130 57 130 118 1 start-page: 5594 5694 6018 6124 4817 1 year: 2018 2018 2018 2018 2018 2017 end-page: 5619 5721 6041 6149 4833 16 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Int. Ed. Angew. Chem. Chem. Rev. Nat. Rev. – volume: 50 123 10 132 132 82 17 15 23 359 start-page: 5018 5122 4673 15537 16737 8325 386 8810 9091 1672 year: 2011 2011 2008 2010 2010 2017 2015 2017 2017 2017 end-page: 5022 5127 4676 15539 16740 8333 389 8819 9097 1677 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Org. Lett. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Org. Chem. Org. Lett. Org. Biomol. Chem. Chem. Eur. J. Adv. Synth. Catal. – volume: 54 start-page: 1720 year: 1982 end-page: 1724 publication-title: Anal. Chem. – volume: 343 2 43 start-page: 985 527 2492 year: 2014 2010 2014 end-page: 532 2521 publication-title: Science Nat. Chem. Chem. Soc. Rev. – ident: e_1_2_10_26_1 doi: 10.1021/jo100449m – ident: e_1_2_10_34_2 doi: 10.1002/ange.201005129 – ident: e_1_2_10_63_2 doi: 10.1038/nature02242 – ident: e_1_2_10_41_1 doi: 10.1021/ja00375a016 – ident: e_1_2_10_27_2 doi: 10.1021/ja043295f – ident: e_1_2_10_74_3 doi: 10.1021/ja016885b – ident: e_1_2_10_25_1 doi: 10.1016/S0065-3160(08)60140-9 – ident: e_1_2_10_43_10 doi: 10.1002/adsc.201700104 – ident: e_1_2_10_9_2 doi: 10.1021/ja902675g – ident: e_1_2_10_18_1 doi: 10.1002/chem.200902023 – ident: e_1_2_10_74_2 doi: 10.1021/jo3028246 – ident: e_1_2_10_4_1 doi: 10.1021/ja016905 – ident: e_1_2_10_5_1 doi: 10.1126/science.1258232 – ident: e_1_2_10_39_1 doi: 10.1021/ja00757a071 – ident: e_1_2_10_72_1 doi: 10.1038/nnano.2014.92 – ident: e_1_2_10_1_43 doi: 10.1002/ange.201711104 – volume: 61 start-page: 246 year: 2014 ident: e_1_2_10_11_1 publication-title: Acta Chim. Slov. – ident: e_1_2_10_35_1 doi: 10.1021/jacs.7b07519 – ident: e_1_2_10_60_1 doi: 10.1021/ja963360o – ident: e_1_2_10_19_1 doi: 10.1021/acs.accounts.8b00026 – ident: e_1_2_10_1_9 doi: 10.1002/anie.201812418 – ident: e_1_2_10_1_11 doi: 10.1002/anie.201802710 – ident: e_1_2_10_45_1 doi: 10.1021/ja00298a009 – ident: e_1_2_10_32_1 doi: 10.1021/ac00248a014 – ident: e_1_2_10_1_26 doi: 10.1002/anie.201703004 – ident: e_1_2_10_48_3 doi: 10.1002/anie.201601930 – ident: e_1_2_10_57_2 doi: 10.1016/S0040-4039(00)94597-0 – ident: e_1_2_10_71_1 doi: 10.1126/science.1239176 – ident: e_1_2_10_15_1 doi: 10.1039/b809356c – ident: e_1_2_10_31_1 doi: 10.1016/j.drudis.2009.05.008 – ident: e_1_2_10_48_1 doi: 10.1002/anie.201306082 – ident: e_1_2_10_31_5 doi: 10.1002/ange.201610699 – ident: e_1_2_10_1_36 doi: 10.1002/anie.201800749 – ident: e_1_2_10_1_5 doi: 10.1002/anie.201802532 – ident: e_1_2_10_55_1 doi: 10.1002/anie.201408516 – ident: e_1_2_10_42_3 doi: 10.1002/ange.201505090 – ident: e_1_2_10_1_7 doi: 10.1002/anie.201804873 – ident: e_1_2_10_7_1 – ident: e_1_2_10_36_3 doi: 10.1021/ja029664u – ident: e_1_2_10_1_32 doi: 10.1002/anie.201700413 – ident: e_1_2_10_44_3 doi: 10.1002/anie.201511847 – ident: e_1_2_10_48_5 doi: 10.1002/anie.201706534 – ident: e_1_2_10_1_13 doi: 10.1021/acs.chemrev.6b00057 – ident: e_1_2_10_51_1 doi: 10.3762/bjoc.10.97 – ident: e_1_2_10_31_4 doi: 10.1002/anie.201610699 – ident: e_1_2_10_64_3 doi: 10.1002/anie.201712732 – ident: e_1_2_10_1_19 doi: 10.1021/acs.accounts.6b00288 – ident: e_1_2_10_62_1 doi: 10.1038/355796a0 – ident: e_1_2_10_43_3 doi: 10.1021/ol8019764 – ident: e_1_2_10_55_2 doi: 10.1002/ange.201408516 – ident: e_1_2_10_43_4 doi: 10.1021/ja1080822 – ident: e_1_2_10_50_1 doi: 10.1002/chem.201700085 – ident: e_1_2_10_1_6 doi: 10.1002/ange.201802532 – ident: e_1_2_10_42_2 doi: 10.1002/anie.201505090 – ident: e_1_2_10_1_15 doi: 10.1021/acs.accounts.6b00280 – ident: e_1_2_10_10_1 doi: 10.1002/poc.3744 – ident: e_1_2_10_1_2 doi: 10.1002/ange.201801112 – ident: e_1_2_10_1_21 doi: 10.1021/acs.accounts.6b00304 – ident: e_1_2_10_43_8 doi: 10.1039/C7OB02209C – ident: e_1_2_10_1_24 doi: 10.1002/anie.201708497 – ident: e_1_2_10_20_1 doi: 10.1039/C5SC02402A – ident: e_1_2_10_17_1 doi: 10.1039/b301909h – ident: e_1_2_10_1_18 doi: 10.1021/acs.accounts.6b00270 – ident: e_1_2_10_43_9 doi: 10.1002/chem.201700085 – ident: e_1_2_10_57_1 doi: 10.1021/ja030543j – ident: e_1_2_10_36_1 doi: 10.1021/jacs.6b08540 – ident: e_1_2_10_1_3 doi: 10.1002/anie.201806296 – ident: e_1_2_10_43_2 doi: 10.1002/ange.201101597 – ident: e_1_2_10_59_1 doi: 10.1002/anie.200353264 – ident: e_1_2_10_73_1 doi: 10.1039/C3CS60353A – ident: e_1_2_10_29_1 doi: 10.1063/pt.5.031109 – ident: e_1_2_10_55_3 doi: 10.1021/acs.accounts.6b00293 – ident: e_1_2_10_68_1 doi: 10.1021/ja056730u – ident: e_1_2_10_1_12 doi: 10.1002/ange.201802710 – ident: e_1_2_10_1_22 doi: 10.1021/acs.accounts.6b00229 – ident: e_1_2_10_1_28 doi: 10.1002/anie.201706554 – ident: e_1_2_10_12_3 doi: 10.1002/ange.201710397 – ident: e_1_2_10_1_34 doi: 10.1002/anie.201800421 – ident: e_1_2_10_6_1 – ident: e_1_2_10_56_1 doi: 10.1021/ja803094u – ident: e_1_2_10_67_1 doi: 10.1021/ja306621n – ident: e_1_2_10_1_17 doi: 10.1021/acs.accounts.6b00259 – ident: e_1_2_10_34_3 doi: 10.1002/anie.201204162 – ident: e_1_2_10_1_40 doi: 10.1002/anie.201711467 – ident: e_1_2_10_16_1 doi: 10.1002/chem.200701740 – ident: e_1_2_10_1_27 doi: 10.1002/ange.201703004 – ident: e_1_2_10_1_16 doi: 10.1021/acs.accounts.6b00351 – ident: e_1_2_10_48_2 doi: 10.1002/ange.201306082 – ident: e_1_2_10_31_2 doi: 10.1039/c2md00277a – ident: e_1_2_10_47_1 doi: 10.1038/nchem.862 – ident: e_1_2_10_48_4 doi: 10.1002/ange.201601930 – ident: e_1_2_10_31_3 doi: 10.3762/bjoc.10.6 – ident: e_1_2_10_61_1 doi: 10.1038/374013a0 – ident: e_1_2_10_13_1 doi: 10.1021/jo00062a007 – ident: e_1_2_10_65_1 doi: 10.1021/jo500071u – ident: e_1_2_10_71_3 doi: 10.1039/c3cs60464k – ident: e_1_2_10_64_5 doi: 10.1021/acs.chemrev.7b00656 – ident: e_1_2_10_43_7 doi: 10.1021/ol503574k – ident: e_1_2_10_1_33 doi: 10.1002/ange.201700413 – ident: e_1_2_10_22_1 doi: 10.1002/9781118906378 – ident: e_1_2_10_43_5 doi: 10.1021/ja103050x – ident: e_1_2_10_42_1 doi: 10.1038/nchem.2031 – ident: e_1_2_10_74_1 doi: 10.1039/C6SC02117D – ident: e_1_2_10_1_30 doi: 10.1002/anie.201709523 – ident: e_1_2_10_38_1 doi: 10.1021/ja070023e – ident: e_1_2_10_34_1 doi: 10.1002/anie.201005129 – ident: e_1_2_10_54_1 doi: 10.1039/C5SC02185E – ident: e_1_2_10_39_3 doi: 10.1002/ejoc.201201656 – ident: e_1_2_10_44_2 doi: 10.1021/ja5101036 – ident: e_1_2_10_43_6 doi: 10.1021/acs.joc.7b00822 – ident: e_1_2_10_23_1 doi: 10.1351/pac198052122591 – ident: e_1_2_10_31_8 doi: 10.1007/s00044-016-1736-2 – ident: e_1_2_10_46_2 doi: 10.1002/ange.201008220 – ident: e_1_2_10_49_1 doi: 10.1038/nature06637 – ident: e_1_2_10_31_6 doi: 10.3390/molecules22111881 – ident: e_1_2_10_1_1 doi: 10.1002/anie.201801112 – ident: e_1_2_10_1_20 doi: 10.1021/acs.accounts.6b00227 – ident: e_1_2_10_52_1 doi: 10.1021/ac9902392 – ident: e_1_2_10_64_1 doi: 10.1002/anie.201711060 – ident: e_1_2_10_1_38 doi: 10.1002/anie.201800951 – ident: e_1_2_10_1_42 doi: 10.1002/anie.201711104 – ident: e_1_2_10_36_2 doi: 10.1021/cr4000682 – ident: e_1_2_10_14_1 doi: 10.1021/jo00359a035 – ident: e_1_2_10_63_1 doi: 10.1126/science.279.5358.1891 – ident: e_1_2_10_1_25 doi: 10.1002/ange.201708497 – ident: e_1_2_10_1_31 doi: 10.1002/ange.201709523 – ident: e_1_2_10_44_4 doi: 10.1002/ange.201511847 – ident: e_1_2_10_59_2 doi: 10.1002/ange.200353264 – ident: e_1_2_10_1_4 doi: 10.1002/ange.201806296 – ident: e_1_2_10_40_1 doi: 10.1021/ja507517g – ident: e_1_2_10_1_35 doi: 10.1002/ange.201800421 – ident: e_1_2_10_1_10 doi: 10.1002/ange.201803102 – ident: e_1_2_10_43_1 doi: 10.1002/anie.201101597 – ident: e_1_2_10_44_1 doi: 10.1039/C3SC52315B – ident: e_1_2_10_2_1 doi: 10.1016/j.ccr.2010.01.003 – ident: e_1_2_10_46_1 doi: 10.1002/anie.201008220 – ident: e_1_2_10_1_37 doi: 10.1002/ange.201800749 – ident: e_1_2_10_3_1 doi: 10.1021/ja00899a004 – ident: e_1_2_10_30_1 doi: 10.1021/ar7000843 – ident: e_1_2_10_1_14 doi: 10.1021/acs.joc.6b01449 – ident: e_1_2_10_1_29 doi: 10.1002/ange.201706554 – ident: e_1_2_10_33_1 doi: 10.1111/bph.13532 – ident: e_1_2_10_66_1 doi: 10.1021/ja036380g – ident: e_1_2_10_1_8 doi: 10.1002/ange.201804873 – ident: e_1_2_10_12_2 doi: 10.1002/anie.201710397 – ident: e_1_2_10_71_2 doi: 10.1038/nchem.687 – ident: e_1_2_10_64_2 doi: 10.1002/ange.201711060 – ident: e_1_2_10_1_39 doi: 10.1002/ange.201800951 – ident: e_1_2_10_48_6 doi: 10.1002/ange.201706534 – ident: e_1_2_10_31_7 doi: 10.1002/cmdc.201700804 – ident: e_1_2_10_1_41 doi: 10.1002/ange.201711467 – ident: e_1_2_10_3_2 doi: 10.1021/j100659a019 – ident: e_1_2_10_8_1 – ident: e_1_2_10_34_4 doi: 10.1002/ange.201204162 – ident: e_1_2_10_58_1 doi: 10.1021/ol0172065 – ident: e_1_2_10_64_4 doi: 10.1002/ange.201712732 – ident: e_1_2_10_69_1 doi: 10.1016/j.electacta.2016.01.127 – ident: e_1_2_10_24_1 doi: 10.1021/acs.chemrev.7b00649 – ident: e_1_2_10_12_1 doi: 10.1039/C7SC02175E – ident: e_1_2_10_53_1 doi: 10.1126/science.1251511 – ident: e_1_2_10_28_1 doi: 10.1021/ja302979t – ident: e_1_2_10_37_1 doi: 10.1021/acs.jpca.7b08081 – volume: 1 start-page: 1 year: 2017 ident: e_1_2_10_64_6 publication-title: Nat. Rev. – ident: e_1_2_10_70_1 doi: 10.1016/j.mencom.2017.11.014 – ident: e_1_2_10_21_1 doi: 10.1002/poc.3725 – ident: e_1_2_10_27_1 doi: 10.1021/acs.joc.5b00515 – ident: e_1_2_10_39_2 doi: 10.1021/ar50061a004 – ident: e_1_2_10_1_23 doi: 10.1021/acs.accounts.6b00272 – ident: e_1_2_10_9_1 doi: 10.1016/j.chemphys.2005.09.029 |
SSID | ssj0028806 |
Score | 2.5245342 |
SecondaryResourceType | review_article |
Snippet | The many applications of photon upconversion—conversion of low‐energy photons into high‐energy photons—raises the question of the possibility of “electron... The many applications of photon upconversion-conversion of low-energy photons into high-energy photons-raises the question of the possibility of "electron... |
SourceID | hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5532 |
SubjectTerms | Cascades Chemical reactions Chemical Sciences Deoxyribonucleic acid DNA DNA repair electron transfer Electrons Fireflies fragmentations Free energy Organic chemistry Peroxide Photons photoredox catalysis radical anions Redox potential reductants Upconversion |
Title | Upconversion of Reductants |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201807247 https://www.ncbi.nlm.nih.gov/pubmed/30063285 https://www.proquest.com/docview/2205243584 https://www.proquest.com/docview/2080839000 https://univ-rennes.hal.science/hal-02090017 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60F734fqQ-iCJ4Spts3sdSWqpoD8VCb8vuZoOgpMW2Hvz1zuSlVUTQQyDZzJJ9z5fdmW8ArnSiVRgrbbkubd2kTmqJxI8s7QYaAT6zw4T2O-6HwWDs3U78yScv_oIfot5wo5mRr9c0wYWctz9IQ8kDm0yzIjtkHrmTk8EWoaJRzR_FcHAW7kWua1EU-oq10Wbt1ewrWmn9kWwivwPOVfyaK6D-Noiq6IXdyVNruZAt9faF1fE_dduBrRKdmp1iOO3Cms72YKNbBYXbh-Z4ltup55ts5jQ1R0T9SpGI5wcw7vceugOrDK9gKZyIoZXoUMbCcYmR0PFSGeHFlO0pW8aJVIoJ_LshcptIkQ2qr9OYRTrwhY8p2IXuITSyaaaPwRRK4mKRSDsS0kuYjFPPJx5-lE5lImMDrKp5uSq5xykExjMvWJMZpxrzusYGXNfys4J140fJS-ytWojIsgedO05pCIRjUsKvjgGnVWfycorOOXkYMwSLkWfARf0am5NOTESmp0uUQTyNCBLVhgFHxSCoP-USumORbwDLu_KXgvLO8KZXPzX_kukENvE-P8tyglNoLF6W-gwh0UKe58P-HbkG_rM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHvDi-1FERWPiqdBuW9oeCUKKAgcCibdNd7uNiQaIgAd_vTN9GTTGRA89dDub7mu6X2dnvgG4UZGSri-VbllkuonNWA8jx9OV1VQI8JnhRmTvGAybwcS-f3Ryb0KKhUn5IQqDG2lG8r0mBSeDdOOTNZRCsMk3yzNcZrubsEVpvYk-_25UMEgxXJ5pgJFl6ZSHPudtNFhjvf7avrT5RF6R3yHnOoJNtqDuLoi88annyXN9tRR1-f6F1_FfvduDnQyg1lrpitqHDTU9gHI7zwt3CJXJPHFVT-xstVlcGxH7KyUjXhzBpNsZtwM9y7CgS9RFV4-UK_zQtIiU0LRj4eHFpGFLQ_iRkJKF-IND_DaeJDdUR8U-81TTCR0swVm0jqE0nU3VKdRCKfB7EQnDC4UdMeHHtkNU_Cgdi0j4Guj5-HKZ0Y9TFowXnhInM0495kWPNbgt5Ocp8caPktc4XYUQ8WUHrT6nMsTCPu3Db6YG1Xw2eaalC05BxgzxomdrcFU8xuGkQ5NwqmYrlEFIjSASdw4NTtJVULzKIoDHPEcDlszlLw3lrWGvU9xV_lLpEsrBeNDn_d7w4Qy2sTw52jKbVSgtX1fqHBHSUlwkOvABt8oC3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6sgnrx_YjPKoKntMnmfSy1pWotUiz0tmQfQVDaYlsP_npnkiZaRQQ95JDNLNnXZL_MznwDcKGVlkEktek4ZLpJ7MSMlRea2vE1AnxmBYrsHXcdv9Vzb_pe_1MUf8YPURjcSDPS7zUp-Egl1Q_SUIrAJtes0AqYG5RgyfWtiJI3XHULAimGqzOLL3Ick9LQ57SNFqvO15_blkqP5BT5HXHOA9h0B2quQ5y3PXM8eapMJ6Ii377QOv6ncxuwNoOn5Vq2njZhQQ-2YKWeZ4XbhoPeKHVUT61s5WFS7hL3K6UiHu9Ar9l4qLfMWX4FU6ImBqbSgYhi2yFKQttNRIgXk5YrLREpISWL8feG2G1CSU6onk4iFmrfiz0swTl0dmFxMBzofSjHUuDXQgkrjIWrmIgS1yMifpROhBKRAWY-vFzOyMcpB8Yzz2iTGace86LHBlwW8qOMduNHyXOcrUKI2LJbtTanMkTCEe3Cr7YBR_lk8pmOjjmFGDNEi6FrwFnxGIeTjkzigR5OUQYBNUJI3DcM2MsWQfEqh-AdCz0DWDqVvzSU1zrXjeLu4C-VTmH5_qrJ29ed20NYxeL0XMv2j2Bx8jLVxwiPJuIk1YB3ndYBjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upconversion+of+Reductants&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Syroeshkin%2C+Mikhail+A&rft.au=Kuriakose%2C+Febin&rft.au=Saverina%2C+Evgeniya+A&rft.au=Timofeeva%2C+Vladislava+A&rft.date=2019-04-16&rft.eissn=1521-3773&rft.volume=58&rft.issue=17&rft.spage=5532&rft_id=info:doi/10.1002%2Fanie.201807247&rft_id=info%3Apmid%2F30063285&rft.externalDocID=30063285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |