Distributed ice thickness and volume of all glaciers around the globe
A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Missio...
Saved in:
Published in | Journal of Geophysical Research: Earth Surface Vol. 117; no. F4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.12.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Mission/Advanced Spaceborne Thermal Emission and Reflection Radiometer), we use a simple dynamic model to obtain spatially distributed thickness of individual glaciers by inverting their surface topography. Results are validated against a comprehensive set of thickness observations for 300 glaciers from most glacierized regions of the world. For all mountain glaciers and ice caps outside of the Antarctic and Greenland ice sheets we find a total ice volume of 170 × 103 ± 21 × 103 km3, or 0.43 ± 0.06 m of potential sea level rise.
Key Points
First ice volume assessment of all individual glaciers around the globe
Novel methodology to estimate glacier ice thickness distribution
Potential sea level rise of 170,000 glaciers and ice caps worldwide is 0.43 m |
---|---|
AbstractList | A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Mission/Advanced Spaceborne Thermal Emission and Reflection Radiometer), we use a simple dynamic model to obtain spatially distributed thickness of individual glaciers by inverting their surface topography. Results are validated against a comprehensive set of thickness observations for 300 glaciers from most glacierized regions of the world. For all mountain glaciers and ice caps outside of the Antarctic and Greenland ice sheets we find a total ice volume of 170 × 10
3
± 21 × 10
3
km
3
, or 0.43 ± 0.06 m of potential sea level rise.
First ice volume assessment of all individual glaciers around the globe
Novel methodology to estimate glacier ice thickness distribution
Potential sea level rise of 170,000 glaciers and ice caps worldwide is 0.43 m A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Mission/Advanced Spaceborne Thermal Emission and Reflection Radiometer), we use a simple dynamic model to obtain spatially distributed thickness of individual glaciers by inverting their surface topography. Results are validated against a comprehensive set of thickness observations for 300 glaciers from most glacierized regions of the world. For all mountain glaciers and ice caps outside of the Antarctic and Greenland ice sheets we find a total ice volume of 170 × 103 ± 21 × 103 km3, or 0.43 ± 0.06 m of potential sea level rise. Key Points First ice volume assessment of all individual glaciers around the globe Novel methodology to estimate glacier ice thickness distribution Potential sea level rise of 170,000 glaciers and ice caps worldwide is 0.43 m A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Mission/Advanced Spaceborne Thermal Emission and Reflection Radiometer), we use a simple dynamic model to obtain spatially distributed thickness of individual glaciers by inverting their surface topography. Results are validated against a comprehensive set of thickness observations for 300 glaciers from most glacierized regions of the world. For all mountain glaciers and ice caps outside of the Antarctic and Greenland ice sheets we find a total ice volume of 170 × 103 ± 21 × 103 km3, or 0.43 ± 0.06 m of potential sea level rise. |
Author | Farinotti, Daniel Huss, Matthias |
Author_xml | – sequence: 1 givenname: Matthias surname: Huss fullname: Huss, Matthias email: matthias.huss@unifr.ch, matthias.huss@unifr.ch organization: Department of Geosciences, University of Fribourg, Fribourg, Switzerland – sequence: 2 givenname: Daniel surname: Farinotti fullname: Farinotti, Daniel organization: Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, Zurich, Switzerland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26842266$$DView record in Pascal Francis |
BookMark | eNp9kUtP3DAQgK0KpC5bbvyASFVvBOzxKzkiyi4FRFEF4mg5zqQYQgx2wuPf42qhQpWK52DJ830z8swGWRvCgIRsMbrDKNS7QBkcLSgFCfwTmQGTqgSgsEZmlImqpAD6M9lM6ZrmI6QSlM3IwXefxuibacS28A6L8cq7mwFTKuzQFg-hn26xCF1h-7743VvnMeZUDFPOjleY30KDX8h6Z_uEm6_3nFwsDs73D8uTn8sf-3snpZOM6tJaRyXXAgRK1wguHIeuY21V0bbFqm7AsdoyJ5sW0SpsdNW5TnCpuVKNAz4nX1d172K4nzCN5jpMccgtDct_VZLTHHPy7ZWyydm-i3ZwPpm76G9tfDagKgGgVOZgxbkYUorYGedHO_owjNH63jBq_kzWvJ9slrb_kd7q_gdnK_zR9_j8IWuOlr8WtdbZKVdOXg0-_XVsvDFKcy3N5enSSKjPxPGZNJq_AICVloc |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_149593 crossref_primary_10_1038_s41467_022_35672_w crossref_primary_10_1016_j_gloplacha_2016_09_010 crossref_primary_10_3389_feart_2015_00054 crossref_primary_10_5194_hess_22_463_2018 crossref_primary_10_1016_j_wasec_2021_100101 crossref_primary_10_3390_rs14061352 crossref_primary_10_5194_tc_17_4315_2023 crossref_primary_10_1002_2016EF000479 crossref_primary_10_1016_j_gloplacha_2014_09_003 crossref_primary_10_1029_2017JF004333 crossref_primary_10_1038_s41561_018_0271_9 crossref_primary_10_5194_tc_14_3269_2020 crossref_primary_10_5802_crgeos_139 crossref_primary_10_5194_tc_14_3399_2020 crossref_primary_10_1088_1748_9326_11_9_094006 crossref_primary_10_1016_j_gloplacha_2020_103209 crossref_primary_10_3189_2014AoG66A001 crossref_primary_10_1029_2020JF005586 crossref_primary_10_1002_esp_4333 crossref_primary_10_1038_s41467_021_23073_4 crossref_primary_10_1007_s12210_013_0255_z crossref_primary_10_1016_j_advwatres_2016_05_017 crossref_primary_10_1016_j_asr_2021_08_020 crossref_primary_10_1017_jog_2018_15 crossref_primary_10_1029_2017WR022289 crossref_primary_10_1088_1748_9326_8_2_025005 crossref_primary_10_1016_j_quascirev_2023_108403 crossref_primary_10_1038_s41598_018_21244_w crossref_primary_10_1007_s12524_023_01744_7 crossref_primary_10_3189_2014JoG13J078 crossref_primary_10_1016_j_scitotenv_2022_159214 crossref_primary_10_3390_ijerph18126374 crossref_primary_10_1016_j_jmarsys_2013_11_003 crossref_primary_10_1017_jog_2022_60 crossref_primary_10_1017_jog_2022_61 crossref_primary_10_1657_1938_4246_46_4_933 crossref_primary_10_5194_essd_9_115_2017 crossref_primary_10_1016_j_geomorph_2020_107068 crossref_primary_10_1016_j_jhydrol_2013_12_017 crossref_primary_10_5194_essd_16_5799_2024 crossref_primary_10_1657_AAAR0016_008 crossref_primary_10_5194_tc_6_1483_2012 crossref_primary_10_1061__ASCE_HE_1943_5584_0000860 crossref_primary_10_1017_aog_2023_75 crossref_primary_10_1017_cft_2022_8 crossref_primary_10_1016_j_gloplacha_2017_11_005 crossref_primary_10_3189_2014JoG13J195 crossref_primary_10_5194_tc_7_1565_2013 crossref_primary_10_1175_JCLI_D_12_00513_1 crossref_primary_10_1016_j_accre_2023_08_004 crossref_primary_10_1007_s10661_024_13283_w crossref_primary_10_1002_2014JE004685 crossref_primary_10_1029_2019GL082485 crossref_primary_10_5194_tc_12_759_2018 crossref_primary_10_3389_feart_2020_00099 crossref_primary_10_1029_2019JF005004 crossref_primary_10_1109_LGRS_2018_2845342 crossref_primary_10_1002_jqs_3569 crossref_primary_10_1007_s10712_016_9394_y crossref_primary_10_3390_w9050336 crossref_primary_10_5194_hess_22_509_2018 crossref_primary_10_3189_2016AoG71A073 crossref_primary_10_5194_tc_10_65_2016 crossref_primary_10_1016_j_earscirev_2022_103926 crossref_primary_10_1002_2016EF000363 crossref_primary_10_1038_s41598_019_43527_6 crossref_primary_10_3189_2014JoG13J176 crossref_primary_10_1002_2016JF003926 crossref_primary_10_5194_tc_7_141_2013 crossref_primary_10_1029_2018JF004607 crossref_primary_10_3189_2016AoG71A627 crossref_primary_10_1007_s11069_014_1306_1 crossref_primary_10_1016_j_geomorph_2021_107783 crossref_primary_10_5194_gi_6_397_2017 crossref_primary_10_1007_s10596_014_9439_6 crossref_primary_10_1016_j_gloplacha_2014_08_006 crossref_primary_10_1017_jog_2019_97 crossref_primary_10_1017_jog_2019_93 crossref_primary_10_3390_rs16111914 crossref_primary_10_5194_tc_11_191_2017 crossref_primary_10_1017_aog_2023_57 crossref_primary_10_1029_2018GL079147 crossref_primary_10_3389_feart_2019_00068 crossref_primary_10_5194_tc_14_2005_2020 crossref_primary_10_1029_2022JF006670 crossref_primary_10_1007_s10712_013_9262_y crossref_primary_10_1029_2018GL080942 crossref_primary_10_1029_2019GL085578 crossref_primary_10_1134_S0001433824701172 crossref_primary_10_3390_rs16101709 crossref_primary_10_5194_tc_9_753_2015 crossref_primary_10_1002_2016WR020033 crossref_primary_10_1017_jog_2020_75 crossref_primary_10_3390_w14071006 crossref_primary_10_1017_jog_2021_63 crossref_primary_10_5194_tc_10_1859_2016 crossref_primary_10_1038_s41561_021_00885_z crossref_primary_10_5194_tc_7_1707_2013 crossref_primary_10_3189_2015JoG14J159 crossref_primary_10_3189_2014AoG67A025 crossref_primary_10_5194_tc_9_1105_2015 crossref_primary_10_1017_aog_2023_68 crossref_primary_10_1007_s41324_023_00515_3 crossref_primary_10_3189_2015JoG14J161 crossref_primary_10_5194_tc_9_525_2015 crossref_primary_10_1029_2019EF001470 crossref_primary_10_5194_tc_13_1125_2019 crossref_primary_10_5194_esurf_10_723_2022 crossref_primary_10_1017_jog_2021_55 crossref_primary_10_5194_hess_22_2211_2018 crossref_primary_10_1017_jog_2016_4 crossref_primary_10_1139_cjes_2021_0126 crossref_primary_10_1109_ACCESS_2025_3542834 crossref_primary_10_1016_j_ejrh_2017_08_005 crossref_primary_10_1080_24749508_2024_2392919 crossref_primary_10_3189_2015JoG14J125 crossref_primary_10_1134_S0097807820060147 crossref_primary_10_1007_s12524_024_01849_7 crossref_primary_10_5194_hess_17_3661_2013 crossref_primary_10_1038_ncomms3146 crossref_primary_10_2166_wcc_2024_074 crossref_primary_10_5194_tc_17_4021_2023 crossref_primary_10_1016_j_coldregions_2017_12_010 crossref_primary_10_5194_tc_13_2657_2019 crossref_primary_10_1007_s10661_025_13682_7 crossref_primary_10_1007_s12665_024_11529_x crossref_primary_10_1017_jog_2020_55 crossref_primary_10_1038_s41597_022_01446_8 crossref_primary_10_1177_0959683616652712 crossref_primary_10_1017_jog_2020_71 crossref_primary_10_1038_s41561_019_0300_3 crossref_primary_10_5194_gmd_17_5123_2024 crossref_primary_10_5194_tc_12_3265_2018 crossref_primary_10_2208_jscejhe_75_2_I_919 crossref_primary_10_3390_rs12203443 crossref_primary_10_1029_2018GL079734 crossref_primary_10_1017_jog_2016_13 crossref_primary_10_1016_j_palaeo_2022_111132 crossref_primary_10_1016_j_scitotenv_2020_142774 crossref_primary_10_1038_s41467_021_26897_2 crossref_primary_10_5194_tc_11_2003_2017 crossref_primary_10_5194_tc_7_987_2013 crossref_primary_10_3390_rs16112009 crossref_primary_10_5194_essd_13_231_2021 crossref_primary_10_5194_tc_8_1741_2014 crossref_primary_10_1029_2021RG000754 crossref_primary_10_5194_gmd_12_909_2019 crossref_primary_10_3189_2013JoG12J138 crossref_primary_10_5194_gmd_15_1477_2022 crossref_primary_10_1016_j_icarus_2016_03_006 crossref_primary_10_1017_jog_2020_64 crossref_primary_10_5194_tc_9_505_2015 crossref_primary_10_1002_esp_4620 crossref_primary_10_5194_tc_11_949_2017 crossref_primary_10_1016_j_quascirev_2018_07_004 crossref_primary_10_3389_feart_2020_641710 crossref_primary_10_1016_j_isprsjprs_2025_01_011 crossref_primary_10_1017_jog_2018_80 crossref_primary_10_1017_jog_2019_58 crossref_primary_10_1002_2016EF000514 crossref_primary_10_3389_feart_2017_00070 crossref_primary_10_1002_hyp_14145 crossref_primary_10_1038_s41558_017_0049_x crossref_primary_10_1002_rog_20015 crossref_primary_10_1111_nzg_12091 crossref_primary_10_1029_2022GL098915 crossref_primary_10_3189_2014JoG14J062 crossref_primary_10_1029_2018EF001139 crossref_primary_10_1002_esp_5266 crossref_primary_10_1016_j_advwatres_2015_01_013 crossref_primary_10_1007_s11629_019_5718_y crossref_primary_10_5194_tc_13_2189_2019 crossref_primary_10_1002_2014WR016728 crossref_primary_10_1038_s41558_018_0093_1 crossref_primary_10_5194_hess_23_1339_2019 crossref_primary_10_1017_jog_2018_99 crossref_primary_10_1088_2515_7620_ab1d6d crossref_primary_10_1017_aog_2017_28 crossref_primary_10_1017_jog_2021_19 crossref_primary_10_1017_jog_2022_117 crossref_primary_10_1525_elementa_2020_00098 crossref_primary_10_5194_esurf_7_301_2019 crossref_primary_10_1016_j_palaeo_2014_06_005 crossref_primary_10_1038_s41586_019_1740_z crossref_primary_10_5194_tc_7_817_2013 crossref_primary_10_3389_feart_2023_1192719 crossref_primary_10_1017_jog_2021_11 crossref_primary_10_1002_2014JF003276 crossref_primary_10_1007_s40333_020_0083_9 crossref_primary_10_5194_tc_8_59_2014 crossref_primary_10_1002_joc_7026 crossref_primary_10_3389_feart_2017_00056 crossref_primary_10_5194_esd_12_783_2021 crossref_primary_10_1088_1748_9326_9_11_115007 crossref_primary_10_5194_tc_8_1885_2014 crossref_primary_10_5194_tc_16_197_2022 crossref_primary_10_1038_s43247_023_01193_7 crossref_primary_10_1029_2019JB018248 crossref_primary_10_5194_tc_8_2313_2014 crossref_primary_10_1109_JSTARS_2017_2787199 crossref_primary_10_1029_2022EF003408 crossref_primary_10_1029_2022JF006898 crossref_primary_10_1016_j_gloplacha_2021_103593 crossref_primary_10_5194_tc_7_1603_2013 crossref_primary_10_1002_2016JF003883 crossref_primary_10_1017_jog_2024_57 crossref_primary_10_3389_feart_2023_1256696 crossref_primary_10_1016_j_geomorph_2016_02_009 crossref_primary_10_1017_jog_2019_49 crossref_primary_10_1017_jog_2018_75 crossref_primary_10_1038_s41586_019_1071_0 crossref_primary_10_1007_s12524_024_02106_7 crossref_primary_10_5194_tc_8_1261_2014 crossref_primary_10_5194_tc_10_639_2016 crossref_primary_10_1016_j_epsl_2013_05_018 crossref_primary_10_1016_j_wasec_2021_100098 crossref_primary_10_1016_j_geomorph_2019_106913 crossref_primary_10_1007_s10712_016_9374_2 crossref_primary_10_1134_S0001433824701160 crossref_primary_10_1007_s11629_014_3172_4 crossref_primary_10_1016_j_rsase_2021_100656 crossref_primary_10_1016_j_quascirev_2020_106645 crossref_primary_10_1017_jog_2018_45 crossref_primary_10_31857_S2076673424030015 crossref_primary_10_31857_S2076673424030021 crossref_primary_10_3389_feart_2019_00105 crossref_primary_10_1016_j_asr_2023_03_001 crossref_primary_10_1017_jog_2023_1 crossref_primary_10_5194_hess_22_1593_2018 crossref_primary_10_1016_j_jhydrol_2019_03_043 crossref_primary_10_1080_17538947_2024_2365964 crossref_primary_10_3389_frwa_2022_909246 crossref_primary_10_1088_1748_9326_11_5_054022 crossref_primary_10_1016_j_gloplacha_2022_103923 crossref_primary_10_3390_w11010089 crossref_primary_10_3390_rs15061472 crossref_primary_10_1002_esp_3966 crossref_primary_10_1007_s12040_023_02145_7 crossref_primary_10_1016_j_joitmc_2023_100106 crossref_primary_10_3389_feart_2019_00331 crossref_primary_10_1002_2014RG000470 crossref_primary_10_3389_fclim_2021_689823 crossref_primary_10_1007_s10661_022_10658_9 crossref_primary_10_5194_gmd_17_6775_2024 crossref_primary_10_1017_jog_2024_25 crossref_primary_10_3390_rs15010150 crossref_primary_10_1038_ngeo2999 crossref_primary_10_1038_ngeo2513 crossref_primary_10_1016_j_earscirev_2018_10_017 crossref_primary_10_1002_2014WR015549 crossref_primary_10_1080_01431161_2018_1441563 crossref_primary_10_3389_feart_2019_00363 crossref_primary_10_1016_j_jhydrol_2014_05_058 crossref_primary_10_1016_j_jhydrol_2015_05_017 crossref_primary_10_1017_jog_2021_133 crossref_primary_10_3389_feart_2018_00112 crossref_primary_10_1016_j_cosust_2013_11_003 crossref_primary_10_3189_2014JoG14J047 crossref_primary_10_3389_feart_2017_00024 crossref_primary_10_1007_s12524_024_02029_3 crossref_primary_10_1109_JSTARS_2020_3028653 crossref_primary_10_3389_feart_2021_675681 crossref_primary_10_5194_hess_26_1063_2022 crossref_primary_10_1111_gwat_13189 crossref_primary_10_1038_s41598_019_54553_9 crossref_primary_10_1029_2017JF004395 crossref_primary_10_3389_feart_2016_00034 crossref_primary_10_1007_s12040_021_01643_w crossref_primary_10_1017_jog_2020_104 crossref_primary_10_1088_1748_9326_9_10_104018 crossref_primary_10_3389_feart_2020_523646 crossref_primary_10_1007_s11269_015_1194_5 crossref_primary_10_1016_j_rsase_2024_101280 crossref_primary_10_3389_feart_2020_571923 crossref_primary_10_3390_atmos11090981 crossref_primary_10_2166_nh_2021_092 crossref_primary_10_1017_jog_2019_4 crossref_primary_10_5194_tc_13_325_2019 crossref_primary_10_3390_rs15225378 |
Cites_doi | 10.1016/j.gloplacha.2006.07.018 10.1017/S0022143000018670 10.1029/2004GL021981 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.3189/2012JoG11J123 10.1029/2011JF002313 10.1029/2009JF001373 10.1016/j.gloplacha.2009.05.004 10.1016/B978-0-12-386917-3.00008-7 10.1098/rspa.1955.0066 10.1017/S0022143000015604 10.3189/002214308785837048 10.3189/172756410790595840 10.5194/tcd-6-2399-2012 10.1657/1523-0430(2003)035[0264:OTNMBO]2.0.CO;2 10.1016/j.jag.2011.09.020 10.1017/S002214300000928X 10.1016/S0921-8181(02)00223-0 10.1038/ngeo1052 10.1029/2011JF002104 10.1017/S0022143000026794 10.3189/S002214300000945X 10.1175/2008JCLI2572.1 10.1029/97JB01696 10.1126/science.258.5079.115 10.3189/002214309788816759 10.1126/science.1143906 10.3189/002214308784886162 10.3189/002214399793377086 10.1029/2000JB000129 10.1017/S0022143000034870 10.1017/S0260305500015834 |
ContentType | Journal Article |
Copyright | 2012. American Geophysical Union. All Rights Reserved. 2014 INIST-CNRS Copyright American Geophysical Union 2012 |
Copyright_xml | – notice: 2012. American Geophysical Union. All Rights Reserved. – notice: 2014 INIST-CNRS – notice: Copyright American Geophysical Union 2012 |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI |
DOI | 10.1029/2012JF002523 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9011 |
EndPage | n/a |
ExternalDocumentID | 2827620931 26842266 10_1029_2012JF002523 JGRF977 ark_67375_WNG_529P4KP5_7 |
Genre | article Feature |
GeographicLocations | polar regions Antarctica Greenland ice sheet Arctic region Greenland |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW 05W 0R~ 33P 3V. 52M 702 7ST 7TG 7UA 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ C1K CCPQU DPXWK F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ KL. KR7 L.G L6V L7M LEEKS LK5 M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS PYCSY Q9U R.K SOI SUPJJ WBKPD |
ID | FETCH-LOGICAL-c5107-aac0537424e5cb434c32ff1d880dde89b2c19a1c5bdeea6eb78fcf4357366bc23 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9003 |
IngestDate | Fri Jul 25 10:46:00 EDT 2025 Wed Apr 02 07:27:11 EDT 2025 Tue Jul 01 01:55:57 EDT 2025 Thu Apr 24 22:52:04 EDT 2025 Wed Jan 22 16:30:29 EST 2025 Wed Oct 30 09:53:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | F4 |
Keywords | Terra satellite thickness Space remote sensing topography Satellite observation ice Valley glaciar inventory Polar orbiting satellite ice sheets Radar observation radiometry ice caps Polar region Dynamic model radar methods sea level |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5107-aac0537424e5cb434c32ff1d880dde89b2c19a1c5bdeea6eb78fcf4357366bc23 |
Notes | ark:/67375/WNG-529P4KP5-7 istex:6C264FFC7C9F7CE8CBDC3FB029B7D29C34230236 ArticleID:2012JF002523 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2012JF002523 |
PQID | 1220653030 |
PQPubID | 54727 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1220653030 pascalfrancis_primary_26842266 crossref_citationtrail_10_1029_2012JF002523 crossref_primary_10_1029_2012JF002523 wiley_primary_10_1029_2012JF002523_JGRF977 istex_primary_ark_67375_WNG_529P4KP5_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research: Earth Surface |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Jóhannesson, T., C. Raymond, and E. Waddington (1989), Time-scale for adjustment of glaciers to changes in mass balance, J. Glaciol., 35(121), 355-369. Dowdeswell, J. A., et al. (2002), Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic, J. Geophys. Res., 107(B4), 2076, doi:10.1029/2000JB000129. Hoelzle, M., W. Haeberli, M. Dischl, and W. Peschke (2003), Secular glacier mass balances derived from cumulative glacier length changes, Global Planet. Change, 36(4), 295-306. Gudmundsson, G. H. (1999), A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland, J. Glaciol., 45(150), 219-230. Kamb, B., and K. A. Echelmeyer (1986), Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope, J. Glaciol., 32, 267-284. Bahr, D. B., M. F. Meier, and S. D. Peckham (1997), The physical basis of glacier volume-area scaling, J. Geophys. Res., 102(B9), 20,355-20,362, doi:10.1029/97JB01696. Kalnay, E., et al. (1996), The NCEP/NCAR 40-Year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437-472. Paterson, W. S. B. (1970), The sliding velocity of Athabasca Glacier, Canada, J. Glaciol., 9, 55-63. Li, H., F. Ng, Z. Li, D. Qin, and G. Cheng (2012), An extended "perfect-plasticity" method for estimating ice thickness along the flow line of mountain glaciers, J. Geophys. Res., 117, F01020, doi:10.1029/2011JF002104. Nolan, M., R. J. Motyka, K. Echelmeyer, and D. C. Trabant (1995), Ice-thickness measurements of Taku Glacier, Alaska, U.S.A., and their relevance to its recent behavior, J. Glaciol., 41, 541-553. Glen, J. W. (1955), The creep of polycrystalline ice, Proc. R. Soc. London, 228(1175), 519-538. Cuffey, K. M., and W. S. B. Paterson (2010), The Physics of Glaciers, 4th ed., 704 pp., Butterworth-Heinemann, Oxford, U. K. Linsbauer, A., F. Paul, and W. Haeberli (2012), Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach, J. Geophys. Res., 117, F03007, doi:10.1029/2011JF002313. Fujita, K., R. Suzuki, T. Nuimura, and A. Sakai (2008), Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya, J. Glaciol., 54, 220-228. Frey, H., and F. Paul (2012), On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories, Int. J. Appl. Earth Obs. Geoinf., 18, 480-490, doi:10.1016/j.jag.2011.09.020. Radić, V., and R. Hock (2011), Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise, Nat. Geosci., 4, 91-94, doi:10.1038/ngeo1052. Farinotti, D., M. Huss, A. Bauder, and M. Funk (2009a), An estimate of the glacier ice volume in the Swiss Alps, Global Planet. Change, 68(3), 225-231. Haeberli, W., and M. Hoelzle (1995), Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps, Ann. Glaciol., 21, 206-212. Hagen, J. O., K. Melvold, F. Pinglot, and J. A. Dowdeswell (2003), On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic, Arct. Antarct. Alp. Res., 35, 264-270. Rastner, P. N., T. Mölg, H. Machguth, and F. Paul (2012), The first complete glacier inventory for the whole of Greenland, Cryosphere Discuss., 6(4), 2399-2436. Ohmura, A. (2010), Completing the World Glacier Inventory, Ann. Glaciol., 50(53), 144-148. Williamson, S., M. Sharp, J. Dowdeswell, and T. Benham (2008), Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999-2003, J. Glaciol., 54, 391-400, doi:10.3189/002214308785837048. Nye, J. F. (1965), The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section, J. Glaciol., 5(41), 661-690. Meier, M. F., M. B. Dyurgerov, U. K. Rick, S. O'Neel, W. T. Pfeffer, R. S. Anderson, S. P. Anderson, and A. F. Glazovsky (2007), Glaciers dominate eustatic sea-level rise in the 21st century, Science, 317(5841), 1064-1067, doi:10.1126/science.1143906. Raper, S. C. B., and R. J. Braithwaite (2005), The potential for sea level rise: New estimates from glacier and ice cap area and volume distributions, Geophys. Res. Lett., 32, L05502, doi:10.1029/2004GL021981. Radić, V., and R. Hock (2010), Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data, J. Geophys. Res., 115, F01010, doi:10.1029/2009JF001373. Raup, B., A. Racoviteanu, S. J. S. Khalsa, C. Helm, R. Armstrong, and Y. Arnaud (2007), The GLIMS geospatial glacier database: A new tool for studying glacier change, Global Planet. Change, 56, 101-110. Azam, M. F., et al. (2012), From balance to imbalance: A shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India, J. Glaciol., 58(208), 315-324, doi:10.3189/2012JoG11J123. Clarke, G. K. C., E. Berthier, C. G. Schoof, and A. H. Jarosch (2009), Neural networks applied to estimating subglacial topography and glacier volume, J. Clim., 22, 2146-2160, doi:10.1175/2008JCLI2572.1. Macheret, Y., P. Cherkasov, and L. Bobrova (1988), Tolshchina i ob'em lednikov Dzhungarskogo Alatau po dannym aeroradiozondirovaniya, Mater. Glyatsiologicheskikh Issled., 62, 60-71. Oerlemans, J., and J. P. F. Fortuin (1992), Sensitivity of glaciers and small ice caps to greenhouse warming, Science, 258(5079), 115-117, doi:10.1126/science.258.5079.115. Huang, M. (1990), On the temperature distribution of glaciers in China, J. Glaciol., 36(123), 210-216. Cogley, J. G., et al. (2011), Glossary of Glacier Mass Balance and Related Terms, IHP-VII Tech. Doc. Hydrol., vol. 86, UNESCO, Paris. Farinotti, D., M. Huss, A. Bauder, M. Funk, and M. Truffer (2009b), A method for estimating the ice volume and ice thickness distribution of alpine glaciers, J. Glaciol., 55(191), 422-430. 1970; 9 2009; 22 2009; 68 1990; 36 2012 2010 1986; 32 2003; 35 1999; 45 2003; 36 2008 2005 2012; 18 2008; 54 2012; 58 2011; 4 2007; 56 1996; 77 1997; 102 2009; 55 1995; 41 2007; 317 1955; 228 2010; 115 1965; 5 1995; 21 1992; 258 2011; 86 1990; 193 2002; 107 2005; 32 1988; 62 2012; 6 1989; 35 2012; 117 2010; 50 Chen J. (e_1_2_8_5_1) 1990 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Macheret Y. (e_1_2_8_28_1) 1988; 62 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 Cuffey K. M. (e_1_2_8_9_1) 2010 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Huang M. (e_1_2_8_21_1) 1990; 36 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – reference: Glen, J. W. (1955), The creep of polycrystalline ice, Proc. R. Soc. London, 228(1175), 519-538. – reference: Meier, M. F., M. B. Dyurgerov, U. K. Rick, S. O'Neel, W. T. Pfeffer, R. S. Anderson, S. P. Anderson, and A. F. Glazovsky (2007), Glaciers dominate eustatic sea-level rise in the 21st century, Science, 317(5841), 1064-1067, doi:10.1126/science.1143906. – reference: Farinotti, D., M. Huss, A. Bauder, and M. Funk (2009a), An estimate of the glacier ice volume in the Swiss Alps, Global Planet. Change, 68(3), 225-231. – reference: Nolan, M., R. J. Motyka, K. Echelmeyer, and D. C. Trabant (1995), Ice-thickness measurements of Taku Glacier, Alaska, U.S.A., and their relevance to its recent behavior, J. Glaciol., 41, 541-553. – reference: Cogley, J. G., et al. (2011), Glossary of Glacier Mass Balance and Related Terms, IHP-VII Tech. Doc. Hydrol., vol. 86, UNESCO, Paris. – reference: Fujita, K., R. Suzuki, T. Nuimura, and A. Sakai (2008), Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya, J. Glaciol., 54, 220-228. – reference: Farinotti, D., M. Huss, A. Bauder, M. Funk, and M. Truffer (2009b), A method for estimating the ice volume and ice thickness distribution of alpine glaciers, J. Glaciol., 55(191), 422-430. – reference: Oerlemans, J., and J. P. F. Fortuin (1992), Sensitivity of glaciers and small ice caps to greenhouse warming, Science, 258(5079), 115-117, doi:10.1126/science.258.5079.115. – reference: Raup, B., A. Racoviteanu, S. J. S. Khalsa, C. Helm, R. Armstrong, and Y. Arnaud (2007), The GLIMS geospatial glacier database: A new tool for studying glacier change, Global Planet. Change, 56, 101-110. – reference: Jóhannesson, T., C. Raymond, and E. Waddington (1989), Time-scale for adjustment of glaciers to changes in mass balance, J. Glaciol., 35(121), 355-369. – reference: Kalnay, E., et al. (1996), The NCEP/NCAR 40-Year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437-472. – reference: Li, H., F. Ng, Z. Li, D. Qin, and G. Cheng (2012), An extended "perfect-plasticity" method for estimating ice thickness along the flow line of mountain glaciers, J. Geophys. Res., 117, F01020, doi:10.1029/2011JF002104. – reference: Huang, M. (1990), On the temperature distribution of glaciers in China, J. Glaciol., 36(123), 210-216. – reference: Frey, H., and F. Paul (2012), On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories, Int. J. Appl. Earth Obs. Geoinf., 18, 480-490, doi:10.1016/j.jag.2011.09.020. – reference: Radić, V., and R. Hock (2011), Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise, Nat. Geosci., 4, 91-94, doi:10.1038/ngeo1052. – reference: Cuffey, K. M., and W. S. B. Paterson (2010), The Physics of Glaciers, 4th ed., 704 pp., Butterworth-Heinemann, Oxford, U. K. – reference: Clarke, G. K. C., E. Berthier, C. G. Schoof, and A. H. Jarosch (2009), Neural networks applied to estimating subglacial topography and glacier volume, J. Clim., 22, 2146-2160, doi:10.1175/2008JCLI2572.1. – reference: Haeberli, W., and M. Hoelzle (1995), Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps, Ann. Glaciol., 21, 206-212. – reference: Gudmundsson, G. H. (1999), A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland, J. Glaciol., 45(150), 219-230. – reference: Kamb, B., and K. A. Echelmeyer (1986), Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope, J. Glaciol., 32, 267-284. – reference: Azam, M. F., et al. (2012), From balance to imbalance: A shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India, J. Glaciol., 58(208), 315-324, doi:10.3189/2012JoG11J123. – reference: Hagen, J. O., K. Melvold, F. Pinglot, and J. A. Dowdeswell (2003), On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic, Arct. Antarct. Alp. Res., 35, 264-270. – reference: Paterson, W. S. B. (1970), The sliding velocity of Athabasca Glacier, Canada, J. Glaciol., 9, 55-63. – reference: Williamson, S., M. Sharp, J. Dowdeswell, and T. Benham (2008), Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999-2003, J. Glaciol., 54, 391-400, doi:10.3189/002214308785837048. – reference: Linsbauer, A., F. Paul, and W. Haeberli (2012), Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach, J. Geophys. Res., 117, F03007, doi:10.1029/2011JF002313. – reference: Ohmura, A. (2010), Completing the World Glacier Inventory, Ann. Glaciol., 50(53), 144-148. – reference: Rastner, P. N., T. Mölg, H. Machguth, and F. Paul (2012), The first complete glacier inventory for the whole of Greenland, Cryosphere Discuss., 6(4), 2399-2436. – reference: Dowdeswell, J. A., et al. (2002), Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic, J. Geophys. Res., 107(B4), 2076, doi:10.1029/2000JB000129. – reference: Macheret, Y., P. Cherkasov, and L. Bobrova (1988), Tolshchina i ob'em lednikov Dzhungarskogo Alatau po dannym aeroradiozondirovaniya, Mater. Glyatsiologicheskikh Issled., 62, 60-71. – reference: Radić, V., and R. Hock (2010), Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data, J. Geophys. Res., 115, F01010, doi:10.1029/2009JF001373. – reference: Bahr, D. B., M. F. Meier, and S. D. Peckham (1997), The physical basis of glacier volume-area scaling, J. Geophys. Res., 102(B9), 20,355-20,362, doi:10.1029/97JB01696. – reference: Hoelzle, M., W. Haeberli, M. Dischl, and W. Peschke (2003), Secular glacier mass balances derived from cumulative glacier length changes, Global Planet. Change, 36(4), 295-306. – reference: Nye, J. F. (1965), The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section, J. Glaciol., 5(41), 661-690. – reference: Raper, S. C. B., and R. J. Braithwaite (2005), The potential for sea level rise: New estimates from glacier and ice cap area and volume distributions, Geophys. Res. Lett., 32, L05502, doi:10.1029/2004GL021981. – volume: 4 start-page: 91 year: 2011 end-page: 94 article-title: Regionally differentiated contribution of mountain glaciers and ice caps to future sea‐level rise publication-title: Nat. Geosci. – volume: 115 year: 2010 article-title: Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data publication-title: J. Geophys. Res. – volume: 54 start-page: 220 year: 2008 end-page: 228 article-title: Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya publication-title: J. Glaciol. – volume: 50 start-page: 144 issue: 53 year: 2010 end-page: 148 article-title: Completing the World Glacier Inventory publication-title: Ann. Glaciol. – volume: 45 start-page: 219 issue: 150 year: 1999 end-page: 230 article-title: A three‐dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland publication-title: J. Glaciol. – volume: 317 start-page: 1064 issue: 5841 year: 2007 end-page: 1067 article-title: Glaciers dominate eustatic sea‐level rise in the 21st century publication-title: Science – volume: 22 start-page: 2146 year: 2009 end-page: 2160 article-title: Neural networks applied to estimating subglacial topography and glacier volume publication-title: J. Clim. – volume: 56 start-page: 101 year: 2007 end-page: 110 article-title: The GLIMS geospatial glacier database: A new tool for studying glacier change publication-title: Global Planet. Change – volume: 193 start-page: 127 year: 1990 end-page: 135 – year: 2005 – volume: 77 start-page: 437 year: 1996 end-page: 472 article-title: The NCEP/NCAR 40‐Year Reanalysis Project publication-title: Bull. Am. Meteorol. Soc. – volume: 58 start-page: 315 issue: 208 year: 2012 end-page: 324 article-title: From balance to imbalance: A shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India publication-title: J. Glaciol. – volume: 6 start-page: 2399 issue: 4 year: 2012 end-page: 2436 article-title: The first complete glacier inventory for the whole of Greenland publication-title: Cryosphere Discuss. – volume: 18 start-page: 480 year: 2012 end-page: 490 article-title: On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 107 issue: B4 year: 2002 article-title: Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic publication-title: J. Geophys. Res. – volume: 35 start-page: 355 issue: 121 year: 1989 end-page: 369 article-title: Time‐scale for adjustment of glaciers to changes in mass balance publication-title: J. Glaciol. – volume: 117 year: 2012 article-title: An extended “perfect‐plasticity” method for estimating ice thickness along the flow line of mountain glaciers publication-title: J. Geophys. Res. – volume: 9 start-page: 55 year: 1970 end-page: 63 article-title: The sliding velocity of Athabasca Glacier, Canada publication-title: J. Glaciol. – start-page: 197 year: 2012 end-page: 222 – year: 2010 – year: 2012 – volume: 102 start-page: 20,355 issue: B9 year: 1997 end-page: 20,362 article-title: The physical basis of glacier volume‐area scaling publication-title: J. Geophys. Res. – volume: 68 start-page: 225 issue: 3 year: 2009 end-page: 231 article-title: An estimate of the glacier ice volume in the Swiss Alps publication-title: Global Planet. Change – volume: 36 start-page: 210 issue: 123 year: 1990 end-page: 216 article-title: On the temperature distribution of glaciers in China publication-title: J. Glaciol. – volume: 258 start-page: 115 issue: 5079 year: 1992 end-page: 117 article-title: Sensitivity of glaciers and small ice caps to greenhouse warming publication-title: Science – volume: 35 start-page: 264 year: 2003 end-page: 270 article-title: On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic publication-title: Arct. Antarct. Alp. Res. – year: 2008 – volume: 117 year: 2012 article-title: Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach publication-title: J. Geophys. Res. – volume: 32 start-page: 267 year: 1986 end-page: 284 article-title: Stress‐gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope publication-title: J. Glaciol. – volume: 228 start-page: 519 issue: 1175 year: 1955 end-page: 538 article-title: The creep of polycrystalline ice publication-title: Proc. R. Soc. London – volume: 21 start-page: 206 year: 1995 end-page: 212 article-title: Application of inventory data for estimating characteristics of and regional climate‐change effects on mountain glaciers: A pilot study with the European Alps publication-title: Ann. Glaciol. – volume: 36 start-page: 295 issue: 4 year: 2003 end-page: 306 article-title: Secular glacier mass balances derived from cumulative glacier length changes publication-title: Global Planet. Change – volume: 54 start-page: 391 year: 2008 end-page: 400 article-title: Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999–2003 publication-title: J. Glaciol. – volume: 41 start-page: 541 year: 1995 end-page: 553 article-title: Ice‐thickness measurements of Taku Glacier, Alaska, U.S.A., and their relevance to its recent behavior publication-title: J. Glaciol. – volume: 86 year: 2011 – volume: 62 start-page: 60 year: 1988 end-page: 71 article-title: Tolshchina i ob'em lednikov Dzhungarskogo Alatau po dannym aeroradiozondirovaniya publication-title: Mater. Glyatsiologicheskikh Issled. – volume: 5 start-page: 661 issue: 41 year: 1965 end-page: 690 article-title: The flow of a glacier in a channel of rectangular, elliptic or parabolic cross‐section publication-title: J. Glaciol. – volume: 32 year: 2005 article-title: The potential for sea level rise: New estimates from glacier and ice cap area and volume distributions publication-title: Geophys. Res. Lett. – volume: 55 start-page: 422 issue: 191 year: 2009 end-page: 430 article-title: A method for estimating the ice volume and ice thickness distribution of alpine glaciers publication-title: J. Glaciol. – ident: e_1_2_8_39_1 doi: 10.1016/j.gloplacha.2006.07.018 – ident: e_1_2_8_31_1 doi: 10.1017/S0022143000018670 – ident: e_1_2_8_37_1 doi: 10.1029/2004GL021981 – ident: e_1_2_8_24_1 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – ident: e_1_2_8_3_1 doi: 10.3189/2012JoG11J123 – ident: e_1_2_8_27_1 doi: 10.1029/2011JF002313 – ident: e_1_2_8_35_1 doi: 10.1029/2009JF001373 – ident: e_1_2_8_11_1 – ident: e_1_2_8_12_1 doi: 10.1016/j.gloplacha.2009.05.004 – ident: e_1_2_8_7_1 doi: 10.1016/B978-0-12-386917-3.00008-7 – ident: e_1_2_8_16_1 doi: 10.1098/rspa.1955.0066 – ident: e_1_2_8_25_1 doi: 10.1017/S0022143000015604 – ident: e_1_2_8_41_1 doi: 10.3189/002214308785837048 – ident: e_1_2_8_22_1 – ident: e_1_2_8_33_1 doi: 10.3189/172756410790595840 – ident: e_1_2_8_38_1 doi: 10.5194/tcd-6-2399-2012 – ident: e_1_2_8_19_1 doi: 10.1657/1523-0430(2003)035[0264:OTNMBO]2.0.CO;2 – ident: e_1_2_8_40_1 – ident: e_1_2_8_14_1 doi: 10.1016/j.jag.2011.09.020 – ident: e_1_2_8_23_1 doi: 10.1017/S002214300000928X – ident: e_1_2_8_20_1 doi: 10.1016/S0921-8181(02)00223-0 – ident: e_1_2_8_36_1 doi: 10.1038/ngeo1052 – ident: e_1_2_8_26_1 doi: 10.1029/2011JF002104 – ident: e_1_2_8_34_1 doi: 10.1017/S0022143000026794 – ident: e_1_2_8_2_1 – volume: 36 start-page: 210 issue: 123 year: 1990 ident: e_1_2_8_21_1 article-title: On the temperature distribution of glaciers in China publication-title: J. Glaciol. doi: 10.3189/S002214300000945X – ident: e_1_2_8_6_1 doi: 10.1175/2008JCLI2572.1 – volume: 62 start-page: 60 year: 1988 ident: e_1_2_8_28_1 article-title: Tolshchina i ob'em lednikov Dzhungarskogo Alatau po dannym aeroradiozondirovaniya publication-title: Mater. Glyatsiologicheskikh Issled. – volume-title: The Physics of Glaciers year: 2010 ident: e_1_2_8_9_1 – ident: e_1_2_8_4_1 doi: 10.1029/97JB01696 – ident: e_1_2_8_32_1 doi: 10.1126/science.258.5079.115 – ident: e_1_2_8_8_1 – ident: e_1_2_8_13_1 doi: 10.3189/002214309788816759 – ident: e_1_2_8_29_1 doi: 10.1126/science.1143906 – ident: e_1_2_8_15_1 doi: 10.3189/002214308784886162 – ident: e_1_2_8_17_1 doi: 10.3189/002214399793377086 – ident: e_1_2_8_10_1 doi: 10.1029/2000JB000129 – ident: e_1_2_8_30_1 doi: 10.1017/S0022143000034870 – start-page: 127 volume-title: Hydrology in Mountainous Regions I year: 1990 ident: e_1_2_8_5_1 – ident: e_1_2_8_18_1 doi: 10.1017/S0260305500015834 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816912 |
Score | 2.5555785 |
Snippet | A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide.... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Cryosphere Earth sciences Earth, ocean, space Exact sciences and technology External geophysics glacier ice volume glacier inventory Glaciers global assessment Ice Ice caps Ice thickness ice thickness distribution Remote sensing Sea level rise Topography water resources |
Title | Distributed ice thickness and volume of all glaciers around the globe |
URI | https://api.istex.fr/ark:/67375/WNG-529P4KP5-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JF002523 https://www.proquest.com/docview/1220653030 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07b9swED408dKlSNEGVZMaHNoOLYREpEiRU9GH5cBBDCNIkGwERVJLDDuxU6A_v3cS7cZDs2k4CsId78Hj6fsAPnITCYQ94rGkVTlmvCbXQoW8aAOXQTtXdej8F1N1dl1ObuVtarit01jlJiZ2gTosPfXITwrOCUYV9-S3-4ecWKPodjVRaOzBAEOwxsPX4MdoOrvcdlmIVsJ0V54cH3Jq26Xp91Nu8OBf8ElNaZ-Lnbw0IBX_oTlJt0ZVtT3HxU4R-rSU7XJRfQCvUhHJvvdWfw0v4uINjH4RBi7RV8XA0P0ZTbLfUSRjbhFYH4bYsmVuPmdYNHsiwWZuRbxKKBsZYYPEt3Bdj65-nuWJJCH36E5V7pwnSJaSl1H6phSlF7xti4B-iZFLm4b7wrjCyybE6FRsKt36FoukSijVeC4OYX-xXMR3wIQX0jsXFf0wq4zXQTjhg2wMP_Xa6wy-blRkfUIQJyKLue1usrmxTxWawaet9H2PnPEfuc-dtrdCbnVH02aVtDfTsZXczMrzmbRVBsMdc2wXEGANVpEqg-ONfWzyxLX9t28y-NLZ7NmvsZPxZY018fvn33UEL2lVP9dyDPuPq9_xA1Ynj80Q9nQ9HqaN-BffU96b |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hOMClomorUij1oXBoFUHs2IkPFaoK2WUXVqgClZvr2M6F1S7sUrX9U_2NzORjyx7KjVsOEyvyjGde7PF7AB-4DkTCHvC3pFIxVrwyzoXycVJ5Ln1ubVaz85-PVP8qHVzL6xX4292FobbKLifWidpPHe2RHyScE40qxuTR7V1MqlF0utpJaDRhMQx_fuEv2_zz6TH6d4_z4uTyaz9uVQVih_GXxdY64jBJeRqkK1OROsGrKvEYyLjUc11yl2ibOFn6EKwKZZZXrkJUkQmlSkdEB5jy11IhNK2ovOgt9nRIxELXB6wcH2LaJGx77Q-5PsBSywcFgQwulqrgGjn0N3Vl2jk6pmoUNZYg72PgXFe-YhNetJCVfWli7CWshMkrODkmxl0SywqeYbJh1Dd_Q3mT2YlnTdJj04rZ8ZghRHckuc3sjFSc0DYwYiIJr-HqWSbvDaxOppOwBUw4IZ21QdH1XKVd7oUVzstS80OXuzyCT90UGdfylZNsxtjU5-Zcm8cTGsHewvq24en4j91-PdsLIzu7od62TJrvo56RXF-kwwtpsgh2l9yxeIHocRCzqgh2Ov-Ydt3Pzb8ojeBj7bMnv8YMet8KROBvnx7rPaz3L8_PzNnpaLgNGzRC01GzA6v3s5_hHeKi-3K3DkYGP547-h8ABr4aWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1ViYS4IBAgFkrxgXIArZK1197dA0JAsm0TiKKKit6M1x-XRklJioC_xq9jZj9Cc6C33vYwu1p5xjPP9vg9gJe88ETC7nFZElSMFa-Kc6FcnATHpcuNyWp2_s8zdXyWTs7l-R786e7CUFtllxPrRO1WlvbIBwnnRKOKMTkIbVvEfFS-u_wek4IUnbR2chpNiEz975-4fNu8PRmhrw85L8dfPh7HrcJAbDEWs9gYS3wmKU-9tFUqUit4CInDoMZpnxcVt0lhEisr571RvsryYAMijEwoVVkiPcD0389wVTTsQf_DeDY_3e7wkKRFUR-3cnyIacuw7bwf8mKAhZdPSoIcXOzUxD659xf1aJoNuik0-ho7APg6jK7rYHkf7rUAlr1vIu4B7PnlQxiPiH-XpLO8Y5h6GHXRX1AWZWbpWJMC2Sows1gwBOyWBLiZWZOmE9p6Rrwk_hGc3crwPYbecrX0T4AJK6Q1xiu6rKsKmzthhHWyKvjQ5jaP4E03RNq27OUkorHQ9Sk6L_T1AY3gcGt92bB2_MfuVT3aWyOzvqBOt0zqr7MjLXkxT6dzqbMIDnbcsX2ByHIQwaoI9jv_6DYLbPS_mI3gde2zG_9GT45OS8TjT2_-1gu4g5GvP53Mps_gLn2gaa_Zh97V-od_jiDpqjpoo5HBt9ueAH8BFdAf6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+ice+thickness+and+volume+of+all+glaciers+around+the+globe&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Huss%2C+Matthias&rft.au=Farinotti%2C+Daniel&rft.date=2012-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=F4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2012JF002523&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_529P4KP5_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |