Distributed ice thickness and volume of all glaciers around the globe

A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Missio...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Earth Surface Vol. 117; no. F4
Main Authors Huss, Matthias, Farinotti, Daniel
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.12.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Mission/Advanced Spaceborne Thermal Emission and Reflection Radiometer), we use a simple dynamic model to obtain spatially distributed thickness of individual glaciers by inverting their surface topography. Results are validated against a comprehensive set of thickness observations for 300 glaciers from most glacierized regions of the world. For all mountain glaciers and ice caps outside of the Antarctic and Greenland ice sheets we find a total ice volume of 170 × 103 ± 21 × 103 km3, or 0.43 ± 0.06 m of potential sea level rise. Key Points First ice volume assessment of all individual glaciers around the globe Novel methodology to estimate glacier ice thickness distribution Potential sea level rise of 170,000 glaciers and ice caps worldwide is 0.43 m
AbstractList A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Mission/Advanced Spaceborne Thermal Emission and Reflection Radiometer), we use a simple dynamic model to obtain spatially distributed thickness of individual glaciers by inverting their surface topography. Results are validated against a comprehensive set of thickness observations for 300 glaciers from most glacierized regions of the world. For all mountain glaciers and ice caps outside of the Antarctic and Greenland ice sheets we find a total ice volume of 170 × 10 3 ± 21 × 10 3 km 3 , or 0.43 ± 0.06 m of potential sea level rise. First ice volume assessment of all individual glaciers around the globe Novel methodology to estimate glacier ice thickness distribution Potential sea level rise of 170,000 glaciers and ice caps worldwide is 0.43 m
A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Mission/Advanced Spaceborne Thermal Emission and Reflection Radiometer), we use a simple dynamic model to obtain spatially distributed thickness of individual glaciers by inverting their surface topography. Results are validated against a comprehensive set of thickness observations for 300 glaciers from most glacierized regions of the world. For all mountain glaciers and ice caps outside of the Antarctic and Greenland ice sheets we find a total ice volume of 170 × 103 ± 21 × 103 km3, or 0.43 ± 0.06 m of potential sea level rise. Key Points First ice volume assessment of all individual glaciers around the globe Novel methodology to estimate glacier ice thickness distribution Potential sea level rise of 170,000 glaciers and ice caps worldwide is 0.43 m
A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Mission/Advanced Spaceborne Thermal Emission and Reflection Radiometer), we use a simple dynamic model to obtain spatially distributed thickness of individual glaciers by inverting their surface topography. Results are validated against a comprehensive set of thickness observations for 300 glaciers from most glacierized regions of the world. For all mountain glaciers and ice caps outside of the Antarctic and Greenland ice sheets we find a total ice volume of 170 × 103 ± 21 × 103 km3, or 0.43 ± 0.06 m of potential sea level rise.
Author Farinotti, Daniel
Huss, Matthias
Author_xml – sequence: 1
  givenname: Matthias
  surname: Huss
  fullname: Huss, Matthias
  email: matthias.huss@unifr.ch, matthias.huss@unifr.ch
  organization: Department of Geosciences, University of Fribourg, Fribourg, Switzerland
– sequence: 2
  givenname: Daniel
  surname: Farinotti
  fullname: Farinotti, Daniel
  organization: Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, Zurich, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26842266$$DView record in Pascal Francis
BookMark eNp9kUtP3DAQgK0KpC5bbvyASFVvBOzxKzkiyi4FRFEF4mg5zqQYQgx2wuPf42qhQpWK52DJ830z8swGWRvCgIRsMbrDKNS7QBkcLSgFCfwTmQGTqgSgsEZmlImqpAD6M9lM6ZrmI6QSlM3IwXefxuibacS28A6L8cq7mwFTKuzQFg-hn26xCF1h-7743VvnMeZUDFPOjleY30KDX8h6Z_uEm6_3nFwsDs73D8uTn8sf-3snpZOM6tJaRyXXAgRK1wguHIeuY21V0bbFqm7AsdoyJ5sW0SpsdNW5TnCpuVKNAz4nX1d172K4nzCN5jpMccgtDct_VZLTHHPy7ZWyydm-i3ZwPpm76G9tfDagKgGgVOZgxbkYUorYGedHO_owjNH63jBq_kzWvJ9slrb_kd7q_gdnK_zR9_j8IWuOlr8WtdbZKVdOXg0-_XVsvDFKcy3N5enSSKjPxPGZNJq_AICVloc
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_149593
crossref_primary_10_1038_s41467_022_35672_w
crossref_primary_10_1016_j_gloplacha_2016_09_010
crossref_primary_10_3389_feart_2015_00054
crossref_primary_10_5194_hess_22_463_2018
crossref_primary_10_1016_j_wasec_2021_100101
crossref_primary_10_3390_rs14061352
crossref_primary_10_5194_tc_17_4315_2023
crossref_primary_10_1002_2016EF000479
crossref_primary_10_1016_j_gloplacha_2014_09_003
crossref_primary_10_1029_2017JF004333
crossref_primary_10_1038_s41561_018_0271_9
crossref_primary_10_5194_tc_14_3269_2020
crossref_primary_10_5802_crgeos_139
crossref_primary_10_5194_tc_14_3399_2020
crossref_primary_10_1088_1748_9326_11_9_094006
crossref_primary_10_1016_j_gloplacha_2020_103209
crossref_primary_10_3189_2014AoG66A001
crossref_primary_10_1029_2020JF005586
crossref_primary_10_1002_esp_4333
crossref_primary_10_1038_s41467_021_23073_4
crossref_primary_10_1007_s12210_013_0255_z
crossref_primary_10_1016_j_advwatres_2016_05_017
crossref_primary_10_1016_j_asr_2021_08_020
crossref_primary_10_1017_jog_2018_15
crossref_primary_10_1029_2017WR022289
crossref_primary_10_1088_1748_9326_8_2_025005
crossref_primary_10_1016_j_quascirev_2023_108403
crossref_primary_10_1038_s41598_018_21244_w
crossref_primary_10_1007_s12524_023_01744_7
crossref_primary_10_3189_2014JoG13J078
crossref_primary_10_1016_j_scitotenv_2022_159214
crossref_primary_10_3390_ijerph18126374
crossref_primary_10_1016_j_jmarsys_2013_11_003
crossref_primary_10_1017_jog_2022_60
crossref_primary_10_1017_jog_2022_61
crossref_primary_10_1657_1938_4246_46_4_933
crossref_primary_10_5194_essd_9_115_2017
crossref_primary_10_1016_j_geomorph_2020_107068
crossref_primary_10_1016_j_jhydrol_2013_12_017
crossref_primary_10_5194_essd_16_5799_2024
crossref_primary_10_1657_AAAR0016_008
crossref_primary_10_5194_tc_6_1483_2012
crossref_primary_10_1061__ASCE_HE_1943_5584_0000860
crossref_primary_10_1017_aog_2023_75
crossref_primary_10_1017_cft_2022_8
crossref_primary_10_1016_j_gloplacha_2017_11_005
crossref_primary_10_3189_2014JoG13J195
crossref_primary_10_5194_tc_7_1565_2013
crossref_primary_10_1175_JCLI_D_12_00513_1
crossref_primary_10_1016_j_accre_2023_08_004
crossref_primary_10_1007_s10661_024_13283_w
crossref_primary_10_1002_2014JE004685
crossref_primary_10_1029_2019GL082485
crossref_primary_10_5194_tc_12_759_2018
crossref_primary_10_3389_feart_2020_00099
crossref_primary_10_1029_2019JF005004
crossref_primary_10_1109_LGRS_2018_2845342
crossref_primary_10_1002_jqs_3569
crossref_primary_10_1007_s10712_016_9394_y
crossref_primary_10_3390_w9050336
crossref_primary_10_5194_hess_22_509_2018
crossref_primary_10_3189_2016AoG71A073
crossref_primary_10_5194_tc_10_65_2016
crossref_primary_10_1016_j_earscirev_2022_103926
crossref_primary_10_1002_2016EF000363
crossref_primary_10_1038_s41598_019_43527_6
crossref_primary_10_3189_2014JoG13J176
crossref_primary_10_1002_2016JF003926
crossref_primary_10_5194_tc_7_141_2013
crossref_primary_10_1029_2018JF004607
crossref_primary_10_3189_2016AoG71A627
crossref_primary_10_1007_s11069_014_1306_1
crossref_primary_10_1016_j_geomorph_2021_107783
crossref_primary_10_5194_gi_6_397_2017
crossref_primary_10_1007_s10596_014_9439_6
crossref_primary_10_1016_j_gloplacha_2014_08_006
crossref_primary_10_1017_jog_2019_97
crossref_primary_10_1017_jog_2019_93
crossref_primary_10_3390_rs16111914
crossref_primary_10_5194_tc_11_191_2017
crossref_primary_10_1017_aog_2023_57
crossref_primary_10_1029_2018GL079147
crossref_primary_10_3389_feart_2019_00068
crossref_primary_10_5194_tc_14_2005_2020
crossref_primary_10_1029_2022JF006670
crossref_primary_10_1007_s10712_013_9262_y
crossref_primary_10_1029_2018GL080942
crossref_primary_10_1029_2019GL085578
crossref_primary_10_1134_S0001433824701172
crossref_primary_10_3390_rs16101709
crossref_primary_10_5194_tc_9_753_2015
crossref_primary_10_1002_2016WR020033
crossref_primary_10_1017_jog_2020_75
crossref_primary_10_3390_w14071006
crossref_primary_10_1017_jog_2021_63
crossref_primary_10_5194_tc_10_1859_2016
crossref_primary_10_1038_s41561_021_00885_z
crossref_primary_10_5194_tc_7_1707_2013
crossref_primary_10_3189_2015JoG14J159
crossref_primary_10_3189_2014AoG67A025
crossref_primary_10_5194_tc_9_1105_2015
crossref_primary_10_1017_aog_2023_68
crossref_primary_10_1007_s41324_023_00515_3
crossref_primary_10_3189_2015JoG14J161
crossref_primary_10_5194_tc_9_525_2015
crossref_primary_10_1029_2019EF001470
crossref_primary_10_5194_tc_13_1125_2019
crossref_primary_10_5194_esurf_10_723_2022
crossref_primary_10_1017_jog_2021_55
crossref_primary_10_5194_hess_22_2211_2018
crossref_primary_10_1017_jog_2016_4
crossref_primary_10_1139_cjes_2021_0126
crossref_primary_10_1109_ACCESS_2025_3542834
crossref_primary_10_1016_j_ejrh_2017_08_005
crossref_primary_10_1080_24749508_2024_2392919
crossref_primary_10_3189_2015JoG14J125
crossref_primary_10_1134_S0097807820060147
crossref_primary_10_1007_s12524_024_01849_7
crossref_primary_10_5194_hess_17_3661_2013
crossref_primary_10_1038_ncomms3146
crossref_primary_10_2166_wcc_2024_074
crossref_primary_10_5194_tc_17_4021_2023
crossref_primary_10_1016_j_coldregions_2017_12_010
crossref_primary_10_5194_tc_13_2657_2019
crossref_primary_10_1007_s10661_025_13682_7
crossref_primary_10_1007_s12665_024_11529_x
crossref_primary_10_1017_jog_2020_55
crossref_primary_10_1038_s41597_022_01446_8
crossref_primary_10_1177_0959683616652712
crossref_primary_10_1017_jog_2020_71
crossref_primary_10_1038_s41561_019_0300_3
crossref_primary_10_5194_gmd_17_5123_2024
crossref_primary_10_5194_tc_12_3265_2018
crossref_primary_10_2208_jscejhe_75_2_I_919
crossref_primary_10_3390_rs12203443
crossref_primary_10_1029_2018GL079734
crossref_primary_10_1017_jog_2016_13
crossref_primary_10_1016_j_palaeo_2022_111132
crossref_primary_10_1016_j_scitotenv_2020_142774
crossref_primary_10_1038_s41467_021_26897_2
crossref_primary_10_5194_tc_11_2003_2017
crossref_primary_10_5194_tc_7_987_2013
crossref_primary_10_3390_rs16112009
crossref_primary_10_5194_essd_13_231_2021
crossref_primary_10_5194_tc_8_1741_2014
crossref_primary_10_1029_2021RG000754
crossref_primary_10_5194_gmd_12_909_2019
crossref_primary_10_3189_2013JoG12J138
crossref_primary_10_5194_gmd_15_1477_2022
crossref_primary_10_1016_j_icarus_2016_03_006
crossref_primary_10_1017_jog_2020_64
crossref_primary_10_5194_tc_9_505_2015
crossref_primary_10_1002_esp_4620
crossref_primary_10_5194_tc_11_949_2017
crossref_primary_10_1016_j_quascirev_2018_07_004
crossref_primary_10_3389_feart_2020_641710
crossref_primary_10_1016_j_isprsjprs_2025_01_011
crossref_primary_10_1017_jog_2018_80
crossref_primary_10_1017_jog_2019_58
crossref_primary_10_1002_2016EF000514
crossref_primary_10_3389_feart_2017_00070
crossref_primary_10_1002_hyp_14145
crossref_primary_10_1038_s41558_017_0049_x
crossref_primary_10_1002_rog_20015
crossref_primary_10_1111_nzg_12091
crossref_primary_10_1029_2022GL098915
crossref_primary_10_3189_2014JoG14J062
crossref_primary_10_1029_2018EF001139
crossref_primary_10_1002_esp_5266
crossref_primary_10_1016_j_advwatres_2015_01_013
crossref_primary_10_1007_s11629_019_5718_y
crossref_primary_10_5194_tc_13_2189_2019
crossref_primary_10_1002_2014WR016728
crossref_primary_10_1038_s41558_018_0093_1
crossref_primary_10_5194_hess_23_1339_2019
crossref_primary_10_1017_jog_2018_99
crossref_primary_10_1088_2515_7620_ab1d6d
crossref_primary_10_1017_aog_2017_28
crossref_primary_10_1017_jog_2021_19
crossref_primary_10_1017_jog_2022_117
crossref_primary_10_1525_elementa_2020_00098
crossref_primary_10_5194_esurf_7_301_2019
crossref_primary_10_1016_j_palaeo_2014_06_005
crossref_primary_10_1038_s41586_019_1740_z
crossref_primary_10_5194_tc_7_817_2013
crossref_primary_10_3389_feart_2023_1192719
crossref_primary_10_1017_jog_2021_11
crossref_primary_10_1002_2014JF003276
crossref_primary_10_1007_s40333_020_0083_9
crossref_primary_10_5194_tc_8_59_2014
crossref_primary_10_1002_joc_7026
crossref_primary_10_3389_feart_2017_00056
crossref_primary_10_5194_esd_12_783_2021
crossref_primary_10_1088_1748_9326_9_11_115007
crossref_primary_10_5194_tc_8_1885_2014
crossref_primary_10_5194_tc_16_197_2022
crossref_primary_10_1038_s43247_023_01193_7
crossref_primary_10_1029_2019JB018248
crossref_primary_10_5194_tc_8_2313_2014
crossref_primary_10_1109_JSTARS_2017_2787199
crossref_primary_10_1029_2022EF003408
crossref_primary_10_1029_2022JF006898
crossref_primary_10_1016_j_gloplacha_2021_103593
crossref_primary_10_5194_tc_7_1603_2013
crossref_primary_10_1002_2016JF003883
crossref_primary_10_1017_jog_2024_57
crossref_primary_10_3389_feart_2023_1256696
crossref_primary_10_1016_j_geomorph_2016_02_009
crossref_primary_10_1017_jog_2019_49
crossref_primary_10_1017_jog_2018_75
crossref_primary_10_1038_s41586_019_1071_0
crossref_primary_10_1007_s12524_024_02106_7
crossref_primary_10_5194_tc_8_1261_2014
crossref_primary_10_5194_tc_10_639_2016
crossref_primary_10_1016_j_epsl_2013_05_018
crossref_primary_10_1016_j_wasec_2021_100098
crossref_primary_10_1016_j_geomorph_2019_106913
crossref_primary_10_1007_s10712_016_9374_2
crossref_primary_10_1134_S0001433824701160
crossref_primary_10_1007_s11629_014_3172_4
crossref_primary_10_1016_j_rsase_2021_100656
crossref_primary_10_1016_j_quascirev_2020_106645
crossref_primary_10_1017_jog_2018_45
crossref_primary_10_31857_S2076673424030015
crossref_primary_10_31857_S2076673424030021
crossref_primary_10_3389_feart_2019_00105
crossref_primary_10_1016_j_asr_2023_03_001
crossref_primary_10_1017_jog_2023_1
crossref_primary_10_5194_hess_22_1593_2018
crossref_primary_10_1016_j_jhydrol_2019_03_043
crossref_primary_10_1080_17538947_2024_2365964
crossref_primary_10_3389_frwa_2022_909246
crossref_primary_10_1088_1748_9326_11_5_054022
crossref_primary_10_1016_j_gloplacha_2022_103923
crossref_primary_10_3390_w11010089
crossref_primary_10_3390_rs15061472
crossref_primary_10_1002_esp_3966
crossref_primary_10_1007_s12040_023_02145_7
crossref_primary_10_1016_j_joitmc_2023_100106
crossref_primary_10_3389_feart_2019_00331
crossref_primary_10_1002_2014RG000470
crossref_primary_10_3389_fclim_2021_689823
crossref_primary_10_1007_s10661_022_10658_9
crossref_primary_10_5194_gmd_17_6775_2024
crossref_primary_10_1017_jog_2024_25
crossref_primary_10_3390_rs15010150
crossref_primary_10_1038_ngeo2999
crossref_primary_10_1038_ngeo2513
crossref_primary_10_1016_j_earscirev_2018_10_017
crossref_primary_10_1002_2014WR015549
crossref_primary_10_1080_01431161_2018_1441563
crossref_primary_10_3389_feart_2019_00363
crossref_primary_10_1016_j_jhydrol_2014_05_058
crossref_primary_10_1016_j_jhydrol_2015_05_017
crossref_primary_10_1017_jog_2021_133
crossref_primary_10_3389_feart_2018_00112
crossref_primary_10_1016_j_cosust_2013_11_003
crossref_primary_10_3189_2014JoG14J047
crossref_primary_10_3389_feart_2017_00024
crossref_primary_10_1007_s12524_024_02029_3
crossref_primary_10_1109_JSTARS_2020_3028653
crossref_primary_10_3389_feart_2021_675681
crossref_primary_10_5194_hess_26_1063_2022
crossref_primary_10_1111_gwat_13189
crossref_primary_10_1038_s41598_019_54553_9
crossref_primary_10_1029_2017JF004395
crossref_primary_10_3389_feart_2016_00034
crossref_primary_10_1007_s12040_021_01643_w
crossref_primary_10_1017_jog_2020_104
crossref_primary_10_1088_1748_9326_9_10_104018
crossref_primary_10_3389_feart_2020_523646
crossref_primary_10_1007_s11269_015_1194_5
crossref_primary_10_1016_j_rsase_2024_101280
crossref_primary_10_3389_feart_2020_571923
crossref_primary_10_3390_atmos11090981
crossref_primary_10_2166_nh_2021_092
crossref_primary_10_1017_jog_2019_4
crossref_primary_10_5194_tc_13_325_2019
crossref_primary_10_3390_rs15225378
Cites_doi 10.1016/j.gloplacha.2006.07.018
10.1017/S0022143000018670
10.1029/2004GL021981
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.3189/2012JoG11J123
10.1029/2011JF002313
10.1029/2009JF001373
10.1016/j.gloplacha.2009.05.004
10.1016/B978-0-12-386917-3.00008-7
10.1098/rspa.1955.0066
10.1017/S0022143000015604
10.3189/002214308785837048
10.3189/172756410790595840
10.5194/tcd-6-2399-2012
10.1657/1523-0430(2003)035[0264:OTNMBO]2.0.CO;2
10.1016/j.jag.2011.09.020
10.1017/S002214300000928X
10.1016/S0921-8181(02)00223-0
10.1038/ngeo1052
10.1029/2011JF002104
10.1017/S0022143000026794
10.3189/S002214300000945X
10.1175/2008JCLI2572.1
10.1029/97JB01696
10.1126/science.258.5079.115
10.3189/002214309788816759
10.1126/science.1143906
10.3189/002214308784886162
10.3189/002214399793377086
10.1029/2000JB000129
10.1017/S0022143000034870
10.1017/S0260305500015834
ContentType Journal Article
Copyright 2012. American Geophysical Union. All Rights Reserved.
2014 INIST-CNRS
Copyright American Geophysical Union 2012
Copyright_xml – notice: 2012. American Geophysical Union. All Rights Reserved.
– notice: 2014 INIST-CNRS
– notice: Copyright American Geophysical Union 2012
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
DOI 10.1029/2012JF002523
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9011
EndPage n/a
ExternalDocumentID 2827620931
26842266
10_1029_2012JF002523
JGRF977
ark_67375_WNG_529P4KP5_7
Genre article
Feature
GeographicLocations polar regions
Antarctica
Greenland ice sheet
Arctic region
Greenland
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
05W
0R~
33P
3V.
52M
702
7ST
7TG
7UA
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
C1K
CCPQU
DPXWK
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
KL.
KR7
L.G
L6V
L7M
LEEKS
LK5
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PYCSY
Q9U
R.K
SOI
SUPJJ
WBKPD
ID FETCH-LOGICAL-c5107-aac0537424e5cb434c32ff1d880dde89b2c19a1c5bdeea6eb78fcf4357366bc23
IEDL.DBID BENPR
ISSN 0148-0227
2169-9003
IngestDate Fri Jul 25 10:46:00 EDT 2025
Wed Apr 02 07:27:11 EDT 2025
Tue Jul 01 01:55:57 EDT 2025
Thu Apr 24 22:52:04 EDT 2025
Wed Jan 22 16:30:29 EST 2025
Wed Oct 30 09:53:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue F4
Keywords Terra satellite
thickness
Space remote sensing
topography
Satellite observation
ice
Valley glaciar
inventory
Polar orbiting satellite
ice sheets
Radar observation
radiometry
ice caps
Polar region
Dynamic model
radar methods
sea level
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5107-aac0537424e5cb434c32ff1d880dde89b2c19a1c5bdeea6eb78fcf4357366bc23
Notes ark:/67375/WNG-529P4KP5-7
istex:6C264FFC7C9F7CE8CBDC3FB029B7D29C34230236
ArticleID:2012JF002523
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2012JF002523
PQID 1220653030
PQPubID 54727
PageCount 10
ParticipantIDs proquest_journals_1220653030
pascalfrancis_primary_26842266
crossref_citationtrail_10_1029_2012JF002523
crossref_primary_10_1029_2012JF002523
wiley_primary_10_1029_2012JF002523_JGRF977
istex_primary_ark_67375_WNG_529P4KP5_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Earth Surface
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Jóhannesson, T., C. Raymond, and E. Waddington (1989), Time-scale for adjustment of glaciers to changes in mass balance, J. Glaciol., 35(121), 355-369.
Dowdeswell, J. A., et al. (2002), Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic, J. Geophys. Res., 107(B4), 2076, doi:10.1029/2000JB000129.
Hoelzle, M., W. Haeberli, M. Dischl, and W. Peschke (2003), Secular glacier mass balances derived from cumulative glacier length changes, Global Planet. Change, 36(4), 295-306.
Gudmundsson, G. H. (1999), A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland, J. Glaciol., 45(150), 219-230.
Kamb, B., and K. A. Echelmeyer (1986), Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope, J. Glaciol., 32, 267-284.
Bahr, D. B., M. F. Meier, and S. D. Peckham (1997), The physical basis of glacier volume-area scaling, J. Geophys. Res., 102(B9), 20,355-20,362, doi:10.1029/97JB01696.
Kalnay, E., et al. (1996), The NCEP/NCAR 40-Year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437-472.
Paterson, W. S. B. (1970), The sliding velocity of Athabasca Glacier, Canada, J. Glaciol., 9, 55-63.
Li, H., F. Ng, Z. Li, D. Qin, and G. Cheng (2012), An extended "perfect-plasticity" method for estimating ice thickness along the flow line of mountain glaciers, J. Geophys. Res., 117, F01020, doi:10.1029/2011JF002104.
Nolan, M., R. J. Motyka, K. Echelmeyer, and D. C. Trabant (1995), Ice-thickness measurements of Taku Glacier, Alaska, U.S.A., and their relevance to its recent behavior, J. Glaciol., 41, 541-553.
Glen, J. W. (1955), The creep of polycrystalline ice, Proc. R. Soc. London, 228(1175), 519-538.
Cuffey, K. M., and W. S. B. Paterson (2010), The Physics of Glaciers, 4th ed., 704 pp., Butterworth-Heinemann, Oxford, U. K.
Linsbauer, A., F. Paul, and W. Haeberli (2012), Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach, J. Geophys. Res., 117, F03007, doi:10.1029/2011JF002313.
Fujita, K., R. Suzuki, T. Nuimura, and A. Sakai (2008), Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya, J. Glaciol., 54, 220-228.
Frey, H., and F. Paul (2012), On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories, Int. J. Appl. Earth Obs. Geoinf., 18, 480-490, doi:10.1016/j.jag.2011.09.020.
Radić, V., and R. Hock (2011), Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise, Nat. Geosci., 4, 91-94, doi:10.1038/ngeo1052.
Farinotti, D., M. Huss, A. Bauder, and M. Funk (2009a), An estimate of the glacier ice volume in the Swiss Alps, Global Planet. Change, 68(3), 225-231.
Haeberli, W., and M. Hoelzle (1995), Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps, Ann. Glaciol., 21, 206-212.
Hagen, J. O., K. Melvold, F. Pinglot, and J. A. Dowdeswell (2003), On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic, Arct. Antarct. Alp. Res., 35, 264-270.
Rastner, P. N., T. Mölg, H. Machguth, and F. Paul (2012), The first complete glacier inventory for the whole of Greenland, Cryosphere Discuss., 6(4), 2399-2436.
Ohmura, A. (2010), Completing the World Glacier Inventory, Ann. Glaciol., 50(53), 144-148.
Williamson, S., M. Sharp, J. Dowdeswell, and T. Benham (2008), Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999-2003, J. Glaciol., 54, 391-400, doi:10.3189/002214308785837048.
Nye, J. F. (1965), The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section, J. Glaciol., 5(41), 661-690.
Meier, M. F., M. B. Dyurgerov, U. K. Rick, S. O'Neel, W. T. Pfeffer, R. S. Anderson, S. P. Anderson, and A. F. Glazovsky (2007), Glaciers dominate eustatic sea-level rise in the 21st century, Science, 317(5841), 1064-1067, doi:10.1126/science.1143906.
Raper, S. C. B., and R. J. Braithwaite (2005), The potential for sea level rise: New estimates from glacier and ice cap area and volume distributions, Geophys. Res. Lett., 32, L05502, doi:10.1029/2004GL021981.
Radić, V., and R. Hock (2010), Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data, J. Geophys. Res., 115, F01010, doi:10.1029/2009JF001373.
Raup, B., A. Racoviteanu, S. J. S. Khalsa, C. Helm, R. Armstrong, and Y. Arnaud (2007), The GLIMS geospatial glacier database: A new tool for studying glacier change, Global Planet. Change, 56, 101-110.
Azam, M. F., et al. (2012), From balance to imbalance: A shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India, J. Glaciol., 58(208), 315-324, doi:10.3189/2012JoG11J123.
Clarke, G. K. C., E. Berthier, C. G. Schoof, and A. H. Jarosch (2009), Neural networks applied to estimating subglacial topography and glacier volume, J. Clim., 22, 2146-2160, doi:10.1175/2008JCLI2572.1.
Macheret, Y., P. Cherkasov, and L. Bobrova (1988), Tolshchina i ob'em lednikov Dzhungarskogo Alatau po dannym aeroradiozondirovaniya, Mater. Glyatsiologicheskikh Issled., 62, 60-71.
Oerlemans, J., and J. P. F. Fortuin (1992), Sensitivity of glaciers and small ice caps to greenhouse warming, Science, 258(5079), 115-117, doi:10.1126/science.258.5079.115.
Huang, M. (1990), On the temperature distribution of glaciers in China, J. Glaciol., 36(123), 210-216.
Cogley, J. G., et al. (2011), Glossary of Glacier Mass Balance and Related Terms, IHP-VII Tech. Doc. Hydrol., vol. 86, UNESCO, Paris.
Farinotti, D., M. Huss, A. Bauder, M. Funk, and M. Truffer (2009b), A method for estimating the ice volume and ice thickness distribution of alpine glaciers, J. Glaciol., 55(191), 422-430.
1970; 9
2009; 22
2009; 68
1990; 36
2012
2010
1986; 32
2003; 35
1999; 45
2003; 36
2008
2005
2012; 18
2008; 54
2012; 58
2011; 4
2007; 56
1996; 77
1997; 102
2009; 55
1995; 41
2007; 317
1955; 228
2010; 115
1965; 5
1995; 21
1992; 258
2011; 86
1990; 193
2002; 107
2005; 32
1988; 62
2012; 6
1989; 35
2012; 117
2010; 50
Chen J. (e_1_2_8_5_1) 1990
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Macheret Y. (e_1_2_8_28_1) 1988; 62
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
Cuffey K. M. (e_1_2_8_9_1) 2010
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Huang M. (e_1_2_8_21_1) 1990; 36
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – reference: Glen, J. W. (1955), The creep of polycrystalline ice, Proc. R. Soc. London, 228(1175), 519-538.
– reference: Meier, M. F., M. B. Dyurgerov, U. K. Rick, S. O'Neel, W. T. Pfeffer, R. S. Anderson, S. P. Anderson, and A. F. Glazovsky (2007), Glaciers dominate eustatic sea-level rise in the 21st century, Science, 317(5841), 1064-1067, doi:10.1126/science.1143906.
– reference: Farinotti, D., M. Huss, A. Bauder, and M. Funk (2009a), An estimate of the glacier ice volume in the Swiss Alps, Global Planet. Change, 68(3), 225-231.
– reference: Nolan, M., R. J. Motyka, K. Echelmeyer, and D. C. Trabant (1995), Ice-thickness measurements of Taku Glacier, Alaska, U.S.A., and their relevance to its recent behavior, J. Glaciol., 41, 541-553.
– reference: Cogley, J. G., et al. (2011), Glossary of Glacier Mass Balance and Related Terms, IHP-VII Tech. Doc. Hydrol., vol. 86, UNESCO, Paris.
– reference: Fujita, K., R. Suzuki, T. Nuimura, and A. Sakai (2008), Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya, J. Glaciol., 54, 220-228.
– reference: Farinotti, D., M. Huss, A. Bauder, M. Funk, and M. Truffer (2009b), A method for estimating the ice volume and ice thickness distribution of alpine glaciers, J. Glaciol., 55(191), 422-430.
– reference: Oerlemans, J., and J. P. F. Fortuin (1992), Sensitivity of glaciers and small ice caps to greenhouse warming, Science, 258(5079), 115-117, doi:10.1126/science.258.5079.115.
– reference: Raup, B., A. Racoviteanu, S. J. S. Khalsa, C. Helm, R. Armstrong, and Y. Arnaud (2007), The GLIMS geospatial glacier database: A new tool for studying glacier change, Global Planet. Change, 56, 101-110.
– reference: Jóhannesson, T., C. Raymond, and E. Waddington (1989), Time-scale for adjustment of glaciers to changes in mass balance, J. Glaciol., 35(121), 355-369.
– reference: Kalnay, E., et al. (1996), The NCEP/NCAR 40-Year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437-472.
– reference: Li, H., F. Ng, Z. Li, D. Qin, and G. Cheng (2012), An extended "perfect-plasticity" method for estimating ice thickness along the flow line of mountain glaciers, J. Geophys. Res., 117, F01020, doi:10.1029/2011JF002104.
– reference: Huang, M. (1990), On the temperature distribution of glaciers in China, J. Glaciol., 36(123), 210-216.
– reference: Frey, H., and F. Paul (2012), On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories, Int. J. Appl. Earth Obs. Geoinf., 18, 480-490, doi:10.1016/j.jag.2011.09.020.
– reference: Radić, V., and R. Hock (2011), Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise, Nat. Geosci., 4, 91-94, doi:10.1038/ngeo1052.
– reference: Cuffey, K. M., and W. S. B. Paterson (2010), The Physics of Glaciers, 4th ed., 704 pp., Butterworth-Heinemann, Oxford, U. K.
– reference: Clarke, G. K. C., E. Berthier, C. G. Schoof, and A. H. Jarosch (2009), Neural networks applied to estimating subglacial topography and glacier volume, J. Clim., 22, 2146-2160, doi:10.1175/2008JCLI2572.1.
– reference: Haeberli, W., and M. Hoelzle (1995), Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps, Ann. Glaciol., 21, 206-212.
– reference: Gudmundsson, G. H. (1999), A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland, J. Glaciol., 45(150), 219-230.
– reference: Kamb, B., and K. A. Echelmeyer (1986), Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope, J. Glaciol., 32, 267-284.
– reference: Azam, M. F., et al. (2012), From balance to imbalance: A shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India, J. Glaciol., 58(208), 315-324, doi:10.3189/2012JoG11J123.
– reference: Hagen, J. O., K. Melvold, F. Pinglot, and J. A. Dowdeswell (2003), On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic, Arct. Antarct. Alp. Res., 35, 264-270.
– reference: Paterson, W. S. B. (1970), The sliding velocity of Athabasca Glacier, Canada, J. Glaciol., 9, 55-63.
– reference: Williamson, S., M. Sharp, J. Dowdeswell, and T. Benham (2008), Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999-2003, J. Glaciol., 54, 391-400, doi:10.3189/002214308785837048.
– reference: Linsbauer, A., F. Paul, and W. Haeberli (2012), Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach, J. Geophys. Res., 117, F03007, doi:10.1029/2011JF002313.
– reference: Ohmura, A. (2010), Completing the World Glacier Inventory, Ann. Glaciol., 50(53), 144-148.
– reference: Rastner, P. N., T. Mölg, H. Machguth, and F. Paul (2012), The first complete glacier inventory for the whole of Greenland, Cryosphere Discuss., 6(4), 2399-2436.
– reference: Dowdeswell, J. A., et al. (2002), Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic, J. Geophys. Res., 107(B4), 2076, doi:10.1029/2000JB000129.
– reference: Macheret, Y., P. Cherkasov, and L. Bobrova (1988), Tolshchina i ob'em lednikov Dzhungarskogo Alatau po dannym aeroradiozondirovaniya, Mater. Glyatsiologicheskikh Issled., 62, 60-71.
– reference: Radić, V., and R. Hock (2010), Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data, J. Geophys. Res., 115, F01010, doi:10.1029/2009JF001373.
– reference: Bahr, D. B., M. F. Meier, and S. D. Peckham (1997), The physical basis of glacier volume-area scaling, J. Geophys. Res., 102(B9), 20,355-20,362, doi:10.1029/97JB01696.
– reference: Hoelzle, M., W. Haeberli, M. Dischl, and W. Peschke (2003), Secular glacier mass balances derived from cumulative glacier length changes, Global Planet. Change, 36(4), 295-306.
– reference: Nye, J. F. (1965), The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section, J. Glaciol., 5(41), 661-690.
– reference: Raper, S. C. B., and R. J. Braithwaite (2005), The potential for sea level rise: New estimates from glacier and ice cap area and volume distributions, Geophys. Res. Lett., 32, L05502, doi:10.1029/2004GL021981.
– volume: 4
  start-page: 91
  year: 2011
  end-page: 94
  article-title: Regionally differentiated contribution of mountain glaciers and ice caps to future sea‐level rise
  publication-title: Nat. Geosci.
– volume: 115
  year: 2010
  article-title: Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data
  publication-title: J. Geophys. Res.
– volume: 54
  start-page: 220
  year: 2008
  end-page: 228
  article-title: Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya
  publication-title: J. Glaciol.
– volume: 50
  start-page: 144
  issue: 53
  year: 2010
  end-page: 148
  article-title: Completing the World Glacier Inventory
  publication-title: Ann. Glaciol.
– volume: 45
  start-page: 219
  issue: 150
  year: 1999
  end-page: 230
  article-title: A three‐dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland
  publication-title: J. Glaciol.
– volume: 317
  start-page: 1064
  issue: 5841
  year: 2007
  end-page: 1067
  article-title: Glaciers dominate eustatic sea‐level rise in the 21st century
  publication-title: Science
– volume: 22
  start-page: 2146
  year: 2009
  end-page: 2160
  article-title: Neural networks applied to estimating subglacial topography and glacier volume
  publication-title: J. Clim.
– volume: 56
  start-page: 101
  year: 2007
  end-page: 110
  article-title: The GLIMS geospatial glacier database: A new tool for studying glacier change
  publication-title: Global Planet. Change
– volume: 193
  start-page: 127
  year: 1990
  end-page: 135
– year: 2005
– volume: 77
  start-page: 437
  year: 1996
  end-page: 472
  article-title: The NCEP/NCAR 40‐Year Reanalysis Project
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 58
  start-page: 315
  issue: 208
  year: 2012
  end-page: 324
  article-title: From balance to imbalance: A shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India
  publication-title: J. Glaciol.
– volume: 6
  start-page: 2399
  issue: 4
  year: 2012
  end-page: 2436
  article-title: The first complete glacier inventory for the whole of Greenland
  publication-title: Cryosphere Discuss.
– volume: 18
  start-page: 480
  year: 2012
  end-page: 490
  article-title: On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 107
  issue: B4
  year: 2002
  article-title: Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic
  publication-title: J. Geophys. Res.
– volume: 35
  start-page: 355
  issue: 121
  year: 1989
  end-page: 369
  article-title: Time‐scale for adjustment of glaciers to changes in mass balance
  publication-title: J. Glaciol.
– volume: 117
  year: 2012
  article-title: An extended “perfect‐plasticity” method for estimating ice thickness along the flow line of mountain glaciers
  publication-title: J. Geophys. Res.
– volume: 9
  start-page: 55
  year: 1970
  end-page: 63
  article-title: The sliding velocity of Athabasca Glacier, Canada
  publication-title: J. Glaciol.
– start-page: 197
  year: 2012
  end-page: 222
– year: 2010
– year: 2012
– volume: 102
  start-page: 20,355
  issue: B9
  year: 1997
  end-page: 20,362
  article-title: The physical basis of glacier volume‐area scaling
  publication-title: J. Geophys. Res.
– volume: 68
  start-page: 225
  issue: 3
  year: 2009
  end-page: 231
  article-title: An estimate of the glacier ice volume in the Swiss Alps
  publication-title: Global Planet. Change
– volume: 36
  start-page: 210
  issue: 123
  year: 1990
  end-page: 216
  article-title: On the temperature distribution of glaciers in China
  publication-title: J. Glaciol.
– volume: 258
  start-page: 115
  issue: 5079
  year: 1992
  end-page: 117
  article-title: Sensitivity of glaciers and small ice caps to greenhouse warming
  publication-title: Science
– volume: 35
  start-page: 264
  year: 2003
  end-page: 270
  article-title: On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic
  publication-title: Arct. Antarct. Alp. Res.
– year: 2008
– volume: 117
  year: 2012
  article-title: Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach
  publication-title: J. Geophys. Res.
– volume: 32
  start-page: 267
  year: 1986
  end-page: 284
  article-title: Stress‐gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope
  publication-title: J. Glaciol.
– volume: 228
  start-page: 519
  issue: 1175
  year: 1955
  end-page: 538
  article-title: The creep of polycrystalline ice
  publication-title: Proc. R. Soc. London
– volume: 21
  start-page: 206
  year: 1995
  end-page: 212
  article-title: Application of inventory data for estimating characteristics of and regional climate‐change effects on mountain glaciers: A pilot study with the European Alps
  publication-title: Ann. Glaciol.
– volume: 36
  start-page: 295
  issue: 4
  year: 2003
  end-page: 306
  article-title: Secular glacier mass balances derived from cumulative glacier length changes
  publication-title: Global Planet. Change
– volume: 54
  start-page: 391
  year: 2008
  end-page: 400
  article-title: Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999–2003
  publication-title: J. Glaciol.
– volume: 41
  start-page: 541
  year: 1995
  end-page: 553
  article-title: Ice‐thickness measurements of Taku Glacier, Alaska, U.S.A., and their relevance to its recent behavior
  publication-title: J. Glaciol.
– volume: 86
  year: 2011
– volume: 62
  start-page: 60
  year: 1988
  end-page: 71
  article-title: Tolshchina i ob'em lednikov Dzhungarskogo Alatau po dannym aeroradiozondirovaniya
  publication-title: Mater. Glyatsiologicheskikh Issled.
– volume: 5
  start-page: 661
  issue: 41
  year: 1965
  end-page: 690
  article-title: The flow of a glacier in a channel of rectangular, elliptic or parabolic cross‐section
  publication-title: J. Glaciol.
– volume: 32
  year: 2005
  article-title: The potential for sea level rise: New estimates from glacier and ice cap area and volume distributions
  publication-title: Geophys. Res. Lett.
– volume: 55
  start-page: 422
  issue: 191
  year: 2009
  end-page: 430
  article-title: A method for estimating the ice volume and ice thickness distribution of alpine glaciers
  publication-title: J. Glaciol.
– ident: e_1_2_8_39_1
  doi: 10.1016/j.gloplacha.2006.07.018
– ident: e_1_2_8_31_1
  doi: 10.1017/S0022143000018670
– ident: e_1_2_8_37_1
  doi: 10.1029/2004GL021981
– ident: e_1_2_8_24_1
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– ident: e_1_2_8_3_1
  doi: 10.3189/2012JoG11J123
– ident: e_1_2_8_27_1
  doi: 10.1029/2011JF002313
– ident: e_1_2_8_35_1
  doi: 10.1029/2009JF001373
– ident: e_1_2_8_11_1
– ident: e_1_2_8_12_1
  doi: 10.1016/j.gloplacha.2009.05.004
– ident: e_1_2_8_7_1
  doi: 10.1016/B978-0-12-386917-3.00008-7
– ident: e_1_2_8_16_1
  doi: 10.1098/rspa.1955.0066
– ident: e_1_2_8_25_1
  doi: 10.1017/S0022143000015604
– ident: e_1_2_8_41_1
  doi: 10.3189/002214308785837048
– ident: e_1_2_8_22_1
– ident: e_1_2_8_33_1
  doi: 10.3189/172756410790595840
– ident: e_1_2_8_38_1
  doi: 10.5194/tcd-6-2399-2012
– ident: e_1_2_8_19_1
  doi: 10.1657/1523-0430(2003)035[0264:OTNMBO]2.0.CO;2
– ident: e_1_2_8_40_1
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jag.2011.09.020
– ident: e_1_2_8_23_1
  doi: 10.1017/S002214300000928X
– ident: e_1_2_8_20_1
  doi: 10.1016/S0921-8181(02)00223-0
– ident: e_1_2_8_36_1
  doi: 10.1038/ngeo1052
– ident: e_1_2_8_26_1
  doi: 10.1029/2011JF002104
– ident: e_1_2_8_34_1
  doi: 10.1017/S0022143000026794
– ident: e_1_2_8_2_1
– volume: 36
  start-page: 210
  issue: 123
  year: 1990
  ident: e_1_2_8_21_1
  article-title: On the temperature distribution of glaciers in China
  publication-title: J. Glaciol.
  doi: 10.3189/S002214300000945X
– ident: e_1_2_8_6_1
  doi: 10.1175/2008JCLI2572.1
– volume: 62
  start-page: 60
  year: 1988
  ident: e_1_2_8_28_1
  article-title: Tolshchina i ob'em lednikov Dzhungarskogo Alatau po dannym aeroradiozondirovaniya
  publication-title: Mater. Glyatsiologicheskikh Issled.
– volume-title: The Physics of Glaciers
  year: 2010
  ident: e_1_2_8_9_1
– ident: e_1_2_8_4_1
  doi: 10.1029/97JB01696
– ident: e_1_2_8_32_1
  doi: 10.1126/science.258.5079.115
– ident: e_1_2_8_8_1
– ident: e_1_2_8_13_1
  doi: 10.3189/002214309788816759
– ident: e_1_2_8_29_1
  doi: 10.1126/science.1143906
– ident: e_1_2_8_15_1
  doi: 10.3189/002214308784886162
– ident: e_1_2_8_17_1
  doi: 10.3189/002214399793377086
– ident: e_1_2_8_10_1
  doi: 10.1029/2000JB000129
– ident: e_1_2_8_30_1
  doi: 10.1017/S0022143000034870
– start-page: 127
  volume-title: Hydrology in Mountainous Regions I
  year: 1990
  ident: e_1_2_8_5_1
– ident: e_1_2_8_18_1
  doi: 10.1017/S0260305500015834
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816912
Score 2.5555785
Snippet A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide....
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Cryosphere
Earth sciences
Earth, ocean, space
Exact sciences and technology
External geophysics
glacier ice volume
glacier inventory
Glaciers
global assessment
Ice
Ice caps
Ice thickness
ice thickness distribution
Remote sensing
Sea level rise
Topography
water resources
Title Distributed ice thickness and volume of all glaciers around the globe
URI https://api.istex.fr/ark:/67375/WNG-529P4KP5-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JF002523
https://www.proquest.com/docview/1220653030
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07b9swED408dKlSNEGVZMaHNoOLYREpEiRU9GH5cBBDCNIkGwERVJLDDuxU6A_v3cS7cZDs2k4CsId78Hj6fsAPnITCYQ94rGkVTlmvCbXQoW8aAOXQTtXdej8F1N1dl1ObuVtarit01jlJiZ2gTosPfXITwrOCUYV9-S3-4ecWKPodjVRaOzBAEOwxsPX4MdoOrvcdlmIVsJ0V54cH3Jq26Xp91Nu8OBf8ElNaZ-Lnbw0IBX_oTlJt0ZVtT3HxU4R-rSU7XJRfQCvUhHJvvdWfw0v4uINjH4RBi7RV8XA0P0ZTbLfUSRjbhFYH4bYsmVuPmdYNHsiwWZuRbxKKBsZYYPEt3Bdj65-nuWJJCH36E5V7pwnSJaSl1H6phSlF7xti4B-iZFLm4b7wrjCyybE6FRsKt36FoukSijVeC4OYX-xXMR3wIQX0jsXFf0wq4zXQTjhg2wMP_Xa6wy-blRkfUIQJyKLue1usrmxTxWawaet9H2PnPEfuc-dtrdCbnVH02aVtDfTsZXczMrzmbRVBsMdc2wXEGANVpEqg-ONfWzyxLX9t28y-NLZ7NmvsZPxZY018fvn33UEL2lVP9dyDPuPq9_xA1Ynj80Q9nQ9HqaN-BffU96b
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hOMClomorUij1oXBoFUHs2IkPFaoK2WUXVqgClZvr2M6F1S7sUrX9U_2NzORjyx7KjVsOEyvyjGde7PF7AB-4DkTCHvC3pFIxVrwyzoXycVJ5Ln1ubVaz85-PVP8qHVzL6xX4292FobbKLifWidpPHe2RHyScE40qxuTR7V1MqlF0utpJaDRhMQx_fuEv2_zz6TH6d4_z4uTyaz9uVQVih_GXxdY64jBJeRqkK1OROsGrKvEYyLjUc11yl2ibOFn6EKwKZZZXrkJUkQmlSkdEB5jy11IhNK2ovOgt9nRIxELXB6wcH2LaJGx77Q-5PsBSywcFgQwulqrgGjn0N3Vl2jk6pmoUNZYg72PgXFe-YhNetJCVfWli7CWshMkrODkmxl0SywqeYbJh1Dd_Q3mT2YlnTdJj04rZ8ZghRHckuc3sjFSc0DYwYiIJr-HqWSbvDaxOppOwBUw4IZ21QdH1XKVd7oUVzstS80OXuzyCT90UGdfylZNsxtjU5-Zcm8cTGsHewvq24en4j91-PdsLIzu7od62TJrvo56RXF-kwwtpsgh2l9yxeIHocRCzqgh2Ov-Ydt3Pzb8ojeBj7bMnv8YMet8KROBvnx7rPaz3L8_PzNnpaLgNGzRC01GzA6v3s5_hHeKi-3K3DkYGP547-h8ABr4aWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1ViYS4IBAgFkrxgXIArZK1197dA0JAsm0TiKKKit6M1x-XRklJioC_xq9jZj9Cc6C33vYwu1p5xjPP9vg9gJe88ETC7nFZElSMFa-Kc6FcnATHpcuNyWp2_s8zdXyWTs7l-R786e7CUFtllxPrRO1WlvbIBwnnRKOKMTkIbVvEfFS-u_wek4IUnbR2chpNiEz975-4fNu8PRmhrw85L8dfPh7HrcJAbDEWs9gYS3wmKU-9tFUqUit4CInDoMZpnxcVt0lhEisr571RvsryYAMijEwoVVkiPcD0389wVTTsQf_DeDY_3e7wkKRFUR-3cnyIacuw7bwf8mKAhZdPSoIcXOzUxD659xf1aJoNuik0-ho7APg6jK7rYHkf7rUAlr1vIu4B7PnlQxiPiH-XpLO8Y5h6GHXRX1AWZWbpWJMC2Sows1gwBOyWBLiZWZOmE9p6Rrwk_hGc3crwPYbecrX0T4AJK6Q1xiu6rKsKmzthhHWyKvjQ5jaP4E03RNq27OUkorHQ9Sk6L_T1AY3gcGt92bB2_MfuVT3aWyOzvqBOt0zqr7MjLXkxT6dzqbMIDnbcsX2ByHIQwaoI9jv_6DYLbPS_mI3gde2zG_9GT45OS8TjT2_-1gu4g5GvP53Mps_gLn2gaa_Zh97V-od_jiDpqjpoo5HBt9ueAH8BFdAf6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+ice+thickness+and+volume+of+all+glaciers+around+the+globe&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Huss%2C+Matthias&rft.au=Farinotti%2C+Daniel&rft.date=2012-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=F4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2012JF002523&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_529P4KP5_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon