Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease—A simultaneous resting‐state FDG‐PET/fMRI study

A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of si...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 42; no. 13; pp. 4134 - 4143
Main Authors Scherr, Martin, Utz, Lukas, Tahmasian, Masoud, Pasquini, Lorenzo, Grothe, Michel J., Rauschecker, Josef P., Grimmer, Timo, Drzezga, Alexander, Sorg, Christian, Riedl, Valentin
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting‐state functional MRI and FDG‐PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.
AbstractList A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting‐state functional MRI and FDG‐PET data from patients with early AD ( n  = 35) and healthy subjects ( n  = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex ( p  < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures ( F 4,25  = 5.63, p  = 0.002, r 2  = 0.47), we found that EC ( β  = 0.45, p  = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.
A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F[sub.4,25] = 5.63, p = 0.002, r[sup.2] = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.
A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25  = 5.63, p = 0.002, r2  = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25  = 5.63, p = 0.002, r2  = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.
A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting‐state functional MRI and FDG‐PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.
A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F  = 5.63, p = 0.002, r  = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.
Audience Academic
Author Utz, Lukas
Grimmer, Timo
Drzezga, Alexander
Riedl, Valentin
Scherr, Martin
Tahmasian, Masoud
Sorg, Christian
Pasquini, Lorenzo
Rauschecker, Josef P.
Grothe, Michel J.
AuthorAffiliation 11 Department of Nuclear Medicine Technische Universität München (TUM) München Germany
3 Department of Neurology, Christian Doppler Medical Centre Paracelsus Medical University Salzburg and Centre for Cognitive Neurosciences Salzburg Austria
6 Institute of Medical Science and Technology Shahid Beheshti University Tehran Iran
9 Laboratory of Integrative Neuroscience and Cognition Georgetown University Medical Center Washington District of Columbia
4 Department of Neuroradiology Technische Universität München (TUM) München Germany
10 Department of Nuclear Medicine Uniklinik Köln Köln Germany
7 Memory and Aging Center, Department of Neurology University of California San Francisco California
8 Department for Clinical Research, German Center for Neurodegenerative Diseases (DZNE) Rostock Germany
5 Institute for Advanced Study Technische Universität München (TUM) München Germany
1 Present address: Department of Psychiatry and Psychotherapy Technische Universität München (TUM) München Germany
2 TUM‐Neu
AuthorAffiliation_xml – name: 11 Department of Nuclear Medicine Technische Universität München (TUM) München Germany
– name: 9 Laboratory of Integrative Neuroscience and Cognition Georgetown University Medical Center Washington District of Columbia
– name: 6 Institute of Medical Science and Technology Shahid Beheshti University Tehran Iran
– name: 8 Department for Clinical Research, German Center for Neurodegenerative Diseases (DZNE) Rostock Germany
– name: 7 Memory and Aging Center, Department of Neurology University of California San Francisco California
– name: 4 Department of Neuroradiology Technische Universität München (TUM) München Germany
– name: 2 TUM‐Neuroimaging Center (TUM‐NIC), Klinikum Rechts der Isar München Germany
– name: 5 Institute for Advanced Study Technische Universität München (TUM) München Germany
– name: 1 Present address: Department of Psychiatry and Psychotherapy Technische Universität München (TUM) München Germany
– name: 3 Department of Neurology, Christian Doppler Medical Centre Paracelsus Medical University Salzburg and Centre for Cognitive Neurosciences Salzburg Austria
– name: 10 Department of Nuclear Medicine Uniklinik Köln Köln Germany
Author_xml – sequence: 1
  givenname: Martin
  surname: Scherr
  fullname: Scherr, Martin
  organization: Paracelsus Medical University Salzburg and Centre for Cognitive Neurosciences
– sequence: 2
  givenname: Lukas
  surname: Utz
  fullname: Utz, Lukas
  organization: Technische Universität München (TUM)
– sequence: 3
  givenname: Masoud
  orcidid: 0000-0002-8304-2876
  surname: Tahmasian
  fullname: Tahmasian, Masoud
  organization: Shahid Beheshti University
– sequence: 4
  givenname: Lorenzo
  surname: Pasquini
  fullname: Pasquini, Lorenzo
  organization: University of California
– sequence: 5
  givenname: Michel J.
  orcidid: 0000-0003-2600-9022
  surname: Grothe
  fullname: Grothe, Michel J.
  organization: Department for Clinical Research, German Center for Neurodegenerative Diseases (DZNE)
– sequence: 6
  givenname: Josef P.
  surname: Rauschecker
  fullname: Rauschecker, Josef P.
  organization: Georgetown University Medical Center
– sequence: 7
  givenname: Timo
  surname: Grimmer
  fullname: Grimmer, Timo
  organization: TUM‐Neuroimaging Center (TUM‐NIC), Klinikum Rechts der Isar
– sequence: 8
  givenname: Alexander
  surname: Drzezga
  fullname: Drzezga, Alexander
  organization: Uniklinik Köln
– sequence: 9
  givenname: Christian
  surname: Sorg
  fullname: Sorg, Christian
  organization: Technische Universität München (TUM)
– sequence: 10
  givenname: Valentin
  orcidid: 0000-0002-2861-8449
  surname: Riedl
  fullname: Riedl, Valentin
  email: valentin.riedl@mytum.de
  organization: Technische Universität München (TUM)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30697878$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNURH9gwQsgSyyAxczYSRzHm0pDmf5IrUCorC3HuZ5xSewhdloNqz4CC1Y8Xp8EZ6YUWgHywjf2d0587LubbFlnIUmeEzwmGKeTRdWO05wS9ijZIZizESY82xrqgo54zsh2suv9BcaEUEyeJNsZLjgrWbmT_JhpDSqYS0DKWbsuTVghY1FYAKpBy74JqHU1IAvhynWfkfGoNj4Yu9Y1q-Gr65cB6kE2bb4uwLTQvVpjID3cXH-fIm_a6CQtuN6jDgb9_Ob6mw8yADp8dxTrD7PziT77eIJ86OvV0-Sxlo2HZ7fzXvLpcHZ-cDw6fX90cjA9HSlKMBvlpCwkllBnpeS0lqWmrNR5kUmKVa0qTHLIVJprKKWiPKtKxXNepVhpXmBaZXvJ_sZ32Vct1Aps6GQjlp1pZbcSThpxf8eahZi7S1FmlGFMo8HrW4POfeljMtEar6BpNmFFShinJCeYRPTlA_TC9Z2N8URKC4xZmqb0NzWXDQhjtYv_VYOpmDKCY4g85ZEa_4WKo4bWxMcEbeL6PcGLP4PeJfzVDRF4swFU57zvQN8hBIuh00TsNLHutMhOHrDKxKc0brgj0_xPcRXPtfq3tTh-e7ZR_ASe_-jR
CitedBy_id crossref_primary_10_3390_brainsci13020265
crossref_primary_10_7554_eLife_52443
crossref_primary_10_1016_j_neurobiolaging_2020_12_021
crossref_primary_10_1093_brain_awab294
crossref_primary_10_1016_j_compbiomed_2025_109898
crossref_primary_10_3174_ajnr_A7707
crossref_primary_10_3390_diagnostics14060585
crossref_primary_10_1016_j_jneumeth_2025_110406
crossref_primary_10_1038_s44220_024_00259_5
crossref_primary_10_2174_1567205017666201215140625
crossref_primary_10_1038_s42003_022_03434_5
crossref_primary_10_1016_j_neuri_2022_100104
crossref_primary_10_1109_TNNLS_2022_3221617
crossref_primary_10_3389_frdem_2022_983331
crossref_primary_10_3390_genes16020135
crossref_primary_10_1038_s41467_020_15701_2
crossref_primary_10_1109_JBHI_2019_2946676
crossref_primary_10_1007_s12264_022_00905_x
crossref_primary_10_1109_TASE_2024_3425949
crossref_primary_10_3389_fneur_2022_1009574
crossref_primary_10_1002_VIW_20230025
crossref_primary_10_1016_j_heliyon_2023_e18121
crossref_primary_10_1002_brb3_70356
crossref_primary_10_1016_j_nicl_2022_102977
crossref_primary_10_3390_brainsci12020146
crossref_primary_10_1007_s40520_024_02805_8
crossref_primary_10_1016_j_jad_2023_02_091
crossref_primary_10_3233_JAD_221185
crossref_primary_10_1109_TNNLS_2021_3106299
crossref_primary_10_1016_j_cub_2024_03_032
crossref_primary_10_3389_fnins_2022_824152
crossref_primary_10_3389_fnins_2020_00185
crossref_primary_10_3389_fnagi_2019_00307
crossref_primary_10_1007_s00259_022_05692_1
crossref_primary_10_18632_aging_202580
crossref_primary_10_1002_hbm_26604
crossref_primary_10_1080_14737175_2023_2174016
crossref_primary_10_1016_j_ejrad_2022_110594
Cites_doi 10.1002/hbm.20531
10.1038/416535a
10.1212/WNL.0000000000004643
10.1038/nature05289
10.1016/j.neuroimage.2006.05.033
10.1016/j.neuroimage.2013.05.011
10.1152/jn.00077.2008
10.1093/brain/awr066
10.1002/hbm.20883
10.1093/brain/awu103
10.1016/S0896-6273(02)00569-X
10.1002/hbm.23018
10.1111/j.1749-6632.2000.tb05559.x
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2012.10.071
10.1016/j.neuron.2012.03.004
10.1016/j.jalz.2011.03.008
10.1016/S0166-2236(02)02264-6
10.1016/j.neuron.2010.02.005
10.1097/00004647-200110000-00001
10.1073/pnas.1513752113
10.1016/j.neuron.2009.03.024
10.3233/JAD-170096
10.1523/JNEUROSCI.3539-11.2011
10.1148/radiol.10091701
10.1002/ana.20009
10.1038/nrn3785
10.1002/hbm.22234
10.1016/j.neulet.2014.06.043
10.1016/j.nicl.2014.02.010
10.1016/j.neuroimage.2010.02.046
10.1073/pnas.1520613113
10.1371/journal.pbio.0060159
10.1073/pnas.0308627101
10.1371/journal.pcbi.1003956
10.1073/pnas.1303346110
10.1016/j.neuropsychologia.2006.06.017
10.1074/jbc.M808759200
10.1093/cercor/bhn059
10.1093/brain/awq075
10.1523/JNEUROSCI.2170-12.2012
10.1038/nrn3338
10.1016/j.neubiorev.2016.11.023
10.1523/JNEUROSCI.0492-14.2014
10.1016/j.dadm.2016.11.006
10.1371/journal.pone.0025031
10.1073/pnas.0914892107
10.1016/j.neuroimage.2010.08.063
10.1016/j.neuron.2011.12.040
10.1007/BF00308809
10.1523/JNEUROSCI.2177-05.2005
10.1016/j.jalz.2014.02.007
10.1016/j.neuron.2016.01.028
10.1002/ana.22615
10.1073/pnas.0708803104
10.1016/j.clinph.2004.09.022
10.1038/nrn3887
10.1016/j.neuroimage.2011.07.044
10.1038/nn.2583
10.1038/nrn2786
10.1523/JNEUROSCI.0639-16.2016
10.1093/brain/awt286
10.3389/fnsys.2011.00002
10.3233/JAD-180022
10.1177/0271678X18759182
10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
10.1146/annurev.neuro.29.051605.112819
10.1016/S1474-4422(11)70158-2
10.1016/j.celrep.2015.04.017
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
COPYRIGHT 2019 John Wiley & Sons, Inc.
2021. This work is published under https://onlinelibrary.wiley.com/terms-and-conditions (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: COPYRIGHT 2019 John Wiley & Sons, Inc.
– notice: 2021. This work is published under https://onlinelibrary.wiley.com/terms-and-conditions (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1002/hbm.24517
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic


Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Scherr et al
EISSN 1097-0193
EndPage 4143
ExternalDocumentID PMC8357005
A710593429
30697878
10_1002_hbm_24517
HBM24517
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union Seventh Framework Programme
  funderid: n 291763
– fundername: Technische Universität Muenchen—Institute for Advanced Study
– fundername: German Research Foundation
  funderid: 273427765
– fundername: Bundesministerium für Bildung und Forschung
  funderid: 01EV0710
– fundername: Deutsche Forschungsgemeinschaft
  funderid: 273427765
– fundername: Federal Ministry of Education and Science
  funderid: BMBF 01EV0710
– fundername: ;
  grantid: 01EV0710
– fundername: ;
  grantid: n 291763
– fundername: ;
  grantid: 273427765
– fundername: ;
  grantid: BMBF 01EV0710
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c5107-4186a0aed38a95da8f578f463a50cdcb014e3c24fe8ac593b8c949b20cf9605b3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 13:59:40 EDT 2025
Fri Jul 11 16:58:57 EDT 2025
Sat Jul 26 02:23:56 EDT 2025
Tue Jun 17 21:37:33 EDT 2025
Tue Jun 10 20:49:28 EDT 2025
Mon Jul 21 06:08:09 EDT 2025
Thu Apr 24 23:13:26 EDT 2025
Tue Jul 01 01:10:53 EDT 2025
Wed Jan 22 16:57:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords simultaneous PET/fMRI
resting state
directional signaling
default mode network
energy metabolism
effective connectivity
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5107-4186a0aed38a95da8f578f463a50cdcb014e3c24fe8ac593b8c949b20cf9605b3
Notes Funding information
Bundesministerium für Bildung und Forschung, Grant/Award Number: 01EV0710; Deutsche Forschungsgemeinschaft, Grant/Award Number: 273427765; German Research Foundation, Grant/Award Number: 273427765; European Union Seventh Framework Programme, Grant/Award Number: n 291763; Technische Universität Muenchen—Institute for Advanced Study; Federal Ministry of Education and Science, Grant/Award Number: BMBF 01EV0710
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Martin Scherr, Lukas Utz, Christian Sorg, and Valentin Riedl authors contributed equally to this study.
Funding information Bundesministerium für Bildung und Forschung, Grant/Award Number: 01EV0710; Deutsche Forschungsgemeinschaft, Grant/Award Number: 273427765; German Research Foundation, Grant/Award Number: 273427765; European Union Seventh Framework Programme, Grant/Award Number: n 291763; Technische Universität Muenchen—Institute for Advanced Study; Federal Ministry of Education and Science, Grant/Award Number: BMBF 01EV0710
ORCID 0000-0002-8304-2876
0000-0003-2600-9022
0000-0002-2861-8449
OpenAccessLink https://www.proquest.com/docview/2560072225?pq-origsite=%requestingapplication%
PMID 30697878
PQID 2560072225
PQPubID 996345
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8357005
proquest_miscellaneous_2179514101
proquest_journals_2560072225
gale_infotracmisc_A710593429
gale_infotracacademiconefile_A710593429
pubmed_primary_30697878
crossref_primary_10_1002_hbm_24517
crossref_citationtrail_10_1002_hbm_24517
wiley_primary_10_1002_hbm_24517_HBM24517
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 11
2007; 104
2014; 578
2010; 13
2010; 107
2013; 66
2006; 32
2017; 89
1999; 45
2011; 10
2011; 54
2008; 6
2012; 59
2008; 100
2012; 13
2016; 37
2016; 36
2014; 137
2005; 25
2000; 924
2017; 72
2010; 65
2014; 4
2011; 70
2016; 113
2014; 15
2006; 29
2009; 284
2013; 110
2009; 19
2014; 10
2016; 89
2006; 443
2004; 101
2010; 31
2015; 16
2009; 62
2011
2015; 11
2005; 116
2002; 33
2011; 31
1991; 82
2008
2002; 416
2011; 6
2011; 5
2018; 64
2011; 134
2012; 32
2011; 7
2001; 21
2012; 73
2004; 55
2016; 5
2002; 25
2009; 30
2017; 58
2006; 44
2010; 256
2010; 133
2018
2013; 81
2014; 35
2014; 34
2010; 51
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
Göttler J (e_1_2_6_18_1) 2008
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – year: 2011
– volume: 37
  start-page: 35
  year: 2016
  end-page: 53
  article-title: Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks
  publication-title: Human Brain Mapping
– volume: 137
  start-page: 221
  year: 2014
  end-page: 231
  article-title: Effect of amyloid on memory and non‐memory decline from preclinical to clinical Alzheimer's disease
  publication-title: Brain
– volume: 284
  start-page: 12845
  year: 2009
  end-page: 12852
  article-title: Propagation of tau misfolding from the outside to the inside of a cell
  publication-title: The Journal of Biological Chemistry
– volume: 89
  start-page: 2031
  year: 2017
  end-page: 2038
  article-title: In vivo staging of regional amyloid deposition
  publication-title: Neurology
– volume: 32
  start-page: 16265
  year: 2012
  end-page: 16273
  article-title: Region‐specific hierarchy between atrophy, hypometabolism, and β‐amyloid (Aβ) load in Alzheimer's disease dementia
  publication-title: The Journal of Neuroscience
– volume: 21
  start-page: 1133
  year: 2001
  end-page: 1145
  article-title: An energy budget for signaling in the grey matter of the brain
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 70
  start-page: 532
  year: 2011
  end-page: 540
  article-title: Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders
  publication-title: Annals of Neurology
– volume: 5
  start-page: 35
  year: 2016
  end-page: 42
  article-title: Degradation in intrinsic connectivity networks across the Alzheimer's disease spectrum
  publication-title: Alzheimers Dement (Amst)
– volume: 29
  start-page: 449
  year: 2006
  end-page: 476
  article-title: Brain work and brain imaging
  publication-title: Annual Review of Neuroscience
– volume: 256
  start-page: 598
  year: 2010
  end-page: 606
  article-title: Resting brain connectivity: Changes during the progress of Alzheimer disease
  publication-title: Radiology
– volume: 924
  start-page: 42
  year: 2000
  end-page: 52
  article-title: A plasticity‐based theory of the pathogenesis of Alzheimer's disease
  publication-title: Annals of the New York Academy of Sciences
– volume: 11
  start-page: 859
  year: 2015
  end-page: 865
  article-title: Chronic optogenetic activation augments abeta pathology in a mouse model of Alzheimer disease
  publication-title: Cell Reports
– volume: 51
  start-page: 910
  year: 2010
  end-page: 917
  article-title: Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals
  publication-title: NeuroImage
– volume: 59
  start-page: 431
  year: 2012
  end-page: 438
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: NeuroImage
– volume: 73
  start-page: 1216
  year: 2012
  end-page: 1227
  article-title: Predicting regional neurodegeneration from the healthy brain functional connectome
  publication-title: Neuron
– volume: 4
  start-page: 473
  year: 2014
  end-page: 480
  article-title: Deficits in episodic memory retrieval reveal impaired default mode network connectivity in amnestic mild cognitive impairment
  publication-title: NeuroImage: Clinical
– volume: 11
  start-page: 475
  year: 2015
  end-page: 484
  article-title: Link between hippocampus' raised local and eased global intrinsic connectivity in AD
  publication-title: Alzheimers Dement
– volume: 35
  start-page: 1061
  year: 2014
  end-page: 1073
  article-title: The parahippocampal gyrus links the default‐mode cortical network with the medial temporal lobe memory system
  publication-title: Human Brain Mapping
– volume: 6
  start-page: e159
  year: 2008
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biology
– volume: 443
  start-page: 768
  year: 2006
  end-page: 773
  article-title: A network dysfunction perspective on neurodegenerative diseases
  publication-title: Nature
– volume: 34
  start-page: 6260
  year: 2014
  end-page: 6266
  article-title: Local activity determines functional connectivity in the resting human brain: A simultaneous FDG‐PET/fMRI study
  publication-title: The Journal of Neuroscience
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 15
  start-page: 655
  year: 2014
  end-page: 669
  article-title: Functional organization of the hippocampal longitudinal axis
  publication-title: Nature Reviews. Neuroscience
– volume: 578
  start-page: 171
  year: 2014
  end-page: 175
  article-title: Altered effective connectivity patterns of the default mode network in Alzheimer's disease: An fMRI study
  publication-title: Neuroscience Letters
– volume: 44
  start-page: 2836
  year: 2006
  end-page: 2845
  article-title: How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations
  publication-title: Neuropsychologia
– volume: 36
  start-page: 7364
  year: 2016
  end-page: 7374
  article-title: In vivo tau, amyloid, and gray matter profiles in the aging brain
  publication-title: Journal of Neuroscience
– volume: 30
  start-page: 625
  year: 2009
  end-page: 637
  article-title: Functional connectivity of default mode network components: Correlation, anticorrelation, and causality
  publication-title: Human Brain Mapping
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  article-title: Whole brain segmentation
  publication-title: Neuron
– volume: 64
  start-page: 405
  year: 2018
  end-page: 415
  article-title: Decoupling of local metabolic activity and functional connectivity links to amyloid in Alzheimer's disease
  publication-title: Journal of Alzheimer's Disease
– volume: 89
  start-page: 971
  year: 2016
  end-page: 982
  article-title: PET imaging of tau deposition in the aging human brain
  publication-title: Neuron
– volume: 11
  start-page: 155
  year: 2010
  end-page: 159
  article-title: Prion‐like mechanisms in neurodegenerative diseases
  publication-title: Nature Reviews. Neuroscience
– volume: 116
  start-page: 708
  year: 2005
  end-page: 715
  article-title: Disturbed fluctuations of resting state EEG synchronization in Alzheimer's disease
  publication-title: Clinical Neurophysiology
– volume: 65
  start-page: 550
  year: 2010
  end-page: 562
  article-title: Functional‐anatomic fractionation of the brain's default network
  publication-title: Neuron
– volume: 31
  start-page: 515
  year: 2010
  end-page: 525
  article-title: Sensorimotor network rewiring in mild cognitive impairment and Alzheimer's disease
  publication-title: Human Brain Mapping
– volume: 58
  start-page: 763
  year: 2017
  end-page: 773
  article-title: Individual correspondence of amyloid‐beta and Intrinsic connectivity in the posterior default mode network across stages of Alzheimer's disease
  publication-title: Journal of Alzheimer's Disease
– volume: 113
  start-page: 4518
  year: 2016
  end-page: 4523
  article-title: Tracking brain arousal fluctuations with fMRI
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 31
  start-page: 15775
  year: 2011
  end-page: 15786
  article-title: Rich‐club organization of the human connectome
  publication-title: The Journal of Neuroscience
– year: 2008
  article-title: “Flow‐Metabolism Uncoupling in Patients with Asymptomatic Unilateral Carotid Artery Stenosis Assessed by Multi‐Modal Magnetic Resonance Imaging”
  publication-title: Journal of Cerebral Blood Flow & Metabolism
– volume: 101
  start-page: 4637
  year: 2004
  end-page: 4642
  article-title: Default‐mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 133
  start-page: 1352
  year: 2010
  end-page: 1367
  article-title: Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease
  publication-title: Brain
– volume: 134
  start-page: 1635
  year: 2011
  end-page: 1646
  article-title: Neuronal dysfunction and disconnection of cortical hubs in non‐demented subjects with elevated amyloid burden
  publication-title: Brain
– volume: 62
  start-page: 42
  year: 2009
  end-page: 52
  article-title: Neurodegenerative diseases target large‐scale human brain networks
  publication-title: Neuron
– volume: 5
  start-page: 2
  year: 2011
  article-title: A baseline for the multivariate comparison of resting‐state networks
  publication-title: Frontiers in Systems Neuroscience
– volume: 32
  start-page: 1335
  year: 2006
  end-page: 1344
  article-title: Magnetoencephalographic evaluation of resting‐state functional connectivity in Alzheimer's disease
  publication-title: NeuroImage
– volume: 25
  start-page: 621
  year: 2002
  end-page: 625
  article-title: The neural basis of functional brain imaging signals
  publication-title: Trends in Neurosciences
– volume: 104
  start-page: 18760
  year: 2007
  end-page: 18765
  article-title: Selective changes of resting‐state networks in individuals at risk for Alzheimer's disease
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 54
  start-page: 875
  year: 2011
  end-page: 891
  article-title: Network modelling methods for FMRI
  publication-title: NeuroImage
– volume: 13
  start-page: 713
  year: 2012
  end-page: 726
  article-title: Two cortical systems for memory‐guided behaviour
  publication-title: Nature Reviews. Neuroscience
– volume: 7
  start-page: 270
  year: 2011
  end-page: 279
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimer's & Dementia
– start-page: 0271678X1875918
  year: 2018
  article-title: Reduced blood oxygenation level dependent connectivity is related to hypoperfusion in Alzheimer's disease
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 110
  start-page: 13642
  year: 2013
  end-page: 13647
  article-title: Energetic cost of brain functional connectivity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 55
  start-page: 306
  year: 2004
  end-page: 319
  article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound‐B
  publication-title: Annals of Neurology
– volume: 25
  start-page: 7709
  year: 2005
  end-page: 7717
  article-title: Molecular, structural, and functional characterization of Alzheimer's disease: Evidence for a relationship between default activity, amyloid, and memory
  publication-title: The Journal of Neuroscience
– volume: 137
  start-page: 2052
  year: 2014
  end-page: 2064
  article-title: Within‐patient correspondence of amyloid‐β and intrinsic network connectivity in Alzheimer's disease
  publication-title: Brain
– volume: 100
  start-page: 129
  year: 2008
  end-page: 139
  article-title: Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
– volume: 416
  start-page: 535
  year: 2002
  end-page: 539
  article-title: Naturally secreted oligomers of amyloid |[beta]| protein potently inhibit hippocampal long‐term potentiation in vivo
  publication-title: Nature
– volume: 6
  start-page: e25031
  year: 2011
  article-title: REST: A toolkit for resting‐state functional magnetic resonance imaging data processing
  publication-title: PLoS One
– volume: 19
  start-page: 72
  year: 2009
  end-page: 78
  article-title: Resting‐state functional connectivity reflects structural connectivity in the default mode network
  publication-title: Cerebral Cortex
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  article-title: Neuropathological stageing of Alzheimer‐related changes
  publication-title: Acta Neuropathologica
– volume: 45
  start-page: 358
  year: 1999
  end-page: 368
  article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease
  publication-title: Annals of Neurology
– volume: 107
  start-page: 7550
  year: 2010
  end-page: 7555
  article-title: Persistent schema‐dependent hippocampal‐neocortical connectivity during memory encoding and postencoding rest in humans
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 81
  start-page: 96
  year: 2013
  end-page: 109
  article-title: Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer's disease ‐ revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence
  publication-title: NeuroImage
– volume: 66
  start-page: 28
  year: 2013
  end-page: 35
  article-title: Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer's disease
  publication-title: NeuroImage
– volume: 16
  start-page: 109
  year: 2015
  end-page: 120
  article-title: Spreading of pathology in neurodegenerative diseases: A focus on human studies
  publication-title: Nature Reviews. Neuroscience
– volume: 113
  start-page: 428
  year: 2016
  end-page: 433
  article-title: Metabolic connectivity mapping reveals effective connectivity in the resting human brain
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  start-page: e1003956
  year: 2014
  article-title: Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders
  publication-title: PLoS Computational Biology
– volume: 73
  start-page: 1204
  year: 2012
  end-page: 1215
  article-title: A network diffusion model of disease progression in dementia
  publication-title: Neuron
– volume: 10
  start-page: 829
  year: 2011
  end-page: 843
  article-title: Functional network disruption in the degenerative dementias
  publication-title: The Lancet Neurology
– volume: 13
  start-page: 812
  year: 2010
  end-page: 818
  article-title: Amyloid‐beta‐induced neuronal dysfunction in Alzheimer's disease: From synapses toward neural networks
  publication-title: Nature Neuroscience
– volume: 72
  start-page: 168
  year: 2017
  end-page: 175
  article-title: Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer's disease
  publication-title: Neuroscience and Biobehavioral Reviews
– ident: e_1_2_6_59_1
  doi: 10.1002/hbm.20531
– ident: e_1_2_6_63_1
  doi: 10.1038/416535a
– ident: e_1_2_6_22_1
  doi: 10.1212/WNL.0000000000004643
– ident: e_1_2_6_36_1
  doi: 10.1038/nature05289
– ident: e_1_2_6_55_1
  doi: 10.1016/j.neuroimage.2006.05.033
– ident: e_1_2_6_25_1
  doi: 10.1016/j.neuroimage.2013.05.011
– ident: e_1_2_6_28_1
  doi: 10.1152/jn.00077.2008
– ident: e_1_2_6_12_1
  doi: 10.1093/brain/awr066
– ident: e_1_2_6_2_1
  doi: 10.1002/hbm.20883
– ident: e_1_2_6_34_1
  doi: 10.1093/brain/awu103
– ident: e_1_2_6_14_1
  doi: 10.1016/S0896-6273(02)00569-X
– ident: e_1_2_6_23_1
  doi: 10.1002/hbm.23018
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1749-6632.2000.tb05559.x
– ident: e_1_2_6_41_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_6_67_1
  doi: 10.1016/j.neuroimage.2012.10.071
– ident: e_1_2_6_71_1
  doi: 10.1016/j.neuron.2012.03.004
– ident: e_1_2_6_3_1
  doi: 10.1016/j.jalz.2011.03.008
– ident: e_1_2_6_6_1
  doi: 10.1016/S0166-2236(02)02264-6
– ident: e_1_2_6_5_1
  doi: 10.1016/j.neuron.2010.02.005
– ident: e_1_2_6_7_1
  doi: 10.1097/00004647-200110000-00001
– ident: e_1_2_6_47_1
  doi: 10.1073/pnas.1513752113
– ident: e_1_2_6_50_1
  doi: 10.1016/j.neuron.2009.03.024
– ident: e_1_2_6_38_1
  doi: 10.3233/JAD-170096
– ident: e_1_2_6_60_1
  doi: 10.1523/JNEUROSCI.3539-11.2011
– ident: e_1_2_6_68_1
  doi: 10.1148/radiol.10091701
– ident: e_1_2_6_29_1
  doi: 10.1002/ana.20009
– ident: e_1_2_6_57_1
  doi: 10.1038/nrn3785
– ident: e_1_2_6_65_1
  doi: 10.1002/hbm.22234
– ident: e_1_2_6_70_1
  doi: 10.1016/j.neulet.2014.06.043
– ident: e_1_2_6_13_1
  doi: 10.1016/j.nicl.2014.02.010
– ident: e_1_2_6_64_1
  doi: 10.1016/j.neuroimage.2010.02.046
– ident: e_1_2_6_11_1
  doi: 10.1073/pnas.1520613113
– ident: e_1_2_6_24_1
  doi: 10.1371/journal.pbio.0060159
– ident: e_1_2_6_21_1
  doi: 10.1073/pnas.0308627101
– ident: e_1_2_6_26_1
  doi: 10.1371/journal.pcbi.1003956
– ident: e_1_2_6_58_1
  doi: 10.1073/pnas.1303346110
– ident: e_1_2_6_15_1
  doi: 10.1016/j.neuropsychologia.2006.06.017
– ident: e_1_2_6_17_1
  doi: 10.1074/jbc.M808759200
– ident: e_1_2_6_20_1
  doi: 10.1093/cercor/bhn059
– year: 2008
  ident: e_1_2_6_18_1
  article-title: “Flow‐Metabolism Uncoupling in Patients with Asymptomatic Unilateral Carotid Artery Stenosis Assessed by Multi‐Modal Magnetic Resonance Imaging”
  publication-title: Journal of Cerebral Blood Flow & Metabolism
– ident: e_1_2_6_72_1
  doi: 10.1093/brain/awq075
– ident: e_1_2_6_30_1
  doi: 10.1523/JNEUROSCI.2170-12.2012
– ident: e_1_2_6_45_1
  doi: 10.1038/nrn3338
– ident: e_1_2_6_69_1
  doi: 10.1016/j.neubiorev.2016.11.023
– ident: e_1_2_6_46_1
  doi: 10.1523/JNEUROSCI.0492-14.2014
– ident: e_1_2_6_35_1
  doi: 10.1016/j.dadm.2016.11.006
– ident: e_1_2_6_53_1
  doi: 10.1371/journal.pone.0025031
– ident: e_1_2_6_62_1
  doi: 10.1073/pnas.0914892107
– ident: e_1_2_6_52_1
  doi: 10.1016/j.neuroimage.2010.08.063
– ident: e_1_2_6_44_1
  doi: 10.1016/j.neuron.2011.12.040
– ident: e_1_2_6_8_1
  doi: 10.1007/BF00308809
– ident: e_1_2_6_10_1
  doi: 10.1523/JNEUROSCI.2177-05.2005
– ident: e_1_2_6_39_1
  doi: 10.1016/j.jalz.2014.02.007
– ident: e_1_2_6_49_1
  doi: 10.1016/j.neuron.2016.01.028
– ident: e_1_2_6_27_1
  doi: 10.1002/ana.22615
– ident: e_1_2_6_54_1
  doi: 10.1073/pnas.0708803104
– ident: e_1_2_6_56_1
  doi: 10.1016/j.clinph.2004.09.022
– ident: e_1_2_6_9_1
  doi: 10.1038/nrn3887
– ident: e_1_2_6_61_1
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: e_1_2_6_37_1
  doi: 10.1038/nn.2583
– ident: e_1_2_6_16_1
  doi: 10.1038/nrn2786
– ident: e_1_2_6_32_1
– ident: e_1_2_6_51_1
  doi: 10.1523/JNEUROSCI.0639-16.2016
– ident: e_1_2_6_31_1
  doi: 10.1093/brain/awt286
– ident: e_1_2_6_4_1
  doi: 10.3389/fnsys.2011.00002
– ident: e_1_2_6_48_1
  doi: 10.3233/JAD-180022
– ident: e_1_2_6_19_1
  doi: 10.1177/0271678X18759182
– ident: e_1_2_6_42_1
  doi: 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
– ident: e_1_2_6_43_1
  doi: 10.1146/annurev.neuro.29.051605.112819
– ident: e_1_2_6_40_1
  doi: 10.1016/S1474-4422(11)70158-2
– ident: e_1_2_6_66_1
  doi: 10.1016/j.celrep.2015.04.017
SSID ssj0011501
Score 2.5507698
Snippet A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4134
SubjectTerms Advertising executives
Aged
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - metabolism
Alzheimer Disease - physiopathology
Alzheimer's disease
Brain mapping
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - metabolism
Cerebral Cortex - physiopathology
Cognitive ability
Connectome - methods
Cortex (parietal)
default mode network
Default Mode Network - diagnostic imaging
Default Mode Network - metabolism
Default Mode Network - physiopathology
Development and progression
Diagnostic imaging
directional signaling
effective connectivity
energy metabolism
Functional magnetic resonance imaging
Hippocampus
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Molecular modelling
Multimodal Imaging - methods
Neural networks
Neurodegenerative diseases
Neuroimaging
Positron emission
Positron emission tomography
Positron-Emission Tomography - methods
Prefrontal cortex
Proteins
resting state
Signal transduction
Signaling
simultaneous PET/fMRI
Tomography
Word of mouth advertising
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Pb9MwFLdgSIgLgg1YtoEMQoxLaGo7_04owEpBKkJok3qzHNtRI7VpadrDOO0jcODEx9sn4T0nzdYJuCWyHSX2-_ezX36PkJc25X0VRIXPE2sAoATcT1LDfCWMCgLFmG3YPr9EwzPxeRyO2w23uk2r3NhEZ6jNXOMeec-55hjRydvFdx-rRuHpaltC4za5g9RlKNXxuANcGOw4wAVu1k_BCm-YhQLWm-SzN0yErk7ZlT-6aZWvuaWbKZPXQ1nniwYPyP02iKRZs-oPyS1b7ZK9rAIAPTunr6hL63T75bvk7qg9Pd8jvxuqYrBvVGN-i24qR9CyohAGUmMLtZ6uKBbHoVWTHk7Lmho0A5UbNz3Hu-V6AXEqDsumPya2nNnlseuGRz2XF78yWpeYqKgqO1_XFKt_gIO8vPjp_l6igw8f4frryWmvGH37RB3B7SNyNjg5fT_029oMvgYtjn3RTyIVKGt4otLQqKQA1S9ExFUYaKNzQF6WayYKmygdpjxPdCrSnAW6AMwU5vwx2anmld0nNM51X4kCwZQSICKp5VGCjpXlujCae-T1ZoWkbonLsX7GVDaUy0zCYkq3mB550XVdNGwdf-t0jMssUYPhOVq1PyLA2yAXlsxijDk5OGqPHG31BM3T280bQZGt5tfySk498rxrxpGYzebmXQIMhMBWgDX0yJNGrrrXBQgHwD5OPBJvSVzXAfnAt1uqcuJ4wSGYjsGownw52fz3DMjhu5G7OPj_FxySewxTeFxK3RHZWS3X9inEYKv8mVO0P-7SNIg
  priority: 102
  providerName: ProQuest
Title Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease—A simultaneous resting‐state FDG‐PET/fMRI study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24517
https://www.ncbi.nlm.nih.gov/pubmed/30697878
https://www.proquest.com/docview/2560072225
https://www.proquest.com/docview/2179514101
https://pubmed.ncbi.nlm.nih.gov/PMC8357005
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIiEuPFoohhItCFEuTpzddWyLUwoJASlVFLVSDkjWer1WIhK3yuPQnvoTOHDi5_WXMLN2TBOBhLhEjnbW8mP2m2_Ws98CvDGRaCqvlbkiNCkmKJ5wwyjlrpKp8jzFuSnUPk9avTP5ZeSPduD9ei1MoQ9RTbjRyLB4TQNcJYvGb9HQcTKrc-k3aSU51WoRIRpW0lFEdGyyhSHWjRCB16pCHm9UPTdi0TYi3wpJ2-WSt2msjUPdh_B1fQdF-cm3-mqZ1PXVlrjjf97iI3hQ8lPWLhzqMeyYfA_22znm5rNL9pbZilE7Fb8H9_rlh_l9-FmoICN0Mk2lM7rYlIJNcoYMk6UmU6vpktG-OywvKs_ZZMFSQpjc9pte0r_56gIpMHVrT6_GZjIz8yNrRl-Rbq5_tNliQjWQKjfnqwWjjUUw9t5cf7cLo1j34yc8HnROG1l_-JlZ7dwncNbtnH7oueW2D65GgAhc2QxbylMmFaGK_FSFGaJKJltC-Z5OdYJJnRGay8yESvuRSEIdySjhns4wHfMT8RR28_PcPAMWJLqpZEZ5mpLofZERrZBiNk90lmrhwLu1A8S61ESnrTmmcaHmzGN8BbF9BQ68rkwvCiGQPxkdkRfFBA54Hq3KNQ54NSSzFbcDorMCOYADhxuWOKj1ZvPaD-MSVBaxZacBJegOvKqaqScVytnnHmOGiZxZItA6cFC4bXW5mB1GiM-hA8GGQ1cGJDW-2ZJPxlZyHHl6gHiNz8v669-fQNw77tuD5_9u-gLuc6oUspV7h7C7nK_MS6R6y6QGd7gc4G8wCmpw97hzMhjW7LRJzY72X2FXWNs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIgEXBC0_hgILAsrFxFnbsX1AyNCGhDYVQqmU27Jer5VIiRPyIxROfQQOnHgIHqpPwszaTpsKuPVma3cte2d25vu8szMAz3Xk1qXTyGw31CkSFMe1wyjltvRS6TiSc11k-zxqtI69jz2_twG_q7MwFFZZ2URjqNOxon_kNeOaA2InbydfbaoaRburVQmNQi0O9PIbUrbZm_YeyvcF58397vuWXVYVsBXqX2B79bAhHalTN5SRn8owQ6XNvIYrfUelKkHOoF3FvUyHUvmRm4Qq8qKEOypDtO8nLj73ClxFx-sQ2Qt6K4JH4MoQPHTrdoRWv8pk5PBaPxm95p5v6qKd-b-LXuCcG7wYonkeOhvf17wFN0vQyuJCy27Dhs63YDvOkbCPluwlM2Gk5v_8FlzrlLv12_CrSI2M9pQpiqdRRaUKNsgZwk6W6kwuhnNGxXhYXoSjs8GMpWR2cjNuuKS76WKCuJiGxcPvfT0Y6emu6UZbS6cnP2M2G1BgpMz1eDFjVG0EHfLpyQ9zWoo19z7g9af9bi3rfG4zk1D3DhxfitTuwmY-zvV9YEGi6tLLiLxJD1Uy0m4jJEfOE5WlyrXgVSUhocpE6VSvYyiKFM9coDCFEaYFz1ZdJ0V2kL912iUxC7IY-Bwly4MP-DaUe0vEAWFcF4GBBTtrPXGlq_XmSlFEaWlm4mxdWPB01UwjKXrOzLtA2olA2kPra8G9Qq9Wr4uUMUKjHVoQrGncqgPlH19vyQd9k4ccwXuARhzny-jmv2dAtN51zMWD_3_BE7je6nYOxWH76OAh3OAUPmTC-XZgcz5d6EeI_-bJY7PoGHy57FX-B4GJcWc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVKq4IGj5MRTYIqBcTJy1HdsHhNImIaEkiqpW6s1dr9dKpMQJ-REKpz4CB048Co_TJ2FmbadNBdx6s7Wzlr3z9413dgbgtQrsirCqiWn7KsYAxbJNP4i5KZxYWJbgXGXVPrvV1qnz-cw924DfxVkYSqssbKI21PFY0j_ysnbNHkUn5SRPi-jVmx8nX03qIEU7rUU7jUxEjtTyG4Zvsw_tOvL6DefNxslhy8w7DJgSZdEznYpfFZZQse2LwI2Fn6AAJ07VFq4lYxlh_KBsyZ1E-UK6gR35MnCCiFsyQeTvRjY-9w5sehQVlWDzoNHtHa_2MBBq6XAPnbwZoA8o6hpZvNyPRu-54-ouaVfe8KZPuOYUbyZsXgfS2hM278O9HMKyWiZzD2BDpduwU0sxfB8t2Vumk0r13_pt2Orke_c78CsrlIzWlUnKrpFZ3wo2SBmCUBarRCyGc0ateViaJaezwYzFZIRSPW-4pLvpYoIomabVht_7ajBS031NRhtNlxc_a2w2oDRJkarxYsao9wi658uLH_rsFGvWP-F1r3FSTjrHbabL6z6E01vh2yMopeNUPQHmRbIinIRCOeGggAbKrvrk1nkkk1jaBrwrOBTKvGw6de8YhlnBZx4iM0PNTANerUgnWa2QvxHtE5tDsh_4HCnyYxD4NlSJK6x5hHhthAkG7K5Rot7L9eFCUMLc7szCKy0xYG81TDMpl06ve4hBKMJqB22xAY8zuVq9LgaQAZpw3wBvTeJWBFSNfH0kHfR1VXKE8h6adFwvLZv_XoGwddDRF0___wUvYQs1PPzS7h49g7uccol0bt8ulObThXqOYHAevci1jsH5bSv6H8tQdwI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+connectivity+in+the+default+mode+network+is+distinctively+disrupted+in+Alzheimer%27s+disease%E2%80%94A+simultaneous+resting-state+FDG-PET%2FfMRI+study&rft.jtitle=Human+brain+mapping&rft.au=Scherr%2C+Martin&rft.au=Utz%2C+Lukas&rft.au=Tahmasian%2C+Masoud&rft.au=Pasquini%2C+Lorenzo&rft.date=2021-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.volume=42&rft.issue=13&rft.spage=4134&rft_id=info:doi/10.1002%2Fhbm.24517&rft.externalDocID=A710593429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon