Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease—A simultaneous resting‐state FDG‐PET/fMRI study
A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of si...
Saved in:
Published in | Human brain mapping Vol. 42; no. 13; pp. 4134 - 4143 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting‐state functional MRI and FDG‐PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD. |
---|---|
AbstractList | A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting‐state functional MRI and FDG‐PET data from patients with early AD (
n
= 35) and healthy subjects (
n
= 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (
p
< 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (
F
4,25
= 5.63,
p
= 0.002,
r
2
= 0.47), we found that EC (
β
= 0.45,
p
= 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD. A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F[sub.4,25] = 5.63, p = 0.002, r[sup.2] = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD. A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD. A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting‐state functional MRI and FDG‐PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD. A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F = 5.63, p = 0.002, r = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD. |
Audience | Academic |
Author | Utz, Lukas Grimmer, Timo Drzezga, Alexander Riedl, Valentin Scherr, Martin Tahmasian, Masoud Sorg, Christian Pasquini, Lorenzo Rauschecker, Josef P. Grothe, Michel J. |
AuthorAffiliation | 11 Department of Nuclear Medicine Technische Universität München (TUM) München Germany 3 Department of Neurology, Christian Doppler Medical Centre Paracelsus Medical University Salzburg and Centre for Cognitive Neurosciences Salzburg Austria 6 Institute of Medical Science and Technology Shahid Beheshti University Tehran Iran 9 Laboratory of Integrative Neuroscience and Cognition Georgetown University Medical Center Washington District of Columbia 4 Department of Neuroradiology Technische Universität München (TUM) München Germany 10 Department of Nuclear Medicine Uniklinik Köln Köln Germany 7 Memory and Aging Center, Department of Neurology University of California San Francisco California 8 Department for Clinical Research, German Center for Neurodegenerative Diseases (DZNE) Rostock Germany 5 Institute for Advanced Study Technische Universität München (TUM) München Germany 1 Present address: Department of Psychiatry and Psychotherapy Technische Universität München (TUM) München Germany 2 TUM‐Neu |
AuthorAffiliation_xml | – name: 11 Department of Nuclear Medicine Technische Universität München (TUM) München Germany – name: 9 Laboratory of Integrative Neuroscience and Cognition Georgetown University Medical Center Washington District of Columbia – name: 6 Institute of Medical Science and Technology Shahid Beheshti University Tehran Iran – name: 8 Department for Clinical Research, German Center for Neurodegenerative Diseases (DZNE) Rostock Germany – name: 7 Memory and Aging Center, Department of Neurology University of California San Francisco California – name: 4 Department of Neuroradiology Technische Universität München (TUM) München Germany – name: 2 TUM‐Neuroimaging Center (TUM‐NIC), Klinikum Rechts der Isar München Germany – name: 5 Institute for Advanced Study Technische Universität München (TUM) München Germany – name: 1 Present address: Department of Psychiatry and Psychotherapy Technische Universität München (TUM) München Germany – name: 3 Department of Neurology, Christian Doppler Medical Centre Paracelsus Medical University Salzburg and Centre for Cognitive Neurosciences Salzburg Austria – name: 10 Department of Nuclear Medicine Uniklinik Köln Köln Germany |
Author_xml | – sequence: 1 givenname: Martin surname: Scherr fullname: Scherr, Martin organization: Paracelsus Medical University Salzburg and Centre for Cognitive Neurosciences – sequence: 2 givenname: Lukas surname: Utz fullname: Utz, Lukas organization: Technische Universität München (TUM) – sequence: 3 givenname: Masoud orcidid: 0000-0002-8304-2876 surname: Tahmasian fullname: Tahmasian, Masoud organization: Shahid Beheshti University – sequence: 4 givenname: Lorenzo surname: Pasquini fullname: Pasquini, Lorenzo organization: University of California – sequence: 5 givenname: Michel J. orcidid: 0000-0003-2600-9022 surname: Grothe fullname: Grothe, Michel J. organization: Department for Clinical Research, German Center for Neurodegenerative Diseases (DZNE) – sequence: 6 givenname: Josef P. surname: Rauschecker fullname: Rauschecker, Josef P. organization: Georgetown University Medical Center – sequence: 7 givenname: Timo surname: Grimmer fullname: Grimmer, Timo organization: TUM‐Neuroimaging Center (TUM‐NIC), Klinikum Rechts der Isar – sequence: 8 givenname: Alexander surname: Drzezga fullname: Drzezga, Alexander organization: Uniklinik Köln – sequence: 9 givenname: Christian surname: Sorg fullname: Sorg, Christian organization: Technische Universität München (TUM) – sequence: 10 givenname: Valentin orcidid: 0000-0002-2861-8449 surname: Riedl fullname: Riedl, Valentin email: valentin.riedl@mytum.de organization: Technische Universität München (TUM) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30697878$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNURH9gwQsgSyyAxczYSRzHm0pDmf5IrUCorC3HuZ5xSewhdloNqz4CC1Y8Xp8EZ6YUWgHywjf2d0587LubbFlnIUmeEzwmGKeTRdWO05wS9ijZIZizESY82xrqgo54zsh2suv9BcaEUEyeJNsZLjgrWbmT_JhpDSqYS0DKWbsuTVghY1FYAKpBy74JqHU1IAvhynWfkfGoNj4Yu9Y1q-Gr65cB6kE2bb4uwLTQvVpjID3cXH-fIm_a6CQtuN6jDgb9_Ob6mw8yADp8dxTrD7PziT77eIJ86OvV0-Sxlo2HZ7fzXvLpcHZ-cDw6fX90cjA9HSlKMBvlpCwkllBnpeS0lqWmrNR5kUmKVa0qTHLIVJprKKWiPKtKxXNepVhpXmBaZXvJ_sZ32Vct1Aps6GQjlp1pZbcSThpxf8eahZi7S1FmlGFMo8HrW4POfeljMtEar6BpNmFFShinJCeYRPTlA_TC9Z2N8URKC4xZmqb0NzWXDQhjtYv_VYOpmDKCY4g85ZEa_4WKo4bWxMcEbeL6PcGLP4PeJfzVDRF4swFU57zvQN8hBIuh00TsNLHutMhOHrDKxKc0brgj0_xPcRXPtfq3tTh-e7ZR_ASe_-jR |
CitedBy_id | crossref_primary_10_3390_brainsci13020265 crossref_primary_10_7554_eLife_52443 crossref_primary_10_1016_j_neurobiolaging_2020_12_021 crossref_primary_10_1093_brain_awab294 crossref_primary_10_1016_j_compbiomed_2025_109898 crossref_primary_10_3174_ajnr_A7707 crossref_primary_10_3390_diagnostics14060585 crossref_primary_10_1016_j_jneumeth_2025_110406 crossref_primary_10_1038_s44220_024_00259_5 crossref_primary_10_2174_1567205017666201215140625 crossref_primary_10_1038_s42003_022_03434_5 crossref_primary_10_1016_j_neuri_2022_100104 crossref_primary_10_1109_TNNLS_2022_3221617 crossref_primary_10_3389_frdem_2022_983331 crossref_primary_10_3390_genes16020135 crossref_primary_10_1038_s41467_020_15701_2 crossref_primary_10_1109_JBHI_2019_2946676 crossref_primary_10_1007_s12264_022_00905_x crossref_primary_10_1109_TASE_2024_3425949 crossref_primary_10_3389_fneur_2022_1009574 crossref_primary_10_1002_VIW_20230025 crossref_primary_10_1016_j_heliyon_2023_e18121 crossref_primary_10_1002_brb3_70356 crossref_primary_10_1016_j_nicl_2022_102977 crossref_primary_10_3390_brainsci12020146 crossref_primary_10_1007_s40520_024_02805_8 crossref_primary_10_1016_j_jad_2023_02_091 crossref_primary_10_3233_JAD_221185 crossref_primary_10_1109_TNNLS_2021_3106299 crossref_primary_10_1016_j_cub_2024_03_032 crossref_primary_10_3389_fnins_2022_824152 crossref_primary_10_3389_fnins_2020_00185 crossref_primary_10_3389_fnagi_2019_00307 crossref_primary_10_1007_s00259_022_05692_1 crossref_primary_10_18632_aging_202580 crossref_primary_10_1002_hbm_26604 crossref_primary_10_1080_14737175_2023_2174016 crossref_primary_10_1016_j_ejrad_2022_110594 |
Cites_doi | 10.1002/hbm.20531 10.1038/416535a 10.1212/WNL.0000000000004643 10.1038/nature05289 10.1016/j.neuroimage.2006.05.033 10.1016/j.neuroimage.2013.05.011 10.1152/jn.00077.2008 10.1093/brain/awr066 10.1002/hbm.20883 10.1093/brain/awu103 10.1016/S0896-6273(02)00569-X 10.1002/hbm.23018 10.1111/j.1749-6632.2000.tb05559.x 10.1016/j.neuroimage.2011.10.018 10.1016/j.neuroimage.2012.10.071 10.1016/j.neuron.2012.03.004 10.1016/j.jalz.2011.03.008 10.1016/S0166-2236(02)02264-6 10.1016/j.neuron.2010.02.005 10.1097/00004647-200110000-00001 10.1073/pnas.1513752113 10.1016/j.neuron.2009.03.024 10.3233/JAD-170096 10.1523/JNEUROSCI.3539-11.2011 10.1148/radiol.10091701 10.1002/ana.20009 10.1038/nrn3785 10.1002/hbm.22234 10.1016/j.neulet.2014.06.043 10.1016/j.nicl.2014.02.010 10.1016/j.neuroimage.2010.02.046 10.1073/pnas.1520613113 10.1371/journal.pbio.0060159 10.1073/pnas.0308627101 10.1371/journal.pcbi.1003956 10.1073/pnas.1303346110 10.1016/j.neuropsychologia.2006.06.017 10.1074/jbc.M808759200 10.1093/cercor/bhn059 10.1093/brain/awq075 10.1523/JNEUROSCI.2170-12.2012 10.1038/nrn3338 10.1016/j.neubiorev.2016.11.023 10.1523/JNEUROSCI.0492-14.2014 10.1016/j.dadm.2016.11.006 10.1371/journal.pone.0025031 10.1073/pnas.0914892107 10.1016/j.neuroimage.2010.08.063 10.1016/j.neuron.2011.12.040 10.1007/BF00308809 10.1523/JNEUROSCI.2177-05.2005 10.1016/j.jalz.2014.02.007 10.1016/j.neuron.2016.01.028 10.1002/ana.22615 10.1073/pnas.0708803104 10.1016/j.clinph.2004.09.022 10.1038/nrn3887 10.1016/j.neuroimage.2011.07.044 10.1038/nn.2583 10.1038/nrn2786 10.1523/JNEUROSCI.0639-16.2016 10.1093/brain/awt286 10.3389/fnsys.2011.00002 10.3233/JAD-180022 10.1177/0271678X18759182 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X 10.1146/annurev.neuro.29.051605.112819 10.1016/S1474-4422(11)70158-2 10.1016/j.celrep.2015.04.017 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. COPYRIGHT 2019 John Wiley & Sons, Inc. 2021. This work is published under https://onlinelibrary.wiley.com/terms-and-conditions (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: COPYRIGHT 2019 John Wiley & Sons, Inc. – notice: 2021. This work is published under https://onlinelibrary.wiley.com/terms-and-conditions (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7X7 7XB 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH K9. M0S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1002/hbm.24517 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Chemoreception Abstracts ProQuest Central (New) Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Scherr et al |
EISSN | 1097-0193 |
EndPage | 4143 |
ExternalDocumentID | PMC8357005 A710593429 30697878 10_1002_hbm_24517 HBM24517 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Union Seventh Framework Programme funderid: n 291763 – fundername: Technische Universität Muenchen—Institute for Advanced Study – fundername: German Research Foundation funderid: 273427765 – fundername: Bundesministerium für Bildung und Forschung funderid: 01EV0710 – fundername: Deutsche Forschungsgemeinschaft funderid: 273427765 – fundername: Federal Ministry of Education and Science funderid: BMBF 01EV0710 – fundername: ; grantid: 01EV0710 – fundername: ; grantid: n 291763 – fundername: ; grantid: 273427765 – fundername: ; grantid: BMBF 01EV0710 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c5107-4186a0aed38a95da8f578f463a50cdcb014e3c24fe8ac593b8c949b20cf9605b3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 13:59:40 EDT 2025 Fri Jul 11 16:58:57 EDT 2025 Sat Jul 26 02:23:56 EDT 2025 Tue Jun 17 21:37:33 EDT 2025 Tue Jun 10 20:49:28 EDT 2025 Mon Jul 21 06:08:09 EDT 2025 Thu Apr 24 23:13:26 EDT 2025 Tue Jul 01 01:10:53 EDT 2025 Wed Jan 22 16:57:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | simultaneous PET/fMRI resting state directional signaling default mode network energy metabolism effective connectivity |
Language | English |
License | 2019 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5107-4186a0aed38a95da8f578f463a50cdcb014e3c24fe8ac593b8c949b20cf9605b3 |
Notes | Funding information Bundesministerium für Bildung und Forschung, Grant/Award Number: 01EV0710; Deutsche Forschungsgemeinschaft, Grant/Award Number: 273427765; German Research Foundation, Grant/Award Number: 273427765; European Union Seventh Framework Programme, Grant/Award Number: n 291763; Technische Universität Muenchen—Institute for Advanced Study; Federal Ministry of Education and Science, Grant/Award Number: BMBF 01EV0710 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Martin Scherr, Lukas Utz, Christian Sorg, and Valentin Riedl authors contributed equally to this study. Funding information Bundesministerium für Bildung und Forschung, Grant/Award Number: 01EV0710; Deutsche Forschungsgemeinschaft, Grant/Award Number: 273427765; German Research Foundation, Grant/Award Number: 273427765; European Union Seventh Framework Programme, Grant/Award Number: n 291763; Technische Universität Muenchen—Institute for Advanced Study; Federal Ministry of Education and Science, Grant/Award Number: BMBF 01EV0710 |
ORCID | 0000-0002-8304-2876 0000-0003-2600-9022 0000-0002-2861-8449 |
OpenAccessLink | https://www.proquest.com/docview/2560072225?pq-origsite=%requestingapplication% |
PMID | 30697878 |
PQID | 2560072225 |
PQPubID | 996345 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8357005 proquest_miscellaneous_2179514101 proquest_journals_2560072225 gale_infotracmisc_A710593429 gale_infotracacademiconefile_A710593429 pubmed_primary_30697878 crossref_primary_10_1002_hbm_24517 crossref_citationtrail_10_1002_hbm_24517 wiley_primary_10_1002_hbm_24517_HBM24517 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2010; 11 2007; 104 2014; 578 2010; 13 2010; 107 2013; 66 2006; 32 2017; 89 1999; 45 2011; 10 2011; 54 2008; 6 2012; 59 2008; 100 2012; 13 2016; 37 2016; 36 2014; 137 2005; 25 2000; 924 2017; 72 2010; 65 2014; 4 2011; 70 2016; 113 2014; 15 2006; 29 2009; 284 2013; 110 2009; 19 2014; 10 2016; 89 2006; 443 2004; 101 2010; 31 2015; 16 2009; 62 2011 2015; 11 2005; 116 2002; 33 2011; 31 1991; 82 2008 2002; 416 2011; 6 2011; 5 2018; 64 2011; 134 2012; 32 2011; 7 2001; 21 2012; 73 2004; 55 2016; 5 2002; 25 2009; 30 2017; 58 2006; 44 2010; 256 2010; 133 2018 2013; 81 2014; 35 2014; 34 2010; 51 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 Göttler J (e_1_2_6_18_1) 2008 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – year: 2011 – volume: 37 start-page: 35 year: 2016 end-page: 53 article-title: Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks publication-title: Human Brain Mapping – volume: 137 start-page: 221 year: 2014 end-page: 231 article-title: Effect of amyloid on memory and non‐memory decline from preclinical to clinical Alzheimer's disease publication-title: Brain – volume: 284 start-page: 12845 year: 2009 end-page: 12852 article-title: Propagation of tau misfolding from the outside to the inside of a cell publication-title: The Journal of Biological Chemistry – volume: 89 start-page: 2031 year: 2017 end-page: 2038 article-title: In vivo staging of regional amyloid deposition publication-title: Neurology – volume: 32 start-page: 16265 year: 2012 end-page: 16273 article-title: Region‐specific hierarchy between atrophy, hypometabolism, and β‐amyloid (Aβ) load in Alzheimer's disease dementia publication-title: The Journal of Neuroscience – volume: 21 start-page: 1133 year: 2001 end-page: 1145 article-title: An energy budget for signaling in the grey matter of the brain publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 70 start-page: 532 year: 2011 end-page: 540 article-title: Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders publication-title: Annals of Neurology – volume: 5 start-page: 35 year: 2016 end-page: 42 article-title: Degradation in intrinsic connectivity networks across the Alzheimer's disease spectrum publication-title: Alzheimers Dement (Amst) – volume: 29 start-page: 449 year: 2006 end-page: 476 article-title: Brain work and brain imaging publication-title: Annual Review of Neuroscience – volume: 256 start-page: 598 year: 2010 end-page: 606 article-title: Resting brain connectivity: Changes during the progress of Alzheimer disease publication-title: Radiology – volume: 924 start-page: 42 year: 2000 end-page: 52 article-title: A plasticity‐based theory of the pathogenesis of Alzheimer's disease publication-title: Annals of the New York Academy of Sciences – volume: 11 start-page: 859 year: 2015 end-page: 865 article-title: Chronic optogenetic activation augments abeta pathology in a mouse model of Alzheimer disease publication-title: Cell Reports – volume: 51 start-page: 910 year: 2010 end-page: 917 article-title: Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals publication-title: NeuroImage – volume: 59 start-page: 431 year: 2012 end-page: 438 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: NeuroImage – volume: 73 start-page: 1216 year: 2012 end-page: 1227 article-title: Predicting regional neurodegeneration from the healthy brain functional connectome publication-title: Neuron – volume: 4 start-page: 473 year: 2014 end-page: 480 article-title: Deficits in episodic memory retrieval reveal impaired default mode network connectivity in amnestic mild cognitive impairment publication-title: NeuroImage: Clinical – volume: 11 start-page: 475 year: 2015 end-page: 484 article-title: Link between hippocampus' raised local and eased global intrinsic connectivity in AD publication-title: Alzheimers Dement – volume: 35 start-page: 1061 year: 2014 end-page: 1073 article-title: The parahippocampal gyrus links the default‐mode cortical network with the medial temporal lobe memory system publication-title: Human Brain Mapping – volume: 6 start-page: e159 year: 2008 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biology – volume: 443 start-page: 768 year: 2006 end-page: 773 article-title: A network dysfunction perspective on neurodegenerative diseases publication-title: Nature – volume: 34 start-page: 6260 year: 2014 end-page: 6266 article-title: Local activity determines functional connectivity in the resting human brain: A simultaneous FDG‐PET/fMRI study publication-title: The Journal of Neuroscience – volume: 59 start-page: 2142 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 15 start-page: 655 year: 2014 end-page: 669 article-title: Functional organization of the hippocampal longitudinal axis publication-title: Nature Reviews. Neuroscience – volume: 578 start-page: 171 year: 2014 end-page: 175 article-title: Altered effective connectivity patterns of the default mode network in Alzheimer's disease: An fMRI study publication-title: Neuroscience Letters – volume: 44 start-page: 2836 year: 2006 end-page: 2845 article-title: How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations publication-title: Neuropsychologia – volume: 36 start-page: 7364 year: 2016 end-page: 7374 article-title: In vivo tau, amyloid, and gray matter profiles in the aging brain publication-title: Journal of Neuroscience – volume: 30 start-page: 625 year: 2009 end-page: 637 article-title: Functional connectivity of default mode network components: Correlation, anticorrelation, and causality publication-title: Human Brain Mapping – volume: 33 start-page: 341 year: 2002 end-page: 355 article-title: Whole brain segmentation publication-title: Neuron – volume: 64 start-page: 405 year: 2018 end-page: 415 article-title: Decoupling of local metabolic activity and functional connectivity links to amyloid in Alzheimer's disease publication-title: Journal of Alzheimer's Disease – volume: 89 start-page: 971 year: 2016 end-page: 982 article-title: PET imaging of tau deposition in the aging human brain publication-title: Neuron – volume: 11 start-page: 155 year: 2010 end-page: 159 article-title: Prion‐like mechanisms in neurodegenerative diseases publication-title: Nature Reviews. Neuroscience – volume: 116 start-page: 708 year: 2005 end-page: 715 article-title: Disturbed fluctuations of resting state EEG synchronization in Alzheimer's disease publication-title: Clinical Neurophysiology – volume: 65 start-page: 550 year: 2010 end-page: 562 article-title: Functional‐anatomic fractionation of the brain's default network publication-title: Neuron – volume: 31 start-page: 515 year: 2010 end-page: 525 article-title: Sensorimotor network rewiring in mild cognitive impairment and Alzheimer's disease publication-title: Human Brain Mapping – volume: 58 start-page: 763 year: 2017 end-page: 773 article-title: Individual correspondence of amyloid‐beta and Intrinsic connectivity in the posterior default mode network across stages of Alzheimer's disease publication-title: Journal of Alzheimer's Disease – volume: 113 start-page: 4518 year: 2016 end-page: 4523 article-title: Tracking brain arousal fluctuations with fMRI publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 31 start-page: 15775 year: 2011 end-page: 15786 article-title: Rich‐club organization of the human connectome publication-title: The Journal of Neuroscience – year: 2008 article-title: “Flow‐Metabolism Uncoupling in Patients with Asymptomatic Unilateral Carotid Artery Stenosis Assessed by Multi‐Modal Magnetic Resonance Imaging” publication-title: Journal of Cerebral Blood Flow & Metabolism – volume: 101 start-page: 4637 year: 2004 end-page: 4642 article-title: Default‐mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 133 start-page: 1352 year: 2010 end-page: 1367 article-title: Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease publication-title: Brain – volume: 134 start-page: 1635 year: 2011 end-page: 1646 article-title: Neuronal dysfunction and disconnection of cortical hubs in non‐demented subjects with elevated amyloid burden publication-title: Brain – volume: 62 start-page: 42 year: 2009 end-page: 52 article-title: Neurodegenerative diseases target large‐scale human brain networks publication-title: Neuron – volume: 5 start-page: 2 year: 2011 article-title: A baseline for the multivariate comparison of resting‐state networks publication-title: Frontiers in Systems Neuroscience – volume: 32 start-page: 1335 year: 2006 end-page: 1344 article-title: Magnetoencephalographic evaluation of resting‐state functional connectivity in Alzheimer's disease publication-title: NeuroImage – volume: 25 start-page: 621 year: 2002 end-page: 625 article-title: The neural basis of functional brain imaging signals publication-title: Trends in Neurosciences – volume: 104 start-page: 18760 year: 2007 end-page: 18765 article-title: Selective changes of resting‐state networks in individuals at risk for Alzheimer's disease publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 54 start-page: 875 year: 2011 end-page: 891 article-title: Network modelling methods for FMRI publication-title: NeuroImage – volume: 13 start-page: 713 year: 2012 end-page: 726 article-title: Two cortical systems for memory‐guided behaviour publication-title: Nature Reviews. Neuroscience – volume: 7 start-page: 270 year: 2011 end-page: 279 article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimer's & Dementia – start-page: 0271678X1875918 year: 2018 article-title: Reduced blood oxygenation level dependent connectivity is related to hypoperfusion in Alzheimer's disease publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 110 start-page: 13642 year: 2013 end-page: 13647 article-title: Energetic cost of brain functional connectivity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 55 start-page: 306 year: 2004 end-page: 319 article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound‐B publication-title: Annals of Neurology – volume: 25 start-page: 7709 year: 2005 end-page: 7717 article-title: Molecular, structural, and functional characterization of Alzheimer's disease: Evidence for a relationship between default activity, amyloid, and memory publication-title: The Journal of Neuroscience – volume: 137 start-page: 2052 year: 2014 end-page: 2064 article-title: Within‐patient correspondence of amyloid‐β and intrinsic network connectivity in Alzheimer's disease publication-title: Brain – volume: 100 start-page: 129 year: 2008 end-page: 139 article-title: Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity publication-title: Journal of Neurophysiology – volume: 416 start-page: 535 year: 2002 end-page: 539 article-title: Naturally secreted oligomers of amyloid |[beta]| protein potently inhibit hippocampal long‐term potentiation in vivo publication-title: Nature – volume: 6 start-page: e25031 year: 2011 article-title: REST: A toolkit for resting‐state functional magnetic resonance imaging data processing publication-title: PLoS One – volume: 19 start-page: 72 year: 2009 end-page: 78 article-title: Resting‐state functional connectivity reflects structural connectivity in the default mode network publication-title: Cerebral Cortex – volume: 82 start-page: 239 year: 1991 end-page: 259 article-title: Neuropathological stageing of Alzheimer‐related changes publication-title: Acta Neuropathologica – volume: 45 start-page: 358 year: 1999 end-page: 368 article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease publication-title: Annals of Neurology – volume: 107 start-page: 7550 year: 2010 end-page: 7555 article-title: Persistent schema‐dependent hippocampal‐neocortical connectivity during memory encoding and postencoding rest in humans publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 81 start-page: 96 year: 2013 end-page: 109 article-title: Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer's disease ‐ revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence publication-title: NeuroImage – volume: 66 start-page: 28 year: 2013 end-page: 35 article-title: Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer's disease publication-title: NeuroImage – volume: 16 start-page: 109 year: 2015 end-page: 120 article-title: Spreading of pathology in neurodegenerative diseases: A focus on human studies publication-title: Nature Reviews. Neuroscience – volume: 113 start-page: 428 year: 2016 end-page: 433 article-title: Metabolic connectivity mapping reveals effective connectivity in the resting human brain publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 start-page: e1003956 year: 2014 article-title: Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders publication-title: PLoS Computational Biology – volume: 73 start-page: 1204 year: 2012 end-page: 1215 article-title: A network diffusion model of disease progression in dementia publication-title: Neuron – volume: 10 start-page: 829 year: 2011 end-page: 843 article-title: Functional network disruption in the degenerative dementias publication-title: The Lancet Neurology – volume: 13 start-page: 812 year: 2010 end-page: 818 article-title: Amyloid‐beta‐induced neuronal dysfunction in Alzheimer's disease: From synapses toward neural networks publication-title: Nature Neuroscience – volume: 72 start-page: 168 year: 2017 end-page: 175 article-title: Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer's disease publication-title: Neuroscience and Biobehavioral Reviews – ident: e_1_2_6_59_1 doi: 10.1002/hbm.20531 – ident: e_1_2_6_63_1 doi: 10.1038/416535a – ident: e_1_2_6_22_1 doi: 10.1212/WNL.0000000000004643 – ident: e_1_2_6_36_1 doi: 10.1038/nature05289 – ident: e_1_2_6_55_1 doi: 10.1016/j.neuroimage.2006.05.033 – ident: e_1_2_6_25_1 doi: 10.1016/j.neuroimage.2013.05.011 – ident: e_1_2_6_28_1 doi: 10.1152/jn.00077.2008 – ident: e_1_2_6_12_1 doi: 10.1093/brain/awr066 – ident: e_1_2_6_2_1 doi: 10.1002/hbm.20883 – ident: e_1_2_6_34_1 doi: 10.1093/brain/awu103 – ident: e_1_2_6_14_1 doi: 10.1016/S0896-6273(02)00569-X – ident: e_1_2_6_23_1 doi: 10.1002/hbm.23018 – ident: e_1_2_6_33_1 doi: 10.1111/j.1749-6632.2000.tb05559.x – ident: e_1_2_6_41_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_6_67_1 doi: 10.1016/j.neuroimage.2012.10.071 – ident: e_1_2_6_71_1 doi: 10.1016/j.neuron.2012.03.004 – ident: e_1_2_6_3_1 doi: 10.1016/j.jalz.2011.03.008 – ident: e_1_2_6_6_1 doi: 10.1016/S0166-2236(02)02264-6 – ident: e_1_2_6_5_1 doi: 10.1016/j.neuron.2010.02.005 – ident: e_1_2_6_7_1 doi: 10.1097/00004647-200110000-00001 – ident: e_1_2_6_47_1 doi: 10.1073/pnas.1513752113 – ident: e_1_2_6_50_1 doi: 10.1016/j.neuron.2009.03.024 – ident: e_1_2_6_38_1 doi: 10.3233/JAD-170096 – ident: e_1_2_6_60_1 doi: 10.1523/JNEUROSCI.3539-11.2011 – ident: e_1_2_6_68_1 doi: 10.1148/radiol.10091701 – ident: e_1_2_6_29_1 doi: 10.1002/ana.20009 – ident: e_1_2_6_57_1 doi: 10.1038/nrn3785 – ident: e_1_2_6_65_1 doi: 10.1002/hbm.22234 – ident: e_1_2_6_70_1 doi: 10.1016/j.neulet.2014.06.043 – ident: e_1_2_6_13_1 doi: 10.1016/j.nicl.2014.02.010 – ident: e_1_2_6_64_1 doi: 10.1016/j.neuroimage.2010.02.046 – ident: e_1_2_6_11_1 doi: 10.1073/pnas.1520613113 – ident: e_1_2_6_24_1 doi: 10.1371/journal.pbio.0060159 – ident: e_1_2_6_21_1 doi: 10.1073/pnas.0308627101 – ident: e_1_2_6_26_1 doi: 10.1371/journal.pcbi.1003956 – ident: e_1_2_6_58_1 doi: 10.1073/pnas.1303346110 – ident: e_1_2_6_15_1 doi: 10.1016/j.neuropsychologia.2006.06.017 – ident: e_1_2_6_17_1 doi: 10.1074/jbc.M808759200 – ident: e_1_2_6_20_1 doi: 10.1093/cercor/bhn059 – year: 2008 ident: e_1_2_6_18_1 article-title: “Flow‐Metabolism Uncoupling in Patients with Asymptomatic Unilateral Carotid Artery Stenosis Assessed by Multi‐Modal Magnetic Resonance Imaging” publication-title: Journal of Cerebral Blood Flow & Metabolism – ident: e_1_2_6_72_1 doi: 10.1093/brain/awq075 – ident: e_1_2_6_30_1 doi: 10.1523/JNEUROSCI.2170-12.2012 – ident: e_1_2_6_45_1 doi: 10.1038/nrn3338 – ident: e_1_2_6_69_1 doi: 10.1016/j.neubiorev.2016.11.023 – ident: e_1_2_6_46_1 doi: 10.1523/JNEUROSCI.0492-14.2014 – ident: e_1_2_6_35_1 doi: 10.1016/j.dadm.2016.11.006 – ident: e_1_2_6_53_1 doi: 10.1371/journal.pone.0025031 – ident: e_1_2_6_62_1 doi: 10.1073/pnas.0914892107 – ident: e_1_2_6_52_1 doi: 10.1016/j.neuroimage.2010.08.063 – ident: e_1_2_6_44_1 doi: 10.1016/j.neuron.2011.12.040 – ident: e_1_2_6_8_1 doi: 10.1007/BF00308809 – ident: e_1_2_6_10_1 doi: 10.1523/JNEUROSCI.2177-05.2005 – ident: e_1_2_6_39_1 doi: 10.1016/j.jalz.2014.02.007 – ident: e_1_2_6_49_1 doi: 10.1016/j.neuron.2016.01.028 – ident: e_1_2_6_27_1 doi: 10.1002/ana.22615 – ident: e_1_2_6_54_1 doi: 10.1073/pnas.0708803104 – ident: e_1_2_6_56_1 doi: 10.1016/j.clinph.2004.09.022 – ident: e_1_2_6_9_1 doi: 10.1038/nrn3887 – ident: e_1_2_6_61_1 doi: 10.1016/j.neuroimage.2011.07.044 – ident: e_1_2_6_37_1 doi: 10.1038/nn.2583 – ident: e_1_2_6_16_1 doi: 10.1038/nrn2786 – ident: e_1_2_6_32_1 – ident: e_1_2_6_51_1 doi: 10.1523/JNEUROSCI.0639-16.2016 – ident: e_1_2_6_31_1 doi: 10.1093/brain/awt286 – ident: e_1_2_6_4_1 doi: 10.3389/fnsys.2011.00002 – ident: e_1_2_6_48_1 doi: 10.3233/JAD-180022 – ident: e_1_2_6_19_1 doi: 10.1177/0271678X18759182 – ident: e_1_2_6_42_1 doi: 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X – ident: e_1_2_6_43_1 doi: 10.1146/annurev.neuro.29.051605.112819 – ident: e_1_2_6_40_1 doi: 10.1016/S1474-4422(11)70158-2 – ident: e_1_2_6_66_1 doi: 10.1016/j.celrep.2015.04.017 |
SSID | ssj0011501 |
Score | 2.5507698 |
Snippet | A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4134 |
SubjectTerms | Advertising executives Aged Alzheimer Disease - diagnostic imaging Alzheimer Disease - metabolism Alzheimer Disease - physiopathology Alzheimer's disease Brain mapping Cerebral Cortex - diagnostic imaging Cerebral Cortex - metabolism Cerebral Cortex - physiopathology Cognitive ability Connectome - methods Cortex (parietal) default mode network Default Mode Network - diagnostic imaging Default Mode Network - metabolism Default Mode Network - physiopathology Development and progression Diagnostic imaging directional signaling effective connectivity energy metabolism Functional magnetic resonance imaging Hippocampus Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Molecular modelling Multimodal Imaging - methods Neural networks Neurodegenerative diseases Neuroimaging Positron emission Positron emission tomography Positron-Emission Tomography - methods Prefrontal cortex Proteins resting state Signal transduction Signaling simultaneous PET/fMRI Tomography Word of mouth advertising |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Pb9MwFLdgSIgLgg1YtoEMQoxLaGo7_04owEpBKkJok3qzHNtRI7VpadrDOO0jcODEx9sn4T0nzdYJuCWyHSX2-_ezX36PkJc25X0VRIXPE2sAoATcT1LDfCWMCgLFmG3YPr9EwzPxeRyO2w23uk2r3NhEZ6jNXOMeec-55hjRydvFdx-rRuHpaltC4za5g9RlKNXxuANcGOw4wAVu1k_BCm-YhQLWm-SzN0yErk7ZlT-6aZWvuaWbKZPXQ1nniwYPyP02iKRZs-oPyS1b7ZK9rAIAPTunr6hL63T75bvk7qg9Pd8jvxuqYrBvVGN-i24qR9CyohAGUmMLtZ6uKBbHoVWTHk7Lmho0A5UbNz3Hu-V6AXEqDsumPya2nNnlseuGRz2XF78yWpeYqKgqO1_XFKt_gIO8vPjp_l6igw8f4frryWmvGH37RB3B7SNyNjg5fT_029oMvgYtjn3RTyIVKGt4otLQqKQA1S9ExFUYaKNzQF6WayYKmygdpjxPdCrSnAW6AMwU5vwx2anmld0nNM51X4kCwZQSICKp5VGCjpXlujCae-T1ZoWkbonLsX7GVDaUy0zCYkq3mB550XVdNGwdf-t0jMssUYPhOVq1PyLA2yAXlsxijDk5OGqPHG31BM3T280bQZGt5tfySk498rxrxpGYzebmXQIMhMBWgDX0yJNGrrrXBQgHwD5OPBJvSVzXAfnAt1uqcuJ4wSGYjsGownw52fz3DMjhu5G7OPj_FxySewxTeFxK3RHZWS3X9inEYKv8mVO0P-7SNIg priority: 102 providerName: ProQuest |
Title | Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease—A simultaneous resting‐state FDG‐PET/fMRI study |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24517 https://www.ncbi.nlm.nih.gov/pubmed/30697878 https://www.proquest.com/docview/2560072225 https://www.proquest.com/docview/2179514101 https://pubmed.ncbi.nlm.nih.gov/PMC8357005 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIiEuPFoohhItCFEuTpzddWyLUwoJASlVFLVSDkjWer1WIhK3yuPQnvoTOHDi5_WXMLN2TBOBhLhEjnbW8mP2m2_Ws98CvDGRaCqvlbkiNCkmKJ5wwyjlrpKp8jzFuSnUPk9avTP5ZeSPduD9ei1MoQ9RTbjRyLB4TQNcJYvGb9HQcTKrc-k3aSU51WoRIRpW0lFEdGyyhSHWjRCB16pCHm9UPTdi0TYi3wpJ2-WSt2msjUPdh_B1fQdF-cm3-mqZ1PXVlrjjf97iI3hQ8lPWLhzqMeyYfA_22znm5rNL9pbZilE7Fb8H9_rlh_l9-FmoICN0Mk2lM7rYlIJNcoYMk6UmU6vpktG-OywvKs_ZZMFSQpjc9pte0r_56gIpMHVrT6_GZjIz8yNrRl-Rbq5_tNliQjWQKjfnqwWjjUUw9t5cf7cLo1j34yc8HnROG1l_-JlZ7dwncNbtnH7oueW2D65GgAhc2QxbylMmFaGK_FSFGaJKJltC-Z5OdYJJnRGay8yESvuRSEIdySjhns4wHfMT8RR28_PcPAMWJLqpZEZ5mpLofZERrZBiNk90lmrhwLu1A8S61ESnrTmmcaHmzGN8BbF9BQ68rkwvCiGQPxkdkRfFBA54Hq3KNQ54NSSzFbcDorMCOYADhxuWOKj1ZvPaD-MSVBaxZacBJegOvKqaqScVytnnHmOGiZxZItA6cFC4bXW5mB1GiM-hA8GGQ1cGJDW-2ZJPxlZyHHl6gHiNz8v669-fQNw77tuD5_9u-gLuc6oUspV7h7C7nK_MS6R6y6QGd7gc4G8wCmpw97hzMhjW7LRJzY72X2FXWNs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIgEXBC0_hgILAsrFxFnbsX1AyNCGhDYVQqmU27Jer5VIiRPyIxROfQQOnHgIHqpPwszaTpsKuPVma3cte2d25vu8szMAz3Xk1qXTyGw31CkSFMe1wyjltvRS6TiSc11k-zxqtI69jz2_twG_q7MwFFZZ2URjqNOxon_kNeOaA2InbydfbaoaRburVQmNQi0O9PIbUrbZm_YeyvcF58397vuWXVYVsBXqX2B79bAhHalTN5SRn8owQ6XNvIYrfUelKkHOoF3FvUyHUvmRm4Qq8qKEOypDtO8nLj73ClxFx-sQ2Qt6K4JH4MoQPHTrdoRWv8pk5PBaPxm95p5v6qKd-b-LXuCcG7wYonkeOhvf17wFN0vQyuJCy27Dhs63YDvOkbCPluwlM2Gk5v_8FlzrlLv12_CrSI2M9pQpiqdRRaUKNsgZwk6W6kwuhnNGxXhYXoSjs8GMpWR2cjNuuKS76WKCuJiGxcPvfT0Y6emu6UZbS6cnP2M2G1BgpMz1eDFjVG0EHfLpyQ9zWoo19z7g9af9bi3rfG4zk1D3DhxfitTuwmY-zvV9YEGi6tLLiLxJD1Uy0m4jJEfOE5WlyrXgVSUhocpE6VSvYyiKFM9coDCFEaYFz1ZdJ0V2kL912iUxC7IY-Bwly4MP-DaUe0vEAWFcF4GBBTtrPXGlq_XmSlFEaWlm4mxdWPB01UwjKXrOzLtA2olA2kPra8G9Qq9Wr4uUMUKjHVoQrGncqgPlH19vyQd9k4ccwXuARhzny-jmv2dAtN51zMWD_3_BE7je6nYOxWH76OAh3OAUPmTC-XZgcz5d6EeI_-bJY7PoGHy57FX-B4GJcWc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVKq4IGj5MRTYIqBcTJy1HdsHhNImIaEkiqpW6s1dr9dKpMQJ-REKpz4CB048Co_TJ2FmbadNBdx6s7Wzlr3z9413dgbgtQrsirCqiWn7KsYAxbJNP4i5KZxYWJbgXGXVPrvV1qnz-cw924DfxVkYSqssbKI21PFY0j_ysnbNHkUn5SRPi-jVmx8nX03qIEU7rUU7jUxEjtTyG4Zvsw_tOvL6DefNxslhy8w7DJgSZdEznYpfFZZQse2LwI2Fn6AAJ07VFq4lYxlh_KBsyZ1E-UK6gR35MnCCiFsyQeTvRjY-9w5sehQVlWDzoNHtHa_2MBBq6XAPnbwZoA8o6hpZvNyPRu-54-ouaVfe8KZPuOYUbyZsXgfS2hM278O9HMKyWiZzD2BDpduwU0sxfB8t2Vumk0r13_pt2Orke_c78CsrlIzWlUnKrpFZ3wo2SBmCUBarRCyGc0ateViaJaezwYzFZIRSPW-4pLvpYoIomabVht_7ajBS031NRhtNlxc_a2w2oDRJkarxYsao9wi658uLH_rsFGvWP-F1r3FSTjrHbabL6z6E01vh2yMopeNUPQHmRbIinIRCOeGggAbKrvrk1nkkk1jaBrwrOBTKvGw6de8YhlnBZx4iM0PNTANerUgnWa2QvxHtE5tDsh_4HCnyYxD4NlSJK6x5hHhthAkG7K5Rot7L9eFCUMLc7szCKy0xYG81TDMpl06ve4hBKMJqB22xAY8zuVq9LgaQAZpw3wBvTeJWBFSNfH0kHfR1VXKE8h6adFwvLZv_XoGwddDRF0___wUvYQs1PPzS7h49g7uccol0bt8ulObThXqOYHAevci1jsH5bSv6H8tQdwI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+connectivity+in+the+default+mode+network+is+distinctively+disrupted+in+Alzheimer%27s+disease%E2%80%94A+simultaneous+resting-state+FDG-PET%2FfMRI+study&rft.jtitle=Human+brain+mapping&rft.au=Scherr%2C+Martin&rft.au=Utz%2C+Lukas&rft.au=Tahmasian%2C+Masoud&rft.au=Pasquini%2C+Lorenzo&rft.date=2021-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.volume=42&rft.issue=13&rft.spage=4134&rft_id=info:doi/10.1002%2Fhbm.24517&rft.externalDocID=A710593429 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |