Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by TMS

Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time‐frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impu...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 42; no. 8; pp. 2416 - 2433
Main Authors Barth, Beatrix, Rohe, Tim, Deppermann, Saskia, Fallgatter, Andreas Jochen, Ehlis, Ann‐Christine
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time‐frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ (n = 24) and low‐impulsive subjects (n = 21) and whether these are modulated by double‐blind, sham‐controlled intermittent theta burst stimulation (iTBS). We found a larger error‐specific peri‐response beta power decrease over fronto‐central sites in high‐impulsive compared to low‐impulsive participants, presumably indexing less effective motor execution processes. Lower parieto‐occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single‐trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial‐specific behavior. iTBS did not modulate behavior or EEG time‐frequency power. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by iTBS. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ and low‐impulsive subjects. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol.
AbstractList Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time-frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high- (n = 24) and low-impulsive subjects (n = 21) and whether these are modulated by double-blind, sham-controlled intermittent theta burst stimulation (iTBS). We found a larger error-specific peri-response beta power decrease over fronto-central sites in high-impulsive compared to low-impulsive participants, presumably indexing less effective motor execution processes. Lower parieto-occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single-trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial-specific behavior. iTBS did not modulate behavior or EEG time-frequency power. Performance monitoring was associated with time-frequency patterns reflecting cognitive control (parieto-occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response-locked time-frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high- and low-impulsive individuals, but are unaffected by iTBS.
Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time-frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high- (n = 24) and low-impulsive subjects (n = 21) and whether these are modulated by double-blind, sham-controlled intermittent theta burst stimulation (iTBS). We found a larger error-specific peri-response beta power decrease over fronto-central sites in high-impulsive compared to low-impulsive participants, presumably indexing less effective motor execution processes. Lower parieto-occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single-trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial-specific behavior. iTBS did not modulate behavior or EEG time-frequency power. Performance monitoring was associated with time-frequency patterns reflecting cognitive control (parieto-occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response-locked time-frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high- and low-impulsive individuals, but are unaffected by iTBS.Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time-frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high- (n = 24) and low-impulsive subjects (n = 21) and whether these are modulated by double-blind, sham-controlled intermittent theta burst stimulation (iTBS). We found a larger error-specific peri-response beta power decrease over fronto-central sites in high-impulsive compared to low-impulsive participants, presumably indexing less effective motor execution processes. Lower parieto-occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single-trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial-specific behavior. iTBS did not modulate behavior or EEG time-frequency power. Performance monitoring was associated with time-frequency patterns reflecting cognitive control (parieto-occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response-locked time-frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high- and low-impulsive individuals, but are unaffected by iTBS.
Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time‐frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ ( n = 24) and low‐impulsive subjects ( n = 21) and whether these are modulated by double‐blind, sham‐controlled intermittent theta burst stimulation (iTBS). We found a larger error‐specific peri‐response beta power decrease over fronto‐central sites in high‐impulsive compared to low‐impulsive participants, presumably indexing less effective motor execution processes. Lower parieto‐occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single‐trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial‐specific behavior. iTBS did not modulate behavior or EEG time‐frequency power. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by iTBS.
Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time‐frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ ( n = 24) and low‐impulsive subjects ( n = 21) and whether these are modulated by double‐blind, sham‐controlled intermittent theta burst stimulation (iTBS). We found a larger error‐specific peri‐response beta power decrease over fronto‐central sites in high‐impulsive compared to low‐impulsive participants, presumably indexing less effective motor execution processes. Lower parieto‐occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single‐trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial‐specific behavior. iTBS did not modulate behavior or EEG time‐frequency power. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by iTBS. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ and low‐impulsive subjects. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol.
Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time‐frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ (n = 24) and low‐impulsive subjects (n = 21) and whether these are modulated by double‐blind, sham‐controlled intermittent theta burst stimulation (iTBS). We found a larger error‐specific peri‐response beta power decrease over fronto‐central sites in high‐impulsive compared to low‐impulsive participants, presumably indexing less effective motor execution processes. Lower parieto‐occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single‐trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial‐specific behavior. iTBS did not modulate behavior or EEG time‐frequency power. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by iTBS. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ and low‐impulsive subjects. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol.
Audience Academic
Author Barth, Beatrix
Rohe, Tim
Fallgatter, Andreas Jochen
Ehlis, Ann‐Christine
Deppermann, Saskia
AuthorAffiliation 3 LEAD Graduate School & Research Network University of Tuebingen Tuebingen Germany
1 Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy University of Tuebingen Tuebingen Germany
2 Department of Psychology Friedrich‐Alexander University Erlangen‐Nuernberg Erlangen Germany
4 Werner Reichardt Centre for Integrative Neuroscience (CIN) University of Tuebingen Tuebingen Germany
AuthorAffiliation_xml – name: 2 Department of Psychology Friedrich‐Alexander University Erlangen‐Nuernberg Erlangen Germany
– name: 3 LEAD Graduate School & Research Network University of Tuebingen Tuebingen Germany
– name: 4 Werner Reichardt Centre for Integrative Neuroscience (CIN) University of Tuebingen Tuebingen Germany
– name: 1 Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy University of Tuebingen Tuebingen Germany
Author_xml – sequence: 1
  givenname: Beatrix
  orcidid: 0000-0002-3792-3357
  surname: Barth
  fullname: Barth, Beatrix
  email: beatrix.barth@med.uni-tuebingen.de
  organization: University of Tuebingen
– sequence: 2
  givenname: Tim
  surname: Rohe
  fullname: Rohe, Tim
  organization: Friedrich‐Alexander University Erlangen‐Nuernberg
– sequence: 3
  givenname: Saskia
  surname: Deppermann
  fullname: Deppermann, Saskia
  organization: University of Tuebingen
– sequence: 4
  givenname: Andreas Jochen
  surname: Fallgatter
  fullname: Fallgatter, Andreas Jochen
  organization: University of Tuebingen
– sequence: 5
  givenname: Ann‐Christine
  surname: Ehlis
  fullname: Ehlis, Ann‐Christine
  organization: University of Tuebingen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33605509$$D View this record in MEDLINE/PubMed
BookMark eNp1kk9vFCEYxiemxv7Rg1_AkHjRxNnCzMLAxaQ2ak1aPVjPhIGXXZoZ2MLMbvbm0aOf0U8i292qbWo48AZ-7wMPPIfFng8eiuI5wROCcXU8b_tJReuGPSoOCBZNiYmo9zY1o6WYNmS_OEzpCmNCKCZPiv26ZphSLA6KH59hjKpDIWnXdWoIcY0ipEXwCRIaAlpAtCH2ymtAffAuE87PkHHWQkQtDCsAj-ZuNv_1_SdS3qAurHLp-sXYJbcE5LxxS2dG1aU3qB0HpCKg0assoAcwqF2jy4uvT4vHNhPwbDcfFd8-vL88PSvPv3z8dHpyXmqa7ZSK14JzoQmvORHEMEGpqA1lLa8Vp4xYQcHiVmNQYBRVwIytGt7ym9rWR8Xbre5ibHswGvyQ_ctFdL2KaxmUk3d3vJvLWVhKjgVuGMsCr3YCMVyPkAbZu6QhP56HMCZZTQURU04YyejLe-hVGKPP9mRFK8w4z9f_S81UB9J5G_K5eiMqTxqCs73pdENNHqDyMNA7nfNgXV6_0_DiX6N_HN7-fQaOt4COIaUIVmo3qMGFjW_XSYLlJl0yp0vepCt3vL7XcSv6ELtTX-V7rf8PyrN3F9uO30I04Zs
CitedBy_id crossref_primary_10_3389_fnins_2021_679408
crossref_primary_10_1142_S0129065723500065
crossref_primary_10_1016_j_bbr_2024_115372
crossref_primary_10_1016_j_biopsycho_2024_108826
Cites_doi 10.1162/jocn.2008.20117
10.3109/15622970902977552
10.1016/j.neubiorev.2016.08.028
10.7551/mitpress/9609.001.0001
10.1016/j.neuroimage.2004.01.040
10.1027/0269-8803.19.4.289
10.1016/j.conb.2010.02.015
10.1111/j.1469-7610.2009.02128.x
10.1016/j.clinph.2004.03.031
10.1016/j.biopsycho.2017.09.008
10.1097/00004583-199706000-00009
10.1001/archgenpsychiatry.2009.103
10.1126/science.1100301
10.1016/j.neuroimage.2013.09.055
10.1162/jocn_a_01250
10.1016/j.euroneuro.2019.07.136
10.1002/hbm.20763
10.1038/nn.3344
10.1016/j.drugalcdep.2017.01.036
10.1111/ejn.14174
10.1111/psyp.13041
10.1371/journal.pone.0060060
10.1016/S0301-0511(01)00076-X
10.1016/S0079-6123(06)59014-4
10.1016/j.cortex.2016.04.010
10.2466/08.09.10.PMS.112.2.353-368
10.1023/B:BRAT.0000006333.93597.9d
10.1155/2011/156869
10.1038/srep32058
10.1503/jpn.170118
10.1162/jocn_a_00656
10.1016/j.cortex.2019.02.016
10.1017/S1461145713000540
10.1002/hbm.20892
10.1016/S1388-2457(03)00235-9
10.4088/JCP.17m11870
10.1152/jn.00479.2013
10.1002/ajmg.b.31161
10.1016/j.tics.2016.05.006
10.1016/j.neuroscience.2008.06.061
10.1016/j.clinph.2003.12.026
10.1038/s41598-018-26791-w
10.1016/j.biopsych.2011.02.026
10.1152/jn.01141.2006
10.1212/01.WNL.0000152986.07469.E9
10.1016/j.neuroimage.2013.06.051
10.1159/000173701
10.1093/cercor/bhs256
10.1007/978-1-59745-495-7_8
10.1146/annurev-psych-113011-143750
10.1162/jocn.2009.21008
10.1016/j.neuroimage.2016.04.032
10.1097/00001756-200211150-00004
10.1007/s00115-001-1215-x
10.1016/j.neuron.2011.01.020
10.1016/j.biopsych.2004.07.017
10.1016/j.biopsycho.2011.02.023
10.1016/j.clinph.2006.11.009
10.1111/1469-8986.3850752
10.1016/j.neuroimage.2013.07.032
10.1371/journal.pone.0179430
10.1016/j.neulet.2007.04.030
10.1080/09297040802348028
10.1097/00001756-200103050-00005
10.1016/j.psychres.2008.06.015
10.1016/j.neuron.2004.12.033
10.1016/j.neuroscience.2018.01.011
10.1016/j.neuropsychologia.2004.05.007
10.3390/brainsci10050255
10.1016/j.neuroimage.2017.05.014
10.1017/S0033291704002892
10.1212/WNL.57.10.1899
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC.
2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
COPYRIGHT 2021 John Wiley & Sons, Inc.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC.
– notice: 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.25376
DatabaseName Wiley_OA刊
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef



Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Barth et al
EISSN 1097-0193
EndPage 2433
ExternalDocumentID PMC8090766
A710593445
33605509
10_1002_hbm_25376
HBM25376
Genre article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: RO 5587/1‐1
– fundername: IZKF Tübingen
  funderid: 2115‐0‐0
– fundername: ;
  grantid: RO 5587/1‐1
– fundername: IZKF Tübingen
  grantid: 2115‐0‐0
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
8FI
8FJ
AAFWJ
AANHP
AAYXX
ABEML
ABJNI
ABUWG
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AFKRA
AFPKN
AGQPQ
ASPBG
AVWKF
AZFZN
BENPR
BFHJK
CCPQU
CITATION
EJD
FEDTE
FYUFA
GAKWD
HF~
HMCUK
HVGLF
LW6
M6M
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
UKHRP
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5106-a839889c1838191d695593d56b83a8561f95ef0bc0eaeda5ae6df278b8a5ae6f3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 17:56:49 EDT 2025
Thu Jul 10 22:29:45 EDT 2025
Fri Aug 29 16:40:57 EDT 2025
Tue Jun 17 21:37:33 EDT 2025
Tue Jun 10 20:49:28 EDT 2025
Thu Apr 03 06:53:34 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Tue Jul 01 01:11:02 EDT 2025
Wed Jan 22 16:30:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords impulsivity
intertrial phase coherence
single-trial phase behavior coupling
transcranial magnetic stimulation
performance monitoring
time-frequency analysis
Language English
License Attribution-NonCommercial
2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5106-a839889c1838191d695593d56b83a8561f95ef0bc0eaeda5ae6df278b8a5ae6f3
Notes Funding information
Deutsche Forschungsgemeinschaft, Grant/Award Number: RO 5587/1‐1; IZKF Tübingen, Grant/Award Number: 2115‐0‐0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Funding information Deutsche Forschungsgemeinschaft, Grant/Award Number: RO 5587/1‐1; IZKF Tübingen, Grant/Award Number: 2115‐0‐0
ORCID 0000-0002-3792-3357
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25376
PMID 33605509
PQID 2520688695
PQPubID 996345
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8090766
proquest_miscellaneous_2491948161
proquest_journals_2520688695
gale_infotracmisc_A710593445
gale_infotracacademiconefile_A710593445
pubmed_primary_33605509
crossref_citationtrail_10_1002_hbm_25376
crossref_primary_10_1002_hbm_25376
wiley_primary_10_1002_hbm_25376_HBM25376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 11
2004; 22
2009; 42
2013; 23
2019; 13
2002; 13
2013; 64
2014; 26
2005; 64
2003; 16
2016; 71
2020; 10
2017; 156
2003; 114
2013; 8
2018; 43
2011; 112
2018; 48
2018; 372
2010; 20
2018; 8
2013; 16
2011; 70
1985
2019; 29
2018; 30
2013; 110
2016; 81
2019; 117
2011; 69
2008; 20
2007; 419
2008; 156
2001; 56
2001; 12
2001; 57
2009; 169
2009; 15
2005; 35
2018; 79
2017; 129
2009; 66
2004; 42
2010; 31
2011; 2
2009; 21
2011
2002; 73
2011; 156B
2013; 83
2009
2008
1997
2005
2017; 175
2007; 98
2014; 84
2006; 159
2004; 306
2005; 45
2016; 6
2005; 19
2009; 30
2007; 118
2004; 159
2004; 115
1997; 36
2004; 56
2017; 12
2016; 134
2016; 20
2011; 87
2016
2001; 38
2014
2018; 55
2010; 51
e_1_2_11_70_1
Rösler M. (e_1_2_11_67_1) 2008
e_1_2_11_72_1
Cohen M. X. (e_1_2_11_15_1) 2011; 2
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
Alegre M. (e_1_2_11_2_1) 2004; 159
e_1_2_11_48_1
Wittchen H. U. (e_1_2_11_77_1) 1997
Lehrl S. (e_1_2_11_45_1) 2005
e_1_2_11_60_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Barratt E. S. (e_1_2_11_4_1) 1985
Tzagarakis C. (e_1_2_11_74_1) 2019; 13
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – year: 2009
– volume: 118
  start-page: 645
  year: 2007
  end-page: 668
  article-title: Theta EEG dynamics of the error‐related negativity
  publication-title: Clinical Neurophysiology
– volume: 35
  start-page: 245
  issue: 2
  year: 2005
  end-page: 256
  article-title: The World Health Organization adult ADHD self‐report scale (ASRS): A short screening scale for use in the general population
  publication-title: Psychological Medicine
– volume: 13
  issue: 1
  year: 2019
  article-title: The degree of modulation of Beta Band activity during motor planning is related to trait impulsivity
  publication-title: Frontiers in Integrative Neuroscience
– year: 2005
– volume: 56
  start-page: 634
  issue: 9
  year: 2004
  end-page: 639
  article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid‐rate transcranial magnetic stimulation and controls the direction of after‐effects
  publication-title: Biological Psychiatry
– volume: 20
  start-page: 567
  issue: 8
  year: 2016
  end-page: 569
  article-title: Physiological plausibility can increase reproducibility in cognitive neuroscience
  publication-title: Trends in Cognitive Sciences
– volume: 30
  start-page: 1791
  year: 2009
  end-page: 1800
  article-title: Prestimulus alpha and mu activity predicts failure to inhibit motor responses
  publication-title: Human Brain Mapping
– volume: 12
  issue: 6
  year: 2017
  article-title: The effects of high‐frequency rTMS over the left DLPFC on cognitive control in young healthy participants
  publication-title: PLoS One
– volume: 70
  start-page: 246
  issue: 3
  year: 2011
  end-page: 254
  article-title: May posterror performance be a critical factor for behavioral deficits in attentiondeficit/ hyperactivity disorder?
  publication-title: Biological Psychiatry
– volume: 15
  start-page: 321
  issue: 4
  year: 2009
  end-page: 342
  article-title: Interference control in children with and without ADHD: A systematic review of flanker and Simon task performance
  publication-title: Child Neuropsychology
– volume: 12
  start-page: 445
  issue: 3
  year: 2001
  end-page: 447
  article-title: Effects of slow rTMS at the right dorsolateral prefrontal cortex on EEG asymmetry and mood
  publication-title: Neuroreport
– volume: 19
  start-page: 289
  issue: 4
  year: 2005
  end-page: 297
  article-title: Aging and error processing ‐ time frequency analysis of error‐related potentials
  publication-title: Journal of Psychophysiology
– volume: 10
  start-page: 255
  issue: 5
  year: 2020
  article-title: Site‐specific effects of online rTMS during a working memory task in healthy older adults
  publication-title: Brain Sciences
– volume: 11
  start-page: 457
  year: 2010
  end-page: 464
  article-title: Neural correlates of performance monitoring in adult patients with attention deficit hyperactivity disorder (ADHD)
  publication-title: The World Journal of Biological Psychiatry
– volume: 6
  year: 2016
  article-title: How the brain prevents a second error in a perceptual decision‐making task
  publication-title: Scientific Reports
– volume: 2
  issue: 30
  year: 2011
  article-title: Single‐trial regression elucidates the role of prefrontal theta oscillations in response conflict
  publication-title: Frontiers in Psychology
– volume: 16
  start-page: 386
  year: 2013
  end-page: 387
  article-title: Deep brain stimulation restores frontostriatal network activity in obsessive‐compulsive disorder
  publication-title: Nature Neuroscience
– volume: 81
  start-page: 63
  year: 2016
  end-page: 81
  article-title: Increased ongoing neural variability in ADHD
  publication-title: Cortex
– volume: 55
  issue: 3
  year: 2018
  article-title: An adaptive orienting theory of error processing
  publication-title: Psychophysiology
– year: 2014
– volume: 43
  start-page: 396
  issue: 5
  year: 2018
  end-page: 406
  article-title: Performance monitoring and post‐error adjustments in adults with attention‐deficit/hyperactivity disorder: An EEG analysis
  publication-title: Journal of Psychiatry and Neuroscience
– year: 2011
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Computational Intelligence and Neuroscience
– volume: 16
  start-page: 95
  issue: 2
  year: 2003
  end-page: 99
  article-title: Using the international 10‐20 EEG system for positioning of transcranial magnetic stimulation
  publication-title: Brain Topography
– volume: 115
  start-page: 1069
  issue: 5
  year: 2004
  end-page: 1075
  article-title: The effect of short‐duration bursts of high‐frequency, low‐intensity transcranial magnetic stimulation on the human motor cortex
  publication-title: Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology
– volume: 29
  start-page: 1117
  issue: 10
  year: 2019
  end-page: 1126
  article-title: ADHD symptoms in the adult general population are associated with factors linked to ADHD in adult patients
  publication-title: European Neuropsychopharmacology
– volume: 134
  start-page: 514
  year: 2016
  end-page: 521
  article-title: Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging
  publication-title: NeuroImage
– volume: 419
  start-page: 162
  issue: 2
  year: 2007
  end-page: 167
  article-title: The effects of 10Hz repetitive transcranial magnetic stimulation on resting EEG power spectrum in healthy subjects
  publication-title: Neuroscience Letters
– volume: 84
  start-page: 876
  issue: 84
  year: 2014
  end-page: 887
  article-title: Single‐trial time–frequency analysis of electrocortical signals: Baseline correction and beyond
  publication-title: NeuroImage
– volume: 30
  start-page: 867
  issue: 6
  year: 2018
  end-page: 875
  article-title: Transient alpha and Beta synchrony underlies preparatory recruitment of directional motor networks
  publication-title: Journal of Cognitive Neuroscience
– volume: 83
  start-page: 912
  year: 2013
  end-page: 920
  article-title: Lower theta inter‐trial phase coherence during performance monitoring is related to higher reaction time variability: A lifespan study
  publication-title: NeuroImage
– year: 2008
– volume: 64
  start-page: 872
  issue: 5
  year: 2005
  end-page: 875
  article-title: Safety and cognitive effect of frontal DC brain polarization in healthy individuals
  publication-title: Neurology
– year: 1997
– volume: 42
  start-page: 32
  year: 2009
  end-page: 39
  article-title: The short version of the Borderline Symptom List (BSL‐23): Development and initial data on psychometric properties
  publication-title: Psychopathology
– volume: 36
  start-page: 737
  issue: 6
  year: 1997
  end-page: 744
  article-title: Attention‐deficit hyperactivity disorder: A category or a continuum? Genetic analysis of a large‐scale twin study
  publication-title: Journal of the American Academy of Child & Adolescent Psychiatry
– volume: 16
  start-page: 1911
  issue: 9
  year: 2013
  end-page: 1925
  article-title: Quetiapine and flupentixol differentially improve anterior cingulate cortex function in schizophrenia patients: An event‐related potential study
  publication-title: The International Journal of Neuropsychopharmacology
– volume: 22
  start-page: 590
  year: 2004
  end-page: 602
  article-title: Parallel systems of error processing in the brain
  publication-title: NeuroImage
– volume: 45
  start-page: 201
  issue: 2
  year: 2005
  end-page: 206
  article-title: Theta burst stimulation of the human motor cortex
  publication-title: Neuron
– volume: 51
  start-page: 66
  issue: 1
  year: 2010
  end-page: 76
  article-title: Electrophysiological indices of abnormal error‐processing in adolescents with attention deficit hyperactivity disorder (ADHD)
  publication-title: Journal of Child Psychology and Psychiatry
– volume: 159
  start-page: 211
  year: 2006
  end-page: 222
– volume: 13
  start-page: 2011
  issue: 16
  year: 2002
  end-page: 2015
  article-title: Synchronized activity in prefrontal cortex during anticipation of visuomotor processing
  publication-title: Neuroreport
– volume: 114
  start-page: 2220
  issue: 11
  year: 2003
  end-page: 2222
  article-title: Safety criteria for transcranial direct current stimulation (tDCS) in humans
  publication-title: Clinical Neurophysiology
– volume: 64
  start-page: 135
  year: 2013
  end-page: 168
  article-title: Executive functions
  publication-title: Annual Review of Psychology
– volume: 156
  start-page: 238
  year: 2008
  end-page: 246
  article-title: Response preparation and inhibition: The role of the cortical sensorimotor beta rhythm
  publication-title: Neuroscience
– volume: 69
  start-page: 680
  issue: 4
  year: 2011
  end-page: 694
  article-title: Impulsivity, compulsivity, and top‐down cognitive control
  publication-title: Neuron
– volume: 306
  start-page: 443
  issue: 5695
  year: 2004
  end-page: 447
  article-title: The role of the medial frontal cortex in cognitive control
  publication-title: Science
– volume: 73
  start-page: 830
  issue: 9
  year: 2002
  end-page: 838
  article-title: Wender Utah rating scale. The short‐version for the assessment of the attention‐deficit hyperactivity disorder in adults
  publication-title: Nervenarzt
– volume: 23
  start-page: 2677
  issue: 11
  year: 2013
  end-page: 2689
  article-title: Is there "one" DLPFC in cognitive action control? Evidence for heterogeneity from co‐activation‐based parcellation
  publication-title: Cerebral Cortex (New York, N.Y.: 1991)
– volume: 8
  start-page: 8526
  issue: 1
  year: 2018
  end-page: 8526
  article-title: The effect of stimulation interval on plasticity following repeated blocks of intermittent theta burst stimulation
  publication-title: Scientific Reports
– volume: 115
  start-page: 1821
  issue: 8
  year: 2004
  end-page: 1835
  article-title: Frontal midline theta and the error‐related negativity: Neurophysiological mechanisms of action regulation
  publication-title: Clinical Neurophysiology
– volume: 372
  start-page: 266
  year: 2018
  end-page: 272
  article-title: Electrophysiological activity prior to self‐initiated movements is related to impulsive personality traits
  publication-title: Neuroscience
– volume: 79
  issue: 5
  year: 2018
  article-title: Further evidence of morbidity and dysfunction associated with subsyndromal ADHD in clinically referred children
  publication-title: The Journal of Clinical Psychiatry
– start-page: 113
  year: 1985
  end-page: 132
– year: 2016
– volume: 117
  start-page: 16
  year: 2019
  end-page: 32
  article-title: Sustaining attention for a prolonged period of time increases temporal variability in cortical responses
  publication-title: Cortex
– volume: 159
  start-page: 14
  issue: 1
  year: 2004
  end-page: 22
  article-title: Frontal and central oscillatory changes related to different aspects of the motor process: A study in go/no‐go paradigms
  publication-title: Experimental Brain Research
– volume: 175
  start-page: 77
  year: 2017
  end-page: 83
  article-title: Cognitive control in young heavy drinkers: An ERP study
  publication-title: Drug and Alcohol Dependence
– volume: 129
  start-page: 253
  year: 2017
  end-page: 264
  article-title: Frontoparietal theta oscillations during proactive control are associated with goal‐updating and reduced behavioral variability
  publication-title: Biological Psychology
– volume: 57
  start-page: 1899
  issue: 10
  year: 2001
  end-page: 1901
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
– volume: 48
  start-page: 3159
  issue: 10
  year: 2018
  end-page: 3170
  article-title: Midfrontal theta transcranial alternating current stimulation modulates behavioural adjustment after error execution
  publication-title: European Journal of Neuroscience
– volume: 87
  start-page: 306
  issue: 2
  year: 2011
  end-page: 310
  article-title: Frontal alpha asymmetry in adults with attention deficit hyperactivity disorder: Replication and specification
  publication-title: Biological Psychology
– volume: 169
  start-page: 144
  issue: 2
  year: 2009
  end-page: 148
  article-title: The effect of ADHD symptoms on performance monitoring in a non‐clinical population
  publication-title: Psychiatry Research
– volume: 56
  start-page: 173
  issue: 3
  year: 2001
  end-page: 189
  article-title: Why is there an ERN/ne on correct trials? Response representations, stimulus‐related components, and the theory of error‐processing
  publication-title: Biological Psychology
– volume: 66
  start-page: 888
  issue: 8
  year: 2009
  end-page: 896
  article-title: Development of cortical asymmetry in typically developing children and its disruption in attention‐deficit/hyperactivity disorder
  publication-title: Archives of General Psychiatry
– volume: 112
  start-page: 353
  issue: 2
  year: 2011
  end-page: 368
  article-title: Psychometric properties of the German version of the Barratt Impulsiveness Scale Version 11 (Bis–11) for adolescents
  publication-title: Perceptual and Motor Skills
– volume: 110
  start-page: 2752
  year: 2013
  end-page: 2763
  article-title: Midfrontal conflict‐related theta‐band power reflects neural oscillations that predict behavior
  publication-title: Journal of Neurophysiology
– volume: 83
  start-page: 27
  year: 2013
  end-page: 34
  article-title: Oscillatory dynamics of response competition in human sensorimotor cortex
  publication-title: NeuroImage
– volume: 156
  start-page: 277
  year: 2017
  end-page: 285
  article-title: Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task
  publication-title: NeuroImage
– volume: 26
  start-page: 2596
  issue: 11
  year: 2014
  end-page: 2607
  article-title: The decoupled mind: Mind‐wandering disrupts cortical phase‐locking to perceptual events
  publication-title: Journal of Cognitive Neuroscience
– volume: 20
  start-page: 1595
  issue: 9
  year: 2008
  end-page: 1610
  article-title: Neural mechanisms underlying adaptive actions after slips
  publication-title: Journal of Cognitive Neuroscience
– volume: 8
  issue: 3
  year: 2013
  article-title: Modulations of EEG Beta power during planning and execution of grasping movements
  publication-title: PLoS One
– volume: 42
  start-page: 1910
  year: 2004
  end-page: 1916
  article-title: The functional neuroanatomical correlates of response variability: Evidence from a response inhibition task
  publication-title: Neuropsychologia
– volume: 98
  start-page: 345
  issue: 1
  year: 2007
  end-page: 359
  article-title: Population activity in the human dorsal pathway predicts the accuracy of visual motion detection
  publication-title: Journal of Neurophysiology
– volume: 20
  start-page: 156
  issue: 2
  year: 2010
  end-page: 165
  article-title: Beta‐band oscillations—Signalling the status quo?
  publication-title: Current Opinion in Neurobiology
– volume: 31
  start-page: 621
  issue: 4
  year: 2010
  end-page: 630
  article-title: Functional 5‐HT1a receptor polymorphism selectively modulates error‐specific subprocesses of performance monitoring
  publication-title: Human Brain Mapping
– volume: 38
  start-page: 752
  issue: 5
  year: 2001
  end-page: 760
  article-title: Error‐related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task
  publication-title: Psychophysiology
– volume: 156B
  start-page: 291
  issue: 3
  year: 2011
  end-page: 302
  article-title: Influence of a genetic variant of the neuronal growth associated protein Stathmin 1 on cognitive and affective control processes: An event‐related potential study
  publication-title: American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics
– volume: 21
  start-page: 93
  issue: 1
  year: 2009
  end-page: 104
– volume: 71
  start-page: 112
  year: 2016
  end-page: 134
  article-title: Prefrontal cortex and impulsivity: Interest of noninvasive brain stimulation
  publication-title: Neuroscience & Biobehavioral Reviews
– ident: e_1_2_11_51_1
  doi: 10.1162/jocn.2008.20117
– ident: e_1_2_11_34_1
  doi: 10.3109/15622970902977552
– ident: e_1_2_11_5_1
– ident: e_1_2_11_11_1
  doi: 10.1016/j.neubiorev.2016.08.028
– ident: e_1_2_11_14_1
  doi: 10.7551/mitpress/9609.001.0001
– ident: e_1_2_11_78_1
  doi: 10.1016/j.neuroimage.2004.01.040
– ident: e_1_2_11_43_1
  doi: 10.1027/0269-8803.19.4.289
– volume: 13
  issue: 1
  year: 2019
  ident: e_1_2_11_74_1
  article-title: The degree of modulation of Beta Band activity during motor planning is related to trait impulsivity
  publication-title: Frontiers in Integrative Neuroscience
– ident: e_1_2_11_24_1
  doi: 10.1016/j.conb.2010.02.015
– ident: e_1_2_11_31_1
  doi: 10.1111/j.1469-7610.2009.02128.x
– ident: e_1_2_11_50_1
  doi: 10.1016/j.clinph.2004.03.031
– ident: e_1_2_11_18_1
  doi: 10.1016/j.biopsycho.2017.09.008
– ident: e_1_2_11_46_1
  doi: 10.1097/00004583-199706000-00009
– ident: e_1_2_11_71_1
  doi: 10.1001/archgenpsychiatry.2009.103
– ident: e_1_2_11_66_1
  doi: 10.1126/science.1100301
– ident: e_1_2_11_37_1
  doi: 10.1016/j.neuroimage.2013.09.055
– ident: e_1_2_11_65_1
  doi: 10.1162/jocn_a_01250
– ident: e_1_2_11_47_1
  doi: 10.1016/j.euroneuro.2019.07.136
– volume-title: Homburger ADHS Skalen für Erwachsene (HASE)
  year: 2008
  ident: e_1_2_11_67_1
– ident: e_1_2_11_52_1
  doi: 10.1002/hbm.20763
– ident: e_1_2_11_25_1
  doi: 10.1038/nn.3344
– ident: e_1_2_11_26_1
  doi: 10.1016/j.drugalcdep.2017.01.036
– ident: e_1_2_11_27_1
  doi: 10.1111/ejn.14174
– ident: e_1_2_11_76_1
  doi: 10.1111/psyp.13041
– ident: e_1_2_11_80_1
  doi: 10.1371/journal.pone.0060060
– ident: e_1_2_11_17_1
  doi: 10.1016/S0301-0511(01)00076-X
– ident: e_1_2_11_55_1
  doi: 10.1016/S0079-6123(06)59014-4
– ident: e_1_2_11_28_1
  doi: 10.1016/j.cortex.2016.04.010
– ident: e_1_2_11_32_1
  doi: 10.2466/08.09.10.PMS.112.2.353-368
– ident: e_1_2_11_36_1
  doi: 10.1023/B:BRAT.0000006333.93597.9d
– ident: e_1_2_11_60_1
  doi: 10.1155/2011/156869
– ident: e_1_2_11_62_1
  doi: 10.1038/srep32058
– ident: e_1_2_11_23_1
  doi: 10.1503/jpn.170118
– volume-title: Mehrfachwahl‐Wortschatz‐Intelligenztest MWT‐B
  year: 2005
  ident: e_1_2_11_45_1
– ident: e_1_2_11_3_1
  doi: 10.1162/jocn_a_00656
– ident: e_1_2_11_63_1
  doi: 10.1016/j.cortex.2019.02.016
– ident: e_1_2_11_69_1
  doi: 10.1017/S1461145713000540
– ident: e_1_2_11_7_1
  doi: 10.1002/hbm.20892
– ident: e_1_2_11_57_1
  doi: 10.1016/S1388-2457(03)00235-9
– ident: e_1_2_11_9_1
  doi: 10.4088/JCP.17m11870
– ident: e_1_2_11_16_1
  doi: 10.1152/jn.00479.2013
– ident: e_1_2_11_22_1
  doi: 10.1002/ajmg.b.31161
– ident: e_1_2_11_75_1
  doi: 10.1016/j.tics.2016.05.006
– ident: e_1_2_11_81_1
  doi: 10.1016/j.neuroscience.2008.06.061
– ident: e_1_2_11_39_1
  doi: 10.1016/j.clinph.2003.12.026
– ident: e_1_2_11_73_1
  doi: 10.1038/s41598-018-26791-w
– ident: e_1_2_11_79_1
  doi: 10.1016/j.biopsych.2011.02.026
– start-page: 113
  volume-title: Advances in personality assessment
  year: 1985
  ident: e_1_2_11_4_1
– ident: e_1_2_11_21_1
  doi: 10.1152/jn.01141.2006
– ident: e_1_2_11_40_1
  doi: 10.1212/01.WNL.0000152986.07469.E9
– ident: e_1_2_11_29_1
  doi: 10.1016/j.neuroimage.2013.06.051
– ident: e_1_2_11_10_1
  doi: 10.1159/000173701
– ident: e_1_2_11_13_1
  doi: 10.1093/cercor/bhs256
– ident: e_1_2_11_12_1
  doi: 10.1007/978-1-59745-495-7_8
– ident: e_1_2_11_20_1
  doi: 10.1146/annurev-psych-113011-143750
– ident: e_1_2_11_59_1
  doi: 10.1162/jocn.2009.21008
– volume: 2
  issue: 30
  year: 2011
  ident: e_1_2_11_15_1
  article-title: Single‐trial regression elucidates the role of prefrontal theta oscillations in response conflict
  publication-title: Frontiers in Psychology
– ident: e_1_2_11_33_1
  doi: 10.1016/j.neuroimage.2016.04.032
– ident: e_1_2_11_49_1
  doi: 10.1097/00001756-200211150-00004
– ident: e_1_2_11_64_1
  doi: 10.1007/s00115-001-1215-x
– ident: e_1_2_11_19_1
  doi: 10.1016/j.neuron.2011.01.020
– ident: e_1_2_11_44_1
  doi: 10.1016/j.biopsych.2004.07.017
– ident: e_1_2_11_42_1
  doi: 10.1016/j.biopsycho.2011.02.023
– ident: e_1_2_11_72_1
  doi: 10.1016/j.clinph.2006.11.009
– ident: e_1_2_11_56_1
  doi: 10.1111/1469-8986.3850752
– ident: e_1_2_11_61_1
  doi: 10.1016/j.neuroimage.2013.07.032
– volume-title: SKID. Strukturiertes Klinisches Interview für DSM‐IV. Achse I und II. Handanweisung
  year: 1997
  ident: e_1_2_11_77_1
– ident: e_1_2_11_48_1
  doi: 10.1371/journal.pone.0179430
– ident: e_1_2_11_30_1
  doi: 10.1016/j.neulet.2007.04.030
– ident: e_1_2_11_54_1
  doi: 10.1080/09297040802348028
– ident: e_1_2_11_70_1
  doi: 10.1097/00001756-200103050-00005
– ident: e_1_2_11_35_1
  doi: 10.1016/j.psychres.2008.06.015
– ident: e_1_2_11_38_1
  doi: 10.1016/j.neuron.2004.12.033
– ident: e_1_2_11_68_1
  doi: 10.1016/j.neuroscience.2018.01.011
– ident: e_1_2_11_6_1
  doi: 10.1016/j.neuropsychologia.2004.05.007
– volume: 159
  start-page: 14
  issue: 1
  year: 2004
  ident: e_1_2_11_2_1
  article-title: Frontal and central oscillatory changes related to different aspects of the motor process: A study in go/no‐go paradigms
  publication-title: Experimental Brain Research
– ident: e_1_2_11_8_1
  doi: 10.3390/brainsci10050255
– ident: e_1_2_11_53_1
  doi: 10.1016/j.neuroimage.2017.05.014
– ident: e_1_2_11_41_1
  doi: 10.1017/S0033291704002892
– ident: e_1_2_11_58_1
  doi: 10.1212/WNL.57.10.1899
SSID ssj0011501
Score 2.3800602
Snippet Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2416
SubjectTerms Adult
Attention - physiology
Cerebral Cortex - physiology
Clustering
Cognitive ability
Double-Blind Method
EEG
Electroencephalography
Executive Function - physiology
Female
Humans
Impulsive behavior
Impulsive Behavior - physiology
Impulsivity
intertrial phase coherence
Male
Monitoring
Neurophysiology
performance monitoring
Phase coherence
Prefrontal cortex
Psychomotor Performance - physiology
Reaction time
Reaction Time - physiology
Reaction time task
single‐trial phase behavior coupling
Stimulation
Theta Rhythm - physiology
time‐frequency analysis
Transcranial Magnetic Stimulation
Young Adult
Title Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by TMS
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25376
https://www.ncbi.nlm.nih.gov/pubmed/33605509
https://www.proquest.com/docview/2520688695
https://www.proquest.com/docview/2491948161
https://pubmed.ncbi.nlm.nih.gov/PMC8090766
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VHhAXHi0PQ4kGhKAHnPq5tsUpIKoIKQhBK_WAZO3aazUicaLEFionjhz5jfwSZtaPNhFIiNtKO5t417Mzs-NvvgV4Vrg64HpHWxfCsQOhpS3DMLLJPcgkc_wwCrjAefJejE-Dd2fh2Q686mphGn6IPuHGO8PYa97gUq2PLklDz9V86DEZCdlfxmpxQPSxp47iQMcctsjF2glZ4I5VyPGO-pEbvmjbIl9xSdtwyathrPFDx7fgczeDBn7yZVhXaph92yJ3_M8p3oabbXyKo0ah7sCOLvdgf1TS2Xx-gc_RIEZNKn4Prk_aD_P78INJPmgcU2OSYvGXe1w18Fu9xmqBy8sCBZwbO8IJRWzuZ8EWLYZMnvzr-0-UZY6zxVdqTufLesYQe5z2pWPrl6jqCuVKY11KA0jROaoLPJl8ugunx29P3ozt9pIHOyNzIGxJEVocJxmZFj475oIp8fw8FCr2ZUzRXZGEunBU5mipcxlKLfLCi2IVm3bh34PdclHqB4AUvMRCFm6SJ8x640hSNCHyQPpJodyssOCwe91p1jKg80Ucs7ThbvZSWvDULLgFT3vRZUP78SehF6wzKZsC-p1MthUN9DRMqpWOIg5e_SAILTjYkKQtnG12d1qXtiZkTX_h8YVAtB4WPOm7eSTD4kq9qEkmSFym2xGuBfcbJe0f1_fppErhoAXRhvr2AkwsvtlTTs8NwXjsJE4kaH6HRjv_vgLp-PXENB7-u-gjuOExLshksg5gt1rV-jEFdpUawDUv-DAwaZGB2c2_AdR9Tq0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2PQAGDEPRAtnk6icRleVQLND3AVuqlspzEUVfsZle7iVA5ceTIb-SXMOM82qxAQtwseZzEznhmPJ75BuBZbiuP8h1NlXPL9LiSpvT9wET1IKPUcv3AowTn-JCPjrwPx_7xBrxqc2FqfIjO4UY7Q8tr2uDkkN47Rw09TWYDh9BILsFlquhNyPlvP3XgUWTq6OMWKlkzQhnc4gpZzl43tKeN1mXyBaW0HjB50ZDVmmj_Bpy0c6gDUL4MqjIZpN_W4B3_d5I34XpjorJhzVO3YEMVW7A9LPB4Pjtjz5kOGtXe-C24Ejd389vwg3A-cByhYyJv0eU9W9YRuGrFyjlbnOcosJkWJeRTZHWJFtYEjDHCT_71_SeTRcam86_YnMwW1ZSi7Nmkyx5bvWRJVTK5VKwqpI5JURlLztg4_nwbjvbfjd-MzKbOg5miROCmRCMtDKMUpQsdHzNOqHhu5vMkdGWIBl4e-Sq3ktRSUmXSl4pnuROESajbuXsHNot5oe4BQ_sl5DK3oywi4BtLIq9xnnnSjfLETnMDdtv_LdIGBJ1qcUxFDd_sCFxwoRfcgKcd6aJG_vgT0QtiGkHSAJ-TyiapAb-GcLXEMCD71fU834CdHiXu4rTf3bKdaKTICl_hUE0gXA8DnnTdNJIi4wo1r5DGi2xC3OG2AXdrLu0-13XxsIoWoQFBj387AsIW7_cUk1ONMR5akRVwnN-uZs-_r4AYvY514_6_kz6Gq6NxfCAO3h9-fADXHAoT0o6tHdgsl5V6iHZemTzS2_k3w_lQ_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7SFEIvJU36UJu201LaHKpEz5VETu7DuA-HQBPITaykXWKwZWNbhNx67DG_Mb8kMytZiUILvS3srC1p5tuZ3Z35FuCddlXA9Y620sKxA6GkLcMwssk9yCR3_DAKuMB5eCgGJ8H30_B0DQ5WtTA1P0S74cbIMPM1A3xW6P0b0tCzbLLnMRnJPbjPh32cz-UFR-0RAkU6ZrVFPtZOaApe0Qo53n47tOOM7k7Jt3zS3XzJ23GscUT9TXjYRJDYq1X-CNZUuQXbvZJWz5MLfI8mp9Nslm_BxrA5Ot-GP0zDQeOYvJJUz2frOK8TZNUCl1Oc3ZQQ4MQgnbf8sL5BBZt8LmR646vflyjLAsfTc2qOJrNqzEnwOGqLuxYfMauWKOcKq1KalBFVYHaBx8Nfj-Gk__X488BurmGwcwKssCXFUHGc5AR-Xt0Vgknr_CIUWezLmOIvnYRKO1nuKKkKGUolCu1FcRabtvafwHo5LdUzQAovYiG1mxQJ89I4kkxBiCKQfqIzN9cW7K70keYNRzlflTFOa3ZlLyXVpUZ1FrxtRWc1McffhD6wUlMGK_1OLpuaA3oapr1KexGHl34QhBbsdCQJZHm3e2UWaQPyBf2Fx1f20Pew4E3bzSM5ca1U04pkgsRlQhzhWvC0tqL2cX2f1pIUsFkQdeyrFWDq725POTozFOCxkziRoPfbNZb47y-QDj4NTeP5_4u-ho2jL_3057fDHy_ggcdJPGbbaQfWl_NKvaQobJm9Mmi7BgxFL30
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+oscillatory+responses+to+performance+monitoring+differ+between+high%E2%80%90+and+low%E2%80%90impulsive+individuals%2C+but+are+unaffected+by+TMS&rft.jtitle=Human+brain+mapping&rft.au=Barth%2C+Beatrix&rft.au=Rohe%2C+Tim&rft.au=Deppermann%2C+Saskia&rft.au=Fallgatter%2C+Andreas+Jochen&rft.date=2021-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=42&rft.issue=8&rft.spage=2416&rft.epage=2433&rft_id=info:doi/10.1002%2Fhbm.25376&rft.externalDBID=10.1002%252Fhbm.25376&rft.externalDocID=HBM25376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon