Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by TMS
Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time‐frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impu...
Saved in:
Published in | Human brain mapping Vol. 42; no. 8; pp. 2416 - 2433 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time‐frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ (n = 24) and low‐impulsive subjects (n = 21) and whether these are modulated by double‐blind, sham‐controlled intermittent theta burst stimulation (iTBS). We found a larger error‐specific peri‐response beta power decrease over fronto‐central sites in high‐impulsive compared to low‐impulsive participants, presumably indexing less effective motor execution processes. Lower parieto‐occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single‐trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial‐specific behavior. iTBS did not modulate behavior or EEG time‐frequency power. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by iTBS.
We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ and low‐impulsive subjects. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. |
---|---|
AbstractList | Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time-frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high- (n = 24) and low-impulsive subjects (n = 21) and whether these are modulated by double-blind, sham-controlled intermittent theta burst stimulation (iTBS). We found a larger error-specific peri-response beta power decrease over fronto-central sites in high-impulsive compared to low-impulsive participants, presumably indexing less effective motor execution processes. Lower parieto-occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single-trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial-specific behavior. iTBS did not modulate behavior or EEG time-frequency power. Performance monitoring was associated with time-frequency patterns reflecting cognitive control (parieto-occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response-locked time-frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high- and low-impulsive individuals, but are unaffected by iTBS. Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time-frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high- (n = 24) and low-impulsive subjects (n = 21) and whether these are modulated by double-blind, sham-controlled intermittent theta burst stimulation (iTBS). We found a larger error-specific peri-response beta power decrease over fronto-central sites in high-impulsive compared to low-impulsive participants, presumably indexing less effective motor execution processes. Lower parieto-occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single-trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial-specific behavior. iTBS did not modulate behavior or EEG time-frequency power. Performance monitoring was associated with time-frequency patterns reflecting cognitive control (parieto-occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response-locked time-frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high- and low-impulsive individuals, but are unaffected by iTBS.Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time-frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high- (n = 24) and low-impulsive subjects (n = 21) and whether these are modulated by double-blind, sham-controlled intermittent theta burst stimulation (iTBS). We found a larger error-specific peri-response beta power decrease over fronto-central sites in high-impulsive compared to low-impulsive participants, presumably indexing less effective motor execution processes. Lower parieto-occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single-trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial-specific behavior. iTBS did not modulate behavior or EEG time-frequency power. Performance monitoring was associated with time-frequency patterns reflecting cognitive control (parieto-occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response-locked time-frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high- and low-impulsive individuals, but are unaffected by iTBS. Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time‐frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ ( n = 24) and low‐impulsive subjects ( n = 21) and whether these are modulated by double‐blind, sham‐controlled intermittent theta burst stimulation (iTBS). We found a larger error‐specific peri‐response beta power decrease over fronto‐central sites in high‐impulsive compared to low‐impulsive participants, presumably indexing less effective motor execution processes. Lower parieto‐occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single‐trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial‐specific behavior. iTBS did not modulate behavior or EEG time‐frequency power. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by iTBS. Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time‐frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ ( n = 24) and low‐impulsive subjects ( n = 21) and whether these are modulated by double‐blind, sham‐controlled intermittent theta burst stimulation (iTBS). We found a larger error‐specific peri‐response beta power decrease over fronto‐central sites in high‐impulsive compared to low‐impulsive participants, presumably indexing less effective motor execution processes. Lower parieto‐occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single‐trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial‐specific behavior. iTBS did not modulate behavior or EEG time‐frequency power. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by iTBS. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ and low‐impulsive subjects. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time‐frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ (n = 24) and low‐impulsive subjects (n = 21) and whether these are modulated by double‐blind, sham‐controlled intermittent theta burst stimulation (iTBS). We found a larger error‐specific peri‐response beta power decrease over fronto‐central sites in high‐impulsive compared to low‐impulsive participants, presumably indexing less effective motor execution processes. Lower parieto‐occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single‐trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial‐specific behavior. iTBS did not modulate behavior or EEG time‐frequency power. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by iTBS. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ and low‐impulsive subjects. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. |
Audience | Academic |
Author | Barth, Beatrix Rohe, Tim Fallgatter, Andreas Jochen Ehlis, Ann‐Christine Deppermann, Saskia |
AuthorAffiliation | 3 LEAD Graduate School & Research Network University of Tuebingen Tuebingen Germany 1 Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy University of Tuebingen Tuebingen Germany 2 Department of Psychology Friedrich‐Alexander University Erlangen‐Nuernberg Erlangen Germany 4 Werner Reichardt Centre for Integrative Neuroscience (CIN) University of Tuebingen Tuebingen Germany |
AuthorAffiliation_xml | – name: 2 Department of Psychology Friedrich‐Alexander University Erlangen‐Nuernberg Erlangen Germany – name: 3 LEAD Graduate School & Research Network University of Tuebingen Tuebingen Germany – name: 4 Werner Reichardt Centre for Integrative Neuroscience (CIN) University of Tuebingen Tuebingen Germany – name: 1 Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy University of Tuebingen Tuebingen Germany |
Author_xml | – sequence: 1 givenname: Beatrix orcidid: 0000-0002-3792-3357 surname: Barth fullname: Barth, Beatrix email: beatrix.barth@med.uni-tuebingen.de organization: University of Tuebingen – sequence: 2 givenname: Tim surname: Rohe fullname: Rohe, Tim organization: Friedrich‐Alexander University Erlangen‐Nuernberg – sequence: 3 givenname: Saskia surname: Deppermann fullname: Deppermann, Saskia organization: University of Tuebingen – sequence: 4 givenname: Andreas Jochen surname: Fallgatter fullname: Fallgatter, Andreas Jochen organization: University of Tuebingen – sequence: 5 givenname: Ann‐Christine surname: Ehlis fullname: Ehlis, Ann‐Christine organization: University of Tuebingen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33605509$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk9vFCEYxiemxv7Rg1_AkHjRxNnCzMLAxaQ2ak1aPVjPhIGXXZoZ2MLMbvbm0aOf0U8i292qbWo48AZ-7wMPPIfFng8eiuI5wROCcXU8b_tJReuGPSoOCBZNiYmo9zY1o6WYNmS_OEzpCmNCKCZPiv26ZphSLA6KH59hjKpDIWnXdWoIcY0ipEXwCRIaAlpAtCH2ymtAffAuE87PkHHWQkQtDCsAj-ZuNv_1_SdS3qAurHLp-sXYJbcE5LxxS2dG1aU3qB0HpCKg0assoAcwqF2jy4uvT4vHNhPwbDcfFd8-vL88PSvPv3z8dHpyXmqa7ZSK14JzoQmvORHEMEGpqA1lLa8Vp4xYQcHiVmNQYBRVwIytGt7ym9rWR8Xbre5ibHswGvyQ_ctFdL2KaxmUk3d3vJvLWVhKjgVuGMsCr3YCMVyPkAbZu6QhP56HMCZZTQURU04YyejLe-hVGKPP9mRFK8w4z9f_S81UB9J5G_K5eiMqTxqCs73pdENNHqDyMNA7nfNgXV6_0_DiX6N_HN7-fQaOt4COIaUIVmo3qMGFjW_XSYLlJl0yp0vepCt3vL7XcSv6ELtTX-V7rf8PyrN3F9uO30I04Zs |
CitedBy_id | crossref_primary_10_3389_fnins_2021_679408 crossref_primary_10_1142_S0129065723500065 crossref_primary_10_1016_j_bbr_2024_115372 crossref_primary_10_1016_j_biopsycho_2024_108826 |
Cites_doi | 10.1162/jocn.2008.20117 10.3109/15622970902977552 10.1016/j.neubiorev.2016.08.028 10.7551/mitpress/9609.001.0001 10.1016/j.neuroimage.2004.01.040 10.1027/0269-8803.19.4.289 10.1016/j.conb.2010.02.015 10.1111/j.1469-7610.2009.02128.x 10.1016/j.clinph.2004.03.031 10.1016/j.biopsycho.2017.09.008 10.1097/00004583-199706000-00009 10.1001/archgenpsychiatry.2009.103 10.1126/science.1100301 10.1016/j.neuroimage.2013.09.055 10.1162/jocn_a_01250 10.1016/j.euroneuro.2019.07.136 10.1002/hbm.20763 10.1038/nn.3344 10.1016/j.drugalcdep.2017.01.036 10.1111/ejn.14174 10.1111/psyp.13041 10.1371/journal.pone.0060060 10.1016/S0301-0511(01)00076-X 10.1016/S0079-6123(06)59014-4 10.1016/j.cortex.2016.04.010 10.2466/08.09.10.PMS.112.2.353-368 10.1023/B:BRAT.0000006333.93597.9d 10.1155/2011/156869 10.1038/srep32058 10.1503/jpn.170118 10.1162/jocn_a_00656 10.1016/j.cortex.2019.02.016 10.1017/S1461145713000540 10.1002/hbm.20892 10.1016/S1388-2457(03)00235-9 10.4088/JCP.17m11870 10.1152/jn.00479.2013 10.1002/ajmg.b.31161 10.1016/j.tics.2016.05.006 10.1016/j.neuroscience.2008.06.061 10.1016/j.clinph.2003.12.026 10.1038/s41598-018-26791-w 10.1016/j.biopsych.2011.02.026 10.1152/jn.01141.2006 10.1212/01.WNL.0000152986.07469.E9 10.1016/j.neuroimage.2013.06.051 10.1159/000173701 10.1093/cercor/bhs256 10.1007/978-1-59745-495-7_8 10.1146/annurev-psych-113011-143750 10.1162/jocn.2009.21008 10.1016/j.neuroimage.2016.04.032 10.1097/00001756-200211150-00004 10.1007/s00115-001-1215-x 10.1016/j.neuron.2011.01.020 10.1016/j.biopsych.2004.07.017 10.1016/j.biopsycho.2011.02.023 10.1016/j.clinph.2006.11.009 10.1111/1469-8986.3850752 10.1016/j.neuroimage.2013.07.032 10.1371/journal.pone.0179430 10.1016/j.neulet.2007.04.030 10.1080/09297040802348028 10.1097/00001756-200103050-00005 10.1016/j.psychres.2008.06.015 10.1016/j.neuron.2004.12.033 10.1016/j.neuroscience.2018.01.011 10.1016/j.neuropsychologia.2004.05.007 10.3390/brainsci10050255 10.1016/j.neuroimage.2017.05.014 10.1017/S0033291704002892 10.1212/WNL.57.10.1899 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC. 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. COPYRIGHT 2021 John Wiley & Sons, Inc. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. – notice: 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.25376 |
DatabaseName | Wiley_OA刊 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Barth et al |
EISSN | 1097-0193 |
EndPage | 2433 |
ExternalDocumentID | PMC8090766 A710593445 33605509 10_1002_hbm_25376 HBM25376 |
Genre | article Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: RO 5587/1‐1 – fundername: IZKF Tübingen funderid: 2115‐0‐0 – fundername: ; grantid: RO 5587/1‐1 – fundername: IZKF Tübingen grantid: 2115‐0‐0 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ 8FI 8FJ AAFWJ AANHP AAYXX ABEML ABJNI ABUWG ACBWZ ACRPL ACSCC ACYXJ ADNMO AFKRA AFPKN AGQPQ ASPBG AVWKF AZFZN BENPR BFHJK CCPQU CITATION EJD FEDTE FYUFA GAKWD HF~ HMCUK HVGLF LW6 M6M PHGZM PHGZT RIWAO RJQFR SAMSI UKHRP WXSBR CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5106-a839889c1838191d695593d56b83a8561f95ef0bc0eaeda5ae6df278b8a5ae6f3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 17:56:49 EDT 2025 Thu Jul 10 22:29:45 EDT 2025 Fri Aug 29 16:40:57 EDT 2025 Tue Jun 17 21:37:33 EDT 2025 Tue Jun 10 20:49:28 EDT 2025 Thu Apr 03 06:53:34 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Tue Jul 01 01:11:02 EDT 2025 Wed Jan 22 16:30:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | impulsivity intertrial phase coherence single-trial phase behavior coupling transcranial magnetic stimulation performance monitoring time-frequency analysis |
Language | English |
License | Attribution-NonCommercial 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5106-a839889c1838191d695593d56b83a8561f95ef0bc0eaeda5ae6df278b8a5ae6f3 |
Notes | Funding information Deutsche Forschungsgemeinschaft, Grant/Award Number: RO 5587/1‐1; IZKF Tübingen, Grant/Award Number: 2115‐0‐0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 Funding information Deutsche Forschungsgemeinschaft, Grant/Award Number: RO 5587/1‐1; IZKF Tübingen, Grant/Award Number: 2115‐0‐0 |
ORCID | 0000-0002-3792-3357 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25376 |
PMID | 33605509 |
PQID | 2520688695 |
PQPubID | 996345 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8090766 proquest_miscellaneous_2491948161 proquest_journals_2520688695 gale_infotracmisc_A710593445 gale_infotracacademiconefile_A710593445 pubmed_primary_33605509 crossref_citationtrail_10_1002_hbm_25376 crossref_primary_10_1002_hbm_25376 wiley_primary_10_1002_hbm_25376_HBM25376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 1, 2021 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2010; 11 2004; 22 2009; 42 2013; 23 2019; 13 2002; 13 2013; 64 2014; 26 2005; 64 2003; 16 2016; 71 2020; 10 2017; 156 2003; 114 2013; 8 2018; 43 2011; 112 2018; 48 2018; 372 2010; 20 2018; 8 2013; 16 2011; 70 1985 2019; 29 2018; 30 2013; 110 2016; 81 2019; 117 2011; 69 2008; 20 2007; 419 2008; 156 2001; 56 2001; 12 2001; 57 2009; 169 2009; 15 2005; 35 2018; 79 2017; 129 2009; 66 2004; 42 2010; 31 2011; 2 2009; 21 2011 2002; 73 2011; 156B 2013; 83 2009 2008 1997 2005 2017; 175 2007; 98 2014; 84 2006; 159 2004; 306 2005; 45 2016; 6 2005; 19 2009; 30 2007; 118 2004; 159 2004; 115 1997; 36 2004; 56 2017; 12 2016; 134 2016; 20 2011; 87 2016 2001; 38 2014 2018; 55 2010; 51 e_1_2_11_70_1 Rösler M. (e_1_2_11_67_1) 2008 e_1_2_11_72_1 Cohen M. X. (e_1_2_11_15_1) 2011; 2 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 Alegre M. (e_1_2_11_2_1) 2004; 159 e_1_2_11_48_1 Wittchen H. U. (e_1_2_11_77_1) 1997 Lehrl S. (e_1_2_11_45_1) 2005 e_1_2_11_60_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Barratt E. S. (e_1_2_11_4_1) 1985 Tzagarakis C. (e_1_2_11_74_1) 2019; 13 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – year: 2009 – volume: 118 start-page: 645 year: 2007 end-page: 668 article-title: Theta EEG dynamics of the error‐related negativity publication-title: Clinical Neurophysiology – volume: 35 start-page: 245 issue: 2 year: 2005 end-page: 256 article-title: The World Health Organization adult ADHD self‐report scale (ASRS): A short screening scale for use in the general population publication-title: Psychological Medicine – volume: 13 issue: 1 year: 2019 article-title: The degree of modulation of Beta Band activity during motor planning is related to trait impulsivity publication-title: Frontiers in Integrative Neuroscience – year: 2005 – volume: 56 start-page: 634 issue: 9 year: 2004 end-page: 639 article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid‐rate transcranial magnetic stimulation and controls the direction of after‐effects publication-title: Biological Psychiatry – volume: 20 start-page: 567 issue: 8 year: 2016 end-page: 569 article-title: Physiological plausibility can increase reproducibility in cognitive neuroscience publication-title: Trends in Cognitive Sciences – volume: 30 start-page: 1791 year: 2009 end-page: 1800 article-title: Prestimulus alpha and mu activity predicts failure to inhibit motor responses publication-title: Human Brain Mapping – volume: 12 issue: 6 year: 2017 article-title: The effects of high‐frequency rTMS over the left DLPFC on cognitive control in young healthy participants publication-title: PLoS One – volume: 70 start-page: 246 issue: 3 year: 2011 end-page: 254 article-title: May posterror performance be a critical factor for behavioral deficits in attentiondeficit/ hyperactivity disorder? publication-title: Biological Psychiatry – volume: 15 start-page: 321 issue: 4 year: 2009 end-page: 342 article-title: Interference control in children with and without ADHD: A systematic review of flanker and Simon task performance publication-title: Child Neuropsychology – volume: 12 start-page: 445 issue: 3 year: 2001 end-page: 447 article-title: Effects of slow rTMS at the right dorsolateral prefrontal cortex on EEG asymmetry and mood publication-title: Neuroreport – volume: 19 start-page: 289 issue: 4 year: 2005 end-page: 297 article-title: Aging and error processing ‐ time frequency analysis of error‐related potentials publication-title: Journal of Psychophysiology – volume: 10 start-page: 255 issue: 5 year: 2020 article-title: Site‐specific effects of online rTMS during a working memory task in healthy older adults publication-title: Brain Sciences – volume: 11 start-page: 457 year: 2010 end-page: 464 article-title: Neural correlates of performance monitoring in adult patients with attention deficit hyperactivity disorder (ADHD) publication-title: The World Journal of Biological Psychiatry – volume: 6 year: 2016 article-title: How the brain prevents a second error in a perceptual decision‐making task publication-title: Scientific Reports – volume: 2 issue: 30 year: 2011 article-title: Single‐trial regression elucidates the role of prefrontal theta oscillations in response conflict publication-title: Frontiers in Psychology – volume: 16 start-page: 386 year: 2013 end-page: 387 article-title: Deep brain stimulation restores frontostriatal network activity in obsessive‐compulsive disorder publication-title: Nature Neuroscience – volume: 81 start-page: 63 year: 2016 end-page: 81 article-title: Increased ongoing neural variability in ADHD publication-title: Cortex – volume: 55 issue: 3 year: 2018 article-title: An adaptive orienting theory of error processing publication-title: Psychophysiology – year: 2014 – volume: 43 start-page: 396 issue: 5 year: 2018 end-page: 406 article-title: Performance monitoring and post‐error adjustments in adults with attention‐deficit/hyperactivity disorder: An EEG analysis publication-title: Journal of Psychiatry and Neuroscience – year: 2011 article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Computational Intelligence and Neuroscience – volume: 16 start-page: 95 issue: 2 year: 2003 end-page: 99 article-title: Using the international 10‐20 EEG system for positioning of transcranial magnetic stimulation publication-title: Brain Topography – volume: 115 start-page: 1069 issue: 5 year: 2004 end-page: 1075 article-title: The effect of short‐duration bursts of high‐frequency, low‐intensity transcranial magnetic stimulation on the human motor cortex publication-title: Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology – volume: 29 start-page: 1117 issue: 10 year: 2019 end-page: 1126 article-title: ADHD symptoms in the adult general population are associated with factors linked to ADHD in adult patients publication-title: European Neuropsychopharmacology – volume: 134 start-page: 514 year: 2016 end-page: 521 article-title: Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging publication-title: NeuroImage – volume: 419 start-page: 162 issue: 2 year: 2007 end-page: 167 article-title: The effects of 10Hz repetitive transcranial magnetic stimulation on resting EEG power spectrum in healthy subjects publication-title: Neuroscience Letters – volume: 84 start-page: 876 issue: 84 year: 2014 end-page: 887 article-title: Single‐trial time–frequency analysis of electrocortical signals: Baseline correction and beyond publication-title: NeuroImage – volume: 30 start-page: 867 issue: 6 year: 2018 end-page: 875 article-title: Transient alpha and Beta synchrony underlies preparatory recruitment of directional motor networks publication-title: Journal of Cognitive Neuroscience – volume: 83 start-page: 912 year: 2013 end-page: 920 article-title: Lower theta inter‐trial phase coherence during performance monitoring is related to higher reaction time variability: A lifespan study publication-title: NeuroImage – year: 2008 – volume: 64 start-page: 872 issue: 5 year: 2005 end-page: 875 article-title: Safety and cognitive effect of frontal DC brain polarization in healthy individuals publication-title: Neurology – year: 1997 – volume: 42 start-page: 32 year: 2009 end-page: 39 article-title: The short version of the Borderline Symptom List (BSL‐23): Development and initial data on psychometric properties publication-title: Psychopathology – volume: 36 start-page: 737 issue: 6 year: 1997 end-page: 744 article-title: Attention‐deficit hyperactivity disorder: A category or a continuum? Genetic analysis of a large‐scale twin study publication-title: Journal of the American Academy of Child & Adolescent Psychiatry – volume: 16 start-page: 1911 issue: 9 year: 2013 end-page: 1925 article-title: Quetiapine and flupentixol differentially improve anterior cingulate cortex function in schizophrenia patients: An event‐related potential study publication-title: The International Journal of Neuropsychopharmacology – volume: 22 start-page: 590 year: 2004 end-page: 602 article-title: Parallel systems of error processing in the brain publication-title: NeuroImage – volume: 45 start-page: 201 issue: 2 year: 2005 end-page: 206 article-title: Theta burst stimulation of the human motor cortex publication-title: Neuron – volume: 51 start-page: 66 issue: 1 year: 2010 end-page: 76 article-title: Electrophysiological indices of abnormal error‐processing in adolescents with attention deficit hyperactivity disorder (ADHD) publication-title: Journal of Child Psychology and Psychiatry – volume: 159 start-page: 211 year: 2006 end-page: 222 – volume: 13 start-page: 2011 issue: 16 year: 2002 end-page: 2015 article-title: Synchronized activity in prefrontal cortex during anticipation of visuomotor processing publication-title: Neuroreport – volume: 114 start-page: 2220 issue: 11 year: 2003 end-page: 2222 article-title: Safety criteria for transcranial direct current stimulation (tDCS) in humans publication-title: Clinical Neurophysiology – volume: 64 start-page: 135 year: 2013 end-page: 168 article-title: Executive functions publication-title: Annual Review of Psychology – volume: 156 start-page: 238 year: 2008 end-page: 246 article-title: Response preparation and inhibition: The role of the cortical sensorimotor beta rhythm publication-title: Neuroscience – volume: 69 start-page: 680 issue: 4 year: 2011 end-page: 694 article-title: Impulsivity, compulsivity, and top‐down cognitive control publication-title: Neuron – volume: 306 start-page: 443 issue: 5695 year: 2004 end-page: 447 article-title: The role of the medial frontal cortex in cognitive control publication-title: Science – volume: 73 start-page: 830 issue: 9 year: 2002 end-page: 838 article-title: Wender Utah rating scale. The short‐version for the assessment of the attention‐deficit hyperactivity disorder in adults publication-title: Nervenarzt – volume: 23 start-page: 2677 issue: 11 year: 2013 end-page: 2689 article-title: Is there "one" DLPFC in cognitive action control? Evidence for heterogeneity from co‐activation‐based parcellation publication-title: Cerebral Cortex (New York, N.Y.: 1991) – volume: 8 start-page: 8526 issue: 1 year: 2018 end-page: 8526 article-title: The effect of stimulation interval on plasticity following repeated blocks of intermittent theta burst stimulation publication-title: Scientific Reports – volume: 115 start-page: 1821 issue: 8 year: 2004 end-page: 1835 article-title: Frontal midline theta and the error‐related negativity: Neurophysiological mechanisms of action regulation publication-title: Clinical Neurophysiology – volume: 372 start-page: 266 year: 2018 end-page: 272 article-title: Electrophysiological activity prior to self‐initiated movements is related to impulsive personality traits publication-title: Neuroscience – volume: 79 issue: 5 year: 2018 article-title: Further evidence of morbidity and dysfunction associated with subsyndromal ADHD in clinically referred children publication-title: The Journal of Clinical Psychiatry – start-page: 113 year: 1985 end-page: 132 – year: 2016 – volume: 117 start-page: 16 year: 2019 end-page: 32 article-title: Sustaining attention for a prolonged period of time increases temporal variability in cortical responses publication-title: Cortex – volume: 159 start-page: 14 issue: 1 year: 2004 end-page: 22 article-title: Frontal and central oscillatory changes related to different aspects of the motor process: A study in go/no‐go paradigms publication-title: Experimental Brain Research – volume: 175 start-page: 77 year: 2017 end-page: 83 article-title: Cognitive control in young heavy drinkers: An ERP study publication-title: Drug and Alcohol Dependence – volume: 129 start-page: 253 year: 2017 end-page: 264 article-title: Frontoparietal theta oscillations during proactive control are associated with goal‐updating and reduced behavioral variability publication-title: Biological Psychology – volume: 57 start-page: 1899 issue: 10 year: 2001 end-page: 1901 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology – volume: 48 start-page: 3159 issue: 10 year: 2018 end-page: 3170 article-title: Midfrontal theta transcranial alternating current stimulation modulates behavioural adjustment after error execution publication-title: European Journal of Neuroscience – volume: 87 start-page: 306 issue: 2 year: 2011 end-page: 310 article-title: Frontal alpha asymmetry in adults with attention deficit hyperactivity disorder: Replication and specification publication-title: Biological Psychology – volume: 169 start-page: 144 issue: 2 year: 2009 end-page: 148 article-title: The effect of ADHD symptoms on performance monitoring in a non‐clinical population publication-title: Psychiatry Research – volume: 56 start-page: 173 issue: 3 year: 2001 end-page: 189 article-title: Why is there an ERN/ne on correct trials? Response representations, stimulus‐related components, and the theory of error‐processing publication-title: Biological Psychology – volume: 66 start-page: 888 issue: 8 year: 2009 end-page: 896 article-title: Development of cortical asymmetry in typically developing children and its disruption in attention‐deficit/hyperactivity disorder publication-title: Archives of General Psychiatry – volume: 112 start-page: 353 issue: 2 year: 2011 end-page: 368 article-title: Psychometric properties of the German version of the Barratt Impulsiveness Scale Version 11 (Bis–11) for adolescents publication-title: Perceptual and Motor Skills – volume: 110 start-page: 2752 year: 2013 end-page: 2763 article-title: Midfrontal conflict‐related theta‐band power reflects neural oscillations that predict behavior publication-title: Journal of Neurophysiology – volume: 83 start-page: 27 year: 2013 end-page: 34 article-title: Oscillatory dynamics of response competition in human sensorimotor cortex publication-title: NeuroImage – volume: 156 start-page: 277 year: 2017 end-page: 285 article-title: Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task publication-title: NeuroImage – volume: 26 start-page: 2596 issue: 11 year: 2014 end-page: 2607 article-title: The decoupled mind: Mind‐wandering disrupts cortical phase‐locking to perceptual events publication-title: Journal of Cognitive Neuroscience – volume: 20 start-page: 1595 issue: 9 year: 2008 end-page: 1610 article-title: Neural mechanisms underlying adaptive actions after slips publication-title: Journal of Cognitive Neuroscience – volume: 8 issue: 3 year: 2013 article-title: Modulations of EEG Beta power during planning and execution of grasping movements publication-title: PLoS One – volume: 42 start-page: 1910 year: 2004 end-page: 1916 article-title: The functional neuroanatomical correlates of response variability: Evidence from a response inhibition task publication-title: Neuropsychologia – volume: 98 start-page: 345 issue: 1 year: 2007 end-page: 359 article-title: Population activity in the human dorsal pathway predicts the accuracy of visual motion detection publication-title: Journal of Neurophysiology – volume: 20 start-page: 156 issue: 2 year: 2010 end-page: 165 article-title: Beta‐band oscillations—Signalling the status quo? publication-title: Current Opinion in Neurobiology – volume: 31 start-page: 621 issue: 4 year: 2010 end-page: 630 article-title: Functional 5‐HT1a receptor polymorphism selectively modulates error‐specific subprocesses of performance monitoring publication-title: Human Brain Mapping – volume: 38 start-page: 752 issue: 5 year: 2001 end-page: 760 article-title: Error‐related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task publication-title: Psychophysiology – volume: 156B start-page: 291 issue: 3 year: 2011 end-page: 302 article-title: Influence of a genetic variant of the neuronal growth associated protein Stathmin 1 on cognitive and affective control processes: An event‐related potential study publication-title: American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics – volume: 21 start-page: 93 issue: 1 year: 2009 end-page: 104 – volume: 71 start-page: 112 year: 2016 end-page: 134 article-title: Prefrontal cortex and impulsivity: Interest of noninvasive brain stimulation publication-title: Neuroscience & Biobehavioral Reviews – ident: e_1_2_11_51_1 doi: 10.1162/jocn.2008.20117 – ident: e_1_2_11_34_1 doi: 10.3109/15622970902977552 – ident: e_1_2_11_5_1 – ident: e_1_2_11_11_1 doi: 10.1016/j.neubiorev.2016.08.028 – ident: e_1_2_11_14_1 doi: 10.7551/mitpress/9609.001.0001 – ident: e_1_2_11_78_1 doi: 10.1016/j.neuroimage.2004.01.040 – ident: e_1_2_11_43_1 doi: 10.1027/0269-8803.19.4.289 – volume: 13 issue: 1 year: 2019 ident: e_1_2_11_74_1 article-title: The degree of modulation of Beta Band activity during motor planning is related to trait impulsivity publication-title: Frontiers in Integrative Neuroscience – ident: e_1_2_11_24_1 doi: 10.1016/j.conb.2010.02.015 – ident: e_1_2_11_31_1 doi: 10.1111/j.1469-7610.2009.02128.x – ident: e_1_2_11_50_1 doi: 10.1016/j.clinph.2004.03.031 – ident: e_1_2_11_18_1 doi: 10.1016/j.biopsycho.2017.09.008 – ident: e_1_2_11_46_1 doi: 10.1097/00004583-199706000-00009 – ident: e_1_2_11_71_1 doi: 10.1001/archgenpsychiatry.2009.103 – ident: e_1_2_11_66_1 doi: 10.1126/science.1100301 – ident: e_1_2_11_37_1 doi: 10.1016/j.neuroimage.2013.09.055 – ident: e_1_2_11_65_1 doi: 10.1162/jocn_a_01250 – ident: e_1_2_11_47_1 doi: 10.1016/j.euroneuro.2019.07.136 – volume-title: Homburger ADHS Skalen für Erwachsene (HASE) year: 2008 ident: e_1_2_11_67_1 – ident: e_1_2_11_52_1 doi: 10.1002/hbm.20763 – ident: e_1_2_11_25_1 doi: 10.1038/nn.3344 – ident: e_1_2_11_26_1 doi: 10.1016/j.drugalcdep.2017.01.036 – ident: e_1_2_11_27_1 doi: 10.1111/ejn.14174 – ident: e_1_2_11_76_1 doi: 10.1111/psyp.13041 – ident: e_1_2_11_80_1 doi: 10.1371/journal.pone.0060060 – ident: e_1_2_11_17_1 doi: 10.1016/S0301-0511(01)00076-X – ident: e_1_2_11_55_1 doi: 10.1016/S0079-6123(06)59014-4 – ident: e_1_2_11_28_1 doi: 10.1016/j.cortex.2016.04.010 – ident: e_1_2_11_32_1 doi: 10.2466/08.09.10.PMS.112.2.353-368 – ident: e_1_2_11_36_1 doi: 10.1023/B:BRAT.0000006333.93597.9d – ident: e_1_2_11_60_1 doi: 10.1155/2011/156869 – ident: e_1_2_11_62_1 doi: 10.1038/srep32058 – ident: e_1_2_11_23_1 doi: 10.1503/jpn.170118 – volume-title: Mehrfachwahl‐Wortschatz‐Intelligenztest MWT‐B year: 2005 ident: e_1_2_11_45_1 – ident: e_1_2_11_3_1 doi: 10.1162/jocn_a_00656 – ident: e_1_2_11_63_1 doi: 10.1016/j.cortex.2019.02.016 – ident: e_1_2_11_69_1 doi: 10.1017/S1461145713000540 – ident: e_1_2_11_7_1 doi: 10.1002/hbm.20892 – ident: e_1_2_11_57_1 doi: 10.1016/S1388-2457(03)00235-9 – ident: e_1_2_11_9_1 doi: 10.4088/JCP.17m11870 – ident: e_1_2_11_16_1 doi: 10.1152/jn.00479.2013 – ident: e_1_2_11_22_1 doi: 10.1002/ajmg.b.31161 – ident: e_1_2_11_75_1 doi: 10.1016/j.tics.2016.05.006 – ident: e_1_2_11_81_1 doi: 10.1016/j.neuroscience.2008.06.061 – ident: e_1_2_11_39_1 doi: 10.1016/j.clinph.2003.12.026 – ident: e_1_2_11_73_1 doi: 10.1038/s41598-018-26791-w – ident: e_1_2_11_79_1 doi: 10.1016/j.biopsych.2011.02.026 – start-page: 113 volume-title: Advances in personality assessment year: 1985 ident: e_1_2_11_4_1 – ident: e_1_2_11_21_1 doi: 10.1152/jn.01141.2006 – ident: e_1_2_11_40_1 doi: 10.1212/01.WNL.0000152986.07469.E9 – ident: e_1_2_11_29_1 doi: 10.1016/j.neuroimage.2013.06.051 – ident: e_1_2_11_10_1 doi: 10.1159/000173701 – ident: e_1_2_11_13_1 doi: 10.1093/cercor/bhs256 – ident: e_1_2_11_12_1 doi: 10.1007/978-1-59745-495-7_8 – ident: e_1_2_11_20_1 doi: 10.1146/annurev-psych-113011-143750 – ident: e_1_2_11_59_1 doi: 10.1162/jocn.2009.21008 – volume: 2 issue: 30 year: 2011 ident: e_1_2_11_15_1 article-title: Single‐trial regression elucidates the role of prefrontal theta oscillations in response conflict publication-title: Frontiers in Psychology – ident: e_1_2_11_33_1 doi: 10.1016/j.neuroimage.2016.04.032 – ident: e_1_2_11_49_1 doi: 10.1097/00001756-200211150-00004 – ident: e_1_2_11_64_1 doi: 10.1007/s00115-001-1215-x – ident: e_1_2_11_19_1 doi: 10.1016/j.neuron.2011.01.020 – ident: e_1_2_11_44_1 doi: 10.1016/j.biopsych.2004.07.017 – ident: e_1_2_11_42_1 doi: 10.1016/j.biopsycho.2011.02.023 – ident: e_1_2_11_72_1 doi: 10.1016/j.clinph.2006.11.009 – ident: e_1_2_11_56_1 doi: 10.1111/1469-8986.3850752 – ident: e_1_2_11_61_1 doi: 10.1016/j.neuroimage.2013.07.032 – volume-title: SKID. Strukturiertes Klinisches Interview für DSM‐IV. Achse I und II. Handanweisung year: 1997 ident: e_1_2_11_77_1 – ident: e_1_2_11_48_1 doi: 10.1371/journal.pone.0179430 – ident: e_1_2_11_30_1 doi: 10.1016/j.neulet.2007.04.030 – ident: e_1_2_11_54_1 doi: 10.1080/09297040802348028 – ident: e_1_2_11_70_1 doi: 10.1097/00001756-200103050-00005 – ident: e_1_2_11_35_1 doi: 10.1016/j.psychres.2008.06.015 – ident: e_1_2_11_38_1 doi: 10.1016/j.neuron.2004.12.033 – ident: e_1_2_11_68_1 doi: 10.1016/j.neuroscience.2018.01.011 – ident: e_1_2_11_6_1 doi: 10.1016/j.neuropsychologia.2004.05.007 – volume: 159 start-page: 14 issue: 1 year: 2004 ident: e_1_2_11_2_1 article-title: Frontal and central oscillatory changes related to different aspects of the motor process: A study in go/no‐go paradigms publication-title: Experimental Brain Research – ident: e_1_2_11_8_1 doi: 10.3390/brainsci10050255 – ident: e_1_2_11_53_1 doi: 10.1016/j.neuroimage.2017.05.014 – ident: e_1_2_11_41_1 doi: 10.1017/S0033291704002892 – ident: e_1_2_11_58_1 doi: 10.1212/WNL.57.10.1899 |
SSID | ssj0011501 |
Score | 2.3800602 |
Snippet | Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2416 |
SubjectTerms | Adult Attention - physiology Cerebral Cortex - physiology Clustering Cognitive ability Double-Blind Method EEG Electroencephalography Executive Function - physiology Female Humans Impulsive behavior Impulsive Behavior - physiology Impulsivity intertrial phase coherence Male Monitoring Neurophysiology performance monitoring Phase coherence Prefrontal cortex Psychomotor Performance - physiology Reaction time Reaction Time - physiology Reaction time task single‐trial phase behavior coupling Stimulation Theta Rhythm - physiology time‐frequency analysis Transcranial Magnetic Stimulation Young Adult |
Title | Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by TMS |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25376 https://www.ncbi.nlm.nih.gov/pubmed/33605509 https://www.proquest.com/docview/2520688695 https://www.proquest.com/docview/2491948161 https://pubmed.ncbi.nlm.nih.gov/PMC8090766 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VHhAXHi0PQ4kGhKAHnPq5tsUpIKoIKQhBK_WAZO3aazUicaLEFionjhz5jfwSZtaPNhFIiNtKO5t417Mzs-NvvgV4Vrg64HpHWxfCsQOhpS3DMLLJPcgkc_wwCrjAefJejE-Dd2fh2Q686mphGn6IPuHGO8PYa97gUq2PLklDz9V86DEZCdlfxmpxQPSxp47iQMcctsjF2glZ4I5VyPGO-pEbvmjbIl9xSdtwyathrPFDx7fgczeDBn7yZVhXaph92yJ3_M8p3oabbXyKo0ah7sCOLvdgf1TS2Xx-gc_RIEZNKn4Prk_aD_P78INJPmgcU2OSYvGXe1w18Fu9xmqBy8sCBZwbO8IJRWzuZ8EWLYZMnvzr-0-UZY6zxVdqTufLesYQe5z2pWPrl6jqCuVKY11KA0jROaoLPJl8ugunx29P3ozt9pIHOyNzIGxJEVocJxmZFj475oIp8fw8FCr2ZUzRXZGEunBU5mipcxlKLfLCi2IVm3bh34PdclHqB4AUvMRCFm6SJ8x640hSNCHyQPpJodyssOCwe91p1jKg80Ucs7ThbvZSWvDULLgFT3vRZUP78SehF6wzKZsC-p1MthUN9DRMqpWOIg5e_SAILTjYkKQtnG12d1qXtiZkTX_h8YVAtB4WPOm7eSTD4kq9qEkmSFym2xGuBfcbJe0f1_fppErhoAXRhvr2AkwsvtlTTs8NwXjsJE4kaH6HRjv_vgLp-PXENB7-u-gjuOExLshksg5gt1rV-jEFdpUawDUv-DAwaZGB2c2_AdR9Tq0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2PQAGDEPRAtnk6icRleVQLND3AVuqlspzEUVfsZle7iVA5ceTIb-SXMOM82qxAQtwseZzEznhmPJ75BuBZbiuP8h1NlXPL9LiSpvT9wET1IKPUcv3AowTn-JCPjrwPx_7xBrxqc2FqfIjO4UY7Q8tr2uDkkN47Rw09TWYDh9BILsFlquhNyPlvP3XgUWTq6OMWKlkzQhnc4gpZzl43tKeN1mXyBaW0HjB50ZDVmmj_Bpy0c6gDUL4MqjIZpN_W4B3_d5I34XpjorJhzVO3YEMVW7A9LPB4Pjtjz5kOGtXe-C24Ejd389vwg3A-cByhYyJv0eU9W9YRuGrFyjlbnOcosJkWJeRTZHWJFtYEjDHCT_71_SeTRcam86_YnMwW1ZSi7Nmkyx5bvWRJVTK5VKwqpI5JURlLztg4_nwbjvbfjd-MzKbOg5miROCmRCMtDKMUpQsdHzNOqHhu5vMkdGWIBl4e-Sq3ktRSUmXSl4pnuROESajbuXsHNot5oe4BQ_sl5DK3oywi4BtLIq9xnnnSjfLETnMDdtv_LdIGBJ1qcUxFDd_sCFxwoRfcgKcd6aJG_vgT0QtiGkHSAJ-TyiapAb-GcLXEMCD71fU834CdHiXu4rTf3bKdaKTICl_hUE0gXA8DnnTdNJIi4wo1r5DGi2xC3OG2AXdrLu0-13XxsIoWoQFBj387AsIW7_cUk1ONMR5akRVwnN-uZs-_r4AYvY514_6_kz6Gq6NxfCAO3h9-fADXHAoT0o6tHdgsl5V6iHZemTzS2_k3w_lQ_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7SFEIvJU36UJu201LaHKpEz5VETu7DuA-HQBPITaykXWKwZWNbhNx67DG_Mb8kMytZiUILvS3srC1p5tuZ3Z35FuCddlXA9Y620sKxA6GkLcMwssk9yCR3_DAKuMB5eCgGJ8H30_B0DQ5WtTA1P0S74cbIMPM1A3xW6P0b0tCzbLLnMRnJPbjPh32cz-UFR-0RAkU6ZrVFPtZOaApe0Qo53n47tOOM7k7Jt3zS3XzJ23GscUT9TXjYRJDYq1X-CNZUuQXbvZJWz5MLfI8mp9Nslm_BxrA5Ot-GP0zDQeOYvJJUz2frOK8TZNUCl1Oc3ZQQ4MQgnbf8sL5BBZt8LmR646vflyjLAsfTc2qOJrNqzEnwOGqLuxYfMauWKOcKq1KalBFVYHaBx8Nfj-Gk__X488BurmGwcwKssCXFUHGc5AR-Xt0Vgknr_CIUWezLmOIvnYRKO1nuKKkKGUolCu1FcRabtvafwHo5LdUzQAovYiG1mxQJ89I4kkxBiCKQfqIzN9cW7K70keYNRzlflTFOa3ZlLyXVpUZ1FrxtRWc1McffhD6wUlMGK_1OLpuaA3oapr1KexGHl34QhBbsdCQJZHm3e2UWaQPyBf2Fx1f20Pew4E3bzSM5ca1U04pkgsRlQhzhWvC0tqL2cX2f1pIUsFkQdeyrFWDq725POTozFOCxkziRoPfbNZb47y-QDj4NTeP5_4u-ho2jL_3057fDHy_ggcdJPGbbaQfWl_NKvaQobJm9Mmi7BgxFL30 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+oscillatory+responses+to+performance+monitoring+differ+between+high%E2%80%90+and+low%E2%80%90impulsive+individuals%2C+but+are+unaffected+by+TMS&rft.jtitle=Human+brain+mapping&rft.au=Barth%2C+Beatrix&rft.au=Rohe%2C+Tim&rft.au=Deppermann%2C+Saskia&rft.au=Fallgatter%2C+Andreas+Jochen&rft.date=2021-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=42&rft.issue=8&rft.spage=2416&rft.epage=2433&rft_id=info:doi/10.1002%2Fhbm.25376&rft.externalDBID=10.1002%252Fhbm.25376&rft.externalDocID=HBM25376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |