Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses

Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate‐based meta‐analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. He...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 33; no. 1; pp. 1 - 13
Main Authors Turkeltaub, Peter E., Eickhoff, Simon B., Laird, Angela R., Fox, Mick, Wiener, Martin, Fox, Peter
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.01.2012
Wiley-Liss
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate‐based meta‐analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within‐experiment effects. However, we show that these effects only account for 2–3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7–9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within‐experiment or within‐group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within‐experiment and within‐group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
AbstractList Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate‐based meta‐analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within‐experiment effects. However, we show that these effects only account for 2–3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7–9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within‐experiment or within‐group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within‐experiment and within‐group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within-experiment effects. However, we show that these effects only account for 2-3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7-9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within-experiment or within-group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within-experiment and within-group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports.Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within-experiment effects. However, we show that these effects only account for 2-3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7-9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within-experiment or within-group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within-experiment and within-group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports.
Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within-experiment effects. However, we show that these effects only account for 2-3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7-9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within-experiment or within-group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within-experiment and within-group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within-experiment effects. However, we show that these effects only account for 2-3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7-9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within-experiment or within-group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within-experiment and within-group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports.
Author Turkeltaub, Peter E.
Fox, Peter
Eickhoff, Simon B.
Laird, Angela R.
Fox, Mick
Wiener, Martin
AuthorAffiliation 1 Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
2 Department of Psychiatry and Psychotherapy, Rheinisch‐Westfälische Technische Hochschule Aachen University, Aachen D‐52074, Germany
4 Jülich Aachen Research Alliance, Translational Brain Medicine, Jülich D‐52425, Germany
5 Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
3 Institute of Neuroscience and Medicine (INM‐2), Research Centre Jülich, Jülich D‐52425, Germany
AuthorAffiliation_xml – name: 3 Institute of Neuroscience and Medicine (INM‐2), Research Centre Jülich, Jülich D‐52425, Germany
– name: 2 Department of Psychiatry and Psychotherapy, Rheinisch‐Westfälische Technische Hochschule Aachen University, Aachen D‐52074, Germany
– name: 4 Jülich Aachen Research Alliance, Translational Brain Medicine, Jülich D‐52425, Germany
– name: 1 Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
– name: 5 Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
Author_xml – sequence: 1
  givenname: Peter E.
  surname: Turkeltaub
  fullname: Turkeltaub, Peter E.
  email: peter.turkeltaub@uphs.upenn.edu
  organization: Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 2
  givenname: Simon B.
  surname: Eickhoff
  fullname: Eickhoff, Simon B.
  organization: Department of Psychiatry and Psychotherapy, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen D-52074, Germany
– sequence: 3
  givenname: Angela R.
  surname: Laird
  fullname: Laird, Angela R.
  organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
– sequence: 4
  givenname: Mick
  surname: Fox
  fullname: Fox, Mick
  organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
– sequence: 5
  givenname: Martin
  surname: Wiener
  fullname: Wiener, Martin
  organization: Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
– sequence: 6
  givenname: Peter
  surname: Fox
  fullname: Fox, Peter
  organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25292443$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21305667$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB-w4A-gSAghFmltx07iTSX6YIrUAotKZWc5Hmfmto492Enb4dfjeQKVYGX7-jvH98h3H-047wxCrwk-JBjTo2nTHVJC6vIZ2iNYVDkmothZ7EueC1aRXbQf4y3GhHBMXqBdSgrMy7LaQ5MrcNDBT3CT7AH6KbjcPM5MgM64PlNuvKlOgh9mmWlbo_uYgcuU7uFe9eBdZuHOWJh6P85M7KFbVTvTq1w5ZefRxJfoeatsNK_W6wG6_nR-fXqRX34dfT79eJlrnrrN67KlpsZNTRs8LoXgbaPbmrJ0KFRT1lgxQURZFbjiWOOaC6ZSJE10q5UYFwfoeGU7G5rOjHUKEZSVs5RHhbn0CuTfNw6mcuLvJasEwVWRDN6vDYL_MaQ0soOojbXKGT9EKQgRrKRsQb59Qt76IaS4URJOqoJzJlii3vzZ0LaTzQ8k4N0aUFEr2wblNMTfHKeCsuVzH1acDj7GYNotQrBcTIFMUyCXU5DYoyeshn75KSkz2P8pHsCa-b-t5cXJ1UaRrxQQe_O4VahwJ1OqisubLyPJvo--0Rt8Is-KX8yX0zc
CitedBy_id crossref_primary_10_1007_s00213_023_06498_1
crossref_primary_10_1017_S0033291722003889
crossref_primary_10_1002_hbm_23492
crossref_primary_10_3390_brainsci11121619
crossref_primary_10_3758_s13415_019_00747_7
crossref_primary_10_3389_fneur_2020_00018
crossref_primary_10_1007_s11065_023_09609_z
crossref_primary_10_1007_s12021_023_09643_5
crossref_primary_10_1214_17_STS624
crossref_primary_10_1016_j_neubiorev_2014_11_003
crossref_primary_10_1007_s00429_024_02790_8
crossref_primary_10_1080_01690965_2011_613209
crossref_primary_10_1016_j_neuroimage_2019_06_037
crossref_primary_10_1002_hbm_23488
crossref_primary_10_1016_j_neuroimage_2020_117220
crossref_primary_10_1016_j_neubiorev_2014_03_016
crossref_primary_10_1016_j_neubiorev_2022_104721
crossref_primary_10_1016_j_neuroimage_2024_120986
crossref_primary_10_1016_j_schres_2016_11_043
crossref_primary_10_1093_scan_nsaa090
crossref_primary_10_1007_s12311_021_01261_8
crossref_primary_10_1002_hbm_22392
crossref_primary_10_1002_hbm_24334
crossref_primary_10_1186_s40359_014_0052_1
crossref_primary_10_1002_hbm_22397
crossref_primary_10_1016_j_concog_2016_12_011
crossref_primary_10_1016_j_psychres_2022_114598
crossref_primary_10_1016_j_neulet_2017_06_058
crossref_primary_10_1016_j_smrv_2023_101821
crossref_primary_10_3389_fnins_2023_1191617
crossref_primary_10_1016_j_neuroimage_2017_10_020
crossref_primary_10_1002_hbm_24326
crossref_primary_10_3390_brainsci12070830
crossref_primary_10_1002_hbm_25898
crossref_primary_10_1016_j_cpr_2022_102189
crossref_primary_10_1016_j_neuroimage_2022_119194
crossref_primary_10_1371_journal_pone_0203753
crossref_primary_10_1002_hbm_25452
crossref_primary_10_1016_j_neubiorev_2017_10_029
crossref_primary_10_1038_srep25983
crossref_primary_10_1016_j_neubiorev_2019_05_007
crossref_primary_10_1016_j_neubiorev_2020_01_004
crossref_primary_10_1016_j_neuropsychologia_2020_107495
crossref_primary_10_1371_journal_pone_0208177
crossref_primary_10_1016_j_neuroimage_2021_117960
crossref_primary_10_1016_j_neubiorev_2017_02_020
crossref_primary_10_1016_j_neuroimage_2020_117444
crossref_primary_10_1002_hbm_23028
crossref_primary_10_1016_j_bandl_2023_105347
crossref_primary_10_31083_j_jin2104107
crossref_primary_10_1016_j_orcp_2020_02_004
crossref_primary_10_1016_j_dcn_2017_05_003
crossref_primary_10_1007_s00429_016_1264_3
crossref_primary_10_1007_s11065_021_09494_4
crossref_primary_10_1016_j_neuroimage_2024_120720
crossref_primary_10_1016_j_neuroimage_2014_05_062
crossref_primary_10_1016_j_neubiorev_2016_07_032
crossref_primary_10_1093_jn_nxaa071
crossref_primary_10_1002_hbm_24348
crossref_primary_10_1002_hbm_24349
crossref_primary_10_1016_j_bandl_2016_10_004
crossref_primary_10_1016_j_neuropsychologia_2017_01_019
crossref_primary_10_1002_hbm_22363
crossref_primary_10_1002_hbm_23451
crossref_primary_10_1002_hbm_22364
crossref_primary_10_1016_j_neuroimage_2014_05_030
crossref_primary_10_3389_fnhum_2020_616054
crossref_primary_10_1016_j_brainresbull_2024_110933
crossref_primary_10_1016_j_arr_2022_101760
crossref_primary_10_1111_adb_12976
crossref_primary_10_1016_j_bandc_2019_01_002
crossref_primary_10_1016_j_neubiorev_2016_08_038
crossref_primary_10_1038_s41562_024_01843_6
crossref_primary_10_1016_j_jneuroling_2018_08_005
crossref_primary_10_1002_hbm_26713
crossref_primary_10_3389_fnins_2020_534671
crossref_primary_10_1016_j_yfrne_2016_10_001
crossref_primary_10_1016_j_neubiorev_2023_105077
crossref_primary_10_1111_nmo_14484
crossref_primary_10_1016_j_neuroimage_2020_117407
crossref_primary_10_1016_j_neubiorev_2019_04_006
crossref_primary_10_1016_j_neuroimage_2014_11_009
crossref_primary_10_3389_fnhum_2018_00227
crossref_primary_10_1016_j_neubiorev_2022_104915
crossref_primary_10_1002_hbm_26702
crossref_primary_10_1002_hbm_24523
crossref_primary_10_1007_s00429_017_1450_y
crossref_primary_10_1016_j_neuroimage_2012_02_037
crossref_primary_10_1038_s41467_021_27926_w
crossref_primary_10_3389_fphys_2015_00240
crossref_primary_10_1111_cns_13775
crossref_primary_10_1007_s00441_018_2899_6
crossref_primary_10_1016_j_heliyon_2022_e09702
crossref_primary_10_1016_j_exger_2025_112678
crossref_primary_10_1093_cercor_bhs256
crossref_primary_10_1007_s11682_024_00921_7
crossref_primary_10_1016_j_biopsycho_2018_08_018
crossref_primary_10_1002_hbm_22138
crossref_primary_10_1016_j_neuroimage_2023_120207
crossref_primary_10_1017_S0033291716000477
crossref_primary_10_1093_scan_nst124
crossref_primary_10_1038_s41598_021_88773_9
crossref_primary_10_1038_s41598_022_14221_x
crossref_primary_10_1016_j_neuroimage_2014_12_056
crossref_primary_10_1162_jocn_a_01111
crossref_primary_10_3389_fnhum_2021_744489
crossref_primary_10_1093_cercor_bhs007
crossref_primary_10_1159_000522003
crossref_primary_10_1016_j_neuroimage_2014_11_022
crossref_primary_10_1002_hbm_23216
crossref_primary_10_1002_hbm_25635
crossref_primary_10_1007_s12671_018_0884_5
crossref_primary_10_1016_j_neuroimage_2017_12_034
crossref_primary_10_1016_j_ynirp_2023_100173
crossref_primary_10_1109_TCBB_2015_2510007
crossref_primary_10_1002_ana_24642
crossref_primary_10_1002_cns3_20108
crossref_primary_10_7717_peerj_10861
crossref_primary_10_1016_j_drugalcdep_2022_109625
crossref_primary_10_1002_hbm_25828
crossref_primary_10_1093_scan_nst106
crossref_primary_10_1016_j_neuroimage_2021_118436
crossref_primary_10_1016_j_cortex_2022_07_003
crossref_primary_10_3109_15622975_2015_1102323
crossref_primary_10_3390_ijerph192316277
crossref_primary_10_30773_pi_2021_0383
crossref_primary_10_1016_j_neuroimage_2011_12_010
crossref_primary_10_1016_j_neubiorev_2018_08_003
crossref_primary_10_1016_j_jns_2020_116907
crossref_primary_10_1038_s41598_021_94506_9
crossref_primary_10_3389_fnagi_2016_00238
crossref_primary_10_1017_S1355617713000490
crossref_primary_10_1002_aur_3055
crossref_primary_10_3389_fpsyt_2014_00141
crossref_primary_10_1016_j_neubiorev_2016_05_012
crossref_primary_10_1176_appi_ajp_2019_18111271
crossref_primary_10_1186_s11689_019_9287_8
crossref_primary_10_1016_j_neubiorev_2022_104553
crossref_primary_10_1002_hbm_23636
crossref_primary_10_1007_s00406_011_0249_8
crossref_primary_10_1016_j_jneuroling_2019_04_001
crossref_primary_10_1016_j_neuropsychologia_2022_108273
crossref_primary_10_1038_s41380_018_0122_5
crossref_primary_10_1016_j_neuroimage_2018_09_036
crossref_primary_10_1073_pnas_1113427109
crossref_primary_10_1016_j_bbr_2017_10_025
crossref_primary_10_3389_fnins_2017_00745
crossref_primary_10_1016_j_neubiorev_2022_104588
crossref_primary_10_1016_j_neubiorev_2022_104589
crossref_primary_10_1016_j_cortex_2020_04_031
crossref_primary_10_1002_hbm_22572
crossref_primary_10_1093_scan_nsae068
crossref_primary_10_1016_j_neubiorev_2016_04_001
crossref_primary_10_1089_cap_2019_0007
crossref_primary_10_1111_jon_12266
crossref_primary_10_3389_fnhum_2022_1029256
crossref_primary_10_1016_j_biopsych_2013_08_008
crossref_primary_10_1038_s41598_021_96319_2
crossref_primary_10_1016_j_jad_2022_11_071
crossref_primary_10_1007_s00429_019_01870_4
crossref_primary_10_1080_23273798_2021_1970200
crossref_primary_10_1162_jocn_a_01311
crossref_primary_10_1093_cercor_bhad337
crossref_primary_10_3389_fnins_2022_1084362
crossref_primary_10_1016_j_cortex_2017_12_014
crossref_primary_10_11922_11_6035_csd_2022_0047_zh
crossref_primary_10_1002_hbm_24746
crossref_primary_10_1002_hbm_24747
crossref_primary_10_1016_j_neubiorev_2016_06_025
crossref_primary_10_1007_s11682_016_9606_6
crossref_primary_10_3390_bs14070570
crossref_primary_10_1016_j_neubiorev_2020_02_023
crossref_primary_10_1016_j_pscychresns_2017_07_006
crossref_primary_10_1038_s41398_022_01809_0
crossref_primary_10_1016_j_neubiorev_2022_104768
crossref_primary_10_1177_1535370215603514
crossref_primary_10_1038_tp_2016_55
crossref_primary_10_1002_hbm_22991
crossref_primary_10_3390_brainsci10060353
crossref_primary_10_1002_hbm_22750
crossref_primary_10_1016_j_neubiorev_2016_06_011
crossref_primary_10_3389_fnins_2024_1392002
crossref_primary_10_1016_j_neuropsychologia_2014_05_001
crossref_primary_10_1016_j_euroneuro_2019_09_589
crossref_primary_10_1038_s41537_022_00291_3
crossref_primary_10_1038_s41598_020_59490_6
crossref_primary_10_1002_brb3_1867
crossref_primary_10_1007_s11065_023_09588_1
crossref_primary_10_1016_j_neubiorev_2019_02_017
crossref_primary_10_1016_j_neuropsychologia_2010_09_014
crossref_primary_10_1016_j_neubiorev_2019_02_011
crossref_primary_10_12688_f1000research_4734_1
crossref_primary_10_12688_f1000research_4734_2
crossref_primary_10_1162_jocn_a_01531
crossref_primary_10_3389_fnins_2022_781099
crossref_primary_10_12688_f1000research_4734_3
crossref_primary_10_1007_s11682_022_00655_4
crossref_primary_10_1016_j_neubiorev_2022_104994
crossref_primary_10_1016_j_avb_2015_11_003
crossref_primary_10_1016_j_bandc_2015_05_004
crossref_primary_10_1016_j_neubiorev_2020_03_008
crossref_primary_10_1016_j_neuropsychologia_2015_08_007
crossref_primary_10_1038_s42003_022_03027_2
crossref_primary_10_1002_hbm_22781
crossref_primary_10_3758_s13415_015_0338_7
crossref_primary_10_1080_01616412_2023_2199377
crossref_primary_10_3389_fnbeh_2016_00220
crossref_primary_10_1007_s11682_021_00503_x
crossref_primary_10_1162_nol_a_00097
crossref_primary_10_1186_s13229_019_0299_8
crossref_primary_10_1016_j_nicl_2018_09_018
crossref_primary_10_1093_schbul_sbv025
crossref_primary_10_1016_j_jad_2024_05_016
crossref_primary_10_3390_brainsci12081112
crossref_primary_10_1002_hbm_24716
crossref_primary_10_1002_hbm_22777
crossref_primary_10_1016_j_neuroimage_2020_117481
crossref_primary_10_1093_ons_opy272
crossref_primary_10_1093_scan_nsz055
crossref_primary_10_1016_j_neubiorev_2013_09_005
crossref_primary_10_1007_s40167_021_00102_z
crossref_primary_10_1016_j_wneu_2019_01_159
crossref_primary_10_1038_s41398_019_0644_x
crossref_primary_10_1016_j_neuroimage_2021_117777
crossref_primary_10_1002_hbm_23854
crossref_primary_10_1073_pnas_1302956110
crossref_primary_10_1093_cercor_bhac443
crossref_primary_10_1016_j_bandl_2023_105377
crossref_primary_10_1177_2398212818810591
crossref_primary_10_1016_j_nicl_2017_07_025
crossref_primary_10_1016_j_neuroimage_2022_119764
crossref_primary_10_1080_17470919_2017_1357657
crossref_primary_10_1038_s41598_017_17267_4
crossref_primary_10_1016_j_neubiorev_2012_11_003
crossref_primary_10_1007_s12311_015_0696_2
crossref_primary_10_1016_j_bandc_2018_09_007
crossref_primary_10_1016_j_neuroimage_2019_116111
crossref_primary_10_3390_brainsci11030399
crossref_primary_10_3724_SP_J_1042_2022_00536
crossref_primary_10_1016_j_neubiorev_2024_105712
crossref_primary_10_1016_j_neubiorev_2016_03_020
crossref_primary_10_1016_j_neuroimage_2019_03_074
crossref_primary_10_1016_j_neubiorev_2021_06_012
crossref_primary_10_3389_fneur_2018_01129
crossref_primary_10_1038_tp_2016_80
crossref_primary_10_1016_j_dr_2022_101052
crossref_primary_10_3389_fncom_2024_1310013
crossref_primary_10_3389_fnins_2018_00686
crossref_primary_10_1016_j_neubiorev_2016_03_021
crossref_primary_10_1016_j_smrv_2018_07_004
crossref_primary_10_3389_fnhum_2021_774656
crossref_primary_10_1016_j_neubiorev_2024_105960
crossref_primary_10_1162_jocn_a_01616
crossref_primary_10_1016_j_neubiorev_2024_105720
crossref_primary_10_1016_j_neubiorev_2023_105423
crossref_primary_10_1080_01616412_2021_1902702
crossref_primary_10_3390_jcm8040516
crossref_primary_10_3390_biomedicines10071555
crossref_primary_10_1016_j_nicl_2019_102039
crossref_primary_10_1016_j_nicl_2022_103268
crossref_primary_10_1002_hbm_23706
crossref_primary_10_1016_j_clineuro_2021_106765
crossref_primary_10_3390_healthcare12070711
crossref_primary_10_1016_j_neuropsychologia_2024_108904
crossref_primary_10_3389_fpsyg_2015_00191
crossref_primary_10_3390_brainsci12081030
crossref_primary_10_1162_imag_a_00065
crossref_primary_10_3389_fnhum_2023_1077234
crossref_primary_10_1016_j_jad_2018_09_049
crossref_primary_10_1111_jcpp_12651
crossref_primary_10_1016_j_neubiorev_2024_105735
crossref_primary_10_1016_j_pscychresns_2019_111020
crossref_primary_10_3389_fnins_2022_984647
crossref_primary_10_3233_JAD_160382
crossref_primary_10_1093_cercor_bhu198
crossref_primary_10_1016_j_jpsychires_2021_12_029
crossref_primary_10_1016_j_neuroimage_2019_116387
crossref_primary_10_1093_cercor_bhv073
crossref_primary_10_1176_appi_ajp_2017_16040400
crossref_primary_10_1016_j_nicl_2019_102053
crossref_primary_10_1016_j_neubiorev_2024_105902
crossref_primary_10_3389_fnhum_2014_00830
crossref_primary_10_1016_j_neubiorev_2018_06_024
crossref_primary_10_1093_psyrad_kkab020
crossref_primary_10_1016_j_bandl_2017_08_009
crossref_primary_10_1016_j_nicl_2017_01_034
crossref_primary_10_3389_fnhum_2017_00022
crossref_primary_10_1016_j_neuropsychologia_2021_108002
crossref_primary_10_1016_j_neulet_2019_134683
crossref_primary_10_1016_j_nicl_2015_12_002
crossref_primary_10_1155_2021_5596145
crossref_primary_10_30773_pi_2021_0062
crossref_primary_10_1016_j_neubiorev_2016_04_020
crossref_primary_10_7717_peerj_14976
crossref_primary_10_1016_j_nicl_2022_103029
crossref_primary_10_1002_cne_24804
crossref_primary_10_1016_j_bandl_2014_11_012
crossref_primary_10_1007_s11682_022_00659_0
crossref_primary_10_1016_j_jvoice_2022_02_008
crossref_primary_10_1016_j_neuroimage_2019_116321
crossref_primary_10_1016_j_nicl_2015_02_018
crossref_primary_10_1007_s11065_015_9315_8
crossref_primary_10_1016_j_jad_2013_07_002
crossref_primary_10_1016_j_neubiorev_2021_07_021
crossref_primary_10_1016_j_neubiorev_2018_06_009
crossref_primary_10_3389_fneur_2015_00219
crossref_primary_10_1002_hbm_25093
crossref_primary_10_1007_s11682_020_00303_9
crossref_primary_10_1111_obr_13643
crossref_primary_10_1002_hbm_22818
crossref_primary_10_1016_j_neubiorev_2018_07_017
crossref_primary_10_3389_fneur_2022_923310
crossref_primary_10_1002_hbm_26177
crossref_primary_10_1093_cercor_bhad013
crossref_primary_10_1097_j_pain_0000000000000517
crossref_primary_10_1371_journal_pone_0083668
crossref_primary_10_1007_s00429_013_0549_z
crossref_primary_10_1016_j_cortex_2019_08_018
crossref_primary_10_1016_j_cortex_2021_02_023
crossref_primary_10_3390_brainsci14010101
crossref_primary_10_1038_mp_2014_24
crossref_primary_10_1192_bjp_2021_16
crossref_primary_10_1016_j_neuroimage_2021_118109
crossref_primary_10_1016_j_brainres_2018_01_014
crossref_primary_10_1016_j_pscychresns_2023_111769
crossref_primary_10_1162_imag_a_00277
crossref_primary_10_1016_j_bandl_2014_10_002
crossref_primary_10_1016_j_neubiorev_2016_03_009
crossref_primary_10_1002_hbm_24184
crossref_primary_10_1111_pcn_13442
crossref_primary_10_1093_scan_nsx142
crossref_primary_10_1017_S136672892000070X
crossref_primary_10_3389_fnhum_2024_1493677
crossref_primary_10_1016_j_nicl_2021_102700
crossref_primary_10_1007_s11682_020_00369_5
crossref_primary_10_1007_s11682_021_00507_7
crossref_primary_10_1016_j_nicl_2020_102420
crossref_primary_10_1093_scan_nsab105
crossref_primary_10_1016_j_neubiorev_2017_11_010
crossref_primary_10_1016_j_neubiorev_2017_11_012
crossref_primary_10_1016_j_jad_2020_06_072
crossref_primary_10_1007_s00221_019_05595_y
crossref_primary_10_1016_j_pnpbp_2013_09_001
crossref_primary_10_1016_j_neubiorev_2021_08_010
crossref_primary_10_1002_hbm_26119
crossref_primary_10_3389_fnut_2022_1056692
crossref_primary_10_1016_j_neubiorev_2021_09_041
crossref_primary_10_1038_s41380_024_02780_6
crossref_primary_10_1016_j_biopsych_2016_06_014
crossref_primary_10_3390_math10030356
crossref_primary_10_1002_hbm_25025
crossref_primary_10_1016_j_eurpsy_2017_08_001
crossref_primary_10_3389_fpsyg_2016_01633
crossref_primary_10_1002_gps_5510
crossref_primary_10_1007_s10072_013_1512_8
crossref_primary_10_3758_s13415_021_00870_4
crossref_primary_10_1111_ejn_15240
crossref_primary_10_3389_fnhum_2020_00146
crossref_primary_10_3390_brainsci13040559
crossref_primary_10_3758_s13428_023_02185_3
crossref_primary_10_1016_j_neuropsychologia_2020_107404
crossref_primary_10_1371_journal_pone_0070143
crossref_primary_10_1007_s00429_014_0744_6
crossref_primary_10_1016_j_neubiorev_2023_105285
crossref_primary_10_1016_j_neubiorev_2023_105042
crossref_primary_10_1038_s41562_016_0039
crossref_primary_10_1016_j_neubiorev_2016_02_024
crossref_primary_10_1016_j_bpsc_2019_03_005
crossref_primary_10_1016_j_nicl_2017_01_019
crossref_primary_10_1007_s11682_019_00071_1
crossref_primary_10_1016_j_neubiorev_2018_05_006
crossref_primary_10_1016_j_jad_2024_01_118
crossref_primary_10_1007_s00429_018_1727_9
crossref_primary_10_1016_j_jadr_2023_100674
crossref_primary_10_1016_j_neuroimage_2015_08_027
crossref_primary_10_1016_j_neuroimage_2015_08_024
crossref_primary_10_1002_erv_2967
crossref_primary_10_1002_brb3_655
crossref_primary_10_1038_s44220_023_00105_0
crossref_primary_10_1016_j_neubiorev_2015_07_016
crossref_primary_10_1176_appi_ajp_2019_19050560
crossref_primary_10_3174_ajnr_A7619
crossref_primary_10_1007_s00429_021_02389_3
crossref_primary_10_1016_j_neuroimage_2016_04_072
crossref_primary_10_1016_j_neubiorev_2021_08_024
crossref_primary_10_1016_j_neuroimage_2013_05_046
crossref_primary_10_1016_j_neuroimage_2012_11_020
crossref_primary_10_1016_j_neuroimage_2023_120413
crossref_primary_10_1016_j_neubiorev_2024_105584
crossref_primary_10_1016_j_neuroimage_2024_120950
crossref_primary_10_1016_j_neuroimage_2012_10_056
crossref_primary_10_1016_j_cortex_2019_05_016
crossref_primary_10_1002_hbm_23050
crossref_primary_10_1111_cdev_13080
crossref_primary_10_1016_j_drugalcdep_2020_107884
crossref_primary_10_1016_j_arr_2016_12_001
crossref_primary_10_3389_fnins_2018_00495
crossref_primary_10_1016_j_neubiorev_2019_12_014
crossref_primary_10_1007_s00429_022_02473_2
crossref_primary_10_1016_j_cortex_2019_05_001
crossref_primary_10_1002_hbm_23288
crossref_primary_10_1007_s11065_024_09647_1
crossref_primary_10_1016_j_cortex_2017_03_016
crossref_primary_10_1016_j_neubiorev_2018_04_022
crossref_primary_10_1007_s00429_013_0698_0
crossref_primary_10_1002_wcs_1546
crossref_primary_10_1002_hbm_70023
crossref_primary_10_1016_j_neubiorev_2023_105468
crossref_primary_10_1002_hbm_25254
crossref_primary_10_1016_j_jpsychires_2020_05_013
crossref_primary_10_1016_j_neuropsychologia_2019_107284
crossref_primary_10_3389_fnint_2021_793634
crossref_primary_10_1002_brb3_683
crossref_primary_10_1002_brb3_2065
crossref_primary_10_1016_j_jaac_2012_12_012
crossref_primary_10_1016_j_pnpbp_2017_11_007
crossref_primary_10_1162_imag_a_00425
crossref_primary_10_1016_j_neuroimage_2012_10_030
crossref_primary_10_1002_nau_23058
crossref_primary_10_3389_fnhum_2016_00675
crossref_primary_10_1016_j_neuropsychologia_2019_107286
crossref_primary_10_3390_cancers13051116
crossref_primary_10_1007_s11682_021_00453_4
crossref_primary_10_1016_j_neubiorev_2015_08_013
crossref_primary_10_3389_fpsyg_2025_1557796
crossref_primary_10_1002_ana_26551
crossref_primary_10_3233_JAD_215316
crossref_primary_10_1093_texcom_tgab002
crossref_primary_10_1002_hbm_25004
crossref_primary_10_1016_j_neubiorev_2021_09_024
crossref_primary_10_3389_fnhum_2014_00445
crossref_primary_10_1016_j_schres_2014_05_023
crossref_primary_10_1016_j_neuroimage_2020_116939
crossref_primary_10_1007_s10902_019_00195_7
crossref_primary_10_1155_2024_6673522
crossref_primary_10_1016_j_jad_2023_01_088
crossref_primary_10_1016_j_neuropsychologia_2021_107767
crossref_primary_10_3390_jpm13091384
crossref_primary_10_1016_j_neuroimage_2013_06_041
crossref_primary_10_1097_QAD_0000000000000151
crossref_primary_10_1016_j_neubiorev_2024_105544
crossref_primary_10_1177_2167702614542463
crossref_primary_10_3389_fnhum_2014_00692
crossref_primary_10_3389_fpsyg_2024_1335548
crossref_primary_10_1007_s40519_022_01390_x
crossref_primary_10_3389_fnhum_2014_01045
crossref_primary_10_3724_SP_J_1042_2021_01783
crossref_primary_10_1016_j_intell_2017_04_008
crossref_primary_10_1002_hbm_23132
crossref_primary_10_1016_j_nicl_2018_05_013
crossref_primary_10_1016_j_neubiorev_2017_09_032
crossref_primary_10_1016_j_neuroimage_2015_07_083
crossref_primary_10_1038_s41598_023_43057_2
crossref_primary_10_1038_s41398_022_01792_6
crossref_primary_10_1016_j_neuroimage_2021_117868
crossref_primary_10_3389_fnins_2017_00001
crossref_primary_10_1016_j_biopsych_2024_10_013
crossref_primary_10_1016_j_neubiorev_2022_104603
crossref_primary_10_1111_bdi_12488
crossref_primary_10_1016_j_neuroimage_2013_10_012
crossref_primary_10_1002_hbm_23368
crossref_primary_10_1038_s42003_021_01832_9
crossref_primary_10_1016_j_neubiorev_2018_03_019
crossref_primary_10_1016_j_neuroimage_2023_120363
crossref_primary_10_1186_s40035_018_0114_z
crossref_primary_10_1016_j_nicl_2025_103770
crossref_primary_10_1093_cercor_bhz182
crossref_primary_10_1007_s11682_016_9669_4
crossref_primary_10_1146_annurev_neuro_062012_170320
crossref_primary_10_1080_15622975_2024_2446823
crossref_primary_10_1016_j_neuropsychologia_2015_12_006
crossref_primary_10_1093_cercor_bhs308
crossref_primary_10_1097_MD_0000000000019151
crossref_primary_10_1016_j_neubiorev_2021_03_025
crossref_primary_10_1016_j_neuroimage_2015_06_059
crossref_primary_10_1007_s11682_020_00442_z
crossref_primary_10_1016_j_ijpsycho_2016_10_001
crossref_primary_10_1002_hbm_23149
crossref_primary_10_1016_j_yfrne_2019_100791
crossref_primary_10_1016_j_neuroimage_2023_120383
crossref_primary_10_1038_s41380_021_01315_7
crossref_primary_10_1002_hbm_24232
crossref_primary_10_1080_02643294_2016_1188798
crossref_primary_10_3758_s13415_015_0392_1
crossref_primary_10_1007_s00429_023_02641_y
crossref_primary_10_1016_j_neuroimage_2015_07_072
crossref_primary_10_3389_fnins_2020_00427
crossref_primary_10_1007_s11682_015_9457_6
crossref_primary_10_1016_j_neuroimage_2015_05_008
crossref_primary_10_1016_j_neuroimage_2021_118702
crossref_primary_10_1016_j_neuroimage_2015_06_044
crossref_primary_10_1016_j_neubiorev_2022_104851
crossref_primary_10_1016_j_tree_2015_10_004
crossref_primary_10_1016_j_nicl_2013_12_009
crossref_primary_10_1016_j_neubiorev_2023_105187
crossref_primary_10_1038_s41598_019_40427_7
crossref_primary_10_1016_j_dcn_2024_101419
crossref_primary_10_1016_j_neuropsychologia_2015_11_006
crossref_primary_10_1016_j_biopsych_2022_02_960
crossref_primary_10_1016_j_neubiorev_2021_02_029
crossref_primary_10_1186_1471_244X_13_342
crossref_primary_10_3390_jpm13030405
crossref_primary_10_1007_s11682_017_9813_9
crossref_primary_10_1016_j_neuroimage_2018_04_065
crossref_primary_10_1016_j_neuroimage_2018_04_067
crossref_primary_10_1016_j_jid_2019_04_007
crossref_primary_10_1038_s41398_021_01446_z
crossref_primary_10_1093_scan_nsu110
crossref_primary_10_1007_s11682_021_00494_9
crossref_primary_10_1002_hbm_24893
crossref_primary_10_1007_s11065_020_09432_w
crossref_primary_10_1111_ner_13119
crossref_primary_10_1016_j_neuroimage_2021_117833
crossref_primary_10_1016_j_cortex_2016_10_021
crossref_primary_10_1002_aur_1599
crossref_primary_10_1016_j_neuroimage_2013_04_073
crossref_primary_10_1002_hbm_24681
crossref_primary_10_3389_fnana_2015_00054
crossref_primary_10_1002_hbm_22262
crossref_primary_10_1002_hipo_22482
crossref_primary_10_1249_JES_0000000000000299
crossref_primary_10_3389_fnhum_2020_565114
crossref_primary_10_1016_j_pscychresns_2021_111272
crossref_primary_10_3389_fnhum_2022_1000995
crossref_primary_10_3758_s13415_023_01140_1
crossref_primary_10_1192_bjo_2019_102
crossref_primary_10_1007_s13365_022_01071_6
crossref_primary_10_1016_j_neubiorev_2014_09_008
crossref_primary_10_1016_j_bpsc_2019_04_007
crossref_primary_10_1002_hbm_23103
crossref_primary_10_1002_hbm_23109
crossref_primary_10_1016_j_pnpbp_2019_109656
crossref_primary_10_1016_j_neuroimage_2024_120641
crossref_primary_10_1016_j_neuroimage_2024_120885
crossref_primary_10_1016_j_nicl_2016_03_016
crossref_primary_10_1002_hbm_23342
crossref_primary_10_1002_brb3_1365
crossref_primary_10_1021_acschemneuro_9b00045
crossref_primary_10_3389_fnins_2022_1010354
crossref_primary_10_1016_j_autneu_2014_10_022
crossref_primary_10_1016_j_neuropsychologia_2015_06_034
crossref_primary_10_1016_j_neuroimage_2012_06_025
crossref_primary_10_1016_j_pnpbp_2018_05_011
crossref_primary_10_1038_s41380_023_01974_8
crossref_primary_10_1016_j_cofs_2014_11_001
crossref_primary_10_1016_j_neubiorev_2015_12_003
crossref_primary_10_1016_j_neuroimage_2016_10_028
crossref_primary_10_1111_desc_13111
crossref_primary_10_1007_s11682_022_00634_9
crossref_primary_10_1001_jamapsychiatry_2019_3351
crossref_primary_10_1016_j_neubiorev_2018_01_002
crossref_primary_10_1007_s00429_021_02318_4
crossref_primary_10_1038_s41398_018_0170_2
crossref_primary_10_1111_ejn_12765
crossref_primary_10_1007_s11682_023_00762_w
crossref_primary_10_1016_j_cortex_2021_02_014
crossref_primary_10_1016_j_heliyon_2024_e38084
crossref_primary_10_1002_brb3_2646
crossref_primary_10_1016_j_bandc_2024_106201
crossref_primary_10_3390_brainsci11121587
crossref_primary_10_1002_hbm_25948
crossref_primary_10_1002_hbm_23767
crossref_primary_10_1111_jnc_16104
crossref_primary_10_1016_j_neuroimage_2013_01_046
crossref_primary_10_1093_scan_nsad077
crossref_primary_10_1016_j_bandc_2013_09_007
crossref_primary_10_3758_s13415_020_00827_z
crossref_primary_10_1016_j_neubiorev_2015_03_002
crossref_primary_10_1016_j_neuropsychologia_2018_04_008
crossref_primary_10_1162_jocn_a_01459
crossref_primary_10_1016_j_neuroimage_2015_05_069
crossref_primary_10_1016_j_neuroimage_2018_02_023
crossref_primary_10_1509_jmr_13_0611
crossref_primary_10_1111_desc_12400
crossref_primary_10_1186_s12888_016_0890_x
crossref_primary_10_1016_j_neubiorev_2015_03_009
crossref_primary_10_1093_braincomms_fcac140
crossref_primary_10_1093_cercor_bhy049
crossref_primary_10_1016_j_parkreldis_2019_02_015
crossref_primary_10_1016_j_nicl_2017_08_004
crossref_primary_10_3389_fnins_2022_868366
crossref_primary_10_1162_jocn_a_01661
crossref_primary_10_3390_brainsci12010032
crossref_primary_10_1007_s12311_022_01459_4
crossref_primary_10_3389_fpsyg_2017_01253
crossref_primary_10_1002_hbm_25722
crossref_primary_10_1002_hbm_24633
crossref_primary_10_1002_hbm_26817
crossref_primary_10_1016_j_neubiorev_2017_06_011
crossref_primary_10_1515_revneuro_2022_0065
crossref_primary_10_1016_j_neubiorev_2021_10_034
crossref_primary_10_1186_1471_2202_15_19
crossref_primary_10_1016_j_pscychresns_2016_04_009
crossref_primary_10_1007_s11682_022_00754_2
crossref_primary_10_1016_j_jpain_2013_03_001
crossref_primary_10_1016_j_heares_2020_108078
crossref_primary_10_1007_s00429_018_1765_3
crossref_primary_10_1176_appi_ajp_20230270
crossref_primary_10_4103_0366_6999_176983
crossref_primary_10_1161_STROKEAHA_113_003168
crossref_primary_10_3233_JAD_200659
crossref_primary_10_1016_j_intell_2017_03_004
crossref_primary_10_1016_j_neuroimage_2015_04_053
crossref_primary_10_1002_hbm_22689
crossref_primary_10_1016_j_neuroimage_2019_02_061
crossref_primary_10_1186_s12888_021_03187_1
crossref_primary_10_1016_j_neuroimage_2023_120399
crossref_primary_10_1176_appi_focus_19206
crossref_primary_10_3390_brainsci10110798
crossref_primary_10_1016_j_bandl_2023_105287
crossref_primary_10_1007_s12078_022_09299_6
crossref_primary_10_1016_j_addicn_2023_100089
crossref_primary_10_3389_fnagi_2023_1181558
crossref_primary_10_1002_eat_23160
crossref_primary_10_1016_j_bandc_2020_105660
crossref_primary_10_1016_j_appet_2013_12_017
crossref_primary_10_30773_pi_2022_0074
crossref_primary_10_1002_hbm_23952
crossref_primary_10_1016_j_neuroimage_2019_02_043
crossref_primary_10_1002_hbm_22626
crossref_primary_10_1176_appi_ajp_2020_20091340
crossref_primary_10_1371_journal_pone_0248909
crossref_primary_10_1016_j_neubiorev_2021_04_014
crossref_primary_10_1016_j_schres_2023_12_003
crossref_primary_10_1007_s00429_018_1774_2
crossref_primary_10_1007_s12311_024_01660_7
crossref_primary_10_1007_s00429_024_02795_3
crossref_primary_10_1016_j_neuroimage_2021_118731
crossref_primary_10_1016_j_neubiorev_2021_05_023
crossref_primary_10_1016_j_neulet_2016_07_043
crossref_primary_10_1093_braincomms_fcae128
crossref_primary_10_1002_hbm_22417
crossref_primary_10_1016_j_pneurobio_2019_101718
crossref_primary_10_1371_journal_pone_0276140
crossref_primary_10_1016_j_neuropsychologia_2024_108947
crossref_primary_10_1002_hbm_22649
crossref_primary_10_3389_fpsyg_2015_01195
crossref_primary_10_1016_j_bandc_2016_07_007
crossref_primary_10_1016_j_jad_2023_04_028
crossref_primary_10_1016_j_neuroimage_2020_117114
crossref_primary_10_1093_brain_awy252
crossref_primary_10_1016_j_neuroimage_2020_117350
crossref_primary_10_1002_ejp_2251
crossref_primary_10_1016_j_neuroimage_2013_02_063
crossref_primary_10_1016_j_intell_2015_04_009
crossref_primary_10_1002_hbm_26082
crossref_primary_10_1097_j_pain_0000000000001519
crossref_primary_10_3389_fpsyg_2015_01138
crossref_primary_10_1016_j_neubiorev_2016_11_014
crossref_primary_10_1016_j_cortex_2022_02_010
crossref_primary_10_1002_bsl_2539
crossref_primary_10_1007_s00429_014_0791_z
crossref_primary_10_3389_fneur_2017_00739
crossref_primary_10_1016_j_neuroimage_2017_06_032
crossref_primary_10_3389_fpsyt_2021_634015
crossref_primary_10_1016_j_neurobiolaging_2014_04_013
crossref_primary_10_1016_j_neuroimage_2011_09_017
crossref_primary_10_1016_j_neuropsychologia_2012_02_007
crossref_primary_10_1176_appi_neuropsych_12060143
crossref_primary_10_1371_journal_pone_0106735
crossref_primary_10_1016_j_neuroimage_2023_119929
crossref_primary_10_1162_jocn_a_00401
crossref_primary_10_1016_j_nicl_2018_01_002
crossref_primary_10_1016_j_neuroimage_2016_12_037
crossref_primary_10_1002_hbm_22703
crossref_primary_10_1007_s00429_012_0380_y
crossref_primary_10_1007_s11065_019_09414_7
crossref_primary_10_1016_j_neuroimage_2019_116259
crossref_primary_10_1093_cercor_bhae493
crossref_primary_10_3389_fnhum_2014_00776
crossref_primary_10_1016_j_neuroimage_2022_119665
crossref_primary_10_1093_scan_nsx085
crossref_primary_10_1016_j_neubiorev_2020_04_011
crossref_primary_10_1111_ejn_15534
crossref_primary_10_1002_brb3_1976
crossref_primary_10_1007_s00429_014_0803_z
crossref_primary_10_1080_17470919_2023_2208879
crossref_primary_10_1016_j_neuroimage_2014_09_069
crossref_primary_10_1007_s00429_016_1215_z
crossref_primary_10_1007_s10072_022_06272_9
crossref_primary_10_3758_s13415_019_00763_7
crossref_primary_10_1038_s41598_023_39245_9
crossref_primary_10_1016_j_neubiorev_2019_09_004
crossref_primary_10_1016_j_neubiorev_2020_04_028
crossref_primary_10_1016_j_neuroimage_2016_12_052
crossref_primary_10_1016_j_nicl_2016_04_001
crossref_primary_10_1212_WNL_0000000000001404
crossref_primary_10_1016_j_neubiorev_2015_02_007
crossref_primary_10_1007_s12021_023_09626_6
crossref_primary_10_1016_j_heliyon_2023_e23749
crossref_primary_10_1002_hbm_25191
crossref_primary_10_3389_fnins_2019_01037
crossref_primary_10_1002_hbm_26041
crossref_primary_10_1038_tp_2016_218
crossref_primary_10_5665_sleep_3330
crossref_primary_10_1111_obr_12697
crossref_primary_10_1016_j_drugalcdep_2017_12_009
crossref_primary_10_1098_rstb_2013_0297
crossref_primary_10_1016_j_psyneuen_2018_05_031
crossref_primary_10_1016_j_neuroimage_2011_12_051
crossref_primary_10_1111_bjop_12595
crossref_primary_10_3389_fpsyt_2016_00125
crossref_primary_10_1111_jon_13176
crossref_primary_10_3390_brainsci11111468
crossref_primary_10_1093_cercor_bhx121
crossref_primary_10_1111_obr_12221
crossref_primary_10_1016_j_smrv_2019_03_008
crossref_primary_10_1002_hbm_26029
crossref_primary_10_3390_brainsci13060907
crossref_primary_10_1093_cercor_bhad121
crossref_primary_10_1093_cercor_bhz332
crossref_primary_10_1007_s00429_022_02467_0
crossref_primary_10_1016_j_jns_2019_116548
crossref_primary_10_1093_cercor_bhy245
crossref_primary_10_1016_j_neubiorev_2019_08_012
crossref_primary_10_1016_j_neuroimage_2015_02_039
crossref_primary_10_1371_journal_pone_0231669
crossref_primary_10_1016_j_jaac_2020_08_014
crossref_primary_10_1016_j_neuroimage_2018_10_077
crossref_primary_10_1016_j_neubiorev_2016_10_020
crossref_primary_10_3389_fnhum_2021_666179
crossref_primary_10_1016_j_neuropsychologia_2017_11_033
crossref_primary_10_1016_j_nicl_2022_103179
crossref_primary_10_3389_fpsyt_2024_1401623
crossref_primary_10_1192_j_eurpsy_2020_57
crossref_primary_10_1016_j_jneumeth_2022_109556
crossref_primary_10_1162_netn_a_00050
crossref_primary_10_3389_fnhum_2017_00375
crossref_primary_10_1007_s00415_022_11363_w
crossref_primary_10_3389_fnbeh_2018_00289
crossref_primary_10_1016_j_neubiorev_2020_05_015
crossref_primary_10_1002_hbm_25397
crossref_primary_10_1016_j_neuroimage_2013_12_024
crossref_primary_10_1097_MD_0000000000031206
crossref_primary_10_1016_j_neuroimage_2019_07_001
crossref_primary_10_1007_s11065_023_09593_4
crossref_primary_10_1159_000448620
crossref_primary_10_1016_j_neuroimage_2017_04_020
crossref_primary_10_3389_fnhum_2020_00276
crossref_primary_10_1016_j_nicl_2012_11_004
crossref_primary_10_1097_j_pain_0000000000002681
crossref_primary_10_1016_j_nicl_2014_11_004
crossref_primary_10_3389_fnhum_2014_00344
crossref_primary_10_1002_brb3_3046
crossref_primary_10_1515_tnsci_2022_0299
crossref_primary_10_1016_j_neubiorev_2023_105393
crossref_primary_10_1038_s41598_019_40188_3
crossref_primary_10_1016_j_neuroimage_2019_116409
crossref_primary_10_1093_schbul_sbad047
crossref_primary_10_1016_j_neubiorev_2014_08_003
crossref_primary_10_1093_schbul_sbad044
crossref_primary_10_1002_hbm_24049
crossref_primary_10_1371_journal_pone_0167276
crossref_primary_10_1016_j_neuroimage_2013_12_019
crossref_primary_10_1002_ca_23244
crossref_primary_10_1371_journal_pone_0136553
crossref_primary_10_1159_000339528
crossref_primary_10_1016_j_neuroimage_2017_04_002
crossref_primary_10_1007_s00429_018_1670_9
crossref_primary_10_1007_s00429_015_1060_5
crossref_primary_10_1016_j_neubiorev_2021_01_001
crossref_primary_10_1016_j_cortex_2023_10_008
crossref_primary_10_1016_j_neubiorev_2017_04_027
crossref_primary_10_1016_j_cortex_2018_03_011
crossref_primary_10_1002_hbm_24078
crossref_primary_10_3389_fnagi_2022_966525
crossref_primary_10_1111_jsr_12857
crossref_primary_10_1016_j_neuroimage_2020_116858
crossref_primary_10_1016_j_crad_2019_07_005
crossref_primary_10_3389_fpsyg_2019_00804
crossref_primary_10_1142_S0219622015500418
crossref_primary_10_1016_j_biopsycho_2019_04_006
crossref_primary_10_1016_j_neuroimage_2015_02_069
crossref_primary_10_1016_j_pscychresns_2024_111908
crossref_primary_10_1162_imag_a_00358
crossref_primary_10_1093_schizbullopen_sgaa016
crossref_primary_10_1162_imag_a_00355
crossref_primary_10_1007_s11682_019_00215_3
crossref_primary_10_1016_j_neubiorev_2021_01_010
crossref_primary_10_1007_s11682_023_00846_7
crossref_primary_10_1111_jcpp_13412
crossref_primary_10_1002_brb3_540
crossref_primary_10_1016_j_parkreldis_2019_05_008
crossref_primary_10_1177_0269881116668592
crossref_primary_10_1186_s12993_016_0100_5
crossref_primary_10_3389_fnins_2022_1049887
crossref_primary_10_2147_PRBM_S453035
crossref_primary_10_1016_j_neuroimage_2022_119204
crossref_primary_10_3389_fnhum_2016_00333
crossref_primary_10_1007_s00429_012_0476_4
crossref_primary_10_1016_j_cortex_2013_05_011
crossref_primary_10_1002_hbm_24018
crossref_primary_10_1016_j_jelekin_2017_12_005
crossref_primary_10_1016_j_neuroimage_2024_120824
crossref_primary_10_1002_hbm_25105
crossref_primary_10_1038_s41398_021_01670_7
crossref_primary_10_1016_j_neubiorev_2023_105355
crossref_primary_10_1002_hbm_24492
crossref_primary_10_1016_j_neubiorev_2018_10_016
crossref_primary_10_1002_hbm_25103
crossref_primary_10_1002_hbm_24496
crossref_primary_10_1016_j_dib_2018_10_142
crossref_primary_10_1016_j_neuroimage_2014_06_007
crossref_primary_10_3389_fnhum_2020_00215
crossref_primary_10_1016_j_neuroimage_2020_116834
crossref_primary_10_1038_s41598_021_84804_7
crossref_primary_10_1093_cercor_bhu250
crossref_primary_10_1080_15475441_2016_1264878
crossref_primary_10_1007_s10803_020_04794_9
crossref_primary_10_1002_brb3_3272
crossref_primary_10_1007_s11682_017_9756_1
crossref_primary_10_1016_j_jpsychires_2021_07_022
crossref_primary_10_1016_j_neuropsychologia_2024_109003
crossref_primary_10_1016_j_physbeh_2024_114481
crossref_primary_10_1111_odi_12819
crossref_primary_10_1016_j_nicl_2019_102114
crossref_primary_10_1007_s00429_022_02572_0
crossref_primary_10_1038_s41398_020_01115_7
crossref_primary_10_1002_da_22478
crossref_primary_10_1016_j_cortex_2024_05_015
crossref_primary_10_1016_j_neubiorev_2014_06_006
crossref_primary_10_1016_j_neuroimage_2012_05_058
crossref_primary_10_1007_s00429_016_1239_4
crossref_primary_10_1016_j_bandc_2012_05_004
crossref_primary_10_1016_j_dcn_2017_08_002
crossref_primary_10_1016_j_pscychresns_2022_111516
crossref_primary_10_3724_SP_J_1042_2022_00255
crossref_primary_10_1016_j_jpsychires_2019_10_018
crossref_primary_10_1002_hbm_24031
crossref_primary_10_1016_j_neubiorev_2019_06_012
crossref_primary_10_1016_j_biopsycho_2016_07_015
crossref_primary_10_3389_fpsyg_2023_1136983
crossref_primary_10_1016_j_nicl_2019_102129
crossref_primary_10_1371_journal_pone_0286969
crossref_primary_10_1007_s00429_019_02007_3
crossref_primary_10_1016_j_neuroimage_2013_11_001
crossref_primary_10_1016_j_neubiorev_2012_03_006
crossref_primary_10_1016_j_neubiorev_2020_07_006
Cites_doi 10.1016/j.biopsych.2008.03.031
10.1016/j.neuroimage.2009.06.047
10.1523/JNEUROSCI.0359-10.2010
10.1523/JNEUROSCI.4599-09.2010
10.1016/j.neuroimage.2009.12.112
10.1016/j.neuropsychologia.2009.09.032
10.1002/hbm.20136
10.1016/j.neubiorev.2010.01.009
10.1016/j.neuroimage.2009.09.064
10.1016/j.bandl.2010.03.008
10.1093/scan/nsm015
10.1073/pnas.0905267106
10.1523/JNEUROSCI.4004-09.2009
10.1016/j.neuroimage.2004.03.052
10.1093/cercor/bhp055
10.1016/j.neuroimage.2008.10.061
10.1196/annals.1416.024
10.1006/nimg.2002.1131
10.1016/j.neuroimage.2008.01.065
10.1001/archgenpsychiatry.2009.91
10.1016/j.pnpbp.2009.08.020
10.1162/jocn.2009.21366
10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
10.1523/JNEUROSCI.5664-09.2010
10.1002/hbm.20718
10.1002/hbm.20854
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.21186
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate A Modified ALE Approach
EISSN 1097-0193
EndPage 13
ExternalDocumentID PMC4791073
3278347161
21305667
25292443
10_1002_hbm_21186
HBM21186
ark_67375_WNG_4XGP2W0B_D
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: American Academy of Neurology Foundation
– fundername: NIMH
  funderid: R01‐MH074457
– fundername: Helmholtz‐Initiative on Systems Biology
– fundername: NIMH NIH HHS
  grantid: R01 MH074457
– fundername: NIMH NIH HHS
  grantid: R01-MH074457
– fundername: NIMH
  grantid: R01‐MH074457
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5106-86f2e80b82b0d6995fbcf8240d63ab680a49196730750c08594a501c1cfca9d3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:21:57 EDT 2025
Thu Jul 10 17:20:04 EDT 2025
Sat Jul 26 02:17:36 EDT 2025
Mon Jul 21 05:57:57 EDT 2025
Mon Jul 21 09:14:25 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
Tue Jul 01 04:25:58 EDT 2025
Wed Jan 22 16:29:38 EST 2025
Wed Oct 30 09:54:54 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nervous system diseases
magnetic resonance imaging
Radiodiagnosis
Estimation
meta-analysis
activation likelihood estimation
functional neuroimaging
Nuclear magnetic resonance imaging
neuroimaging
fMRI
Positron emission tomography
Activation analysis
PET
Emission tomography
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5106-86f2e80b82b0d6995fbcf8240d63ab680a49196730750c08594a501c1cfca9d3
Notes Helmholtz-Initiative on Systems Biology
ArticleID:HBM21186
istex:46EBBC2B64690A72CAA55E52F088550F21975281
NIMH - No. R01-MH074457
American Academy of Neurology Foundation
ark:/67375/WNG-4XGP2W0B-D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4791073
PMID 21305667
PQID 1517355494
PQPubID 996345
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4791073
proquest_miscellaneous_911946243
proquest_journals_1517355494
pubmed_primary_21305667
pascalfrancis_primary_25292443
crossref_primary_10_1002_hbm_21186
crossref_citationtrail_10_1002_hbm_21186
wiley_primary_10_1002_hbm_21186_HBM21186
istex_primary_ark_67375_WNG_4XGP2W0B_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: January 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
John Wiley & Sons, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: John Wiley & Sons, Inc
References Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC ( 2009): Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66: 811-822.
Spreng RN, Wojtowicz M, Grady CL ( 2010): Reliable differences in brain activity between young and old adults: A quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav Rev 34: 1178-1194.
Binder JR, Desai RH, Graves WW, Conant LL ( 2009): Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19: 2767-2796.
Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT ( 2009a): Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29: 14496-14505.
Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT ( 2010): Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala. Hum Brain Mapp 31: 173-184.
Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA 106: 13040-13045.
Caspers S, Zilles K, Laird AR, Eickhoff SB ( 2010): ALE meta-analysis of action observation and imitation in the human brain. NeuroImage 50: 1148-1167.
Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT ( 2009): Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Hum brain Mapp. 30:2907-2926.
Wager TD, Jonides J, Reading S ( 2004): Neuroimaging studies of shifting attention: A meta-analysis. NeuroImage 22: 1679-1693.
Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE ( 2010): Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30: 6409-6421.
Karlsgodt KH, Kochunov P, Winkler AM, Laird AR, Almasy L, Duggirala R, Olvera RL, Fox PT, Blangero J, Glahn DC ( 2010): A multimodal assessment of the genetic control over working memory. J Neurosci 30: 8197-8202.
Turkeltaub PE, Coslett HB ( 2010): Localization of sublexical speech perception components. Brain Lang 114: 1-15.
Wager TD, Lindquist MA, Nichols TE, Kober H, Van Snellenberg JX ( 2009): Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage 45( 1 Suppl): S210-S221.
Chouinard PA, Goodale MA ( 2010): Category-specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta-analysis. Neuropsychologia 48: 409-418.
Glahn DC, Laird AR, Ellison-Wright I, Thelen SM, Robinson JL, Lancaster JL, Bullmore E, Fox PT ( 2008): Meta-analysis of gray matter anomalies in schizophrenia: Application of anatomic likelihood estimation and network analysis. Biol Psychiatry 64: 774-781.
Maisog JM, Einbinder ER, Flowers DL, Turkeltaub PE, Eden GF ( 2008): A meta-analysis of functional neuroimaging studies of dyslexia. Ann N Y Acad Sci 1145: 237-259.
Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC ( 1996): A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4: 58-73.
Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT ( 2005): ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25: 155-164.
Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV ( 2009): Neurostructural predictors of Alzheimer's disease: A meta-analysis of VBM studies. Neurobiol Aging. DOI: 10.1016/j.neurobiolaging.2009.11.008.
Laird AR, Lancaster JL, Fox PT ( 2009b): Lost in localization? The focus is meta-analysis. NeuroImage 48: 18-20.
Laird AR, Robbins JM, Li K, Price LR, Cykowski MD, Narayana S, Laird RW, Franklin C, Fox PT ( 2008): Modeling motor connectivity using TMS/PET and structural equation modeling. NeuroImage 41: 424-436.
Zevin JD, Yang J, Skipper JI, McCandliss BD ( 2010): Domain general change detection accounts for "dishabituation" effects in temporal-parietal regions in functional magnetic resonance imaging studies of speech perception. J Neurosci 30: 1110-1117.
Wager TD, Lindquist M, Kaplan L ( 2007): Meta-analysis of functional neuroimaging data: Current and future directions. Social Cogn Affect Neurosci 2: 150-158.
Turkeltaub P, Eden G, Jones K, Zeffiro T ( 2002): Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. Neuroimage 16( 3 Part 1): 765-780.
Di X, Chan RC, Gong QY ( 2009): White matter reduction in patients with schizophrenia as revealed by voxel-based morphometry: An activation likelihood estimation meta-analysis. Progress in neuro-psychopharmacology and biological psychiatry 33: 1390-1394.
Vytal K, Hamann S ( 2010): Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. J Cogn Neurosci 22:2864-2885.
Wiener M, Turkeltaub P, Coslett HB ( 2010): The image of time: A voxel-wise meta-analysis. NeuroImage 49:1728-1740.
2010; 34
2002; 16
2009; 45
2009b; 48
2009; 66
2004; 22
2010; 31
2009
2005; 25
2009; 33
2010; 22
2009; 30
2010; 49
2010; 48
2008; 1145
2010; 114
2009a; 29
2008; 41
2007; 2
2008; 64
1996; 4
2009; 19
2010; 30
2010; 50
2009; 106
Ferreira LK (e_1_2_6_8_1) 2009
e_1_2_6_10_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
19923283 - J Neurosci. 2009 Nov 18;29(46):14496-505
20089919 - J Neurosci. 2010 Jan 20;30(3):1110-7
19744536 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1390-4
20109489 - Neurosci Biobehav Rev. 2010 Jul;34(8):1178-94
19652121 - Arch Gen Psychiatry. 2009 Aug;66(8):811-22
15846811 - Hum Brain Mapp. 2005 May;25(1):155-64
19800975 - Neuroimage. 2010 Jan 15;49(2):1728-40
19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
20413149 - Brain Lang. 2010 Jul;114(1):1-15
19800353 - Neuropsychologia. 2010 Jan;48(2):409-18
19603407 - Hum Brain Mapp. 2010 Feb;31(2):173-84
20056149 - Neuroimage. 2010 Apr 15;50(3):1148-67
19076401 - Ann N Y Acad Sci. 2008 Dec;1145:237-59
18985131 - Soc Cogn Affect Neurosci. 2007 Jun;2(2):150-8
19063980 - Neuroimage. 2009 Mar;45(1 Suppl):S210-21
19329570 - Cereb Cortex. 2009 Dec;19(12):2767-96
18387823 - Neuroimage. 2008 Jun;41(2):424-36
20005012 - Neurobiol Aging. 2011 Oct;32(10):1733-41
12169260 - Neuroimage. 2002 Jul;16(3 Pt 1):765-80
15275924 - Neuroimage. 2004 Aug;22(4):1679-93
20554870 - J Neurosci. 2010 Jun 16;30(24):8197-202
20445067 - J Neurosci. 2010 May 5;30(18):6409-21
20408186 - Hum Brain Mapp. 1996;4(1):58-73
19559800 - Neuroimage. 2009 Oct 15;48(1):18-20
18486104 - Biol Psychiatry. 2008 Nov 1;64(9):774-81
19172646 - Hum Brain Mapp. 2009 Sep;30(9):2907-26
19929758 - J Cogn Neurosci. 2010 Dec;22(12):2864-85
References_xml – reference: Karlsgodt KH, Kochunov P, Winkler AM, Laird AR, Almasy L, Duggirala R, Olvera RL, Fox PT, Blangero J, Glahn DC ( 2010): A multimodal assessment of the genetic control over working memory. J Neurosci 30: 8197-8202.
– reference: Wiener M, Turkeltaub P, Coslett HB ( 2010): The image of time: A voxel-wise meta-analysis. NeuroImage 49:1728-1740.
– reference: Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT ( 2010): Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala. Hum Brain Mapp 31: 173-184.
– reference: Binder JR, Desai RH, Graves WW, Conant LL ( 2009): Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19: 2767-2796.
– reference: Chouinard PA, Goodale MA ( 2010): Category-specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta-analysis. Neuropsychologia 48: 409-418.
– reference: Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA 106: 13040-13045.
– reference: Vytal K, Hamann S ( 2010): Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. J Cogn Neurosci 22:2864-2885.
– reference: Wager TD, Jonides J, Reading S ( 2004): Neuroimaging studies of shifting attention: A meta-analysis. NeuroImage 22: 1679-1693.
– reference: Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC ( 2009): Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66: 811-822.
– reference: Spreng RN, Wojtowicz M, Grady CL ( 2010): Reliable differences in brain activity between young and old adults: A quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav Rev 34: 1178-1194.
– reference: Wager TD, Lindquist M, Kaplan L ( 2007): Meta-analysis of functional neuroimaging data: Current and future directions. Social Cogn Affect Neurosci 2: 150-158.
– reference: Turkeltaub P, Eden G, Jones K, Zeffiro T ( 2002): Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. Neuroimage 16( 3 Part 1): 765-780.
– reference: Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC ( 1996): A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4: 58-73.
– reference: Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE ( 2010): Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30: 6409-6421.
– reference: Maisog JM, Einbinder ER, Flowers DL, Turkeltaub PE, Eden GF ( 2008): A meta-analysis of functional neuroimaging studies of dyslexia. Ann N Y Acad Sci 1145: 237-259.
– reference: Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV ( 2009): Neurostructural predictors of Alzheimer's disease: A meta-analysis of VBM studies. Neurobiol Aging. DOI: 10.1016/j.neurobiolaging.2009.11.008.
– reference: Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT ( 2009a): Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29: 14496-14505.
– reference: Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT ( 2005): ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25: 155-164.
– reference: Glahn DC, Laird AR, Ellison-Wright I, Thelen SM, Robinson JL, Lancaster JL, Bullmore E, Fox PT ( 2008): Meta-analysis of gray matter anomalies in schizophrenia: Application of anatomic likelihood estimation and network analysis. Biol Psychiatry 64: 774-781.
– reference: Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT ( 2009): Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Hum brain Mapp. 30:2907-2926.
– reference: Turkeltaub PE, Coslett HB ( 2010): Localization of sublexical speech perception components. Brain Lang 114: 1-15.
– reference: Zevin JD, Yang J, Skipper JI, McCandliss BD ( 2010): Domain general change detection accounts for "dishabituation" effects in temporal-parietal regions in functional magnetic resonance imaging studies of speech perception. J Neurosci 30: 1110-1117.
– reference: Di X, Chan RC, Gong QY ( 2009): White matter reduction in patients with schizophrenia as revealed by voxel-based morphometry: An activation likelihood estimation meta-analysis. Progress in neuro-psychopharmacology and biological psychiatry 33: 1390-1394.
– reference: Caspers S, Zilles K, Laird AR, Eickhoff SB ( 2010): ALE meta-analysis of action observation and imitation in the human brain. NeuroImage 50: 1148-1167.
– reference: Laird AR, Robbins JM, Li K, Price LR, Cykowski MD, Narayana S, Laird RW, Franklin C, Fox PT ( 2008): Modeling motor connectivity using TMS/PET and structural equation modeling. NeuroImage 41: 424-436.
– reference: Wager TD, Lindquist MA, Nichols TE, Kober H, Van Snellenberg JX ( 2009): Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage 45( 1 Suppl): S210-S221.
– reference: Laird AR, Lancaster JL, Fox PT ( 2009b): Lost in localization? The focus is meta-analysis. NeuroImage 48: 18-20.
– volume: 34
  start-page: 1178
  year: 2010
  end-page: 1194
  article-title: Reliable differences in brain activity between young and old adults: A quantitative meta‐analysis across multiple cognitive domains
  publication-title: Neurosci Biobehav Rev
– volume: 33
  start-page: 1390
  year: 2009
  end-page: 1394
  article-title: White matter reduction in patients with schizophrenia as revealed by voxel‐based morphometry: An activation likelihood estimation meta‐analysis
  publication-title: Progress in neuro‐psychopharmacology and biological psychiatry
– volume: 114
  start-page: 1
  year: 2010
  end-page: 15
  article-title: Localization of sublexical speech perception components
  publication-title: Brain Lang
– volume: 2
  start-page: 150
  year: 2007
  end-page: 158
  article-title: Meta‐analysis of functional neuroimaging data: Current and future directions
  publication-title: Social Cogn Affect Neurosci
– volume: 19
  start-page: 2767
  year: 2009
  end-page: 2796
  article-title: Where is the semantic system? A critical review and meta‐analysis of 120 functional neuroimaging studies
  publication-title: Cereb Cortex
– volume: 31
  start-page: 173
  year: 2010
  end-page: 184
  article-title: Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala
  publication-title: Hum Brain Mapp
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc Natl Acad Sci USA
– volume: 49
  year: 2010
  end-page: 1740
  article-title: The image of time: A voxel‐wise meta‐analysis
  publication-title: NeuroImage
– volume: 41
  start-page: 424
  year: 2008
  end-page: 436
  article-title: Modeling motor connectivity using TMS/PET and structural equation modeling
  publication-title: NeuroImage
– volume: 4
  start-page: 58
  year: 1996
  end-page: 73
  article-title: A unified statistical approach for determining significant signals in images of cerebral activation
  publication-title: Hum Brain Mapp
– volume: 16
  start-page: 765
  issue: 3 Part 1
  year: 2002
  end-page: 780
  article-title: Meta‐analysis of the functional neuroanatomy of single‐word reading: Method and validation
  publication-title: Neuroimage
– volume: 30
  start-page: 6409
  year: 2010
  end-page: 6421
  article-title: Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum
  publication-title: J Neurosci
– volume: 22
  start-page: 2864
  year: 2010
  end-page: 2885
  article-title: Neuroimaging support for discrete neural correlates of basic emotions: A voxel‐based meta‐analysis
  publication-title: J Cogn Neurosci
– year: 2009
  article-title: Neurostructural predictors of Alzheimer's disease: A meta‐analysis of VBM studies
  publication-title: Neurobiol Aging
– volume: 66
  start-page: 811
  year: 2009
  end-page: 822
  article-title: Meta‐analysis of 41 functional neuroimaging studies of executive function in schizophrenia
  publication-title: Arch Gen Psychiatry
– volume: 30
  start-page: 1110
  year: 2010
  end-page: 1117
  article-title: Domain general change detection accounts for "dishabituation" effects in temporal‐parietal regions in functional magnetic resonance imaging studies of speech perception
  publication-title: J Neurosci
– volume: 1145
  start-page: 237
  year: 2008
  end-page: 259
  article-title: A meta‐analysis of functional neuroimaging studies of dyslexia
  publication-title: Ann N Y Acad Sci
– volume: 30
  start-page: 2907
  year: 2009
  end-page: 2926
  article-title: Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: A random‐effects approach based on empirical estimates of spatial uncertainty
  publication-title: Hum brain Mapp
– volume: 30
  start-page: 8197
  year: 2010
  end-page: 8202
  article-title: A multimodal assessment of the genetic control over working memory
  publication-title: J Neurosci
– volume: 22
  start-page: 1679
  year: 2004
  end-page: 1693
  article-title: Neuroimaging studies of shifting attention: A meta‐analysis
  publication-title: NeuroImage
– volume: 45
  start-page: S210
  issue: 1 Suppl
  year: 2009
  end-page: S221
  article-title: Evaluating the consistency and specificity of neuroimaging data using meta‐analysis
  publication-title: NeuroImage
– volume: 25
  start-page: 155
  year: 2005
  end-page: 164
  article-title: ALE meta‐analysis: controlling the false discovery rate and performing statistical contrasts
  publication-title: Hum Brain Mapp
– volume: 29
  start-page: 14496
  year: 2009a
  end-page: 14505
  article-title: Investigating the functional heterogeneity of the default mode network using coordinate‐based meta‐analytic modeling
  publication-title: J Neurosci
– volume: 48
  start-page: 18
  year: 2009b
  end-page: 20
  article-title: Lost in localization? The focus is meta‐analysis
  publication-title: NeuroImage
– volume: 48
  start-page: 409
  year: 2010
  end-page: 418
  article-title: Category‐specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta‐analysis
  publication-title: Neuropsychologia
– volume: 64
  start-page: 774
  year: 2008
  end-page: 781
  article-title: Meta‐analysis of gray matter anomalies in schizophrenia: Application of anatomic likelihood estimation and network analysis
  publication-title: Biol Psychiatry
– volume: 50
  start-page: 1148
  year: 2010
  end-page: 1167
  article-title: ALE meta‐analysis of action observation and imitation in the human brain
  publication-title: NeuroImage
– ident: e_1_2_6_9_1
  doi: 10.1016/j.biopsych.2008.03.031
– ident: e_1_2_6_14_1
  doi: 10.1016/j.neuroimage.2009.06.047
– ident: e_1_2_6_10_1
  doi: 10.1523/JNEUROSCI.0359-10.2010
– ident: e_1_2_6_28_1
  doi: 10.1523/JNEUROSCI.4599-09.2010
– ident: e_1_2_6_3_1
  doi: 10.1016/j.neuroimage.2009.12.112
– ident: e_1_2_6_4_1
  doi: 10.1016/j.neuropsychologia.2009.09.032
– ident: e_1_2_6_11_1
  doi: 10.1002/hbm.20136
– ident: e_1_2_6_19_1
  doi: 10.1016/j.neubiorev.2010.01.009
– ident: e_1_2_6_26_1
  doi: 10.1016/j.neuroimage.2009.09.064
– ident: e_1_2_6_21_1
  doi: 10.1016/j.bandl.2010.03.008
– ident: e_1_2_6_24_1
  doi: 10.1093/scan/nsm015
– ident: e_1_2_6_18_1
  doi: 10.1073/pnas.0905267106
– ident: e_1_2_6_13_1
  doi: 10.1523/JNEUROSCI.4004-09.2009
– ident: e_1_2_6_23_1
  doi: 10.1016/j.neuroimage.2004.03.052
– ident: e_1_2_6_2_1
  doi: 10.1093/cercor/bhp055
– ident: e_1_2_6_25_1
  doi: 10.1016/j.neuroimage.2008.10.061
– ident: e_1_2_6_15_1
  doi: 10.1196/annals.1416.024
– ident: e_1_2_6_20_1
  doi: 10.1006/nimg.2002.1131
– ident: e_1_2_6_12_1
  doi: 10.1016/j.neuroimage.2008.01.065
– ident: e_1_2_6_16_1
  doi: 10.1001/archgenpsychiatry.2009.91
– ident: e_1_2_6_5_1
  doi: 10.1016/j.pnpbp.2009.08.020
– ident: e_1_2_6_22_1
  doi: 10.1162/jocn.2009.21366
– ident: e_1_2_6_27_1
  doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
– ident: e_1_2_6_7_1
  doi: 10.1523/JNEUROSCI.5664-09.2010
– year: 2009
  ident: e_1_2_6_8_1
  article-title: Neurostructural predictors of Alzheimer's disease: A meta‐analysis of VBM studies
  publication-title: Neurobiol Aging
– ident: e_1_2_6_6_1
  doi: 10.1002/hbm.20718
– ident: e_1_2_6_17_1
  doi: 10.1002/hbm.20854
– reference: 18486104 - Biol Psychiatry. 2008 Nov 1;64(9):774-81
– reference: 18985131 - Soc Cogn Affect Neurosci. 2007 Jun;2(2):150-8
– reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
– reference: 20413149 - Brain Lang. 2010 Jul;114(1):1-15
– reference: 19559800 - Neuroimage. 2009 Oct 15;48(1):18-20
– reference: 19652121 - Arch Gen Psychiatry. 2009 Aug;66(8):811-22
– reference: 19329570 - Cereb Cortex. 2009 Dec;19(12):2767-96
– reference: 12169260 - Neuroimage. 2002 Jul;16(3 Pt 1):765-80
– reference: 19929758 - J Cogn Neurosci. 2010 Dec;22(12):2864-85
– reference: 19800353 - Neuropsychologia. 2010 Jan;48(2):409-18
– reference: 19172646 - Hum Brain Mapp. 2009 Sep;30(9):2907-26
– reference: 20554870 - J Neurosci. 2010 Jun 16;30(24):8197-202
– reference: 20056149 - Neuroimage. 2010 Apr 15;50(3):1148-67
– reference: 19923283 - J Neurosci. 2009 Nov 18;29(46):14496-505
– reference: 20408186 - Hum Brain Mapp. 1996;4(1):58-73
– reference: 20445067 - J Neurosci. 2010 May 5;30(18):6409-21
– reference: 20089919 - J Neurosci. 2010 Jan 20;30(3):1110-7
– reference: 15275924 - Neuroimage. 2004 Aug;22(4):1679-93
– reference: 19076401 - Ann N Y Acad Sci. 2008 Dec;1145:237-59
– reference: 20109489 - Neurosci Biobehav Rev. 2010 Jul;34(8):1178-94
– reference: 15846811 - Hum Brain Mapp. 2005 May;25(1):155-64
– reference: 19603407 - Hum Brain Mapp. 2010 Feb;31(2):173-84
– reference: 20005012 - Neurobiol Aging. 2011 Oct;32(10):1733-41
– reference: 19800975 - Neuroimage. 2010 Jan 15;49(2):1728-40
– reference: 19063980 - Neuroimage. 2009 Mar;45(1 Suppl):S210-21
– reference: 19744536 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1390-4
– reference: 18387823 - Neuroimage. 2008 Jun;41(2):424-36
SSID ssj0011501
Score 2.582969
Snippet Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate‐based meta‐analysis (CBMA) of neuroimaging results that has been...
Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms activation likelihood estimation
Algorithms
Biological and medical sciences
Brain - physiology
Brain Mapping - methods
Data Interpretation, Statistical
fMRI
functional neuroimaging
Functional Neuroimaging - methods
Fundamental and applied biological sciences. Psychology
Humans
Image Processing, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical sciences
meta-analysis
Meta-Analysis as Topic
Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration
Nervous system
neuroimaging
PET
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Vertebrates: nervous system and sense organs
Title Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses
URI https://api.istex.fr/ark:/67375/WNG-4XGP2W0B-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21186
https://www.ncbi.nlm.nih.gov/pubmed/21305667
https://www.proquest.com/docview/1517355494
https://www.proquest.com/docview/911946243
https://pubmed.ncbi.nlm.nih.gov/PMC4791073
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhhdJLf5L-uEmDKCXk4o3tlWWbnpK2yVLYUEpK9lAQsiwRs7FSsruQ5tRH6DP2SToj2d5um0LpbbFHYj0ejb4Zz3wi5BWXWakN1yFg1zxkaabCXLEqNCyOuc4LWRXYKDw-4aNP7P0knayR110vjOeH6BNuuDKcv8YFLsvZ_pI09LxsBhC95Ei3jbVaCIg-9tRRCHRcsAVbbFiAB-5YhaJkvx-5shfdQbVeY22knIF6jD_X4jbg-Wf95K-41m1MRw_I5-6RfD3KdLCYlwN18xvb438-80NyvwWs9MBb2COypu0G2TywEKw3X-kudSWkLje_Qe6O2y_1m6QZ17Zu6hvYGSnmemv749v35XECVNpqed21ltC2tITWlmK3hc8V04t6Cn8ayZcpEoL4Tkva6LmEgdJRqujZY3J69O70zShsj3YIFTgBHubcJDqPyjwpo4oXRWpKZXJAFxUfypLnkWQF-AZwP4BoFJKwMQkvVMXKKFlUwydk3V5a_YxQrqMqB5yihxpkZCUTDpLMGFPKjMcmIHvdOxaqpT3H0zcuhCdsTgQoVTilBuRlL_rFc33cJrTrDKWXkFdTLI7LUnF2cizY5PhDchYdircB2VmxpH5AkiYQ9LJhQLY70xKt45gJAGAZQsCCBYT2t2HJ43ccafXlYiZgfyoYT3CGp94Ql3PHGBLyLCDZion2AsgmvnrH1ueOVZxlgBwzmHPPWeDfNSBGh2P34_m_i26Re4A0E5-72ibr86uFfgFobl7uuGX7E2YNS0s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NTQJeBmzAAmNYCE17SZekjpNIvGzAVmCpECpaX5DlJLYWdcnQ2kqwJ34Cv5FfwtlOUgpDQrxVydlqnPPdd5fzdwDPmYgyqZh0EbvGLg2j3I1zWriK-j6TcSKKRB8UTods8JG-HYfjFXjRnoWx_BBdwk3vDGOv9QbXCen9BWvoWVb1MHyJ2Q1Y0x29TUD1oSOP0lDHhFvoZN0EbXDLK-QF-93QJW-0phf2i66OFFNcIGU7W1wHPf-soPwV2RrXdHQHPrUPZStSJr35LOvlV7_xPf7vU9-F9QazkgOrZPdgRdYbsHlQY7xefSW7xFSRmvT8BtxMm4_1m1ClZV1W5RU6R6LTvWX949v3RUcBIupicd2cLiFNdQkpa6IPXNh0MTkvJ_ivNf8y0Zwg9rAlqeRM4EBhWFXk9D6Mjl6PXg7cpruDm6MdYG7MVCBjL4uDzCtYkoQqy1WMAKNgfZGx2BM0QfOAFghBTa552KjAN5r7ucpFUvQfwGp9UcstIEx6RYxQRfYlyohCBAwlqVIqExHzlQN77UvmecN8rhtwnHPL2RxwXFRuFtWBZ53oZ0v3cZ3QrtGUTkJcTnR9XBTy0-Exp-Pj98Gpd8hfObCzpErdgCAMMO6lfQe2W93ije2YcsRgkUaBCXWAdLdx1-tPOaKWF_MpRxeVUBboGR5aTVzM7euokEUOREs62gloQvHlO3V5ZojFaYTgMcI594wK_n0F-OAwNT8e_bvoU7g1GKUn_OTN8N1juI3AM7CprG1YnV3O5RMEd7Nsx-zhn9VqT2Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTZp4AbbxERjDQmjaS7okdRxHPG0rXfloNaGh9QHJchJbi7pk09pKsCf-BP5G_hLOzkcpDAnxViVnq7mcz7-73P0M8IrJKFGaKRexK3dpGKUuT2nmaur7TPFYZrFpFB6O2OATfTcOxyvwuumFqfgh2oSbWRnWX5sFfpXp_QVp6HlSdDB64ewOrFHmcWPSvY8td5RBOjbawj3WjdEFN7RCXrDfDl3ajNaMXr-Y4kg5Rf3o6mCL25DnnwWUvwJbuzP178Pn5pmqgpRJZz5LOunNb3SP__nQD-BejVjJQWViG7Ciyk3YOigxWi--kl1ia0htcn4T1of1p_otKIZ5mRf5DW6NxCR78_LHt--L8wSILLPFddtbQuraEpKXxLRbVMlicpFP8E8b9mViGEGqVktSqJnEgdJyqqjpQzjtvzk9Grj12Q5uil6AuZzpQHEv4UHiZSyOQ52kmiO8yFhXJox7ksboHND_IKRJDQsblfhCUz_VqYyz7iNYLS9L9QQIU17GEaiorkIZmcmAoSTVWicyYr52YK95xyKtec_N8RsXomJsDgQqVVilOvCyFb2qyD5uE9q1htJKyOuJqY6LQnE2OhZ0fHwSnHmHoufAzpIltQOCMMCol3Yd2G5MS9SeYyoQgUUGA8bUAdLexjVvPuTIUl3OpwI3qJiywMzwuDLExdy-iQlZ5EC0ZKKtgKETX75T5ueWVpxGCB0jnHPPWuDfNSAGh0P74-m_i76A9ZNeX3x4O3r_DO4i6gyqPNY2rM6u5-o5IrtZsmNX8E_f6U4e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimizing+within%E2%80%90experiment+and+within%E2%80%90group+effects+in+activation+likelihood+estimation+meta%E2%80%90analyses&rft.jtitle=Human+brain+mapping&rft.au=Turkeltaub%2C+Peter+E.&rft.au=Eickhoff%2C+Simon+B.&rft.au=Laird%2C+Angela+R.&rft.au=Fox%2C+Mick&rft.date=2012-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=33&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1002%2Fhbm.21186&rft.externalDBID=10.1002%252Fhbm.21186&rft.externalDocID=HBM21186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon