Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses
Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate‐based meta‐analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. He...
Saved in:
Published in | Human brain mapping Vol. 33; no. 1; pp. 1 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.01.2012
Wiley-Liss John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate‐based meta‐analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within‐experiment effects. However, we show that these effects only account for 2–3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7–9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within‐experiment or within‐group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within‐experiment and within‐group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. |
---|---|
AbstractList | Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate‐based meta‐analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within‐experiment effects. However, we show that these effects only account for 2–3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7–9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within‐experiment or within‐group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within‐experiment and within‐group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within-experiment effects. However, we show that these effects only account for 2-3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7-9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within-experiment or within-group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within-experiment and within-group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports.Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within-experiment effects. However, we show that these effects only account for 2-3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7-9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within-experiment or within-group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within-experiment and within-group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports. Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within-experiment effects. However, we show that these effects only account for 2-3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7-9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within-experiment or within-group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within-experiment and within-group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been validated for a variety of uses. Stepwise modifications have improved ALE's theoretical and statistical rigor since its introduction. Here, we evaluate two avenues to further optimize ALE. First, we demonstrate that the maximum contribution of an experiment makes to an ALE map is related to the number of foci it reports and their proximity. We present a modified ALE algorithm that eliminates these within-experiment effects. However, we show that these effects only account for 2-3% of cumulative ALE values, and removing them has little impact on thresholded ALE maps. Next, we present an alternate organizational approach to datasets that prevents subject groups with multiple experiments in a dataset from influencing ALE values more than others. This modification decreases cumulative ALE values by 7-9%, changes the relative magnitude of some clusters, and reduces cluster extents. Overall, differences between results of the standard approach and these new methods were small. This finding validates previous ALE reports against concerns that they were driven by within-experiment or within-group effects. We suggest that the modified ALE algorithm is theoretically advantageous compared with the current algorithm, and that the alternate organization of datasets is the most conservative approach for typical ALE analyses and other CBMA methods. Combining the two modifications minimizes both within-experiment and within-group effects, optimizing the degree to which ALE values represent concordance of findings across independent reports. |
Author | Turkeltaub, Peter E. Fox, Peter Eickhoff, Simon B. Laird, Angela R. Fox, Mick Wiener, Martin |
AuthorAffiliation | 1 Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 2 Department of Psychiatry and Psychotherapy, Rheinisch‐Westfälische Technische Hochschule Aachen University, Aachen D‐52074, Germany 4 Jülich Aachen Research Alliance, Translational Brain Medicine, Jülich D‐52425, Germany 5 Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 3 Institute of Neuroscience and Medicine (INM‐2), Research Centre Jülich, Jülich D‐52425, Germany |
AuthorAffiliation_xml | – name: 3 Institute of Neuroscience and Medicine (INM‐2), Research Centre Jülich, Jülich D‐52425, Germany – name: 2 Department of Psychiatry and Psychotherapy, Rheinisch‐Westfälische Technische Hochschule Aachen University, Aachen D‐52074, Germany – name: 4 Jülich Aachen Research Alliance, Translational Brain Medicine, Jülich D‐52425, Germany – name: 1 Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania – name: 5 Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas |
Author_xml | – sequence: 1 givenname: Peter E. surname: Turkeltaub fullname: Turkeltaub, Peter E. email: peter.turkeltaub@uphs.upenn.edu organization: Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 2 givenname: Simon B. surname: Eickhoff fullname: Eickhoff, Simon B. organization: Department of Psychiatry and Psychotherapy, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen D-52074, Germany – sequence: 3 givenname: Angela R. surname: Laird fullname: Laird, Angela R. organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas – sequence: 4 givenname: Mick surname: Fox fullname: Fox, Mick organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas – sequence: 5 givenname: Martin surname: Wiener fullname: Wiener, Martin organization: Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania – sequence: 6 givenname: Peter surname: Fox fullname: Fox, Peter organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25292443$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21305667$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URB-w4A-gSAghFmltx07iTSX6YIrUAotKZWc5Hmfmto492Enb4dfjeQKVYGX7-jvH98h3H-047wxCrwk-JBjTo2nTHVJC6vIZ2iNYVDkmothZ7EueC1aRXbQf4y3GhHBMXqBdSgrMy7LaQ5MrcNDBT3CT7AH6KbjcPM5MgM64PlNuvKlOgh9mmWlbo_uYgcuU7uFe9eBdZuHOWJh6P85M7KFbVTvTq1w5ZefRxJfoeatsNK_W6wG6_nR-fXqRX34dfT79eJlrnrrN67KlpsZNTRs8LoXgbaPbmrJ0KFRT1lgxQURZFbjiWOOaC6ZSJE10q5UYFwfoeGU7G5rOjHUKEZSVs5RHhbn0CuTfNw6mcuLvJasEwVWRDN6vDYL_MaQ0soOojbXKGT9EKQgRrKRsQb59Qt76IaS4URJOqoJzJlii3vzZ0LaTzQ8k4N0aUFEr2wblNMTfHKeCsuVzH1acDj7GYNotQrBcTIFMUyCXU5DYoyeshn75KSkz2P8pHsCa-b-t5cXJ1UaRrxQQe_O4VahwJ1OqisubLyPJvo--0Rt8Is-KX8yX0zc |
CitedBy_id | crossref_primary_10_1007_s00213_023_06498_1 crossref_primary_10_1017_S0033291722003889 crossref_primary_10_1002_hbm_23492 crossref_primary_10_3390_brainsci11121619 crossref_primary_10_3758_s13415_019_00747_7 crossref_primary_10_3389_fneur_2020_00018 crossref_primary_10_1007_s11065_023_09609_z crossref_primary_10_1007_s12021_023_09643_5 crossref_primary_10_1214_17_STS624 crossref_primary_10_1016_j_neubiorev_2014_11_003 crossref_primary_10_1007_s00429_024_02790_8 crossref_primary_10_1080_01690965_2011_613209 crossref_primary_10_1016_j_neuroimage_2019_06_037 crossref_primary_10_1002_hbm_23488 crossref_primary_10_1016_j_neuroimage_2020_117220 crossref_primary_10_1016_j_neubiorev_2014_03_016 crossref_primary_10_1016_j_neubiorev_2022_104721 crossref_primary_10_1016_j_neuroimage_2024_120986 crossref_primary_10_1016_j_schres_2016_11_043 crossref_primary_10_1093_scan_nsaa090 crossref_primary_10_1007_s12311_021_01261_8 crossref_primary_10_1002_hbm_22392 crossref_primary_10_1002_hbm_24334 crossref_primary_10_1186_s40359_014_0052_1 crossref_primary_10_1002_hbm_22397 crossref_primary_10_1016_j_concog_2016_12_011 crossref_primary_10_1016_j_psychres_2022_114598 crossref_primary_10_1016_j_neulet_2017_06_058 crossref_primary_10_1016_j_smrv_2023_101821 crossref_primary_10_3389_fnins_2023_1191617 crossref_primary_10_1016_j_neuroimage_2017_10_020 crossref_primary_10_1002_hbm_24326 crossref_primary_10_3390_brainsci12070830 crossref_primary_10_1002_hbm_25898 crossref_primary_10_1016_j_cpr_2022_102189 crossref_primary_10_1016_j_neuroimage_2022_119194 crossref_primary_10_1371_journal_pone_0203753 crossref_primary_10_1002_hbm_25452 crossref_primary_10_1016_j_neubiorev_2017_10_029 crossref_primary_10_1038_srep25983 crossref_primary_10_1016_j_neubiorev_2019_05_007 crossref_primary_10_1016_j_neubiorev_2020_01_004 crossref_primary_10_1016_j_neuropsychologia_2020_107495 crossref_primary_10_1371_journal_pone_0208177 crossref_primary_10_1016_j_neuroimage_2021_117960 crossref_primary_10_1016_j_neubiorev_2017_02_020 crossref_primary_10_1016_j_neuroimage_2020_117444 crossref_primary_10_1002_hbm_23028 crossref_primary_10_1016_j_bandl_2023_105347 crossref_primary_10_31083_j_jin2104107 crossref_primary_10_1016_j_orcp_2020_02_004 crossref_primary_10_1016_j_dcn_2017_05_003 crossref_primary_10_1007_s00429_016_1264_3 crossref_primary_10_1007_s11065_021_09494_4 crossref_primary_10_1016_j_neuroimage_2024_120720 crossref_primary_10_1016_j_neuroimage_2014_05_062 crossref_primary_10_1016_j_neubiorev_2016_07_032 crossref_primary_10_1093_jn_nxaa071 crossref_primary_10_1002_hbm_24348 crossref_primary_10_1002_hbm_24349 crossref_primary_10_1016_j_bandl_2016_10_004 crossref_primary_10_1016_j_neuropsychologia_2017_01_019 crossref_primary_10_1002_hbm_22363 crossref_primary_10_1002_hbm_23451 crossref_primary_10_1002_hbm_22364 crossref_primary_10_1016_j_neuroimage_2014_05_030 crossref_primary_10_3389_fnhum_2020_616054 crossref_primary_10_1016_j_brainresbull_2024_110933 crossref_primary_10_1016_j_arr_2022_101760 crossref_primary_10_1111_adb_12976 crossref_primary_10_1016_j_bandc_2019_01_002 crossref_primary_10_1016_j_neubiorev_2016_08_038 crossref_primary_10_1038_s41562_024_01843_6 crossref_primary_10_1016_j_jneuroling_2018_08_005 crossref_primary_10_1002_hbm_26713 crossref_primary_10_3389_fnins_2020_534671 crossref_primary_10_1016_j_yfrne_2016_10_001 crossref_primary_10_1016_j_neubiorev_2023_105077 crossref_primary_10_1111_nmo_14484 crossref_primary_10_1016_j_neuroimage_2020_117407 crossref_primary_10_1016_j_neubiorev_2019_04_006 crossref_primary_10_1016_j_neuroimage_2014_11_009 crossref_primary_10_3389_fnhum_2018_00227 crossref_primary_10_1016_j_neubiorev_2022_104915 crossref_primary_10_1002_hbm_26702 crossref_primary_10_1002_hbm_24523 crossref_primary_10_1007_s00429_017_1450_y crossref_primary_10_1016_j_neuroimage_2012_02_037 crossref_primary_10_1038_s41467_021_27926_w crossref_primary_10_3389_fphys_2015_00240 crossref_primary_10_1111_cns_13775 crossref_primary_10_1007_s00441_018_2899_6 crossref_primary_10_1016_j_heliyon_2022_e09702 crossref_primary_10_1016_j_exger_2025_112678 crossref_primary_10_1093_cercor_bhs256 crossref_primary_10_1007_s11682_024_00921_7 crossref_primary_10_1016_j_biopsycho_2018_08_018 crossref_primary_10_1002_hbm_22138 crossref_primary_10_1016_j_neuroimage_2023_120207 crossref_primary_10_1017_S0033291716000477 crossref_primary_10_1093_scan_nst124 crossref_primary_10_1038_s41598_021_88773_9 crossref_primary_10_1038_s41598_022_14221_x crossref_primary_10_1016_j_neuroimage_2014_12_056 crossref_primary_10_1162_jocn_a_01111 crossref_primary_10_3389_fnhum_2021_744489 crossref_primary_10_1093_cercor_bhs007 crossref_primary_10_1159_000522003 crossref_primary_10_1016_j_neuroimage_2014_11_022 crossref_primary_10_1002_hbm_23216 crossref_primary_10_1002_hbm_25635 crossref_primary_10_1007_s12671_018_0884_5 crossref_primary_10_1016_j_neuroimage_2017_12_034 crossref_primary_10_1016_j_ynirp_2023_100173 crossref_primary_10_1109_TCBB_2015_2510007 crossref_primary_10_1002_ana_24642 crossref_primary_10_1002_cns3_20108 crossref_primary_10_7717_peerj_10861 crossref_primary_10_1016_j_drugalcdep_2022_109625 crossref_primary_10_1002_hbm_25828 crossref_primary_10_1093_scan_nst106 crossref_primary_10_1016_j_neuroimage_2021_118436 crossref_primary_10_1016_j_cortex_2022_07_003 crossref_primary_10_3109_15622975_2015_1102323 crossref_primary_10_3390_ijerph192316277 crossref_primary_10_30773_pi_2021_0383 crossref_primary_10_1016_j_neuroimage_2011_12_010 crossref_primary_10_1016_j_neubiorev_2018_08_003 crossref_primary_10_1016_j_jns_2020_116907 crossref_primary_10_1038_s41598_021_94506_9 crossref_primary_10_3389_fnagi_2016_00238 crossref_primary_10_1017_S1355617713000490 crossref_primary_10_1002_aur_3055 crossref_primary_10_3389_fpsyt_2014_00141 crossref_primary_10_1016_j_neubiorev_2016_05_012 crossref_primary_10_1176_appi_ajp_2019_18111271 crossref_primary_10_1186_s11689_019_9287_8 crossref_primary_10_1016_j_neubiorev_2022_104553 crossref_primary_10_1002_hbm_23636 crossref_primary_10_1007_s00406_011_0249_8 crossref_primary_10_1016_j_jneuroling_2019_04_001 crossref_primary_10_1016_j_neuropsychologia_2022_108273 crossref_primary_10_1038_s41380_018_0122_5 crossref_primary_10_1016_j_neuroimage_2018_09_036 crossref_primary_10_1073_pnas_1113427109 crossref_primary_10_1016_j_bbr_2017_10_025 crossref_primary_10_3389_fnins_2017_00745 crossref_primary_10_1016_j_neubiorev_2022_104588 crossref_primary_10_1016_j_neubiorev_2022_104589 crossref_primary_10_1016_j_cortex_2020_04_031 crossref_primary_10_1002_hbm_22572 crossref_primary_10_1093_scan_nsae068 crossref_primary_10_1016_j_neubiorev_2016_04_001 crossref_primary_10_1089_cap_2019_0007 crossref_primary_10_1111_jon_12266 crossref_primary_10_3389_fnhum_2022_1029256 crossref_primary_10_1016_j_biopsych_2013_08_008 crossref_primary_10_1038_s41598_021_96319_2 crossref_primary_10_1016_j_jad_2022_11_071 crossref_primary_10_1007_s00429_019_01870_4 crossref_primary_10_1080_23273798_2021_1970200 crossref_primary_10_1162_jocn_a_01311 crossref_primary_10_1093_cercor_bhad337 crossref_primary_10_3389_fnins_2022_1084362 crossref_primary_10_1016_j_cortex_2017_12_014 crossref_primary_10_11922_11_6035_csd_2022_0047_zh crossref_primary_10_1002_hbm_24746 crossref_primary_10_1002_hbm_24747 crossref_primary_10_1016_j_neubiorev_2016_06_025 crossref_primary_10_1007_s11682_016_9606_6 crossref_primary_10_3390_bs14070570 crossref_primary_10_1016_j_neubiorev_2020_02_023 crossref_primary_10_1016_j_pscychresns_2017_07_006 crossref_primary_10_1038_s41398_022_01809_0 crossref_primary_10_1016_j_neubiorev_2022_104768 crossref_primary_10_1177_1535370215603514 crossref_primary_10_1038_tp_2016_55 crossref_primary_10_1002_hbm_22991 crossref_primary_10_3390_brainsci10060353 crossref_primary_10_1002_hbm_22750 crossref_primary_10_1016_j_neubiorev_2016_06_011 crossref_primary_10_3389_fnins_2024_1392002 crossref_primary_10_1016_j_neuropsychologia_2014_05_001 crossref_primary_10_1016_j_euroneuro_2019_09_589 crossref_primary_10_1038_s41537_022_00291_3 crossref_primary_10_1038_s41598_020_59490_6 crossref_primary_10_1002_brb3_1867 crossref_primary_10_1007_s11065_023_09588_1 crossref_primary_10_1016_j_neubiorev_2019_02_017 crossref_primary_10_1016_j_neuropsychologia_2010_09_014 crossref_primary_10_1016_j_neubiorev_2019_02_011 crossref_primary_10_12688_f1000research_4734_1 crossref_primary_10_12688_f1000research_4734_2 crossref_primary_10_1162_jocn_a_01531 crossref_primary_10_3389_fnins_2022_781099 crossref_primary_10_12688_f1000research_4734_3 crossref_primary_10_1007_s11682_022_00655_4 crossref_primary_10_1016_j_neubiorev_2022_104994 crossref_primary_10_1016_j_avb_2015_11_003 crossref_primary_10_1016_j_bandc_2015_05_004 crossref_primary_10_1016_j_neubiorev_2020_03_008 crossref_primary_10_1016_j_neuropsychologia_2015_08_007 crossref_primary_10_1038_s42003_022_03027_2 crossref_primary_10_1002_hbm_22781 crossref_primary_10_3758_s13415_015_0338_7 crossref_primary_10_1080_01616412_2023_2199377 crossref_primary_10_3389_fnbeh_2016_00220 crossref_primary_10_1007_s11682_021_00503_x crossref_primary_10_1162_nol_a_00097 crossref_primary_10_1186_s13229_019_0299_8 crossref_primary_10_1016_j_nicl_2018_09_018 crossref_primary_10_1093_schbul_sbv025 crossref_primary_10_1016_j_jad_2024_05_016 crossref_primary_10_3390_brainsci12081112 crossref_primary_10_1002_hbm_24716 crossref_primary_10_1002_hbm_22777 crossref_primary_10_1016_j_neuroimage_2020_117481 crossref_primary_10_1093_ons_opy272 crossref_primary_10_1093_scan_nsz055 crossref_primary_10_1016_j_neubiorev_2013_09_005 crossref_primary_10_1007_s40167_021_00102_z crossref_primary_10_1016_j_wneu_2019_01_159 crossref_primary_10_1038_s41398_019_0644_x crossref_primary_10_1016_j_neuroimage_2021_117777 crossref_primary_10_1002_hbm_23854 crossref_primary_10_1073_pnas_1302956110 crossref_primary_10_1093_cercor_bhac443 crossref_primary_10_1016_j_bandl_2023_105377 crossref_primary_10_1177_2398212818810591 crossref_primary_10_1016_j_nicl_2017_07_025 crossref_primary_10_1016_j_neuroimage_2022_119764 crossref_primary_10_1080_17470919_2017_1357657 crossref_primary_10_1038_s41598_017_17267_4 crossref_primary_10_1016_j_neubiorev_2012_11_003 crossref_primary_10_1007_s12311_015_0696_2 crossref_primary_10_1016_j_bandc_2018_09_007 crossref_primary_10_1016_j_neuroimage_2019_116111 crossref_primary_10_3390_brainsci11030399 crossref_primary_10_3724_SP_J_1042_2022_00536 crossref_primary_10_1016_j_neubiorev_2024_105712 crossref_primary_10_1016_j_neubiorev_2016_03_020 crossref_primary_10_1016_j_neuroimage_2019_03_074 crossref_primary_10_1016_j_neubiorev_2021_06_012 crossref_primary_10_3389_fneur_2018_01129 crossref_primary_10_1038_tp_2016_80 crossref_primary_10_1016_j_dr_2022_101052 crossref_primary_10_3389_fncom_2024_1310013 crossref_primary_10_3389_fnins_2018_00686 crossref_primary_10_1016_j_neubiorev_2016_03_021 crossref_primary_10_1016_j_smrv_2018_07_004 crossref_primary_10_3389_fnhum_2021_774656 crossref_primary_10_1016_j_neubiorev_2024_105960 crossref_primary_10_1162_jocn_a_01616 crossref_primary_10_1016_j_neubiorev_2024_105720 crossref_primary_10_1016_j_neubiorev_2023_105423 crossref_primary_10_1080_01616412_2021_1902702 crossref_primary_10_3390_jcm8040516 crossref_primary_10_3390_biomedicines10071555 crossref_primary_10_1016_j_nicl_2019_102039 crossref_primary_10_1016_j_nicl_2022_103268 crossref_primary_10_1002_hbm_23706 crossref_primary_10_1016_j_clineuro_2021_106765 crossref_primary_10_3390_healthcare12070711 crossref_primary_10_1016_j_neuropsychologia_2024_108904 crossref_primary_10_3389_fpsyg_2015_00191 crossref_primary_10_3390_brainsci12081030 crossref_primary_10_1162_imag_a_00065 crossref_primary_10_3389_fnhum_2023_1077234 crossref_primary_10_1016_j_jad_2018_09_049 crossref_primary_10_1111_jcpp_12651 crossref_primary_10_1016_j_neubiorev_2024_105735 crossref_primary_10_1016_j_pscychresns_2019_111020 crossref_primary_10_3389_fnins_2022_984647 crossref_primary_10_3233_JAD_160382 crossref_primary_10_1093_cercor_bhu198 crossref_primary_10_1016_j_jpsychires_2021_12_029 crossref_primary_10_1016_j_neuroimage_2019_116387 crossref_primary_10_1093_cercor_bhv073 crossref_primary_10_1176_appi_ajp_2017_16040400 crossref_primary_10_1016_j_nicl_2019_102053 crossref_primary_10_1016_j_neubiorev_2024_105902 crossref_primary_10_3389_fnhum_2014_00830 crossref_primary_10_1016_j_neubiorev_2018_06_024 crossref_primary_10_1093_psyrad_kkab020 crossref_primary_10_1016_j_bandl_2017_08_009 crossref_primary_10_1016_j_nicl_2017_01_034 crossref_primary_10_3389_fnhum_2017_00022 crossref_primary_10_1016_j_neuropsychologia_2021_108002 crossref_primary_10_1016_j_neulet_2019_134683 crossref_primary_10_1016_j_nicl_2015_12_002 crossref_primary_10_1155_2021_5596145 crossref_primary_10_30773_pi_2021_0062 crossref_primary_10_1016_j_neubiorev_2016_04_020 crossref_primary_10_7717_peerj_14976 crossref_primary_10_1016_j_nicl_2022_103029 crossref_primary_10_1002_cne_24804 crossref_primary_10_1016_j_bandl_2014_11_012 crossref_primary_10_1007_s11682_022_00659_0 crossref_primary_10_1016_j_jvoice_2022_02_008 crossref_primary_10_1016_j_neuroimage_2019_116321 crossref_primary_10_1016_j_nicl_2015_02_018 crossref_primary_10_1007_s11065_015_9315_8 crossref_primary_10_1016_j_jad_2013_07_002 crossref_primary_10_1016_j_neubiorev_2021_07_021 crossref_primary_10_1016_j_neubiorev_2018_06_009 crossref_primary_10_3389_fneur_2015_00219 crossref_primary_10_1002_hbm_25093 crossref_primary_10_1007_s11682_020_00303_9 crossref_primary_10_1111_obr_13643 crossref_primary_10_1002_hbm_22818 crossref_primary_10_1016_j_neubiorev_2018_07_017 crossref_primary_10_3389_fneur_2022_923310 crossref_primary_10_1002_hbm_26177 crossref_primary_10_1093_cercor_bhad013 crossref_primary_10_1097_j_pain_0000000000000517 crossref_primary_10_1371_journal_pone_0083668 crossref_primary_10_1007_s00429_013_0549_z crossref_primary_10_1016_j_cortex_2019_08_018 crossref_primary_10_1016_j_cortex_2021_02_023 crossref_primary_10_3390_brainsci14010101 crossref_primary_10_1038_mp_2014_24 crossref_primary_10_1192_bjp_2021_16 crossref_primary_10_1016_j_neuroimage_2021_118109 crossref_primary_10_1016_j_brainres_2018_01_014 crossref_primary_10_1016_j_pscychresns_2023_111769 crossref_primary_10_1162_imag_a_00277 crossref_primary_10_1016_j_bandl_2014_10_002 crossref_primary_10_1016_j_neubiorev_2016_03_009 crossref_primary_10_1002_hbm_24184 crossref_primary_10_1111_pcn_13442 crossref_primary_10_1093_scan_nsx142 crossref_primary_10_1017_S136672892000070X crossref_primary_10_3389_fnhum_2024_1493677 crossref_primary_10_1016_j_nicl_2021_102700 crossref_primary_10_1007_s11682_020_00369_5 crossref_primary_10_1007_s11682_021_00507_7 crossref_primary_10_1016_j_nicl_2020_102420 crossref_primary_10_1093_scan_nsab105 crossref_primary_10_1016_j_neubiorev_2017_11_010 crossref_primary_10_1016_j_neubiorev_2017_11_012 crossref_primary_10_1016_j_jad_2020_06_072 crossref_primary_10_1007_s00221_019_05595_y crossref_primary_10_1016_j_pnpbp_2013_09_001 crossref_primary_10_1016_j_neubiorev_2021_08_010 crossref_primary_10_1002_hbm_26119 crossref_primary_10_3389_fnut_2022_1056692 crossref_primary_10_1016_j_neubiorev_2021_09_041 crossref_primary_10_1038_s41380_024_02780_6 crossref_primary_10_1016_j_biopsych_2016_06_014 crossref_primary_10_3390_math10030356 crossref_primary_10_1002_hbm_25025 crossref_primary_10_1016_j_eurpsy_2017_08_001 crossref_primary_10_3389_fpsyg_2016_01633 crossref_primary_10_1002_gps_5510 crossref_primary_10_1007_s10072_013_1512_8 crossref_primary_10_3758_s13415_021_00870_4 crossref_primary_10_1111_ejn_15240 crossref_primary_10_3389_fnhum_2020_00146 crossref_primary_10_3390_brainsci13040559 crossref_primary_10_3758_s13428_023_02185_3 crossref_primary_10_1016_j_neuropsychologia_2020_107404 crossref_primary_10_1371_journal_pone_0070143 crossref_primary_10_1007_s00429_014_0744_6 crossref_primary_10_1016_j_neubiorev_2023_105285 crossref_primary_10_1016_j_neubiorev_2023_105042 crossref_primary_10_1038_s41562_016_0039 crossref_primary_10_1016_j_neubiorev_2016_02_024 crossref_primary_10_1016_j_bpsc_2019_03_005 crossref_primary_10_1016_j_nicl_2017_01_019 crossref_primary_10_1007_s11682_019_00071_1 crossref_primary_10_1016_j_neubiorev_2018_05_006 crossref_primary_10_1016_j_jad_2024_01_118 crossref_primary_10_1007_s00429_018_1727_9 crossref_primary_10_1016_j_jadr_2023_100674 crossref_primary_10_1016_j_neuroimage_2015_08_027 crossref_primary_10_1016_j_neuroimage_2015_08_024 crossref_primary_10_1002_erv_2967 crossref_primary_10_1002_brb3_655 crossref_primary_10_1038_s44220_023_00105_0 crossref_primary_10_1016_j_neubiorev_2015_07_016 crossref_primary_10_1176_appi_ajp_2019_19050560 crossref_primary_10_3174_ajnr_A7619 crossref_primary_10_1007_s00429_021_02389_3 crossref_primary_10_1016_j_neuroimage_2016_04_072 crossref_primary_10_1016_j_neubiorev_2021_08_024 crossref_primary_10_1016_j_neuroimage_2013_05_046 crossref_primary_10_1016_j_neuroimage_2012_11_020 crossref_primary_10_1016_j_neuroimage_2023_120413 crossref_primary_10_1016_j_neubiorev_2024_105584 crossref_primary_10_1016_j_neuroimage_2024_120950 crossref_primary_10_1016_j_neuroimage_2012_10_056 crossref_primary_10_1016_j_cortex_2019_05_016 crossref_primary_10_1002_hbm_23050 crossref_primary_10_1111_cdev_13080 crossref_primary_10_1016_j_drugalcdep_2020_107884 crossref_primary_10_1016_j_arr_2016_12_001 crossref_primary_10_3389_fnins_2018_00495 crossref_primary_10_1016_j_neubiorev_2019_12_014 crossref_primary_10_1007_s00429_022_02473_2 crossref_primary_10_1016_j_cortex_2019_05_001 crossref_primary_10_1002_hbm_23288 crossref_primary_10_1007_s11065_024_09647_1 crossref_primary_10_1016_j_cortex_2017_03_016 crossref_primary_10_1016_j_neubiorev_2018_04_022 crossref_primary_10_1007_s00429_013_0698_0 crossref_primary_10_1002_wcs_1546 crossref_primary_10_1002_hbm_70023 crossref_primary_10_1016_j_neubiorev_2023_105468 crossref_primary_10_1002_hbm_25254 crossref_primary_10_1016_j_jpsychires_2020_05_013 crossref_primary_10_1016_j_neuropsychologia_2019_107284 crossref_primary_10_3389_fnint_2021_793634 crossref_primary_10_1002_brb3_683 crossref_primary_10_1002_brb3_2065 crossref_primary_10_1016_j_jaac_2012_12_012 crossref_primary_10_1016_j_pnpbp_2017_11_007 crossref_primary_10_1162_imag_a_00425 crossref_primary_10_1016_j_neuroimage_2012_10_030 crossref_primary_10_1002_nau_23058 crossref_primary_10_3389_fnhum_2016_00675 crossref_primary_10_1016_j_neuropsychologia_2019_107286 crossref_primary_10_3390_cancers13051116 crossref_primary_10_1007_s11682_021_00453_4 crossref_primary_10_1016_j_neubiorev_2015_08_013 crossref_primary_10_3389_fpsyg_2025_1557796 crossref_primary_10_1002_ana_26551 crossref_primary_10_3233_JAD_215316 crossref_primary_10_1093_texcom_tgab002 crossref_primary_10_1002_hbm_25004 crossref_primary_10_1016_j_neubiorev_2021_09_024 crossref_primary_10_3389_fnhum_2014_00445 crossref_primary_10_1016_j_schres_2014_05_023 crossref_primary_10_1016_j_neuroimage_2020_116939 crossref_primary_10_1007_s10902_019_00195_7 crossref_primary_10_1155_2024_6673522 crossref_primary_10_1016_j_jad_2023_01_088 crossref_primary_10_1016_j_neuropsychologia_2021_107767 crossref_primary_10_3390_jpm13091384 crossref_primary_10_1016_j_neuroimage_2013_06_041 crossref_primary_10_1097_QAD_0000000000000151 crossref_primary_10_1016_j_neubiorev_2024_105544 crossref_primary_10_1177_2167702614542463 crossref_primary_10_3389_fnhum_2014_00692 crossref_primary_10_3389_fpsyg_2024_1335548 crossref_primary_10_1007_s40519_022_01390_x crossref_primary_10_3389_fnhum_2014_01045 crossref_primary_10_3724_SP_J_1042_2021_01783 crossref_primary_10_1016_j_intell_2017_04_008 crossref_primary_10_1002_hbm_23132 crossref_primary_10_1016_j_nicl_2018_05_013 crossref_primary_10_1016_j_neubiorev_2017_09_032 crossref_primary_10_1016_j_neuroimage_2015_07_083 crossref_primary_10_1038_s41598_023_43057_2 crossref_primary_10_1038_s41398_022_01792_6 crossref_primary_10_1016_j_neuroimage_2021_117868 crossref_primary_10_3389_fnins_2017_00001 crossref_primary_10_1016_j_biopsych_2024_10_013 crossref_primary_10_1016_j_neubiorev_2022_104603 crossref_primary_10_1111_bdi_12488 crossref_primary_10_1016_j_neuroimage_2013_10_012 crossref_primary_10_1002_hbm_23368 crossref_primary_10_1038_s42003_021_01832_9 crossref_primary_10_1016_j_neubiorev_2018_03_019 crossref_primary_10_1016_j_neuroimage_2023_120363 crossref_primary_10_1186_s40035_018_0114_z crossref_primary_10_1016_j_nicl_2025_103770 crossref_primary_10_1093_cercor_bhz182 crossref_primary_10_1007_s11682_016_9669_4 crossref_primary_10_1146_annurev_neuro_062012_170320 crossref_primary_10_1080_15622975_2024_2446823 crossref_primary_10_1016_j_neuropsychologia_2015_12_006 crossref_primary_10_1093_cercor_bhs308 crossref_primary_10_1097_MD_0000000000019151 crossref_primary_10_1016_j_neubiorev_2021_03_025 crossref_primary_10_1016_j_neuroimage_2015_06_059 crossref_primary_10_1007_s11682_020_00442_z crossref_primary_10_1016_j_ijpsycho_2016_10_001 crossref_primary_10_1002_hbm_23149 crossref_primary_10_1016_j_yfrne_2019_100791 crossref_primary_10_1016_j_neuroimage_2023_120383 crossref_primary_10_1038_s41380_021_01315_7 crossref_primary_10_1002_hbm_24232 crossref_primary_10_1080_02643294_2016_1188798 crossref_primary_10_3758_s13415_015_0392_1 crossref_primary_10_1007_s00429_023_02641_y crossref_primary_10_1016_j_neuroimage_2015_07_072 crossref_primary_10_3389_fnins_2020_00427 crossref_primary_10_1007_s11682_015_9457_6 crossref_primary_10_1016_j_neuroimage_2015_05_008 crossref_primary_10_1016_j_neuroimage_2021_118702 crossref_primary_10_1016_j_neuroimage_2015_06_044 crossref_primary_10_1016_j_neubiorev_2022_104851 crossref_primary_10_1016_j_tree_2015_10_004 crossref_primary_10_1016_j_nicl_2013_12_009 crossref_primary_10_1016_j_neubiorev_2023_105187 crossref_primary_10_1038_s41598_019_40427_7 crossref_primary_10_1016_j_dcn_2024_101419 crossref_primary_10_1016_j_neuropsychologia_2015_11_006 crossref_primary_10_1016_j_biopsych_2022_02_960 crossref_primary_10_1016_j_neubiorev_2021_02_029 crossref_primary_10_1186_1471_244X_13_342 crossref_primary_10_3390_jpm13030405 crossref_primary_10_1007_s11682_017_9813_9 crossref_primary_10_1016_j_neuroimage_2018_04_065 crossref_primary_10_1016_j_neuroimage_2018_04_067 crossref_primary_10_1016_j_jid_2019_04_007 crossref_primary_10_1038_s41398_021_01446_z crossref_primary_10_1093_scan_nsu110 crossref_primary_10_1007_s11682_021_00494_9 crossref_primary_10_1002_hbm_24893 crossref_primary_10_1007_s11065_020_09432_w crossref_primary_10_1111_ner_13119 crossref_primary_10_1016_j_neuroimage_2021_117833 crossref_primary_10_1016_j_cortex_2016_10_021 crossref_primary_10_1002_aur_1599 crossref_primary_10_1016_j_neuroimage_2013_04_073 crossref_primary_10_1002_hbm_24681 crossref_primary_10_3389_fnana_2015_00054 crossref_primary_10_1002_hbm_22262 crossref_primary_10_1002_hipo_22482 crossref_primary_10_1249_JES_0000000000000299 crossref_primary_10_3389_fnhum_2020_565114 crossref_primary_10_1016_j_pscychresns_2021_111272 crossref_primary_10_3389_fnhum_2022_1000995 crossref_primary_10_3758_s13415_023_01140_1 crossref_primary_10_1192_bjo_2019_102 crossref_primary_10_1007_s13365_022_01071_6 crossref_primary_10_1016_j_neubiorev_2014_09_008 crossref_primary_10_1016_j_bpsc_2019_04_007 crossref_primary_10_1002_hbm_23103 crossref_primary_10_1002_hbm_23109 crossref_primary_10_1016_j_pnpbp_2019_109656 crossref_primary_10_1016_j_neuroimage_2024_120641 crossref_primary_10_1016_j_neuroimage_2024_120885 crossref_primary_10_1016_j_nicl_2016_03_016 crossref_primary_10_1002_hbm_23342 crossref_primary_10_1002_brb3_1365 crossref_primary_10_1021_acschemneuro_9b00045 crossref_primary_10_3389_fnins_2022_1010354 crossref_primary_10_1016_j_autneu_2014_10_022 crossref_primary_10_1016_j_neuropsychologia_2015_06_034 crossref_primary_10_1016_j_neuroimage_2012_06_025 crossref_primary_10_1016_j_pnpbp_2018_05_011 crossref_primary_10_1038_s41380_023_01974_8 crossref_primary_10_1016_j_cofs_2014_11_001 crossref_primary_10_1016_j_neubiorev_2015_12_003 crossref_primary_10_1016_j_neuroimage_2016_10_028 crossref_primary_10_1111_desc_13111 crossref_primary_10_1007_s11682_022_00634_9 crossref_primary_10_1001_jamapsychiatry_2019_3351 crossref_primary_10_1016_j_neubiorev_2018_01_002 crossref_primary_10_1007_s00429_021_02318_4 crossref_primary_10_1038_s41398_018_0170_2 crossref_primary_10_1111_ejn_12765 crossref_primary_10_1007_s11682_023_00762_w crossref_primary_10_1016_j_cortex_2021_02_014 crossref_primary_10_1016_j_heliyon_2024_e38084 crossref_primary_10_1002_brb3_2646 crossref_primary_10_1016_j_bandc_2024_106201 crossref_primary_10_3390_brainsci11121587 crossref_primary_10_1002_hbm_25948 crossref_primary_10_1002_hbm_23767 crossref_primary_10_1111_jnc_16104 crossref_primary_10_1016_j_neuroimage_2013_01_046 crossref_primary_10_1093_scan_nsad077 crossref_primary_10_1016_j_bandc_2013_09_007 crossref_primary_10_3758_s13415_020_00827_z crossref_primary_10_1016_j_neubiorev_2015_03_002 crossref_primary_10_1016_j_neuropsychologia_2018_04_008 crossref_primary_10_1162_jocn_a_01459 crossref_primary_10_1016_j_neuroimage_2015_05_069 crossref_primary_10_1016_j_neuroimage_2018_02_023 crossref_primary_10_1509_jmr_13_0611 crossref_primary_10_1111_desc_12400 crossref_primary_10_1186_s12888_016_0890_x crossref_primary_10_1016_j_neubiorev_2015_03_009 crossref_primary_10_1093_braincomms_fcac140 crossref_primary_10_1093_cercor_bhy049 crossref_primary_10_1016_j_parkreldis_2019_02_015 crossref_primary_10_1016_j_nicl_2017_08_004 crossref_primary_10_3389_fnins_2022_868366 crossref_primary_10_1162_jocn_a_01661 crossref_primary_10_3390_brainsci12010032 crossref_primary_10_1007_s12311_022_01459_4 crossref_primary_10_3389_fpsyg_2017_01253 crossref_primary_10_1002_hbm_25722 crossref_primary_10_1002_hbm_24633 crossref_primary_10_1002_hbm_26817 crossref_primary_10_1016_j_neubiorev_2017_06_011 crossref_primary_10_1515_revneuro_2022_0065 crossref_primary_10_1016_j_neubiorev_2021_10_034 crossref_primary_10_1186_1471_2202_15_19 crossref_primary_10_1016_j_pscychresns_2016_04_009 crossref_primary_10_1007_s11682_022_00754_2 crossref_primary_10_1016_j_jpain_2013_03_001 crossref_primary_10_1016_j_heares_2020_108078 crossref_primary_10_1007_s00429_018_1765_3 crossref_primary_10_1176_appi_ajp_20230270 crossref_primary_10_4103_0366_6999_176983 crossref_primary_10_1161_STROKEAHA_113_003168 crossref_primary_10_3233_JAD_200659 crossref_primary_10_1016_j_intell_2017_03_004 crossref_primary_10_1016_j_neuroimage_2015_04_053 crossref_primary_10_1002_hbm_22689 crossref_primary_10_1016_j_neuroimage_2019_02_061 crossref_primary_10_1186_s12888_021_03187_1 crossref_primary_10_1016_j_neuroimage_2023_120399 crossref_primary_10_1176_appi_focus_19206 crossref_primary_10_3390_brainsci10110798 crossref_primary_10_1016_j_bandl_2023_105287 crossref_primary_10_1007_s12078_022_09299_6 crossref_primary_10_1016_j_addicn_2023_100089 crossref_primary_10_3389_fnagi_2023_1181558 crossref_primary_10_1002_eat_23160 crossref_primary_10_1016_j_bandc_2020_105660 crossref_primary_10_1016_j_appet_2013_12_017 crossref_primary_10_30773_pi_2022_0074 crossref_primary_10_1002_hbm_23952 crossref_primary_10_1016_j_neuroimage_2019_02_043 crossref_primary_10_1002_hbm_22626 crossref_primary_10_1176_appi_ajp_2020_20091340 crossref_primary_10_1371_journal_pone_0248909 crossref_primary_10_1016_j_neubiorev_2021_04_014 crossref_primary_10_1016_j_schres_2023_12_003 crossref_primary_10_1007_s00429_018_1774_2 crossref_primary_10_1007_s12311_024_01660_7 crossref_primary_10_1007_s00429_024_02795_3 crossref_primary_10_1016_j_neuroimage_2021_118731 crossref_primary_10_1016_j_neubiorev_2021_05_023 crossref_primary_10_1016_j_neulet_2016_07_043 crossref_primary_10_1093_braincomms_fcae128 crossref_primary_10_1002_hbm_22417 crossref_primary_10_1016_j_pneurobio_2019_101718 crossref_primary_10_1371_journal_pone_0276140 crossref_primary_10_1016_j_neuropsychologia_2024_108947 crossref_primary_10_1002_hbm_22649 crossref_primary_10_3389_fpsyg_2015_01195 crossref_primary_10_1016_j_bandc_2016_07_007 crossref_primary_10_1016_j_jad_2023_04_028 crossref_primary_10_1016_j_neuroimage_2020_117114 crossref_primary_10_1093_brain_awy252 crossref_primary_10_1016_j_neuroimage_2020_117350 crossref_primary_10_1002_ejp_2251 crossref_primary_10_1016_j_neuroimage_2013_02_063 crossref_primary_10_1016_j_intell_2015_04_009 crossref_primary_10_1002_hbm_26082 crossref_primary_10_1097_j_pain_0000000000001519 crossref_primary_10_3389_fpsyg_2015_01138 crossref_primary_10_1016_j_neubiorev_2016_11_014 crossref_primary_10_1016_j_cortex_2022_02_010 crossref_primary_10_1002_bsl_2539 crossref_primary_10_1007_s00429_014_0791_z crossref_primary_10_3389_fneur_2017_00739 crossref_primary_10_1016_j_neuroimage_2017_06_032 crossref_primary_10_3389_fpsyt_2021_634015 crossref_primary_10_1016_j_neurobiolaging_2014_04_013 crossref_primary_10_1016_j_neuroimage_2011_09_017 crossref_primary_10_1016_j_neuropsychologia_2012_02_007 crossref_primary_10_1176_appi_neuropsych_12060143 crossref_primary_10_1371_journal_pone_0106735 crossref_primary_10_1016_j_neuroimage_2023_119929 crossref_primary_10_1162_jocn_a_00401 crossref_primary_10_1016_j_nicl_2018_01_002 crossref_primary_10_1016_j_neuroimage_2016_12_037 crossref_primary_10_1002_hbm_22703 crossref_primary_10_1007_s00429_012_0380_y crossref_primary_10_1007_s11065_019_09414_7 crossref_primary_10_1016_j_neuroimage_2019_116259 crossref_primary_10_1093_cercor_bhae493 crossref_primary_10_3389_fnhum_2014_00776 crossref_primary_10_1016_j_neuroimage_2022_119665 crossref_primary_10_1093_scan_nsx085 crossref_primary_10_1016_j_neubiorev_2020_04_011 crossref_primary_10_1111_ejn_15534 crossref_primary_10_1002_brb3_1976 crossref_primary_10_1007_s00429_014_0803_z crossref_primary_10_1080_17470919_2023_2208879 crossref_primary_10_1016_j_neuroimage_2014_09_069 crossref_primary_10_1007_s00429_016_1215_z crossref_primary_10_1007_s10072_022_06272_9 crossref_primary_10_3758_s13415_019_00763_7 crossref_primary_10_1038_s41598_023_39245_9 crossref_primary_10_1016_j_neubiorev_2019_09_004 crossref_primary_10_1016_j_neubiorev_2020_04_028 crossref_primary_10_1016_j_neuroimage_2016_12_052 crossref_primary_10_1016_j_nicl_2016_04_001 crossref_primary_10_1212_WNL_0000000000001404 crossref_primary_10_1016_j_neubiorev_2015_02_007 crossref_primary_10_1007_s12021_023_09626_6 crossref_primary_10_1016_j_heliyon_2023_e23749 crossref_primary_10_1002_hbm_25191 crossref_primary_10_3389_fnins_2019_01037 crossref_primary_10_1002_hbm_26041 crossref_primary_10_1038_tp_2016_218 crossref_primary_10_5665_sleep_3330 crossref_primary_10_1111_obr_12697 crossref_primary_10_1016_j_drugalcdep_2017_12_009 crossref_primary_10_1098_rstb_2013_0297 crossref_primary_10_1016_j_psyneuen_2018_05_031 crossref_primary_10_1016_j_neuroimage_2011_12_051 crossref_primary_10_1111_bjop_12595 crossref_primary_10_3389_fpsyt_2016_00125 crossref_primary_10_1111_jon_13176 crossref_primary_10_3390_brainsci11111468 crossref_primary_10_1093_cercor_bhx121 crossref_primary_10_1111_obr_12221 crossref_primary_10_1016_j_smrv_2019_03_008 crossref_primary_10_1002_hbm_26029 crossref_primary_10_3390_brainsci13060907 crossref_primary_10_1093_cercor_bhad121 crossref_primary_10_1093_cercor_bhz332 crossref_primary_10_1007_s00429_022_02467_0 crossref_primary_10_1016_j_jns_2019_116548 crossref_primary_10_1093_cercor_bhy245 crossref_primary_10_1016_j_neubiorev_2019_08_012 crossref_primary_10_1016_j_neuroimage_2015_02_039 crossref_primary_10_1371_journal_pone_0231669 crossref_primary_10_1016_j_jaac_2020_08_014 crossref_primary_10_1016_j_neuroimage_2018_10_077 crossref_primary_10_1016_j_neubiorev_2016_10_020 crossref_primary_10_3389_fnhum_2021_666179 crossref_primary_10_1016_j_neuropsychologia_2017_11_033 crossref_primary_10_1016_j_nicl_2022_103179 crossref_primary_10_3389_fpsyt_2024_1401623 crossref_primary_10_1192_j_eurpsy_2020_57 crossref_primary_10_1016_j_jneumeth_2022_109556 crossref_primary_10_1162_netn_a_00050 crossref_primary_10_3389_fnhum_2017_00375 crossref_primary_10_1007_s00415_022_11363_w crossref_primary_10_3389_fnbeh_2018_00289 crossref_primary_10_1016_j_neubiorev_2020_05_015 crossref_primary_10_1002_hbm_25397 crossref_primary_10_1016_j_neuroimage_2013_12_024 crossref_primary_10_1097_MD_0000000000031206 crossref_primary_10_1016_j_neuroimage_2019_07_001 crossref_primary_10_1007_s11065_023_09593_4 crossref_primary_10_1159_000448620 crossref_primary_10_1016_j_neuroimage_2017_04_020 crossref_primary_10_3389_fnhum_2020_00276 crossref_primary_10_1016_j_nicl_2012_11_004 crossref_primary_10_1097_j_pain_0000000000002681 crossref_primary_10_1016_j_nicl_2014_11_004 crossref_primary_10_3389_fnhum_2014_00344 crossref_primary_10_1002_brb3_3046 crossref_primary_10_1515_tnsci_2022_0299 crossref_primary_10_1016_j_neubiorev_2023_105393 crossref_primary_10_1038_s41598_019_40188_3 crossref_primary_10_1016_j_neuroimage_2019_116409 crossref_primary_10_1093_schbul_sbad047 crossref_primary_10_1016_j_neubiorev_2014_08_003 crossref_primary_10_1093_schbul_sbad044 crossref_primary_10_1002_hbm_24049 crossref_primary_10_1371_journal_pone_0167276 crossref_primary_10_1016_j_neuroimage_2013_12_019 crossref_primary_10_1002_ca_23244 crossref_primary_10_1371_journal_pone_0136553 crossref_primary_10_1159_000339528 crossref_primary_10_1016_j_neuroimage_2017_04_002 crossref_primary_10_1007_s00429_018_1670_9 crossref_primary_10_1007_s00429_015_1060_5 crossref_primary_10_1016_j_neubiorev_2021_01_001 crossref_primary_10_1016_j_cortex_2023_10_008 crossref_primary_10_1016_j_neubiorev_2017_04_027 crossref_primary_10_1016_j_cortex_2018_03_011 crossref_primary_10_1002_hbm_24078 crossref_primary_10_3389_fnagi_2022_966525 crossref_primary_10_1111_jsr_12857 crossref_primary_10_1016_j_neuroimage_2020_116858 crossref_primary_10_1016_j_crad_2019_07_005 crossref_primary_10_3389_fpsyg_2019_00804 crossref_primary_10_1142_S0219622015500418 crossref_primary_10_1016_j_biopsycho_2019_04_006 crossref_primary_10_1016_j_neuroimage_2015_02_069 crossref_primary_10_1016_j_pscychresns_2024_111908 crossref_primary_10_1162_imag_a_00358 crossref_primary_10_1093_schizbullopen_sgaa016 crossref_primary_10_1162_imag_a_00355 crossref_primary_10_1007_s11682_019_00215_3 crossref_primary_10_1016_j_neubiorev_2021_01_010 crossref_primary_10_1007_s11682_023_00846_7 crossref_primary_10_1111_jcpp_13412 crossref_primary_10_1002_brb3_540 crossref_primary_10_1016_j_parkreldis_2019_05_008 crossref_primary_10_1177_0269881116668592 crossref_primary_10_1186_s12993_016_0100_5 crossref_primary_10_3389_fnins_2022_1049887 crossref_primary_10_2147_PRBM_S453035 crossref_primary_10_1016_j_neuroimage_2022_119204 crossref_primary_10_3389_fnhum_2016_00333 crossref_primary_10_1007_s00429_012_0476_4 crossref_primary_10_1016_j_cortex_2013_05_011 crossref_primary_10_1002_hbm_24018 crossref_primary_10_1016_j_jelekin_2017_12_005 crossref_primary_10_1016_j_neuroimage_2024_120824 crossref_primary_10_1002_hbm_25105 crossref_primary_10_1038_s41398_021_01670_7 crossref_primary_10_1016_j_neubiorev_2023_105355 crossref_primary_10_1002_hbm_24492 crossref_primary_10_1016_j_neubiorev_2018_10_016 crossref_primary_10_1002_hbm_25103 crossref_primary_10_1002_hbm_24496 crossref_primary_10_1016_j_dib_2018_10_142 crossref_primary_10_1016_j_neuroimage_2014_06_007 crossref_primary_10_3389_fnhum_2020_00215 crossref_primary_10_1016_j_neuroimage_2020_116834 crossref_primary_10_1038_s41598_021_84804_7 crossref_primary_10_1093_cercor_bhu250 crossref_primary_10_1080_15475441_2016_1264878 crossref_primary_10_1007_s10803_020_04794_9 crossref_primary_10_1002_brb3_3272 crossref_primary_10_1007_s11682_017_9756_1 crossref_primary_10_1016_j_jpsychires_2021_07_022 crossref_primary_10_1016_j_neuropsychologia_2024_109003 crossref_primary_10_1016_j_physbeh_2024_114481 crossref_primary_10_1111_odi_12819 crossref_primary_10_1016_j_nicl_2019_102114 crossref_primary_10_1007_s00429_022_02572_0 crossref_primary_10_1038_s41398_020_01115_7 crossref_primary_10_1002_da_22478 crossref_primary_10_1016_j_cortex_2024_05_015 crossref_primary_10_1016_j_neubiorev_2014_06_006 crossref_primary_10_1016_j_neuroimage_2012_05_058 crossref_primary_10_1007_s00429_016_1239_4 crossref_primary_10_1016_j_bandc_2012_05_004 crossref_primary_10_1016_j_dcn_2017_08_002 crossref_primary_10_1016_j_pscychresns_2022_111516 crossref_primary_10_3724_SP_J_1042_2022_00255 crossref_primary_10_1016_j_jpsychires_2019_10_018 crossref_primary_10_1002_hbm_24031 crossref_primary_10_1016_j_neubiorev_2019_06_012 crossref_primary_10_1016_j_biopsycho_2016_07_015 crossref_primary_10_3389_fpsyg_2023_1136983 crossref_primary_10_1016_j_nicl_2019_102129 crossref_primary_10_1371_journal_pone_0286969 crossref_primary_10_1007_s00429_019_02007_3 crossref_primary_10_1016_j_neuroimage_2013_11_001 crossref_primary_10_1016_j_neubiorev_2012_03_006 crossref_primary_10_1016_j_neubiorev_2020_07_006 |
Cites_doi | 10.1016/j.biopsych.2008.03.031 10.1016/j.neuroimage.2009.06.047 10.1523/JNEUROSCI.0359-10.2010 10.1523/JNEUROSCI.4599-09.2010 10.1016/j.neuroimage.2009.12.112 10.1016/j.neuropsychologia.2009.09.032 10.1002/hbm.20136 10.1016/j.neubiorev.2010.01.009 10.1016/j.neuroimage.2009.09.064 10.1016/j.bandl.2010.03.008 10.1093/scan/nsm015 10.1073/pnas.0905267106 10.1523/JNEUROSCI.4004-09.2009 10.1016/j.neuroimage.2004.03.052 10.1093/cercor/bhp055 10.1016/j.neuroimage.2008.10.061 10.1196/annals.1416.024 10.1006/nimg.2002.1131 10.1016/j.neuroimage.2008.01.065 10.1001/archgenpsychiatry.2009.91 10.1016/j.pnpbp.2009.08.020 10.1162/jocn.2009.21366 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O 10.1523/JNEUROSCI.5664-09.2010 10.1002/hbm.20718 10.1002/hbm.20854 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.21186 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | A Modified ALE Approach |
EISSN | 1097-0193 |
EndPage | 13 |
ExternalDocumentID | PMC4791073 3278347161 21305667 25292443 10_1002_hbm_21186 HBM21186 ark_67375_WNG_4XGP2W0B_D |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: American Academy of Neurology Foundation – fundername: NIMH funderid: R01‐MH074457 – fundername: Helmholtz‐Initiative on Systems Biology – fundername: NIMH NIH HHS grantid: R01 MH074457 – fundername: NIMH NIH HHS grantid: R01-MH074457 – fundername: NIMH grantid: R01‐MH074457 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5106-86f2e80b82b0d6995fbcf8240d63ab680a49196730750c08594a501c1cfca9d3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:21:57 EDT 2025 Thu Jul 10 17:20:04 EDT 2025 Sat Jul 26 02:17:36 EDT 2025 Mon Jul 21 05:57:57 EDT 2025 Mon Jul 21 09:14:25 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 Tue Jul 01 04:25:58 EDT 2025 Wed Jan 22 16:29:38 EST 2025 Wed Oct 30 09:54:54 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nervous system diseases magnetic resonance imaging Radiodiagnosis Estimation meta-analysis activation likelihood estimation functional neuroimaging Nuclear magnetic resonance imaging neuroimaging fMRI Positron emission tomography Activation analysis PET Emission tomography |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5106-86f2e80b82b0d6995fbcf8240d63ab680a49196730750c08594a501c1cfca9d3 |
Notes | Helmholtz-Initiative on Systems Biology ArticleID:HBM21186 istex:46EBBC2B64690A72CAA55E52F088550F21975281 NIMH - No. R01-MH074457 American Academy of Neurology Foundation ark:/67375/WNG-4XGP2W0B-D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4791073 |
PMID | 21305667 |
PQID | 1517355494 |
PQPubID | 996345 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4791073 proquest_miscellaneous_911946243 proquest_journals_1517355494 pubmed_primary_21305667 pascalfrancis_primary_25292443 crossref_primary_10_1002_hbm_21186 crossref_citationtrail_10_1002_hbm_21186 wiley_primary_10_1002_hbm_21186_HBM21186 istex_primary_ark_67375_WNG_4XGP2W0B_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2012 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: January 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss John Wiley & Sons, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss – name: John Wiley & Sons, Inc |
References | Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC ( 2009): Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66: 811-822. Spreng RN, Wojtowicz M, Grady CL ( 2010): Reliable differences in brain activity between young and old adults: A quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav Rev 34: 1178-1194. Binder JR, Desai RH, Graves WW, Conant LL ( 2009): Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19: 2767-2796. Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT ( 2009a): Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29: 14496-14505. Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT ( 2010): Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala. Hum Brain Mapp 31: 173-184. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA 106: 13040-13045. Caspers S, Zilles K, Laird AR, Eickhoff SB ( 2010): ALE meta-analysis of action observation and imitation in the human brain. NeuroImage 50: 1148-1167. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT ( 2009): Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Hum brain Mapp. 30:2907-2926. Wager TD, Jonides J, Reading S ( 2004): Neuroimaging studies of shifting attention: A meta-analysis. NeuroImage 22: 1679-1693. Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE ( 2010): Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30: 6409-6421. Karlsgodt KH, Kochunov P, Winkler AM, Laird AR, Almasy L, Duggirala R, Olvera RL, Fox PT, Blangero J, Glahn DC ( 2010): A multimodal assessment of the genetic control over working memory. J Neurosci 30: 8197-8202. Turkeltaub PE, Coslett HB ( 2010): Localization of sublexical speech perception components. Brain Lang 114: 1-15. Wager TD, Lindquist MA, Nichols TE, Kober H, Van Snellenberg JX ( 2009): Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage 45( 1 Suppl): S210-S221. Chouinard PA, Goodale MA ( 2010): Category-specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta-analysis. Neuropsychologia 48: 409-418. Glahn DC, Laird AR, Ellison-Wright I, Thelen SM, Robinson JL, Lancaster JL, Bullmore E, Fox PT ( 2008): Meta-analysis of gray matter anomalies in schizophrenia: Application of anatomic likelihood estimation and network analysis. Biol Psychiatry 64: 774-781. Maisog JM, Einbinder ER, Flowers DL, Turkeltaub PE, Eden GF ( 2008): A meta-analysis of functional neuroimaging studies of dyslexia. Ann N Y Acad Sci 1145: 237-259. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC ( 1996): A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4: 58-73. Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT ( 2005): ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25: 155-164. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV ( 2009): Neurostructural predictors of Alzheimer's disease: A meta-analysis of VBM studies. Neurobiol Aging. DOI: 10.1016/j.neurobiolaging.2009.11.008. Laird AR, Lancaster JL, Fox PT ( 2009b): Lost in localization? The focus is meta-analysis. NeuroImage 48: 18-20. Laird AR, Robbins JM, Li K, Price LR, Cykowski MD, Narayana S, Laird RW, Franklin C, Fox PT ( 2008): Modeling motor connectivity using TMS/PET and structural equation modeling. NeuroImage 41: 424-436. Zevin JD, Yang J, Skipper JI, McCandliss BD ( 2010): Domain general change detection accounts for "dishabituation" effects in temporal-parietal regions in functional magnetic resonance imaging studies of speech perception. J Neurosci 30: 1110-1117. Wager TD, Lindquist M, Kaplan L ( 2007): Meta-analysis of functional neuroimaging data: Current and future directions. Social Cogn Affect Neurosci 2: 150-158. Turkeltaub P, Eden G, Jones K, Zeffiro T ( 2002): Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. Neuroimage 16( 3 Part 1): 765-780. Di X, Chan RC, Gong QY ( 2009): White matter reduction in patients with schizophrenia as revealed by voxel-based morphometry: An activation likelihood estimation meta-analysis. Progress in neuro-psychopharmacology and biological psychiatry 33: 1390-1394. Vytal K, Hamann S ( 2010): Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. J Cogn Neurosci 22:2864-2885. Wiener M, Turkeltaub P, Coslett HB ( 2010): The image of time: A voxel-wise meta-analysis. NeuroImage 49:1728-1740. 2010; 34 2002; 16 2009; 45 2009b; 48 2009; 66 2004; 22 2010; 31 2009 2005; 25 2009; 33 2010; 22 2009; 30 2010; 49 2010; 48 2008; 1145 2010; 114 2009a; 29 2008; 41 2007; 2 2008; 64 1996; 4 2009; 19 2010; 30 2010; 50 2009; 106 Ferreira LK (e_1_2_6_8_1) 2009 e_1_2_6_10_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 19923283 - J Neurosci. 2009 Nov 18;29(46):14496-505 20089919 - J Neurosci. 2010 Jan 20;30(3):1110-7 19744536 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1390-4 20109489 - Neurosci Biobehav Rev. 2010 Jul;34(8):1178-94 19652121 - Arch Gen Psychiatry. 2009 Aug;66(8):811-22 15846811 - Hum Brain Mapp. 2005 May;25(1):155-64 19800975 - Neuroimage. 2010 Jan 15;49(2):1728-40 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 20413149 - Brain Lang. 2010 Jul;114(1):1-15 19800353 - Neuropsychologia. 2010 Jan;48(2):409-18 19603407 - Hum Brain Mapp. 2010 Feb;31(2):173-84 20056149 - Neuroimage. 2010 Apr 15;50(3):1148-67 19076401 - Ann N Y Acad Sci. 2008 Dec;1145:237-59 18985131 - Soc Cogn Affect Neurosci. 2007 Jun;2(2):150-8 19063980 - Neuroimage. 2009 Mar;45(1 Suppl):S210-21 19329570 - Cereb Cortex. 2009 Dec;19(12):2767-96 18387823 - Neuroimage. 2008 Jun;41(2):424-36 20005012 - Neurobiol Aging. 2011 Oct;32(10):1733-41 12169260 - Neuroimage. 2002 Jul;16(3 Pt 1):765-80 15275924 - Neuroimage. 2004 Aug;22(4):1679-93 20554870 - J Neurosci. 2010 Jun 16;30(24):8197-202 20445067 - J Neurosci. 2010 May 5;30(18):6409-21 20408186 - Hum Brain Mapp. 1996;4(1):58-73 19559800 - Neuroimage. 2009 Oct 15;48(1):18-20 18486104 - Biol Psychiatry. 2008 Nov 1;64(9):774-81 19172646 - Hum Brain Mapp. 2009 Sep;30(9):2907-26 19929758 - J Cogn Neurosci. 2010 Dec;22(12):2864-85 |
References_xml | – reference: Karlsgodt KH, Kochunov P, Winkler AM, Laird AR, Almasy L, Duggirala R, Olvera RL, Fox PT, Blangero J, Glahn DC ( 2010): A multimodal assessment of the genetic control over working memory. J Neurosci 30: 8197-8202. – reference: Wiener M, Turkeltaub P, Coslett HB ( 2010): The image of time: A voxel-wise meta-analysis. NeuroImage 49:1728-1740. – reference: Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT ( 2010): Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala. Hum Brain Mapp 31: 173-184. – reference: Binder JR, Desai RH, Graves WW, Conant LL ( 2009): Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19: 2767-2796. – reference: Chouinard PA, Goodale MA ( 2010): Category-specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta-analysis. Neuropsychologia 48: 409-418. – reference: Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA 106: 13040-13045. – reference: Vytal K, Hamann S ( 2010): Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. J Cogn Neurosci 22:2864-2885. – reference: Wager TD, Jonides J, Reading S ( 2004): Neuroimaging studies of shifting attention: A meta-analysis. NeuroImage 22: 1679-1693. – reference: Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC ( 2009): Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66: 811-822. – reference: Spreng RN, Wojtowicz M, Grady CL ( 2010): Reliable differences in brain activity between young and old adults: A quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav Rev 34: 1178-1194. – reference: Wager TD, Lindquist M, Kaplan L ( 2007): Meta-analysis of functional neuroimaging data: Current and future directions. Social Cogn Affect Neurosci 2: 150-158. – reference: Turkeltaub P, Eden G, Jones K, Zeffiro T ( 2002): Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. Neuroimage 16( 3 Part 1): 765-780. – reference: Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC ( 1996): A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4: 58-73. – reference: Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE ( 2010): Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30: 6409-6421. – reference: Maisog JM, Einbinder ER, Flowers DL, Turkeltaub PE, Eden GF ( 2008): A meta-analysis of functional neuroimaging studies of dyslexia. Ann N Y Acad Sci 1145: 237-259. – reference: Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV ( 2009): Neurostructural predictors of Alzheimer's disease: A meta-analysis of VBM studies. Neurobiol Aging. DOI: 10.1016/j.neurobiolaging.2009.11.008. – reference: Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT ( 2009a): Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29: 14496-14505. – reference: Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT ( 2005): ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25: 155-164. – reference: Glahn DC, Laird AR, Ellison-Wright I, Thelen SM, Robinson JL, Lancaster JL, Bullmore E, Fox PT ( 2008): Meta-analysis of gray matter anomalies in schizophrenia: Application of anatomic likelihood estimation and network analysis. Biol Psychiatry 64: 774-781. – reference: Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT ( 2009): Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Hum brain Mapp. 30:2907-2926. – reference: Turkeltaub PE, Coslett HB ( 2010): Localization of sublexical speech perception components. Brain Lang 114: 1-15. – reference: Zevin JD, Yang J, Skipper JI, McCandliss BD ( 2010): Domain general change detection accounts for "dishabituation" effects in temporal-parietal regions in functional magnetic resonance imaging studies of speech perception. J Neurosci 30: 1110-1117. – reference: Di X, Chan RC, Gong QY ( 2009): White matter reduction in patients with schizophrenia as revealed by voxel-based morphometry: An activation likelihood estimation meta-analysis. Progress in neuro-psychopharmacology and biological psychiatry 33: 1390-1394. – reference: Caspers S, Zilles K, Laird AR, Eickhoff SB ( 2010): ALE meta-analysis of action observation and imitation in the human brain. NeuroImage 50: 1148-1167. – reference: Laird AR, Robbins JM, Li K, Price LR, Cykowski MD, Narayana S, Laird RW, Franklin C, Fox PT ( 2008): Modeling motor connectivity using TMS/PET and structural equation modeling. NeuroImage 41: 424-436. – reference: Wager TD, Lindquist MA, Nichols TE, Kober H, Van Snellenberg JX ( 2009): Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage 45( 1 Suppl): S210-S221. – reference: Laird AR, Lancaster JL, Fox PT ( 2009b): Lost in localization? The focus is meta-analysis. NeuroImage 48: 18-20. – volume: 34 start-page: 1178 year: 2010 end-page: 1194 article-title: Reliable differences in brain activity between young and old adults: A quantitative meta‐analysis across multiple cognitive domains publication-title: Neurosci Biobehav Rev – volume: 33 start-page: 1390 year: 2009 end-page: 1394 article-title: White matter reduction in patients with schizophrenia as revealed by voxel‐based morphometry: An activation likelihood estimation meta‐analysis publication-title: Progress in neuro‐psychopharmacology and biological psychiatry – volume: 114 start-page: 1 year: 2010 end-page: 15 article-title: Localization of sublexical speech perception components publication-title: Brain Lang – volume: 2 start-page: 150 year: 2007 end-page: 158 article-title: Meta‐analysis of functional neuroimaging data: Current and future directions publication-title: Social Cogn Affect Neurosci – volume: 19 start-page: 2767 year: 2009 end-page: 2796 article-title: Where is the semantic system? A critical review and meta‐analysis of 120 functional neuroimaging studies publication-title: Cereb Cortex – volume: 31 start-page: 173 year: 2010 end-page: 184 article-title: Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala publication-title: Hum Brain Mapp – volume: 106 start-page: 13040 year: 2009 end-page: 13045 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc Natl Acad Sci USA – volume: 49 year: 2010 end-page: 1740 article-title: The image of time: A voxel‐wise meta‐analysis publication-title: NeuroImage – volume: 41 start-page: 424 year: 2008 end-page: 436 article-title: Modeling motor connectivity using TMS/PET and structural equation modeling publication-title: NeuroImage – volume: 4 start-page: 58 year: 1996 end-page: 73 article-title: A unified statistical approach for determining significant signals in images of cerebral activation publication-title: Hum Brain Mapp – volume: 16 start-page: 765 issue: 3 Part 1 year: 2002 end-page: 780 article-title: Meta‐analysis of the functional neuroanatomy of single‐word reading: Method and validation publication-title: Neuroimage – volume: 30 start-page: 6409 year: 2010 end-page: 6421 article-title: Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum publication-title: J Neurosci – volume: 22 start-page: 2864 year: 2010 end-page: 2885 article-title: Neuroimaging support for discrete neural correlates of basic emotions: A voxel‐based meta‐analysis publication-title: J Cogn Neurosci – year: 2009 article-title: Neurostructural predictors of Alzheimer's disease: A meta‐analysis of VBM studies publication-title: Neurobiol Aging – volume: 66 start-page: 811 year: 2009 end-page: 822 article-title: Meta‐analysis of 41 functional neuroimaging studies of executive function in schizophrenia publication-title: Arch Gen Psychiatry – volume: 30 start-page: 1110 year: 2010 end-page: 1117 article-title: Domain general change detection accounts for "dishabituation" effects in temporal‐parietal regions in functional magnetic resonance imaging studies of speech perception publication-title: J Neurosci – volume: 1145 start-page: 237 year: 2008 end-page: 259 article-title: A meta‐analysis of functional neuroimaging studies of dyslexia publication-title: Ann N Y Acad Sci – volume: 30 start-page: 2907 year: 2009 end-page: 2926 article-title: Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: A random‐effects approach based on empirical estimates of spatial uncertainty publication-title: Hum brain Mapp – volume: 30 start-page: 8197 year: 2010 end-page: 8202 article-title: A multimodal assessment of the genetic control over working memory publication-title: J Neurosci – volume: 22 start-page: 1679 year: 2004 end-page: 1693 article-title: Neuroimaging studies of shifting attention: A meta‐analysis publication-title: NeuroImage – volume: 45 start-page: S210 issue: 1 Suppl year: 2009 end-page: S221 article-title: Evaluating the consistency and specificity of neuroimaging data using meta‐analysis publication-title: NeuroImage – volume: 25 start-page: 155 year: 2005 end-page: 164 article-title: ALE meta‐analysis: controlling the false discovery rate and performing statistical contrasts publication-title: Hum Brain Mapp – volume: 29 start-page: 14496 year: 2009a end-page: 14505 article-title: Investigating the functional heterogeneity of the default mode network using coordinate‐based meta‐analytic modeling publication-title: J Neurosci – volume: 48 start-page: 18 year: 2009b end-page: 20 article-title: Lost in localization? The focus is meta‐analysis publication-title: NeuroImage – volume: 48 start-page: 409 year: 2010 end-page: 418 article-title: Category‐specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta‐analysis publication-title: Neuropsychologia – volume: 64 start-page: 774 year: 2008 end-page: 781 article-title: Meta‐analysis of gray matter anomalies in schizophrenia: Application of anatomic likelihood estimation and network analysis publication-title: Biol Psychiatry – volume: 50 start-page: 1148 year: 2010 end-page: 1167 article-title: ALE meta‐analysis of action observation and imitation in the human brain publication-title: NeuroImage – ident: e_1_2_6_9_1 doi: 10.1016/j.biopsych.2008.03.031 – ident: e_1_2_6_14_1 doi: 10.1016/j.neuroimage.2009.06.047 – ident: e_1_2_6_10_1 doi: 10.1523/JNEUROSCI.0359-10.2010 – ident: e_1_2_6_28_1 doi: 10.1523/JNEUROSCI.4599-09.2010 – ident: e_1_2_6_3_1 doi: 10.1016/j.neuroimage.2009.12.112 – ident: e_1_2_6_4_1 doi: 10.1016/j.neuropsychologia.2009.09.032 – ident: e_1_2_6_11_1 doi: 10.1002/hbm.20136 – ident: e_1_2_6_19_1 doi: 10.1016/j.neubiorev.2010.01.009 – ident: e_1_2_6_26_1 doi: 10.1016/j.neuroimage.2009.09.064 – ident: e_1_2_6_21_1 doi: 10.1016/j.bandl.2010.03.008 – ident: e_1_2_6_24_1 doi: 10.1093/scan/nsm015 – ident: e_1_2_6_18_1 doi: 10.1073/pnas.0905267106 – ident: e_1_2_6_13_1 doi: 10.1523/JNEUROSCI.4004-09.2009 – ident: e_1_2_6_23_1 doi: 10.1016/j.neuroimage.2004.03.052 – ident: e_1_2_6_2_1 doi: 10.1093/cercor/bhp055 – ident: e_1_2_6_25_1 doi: 10.1016/j.neuroimage.2008.10.061 – ident: e_1_2_6_15_1 doi: 10.1196/annals.1416.024 – ident: e_1_2_6_20_1 doi: 10.1006/nimg.2002.1131 – ident: e_1_2_6_12_1 doi: 10.1016/j.neuroimage.2008.01.065 – ident: e_1_2_6_16_1 doi: 10.1001/archgenpsychiatry.2009.91 – ident: e_1_2_6_5_1 doi: 10.1016/j.pnpbp.2009.08.020 – ident: e_1_2_6_22_1 doi: 10.1162/jocn.2009.21366 – ident: e_1_2_6_27_1 doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O – ident: e_1_2_6_7_1 doi: 10.1523/JNEUROSCI.5664-09.2010 – year: 2009 ident: e_1_2_6_8_1 article-title: Neurostructural predictors of Alzheimer's disease: A meta‐analysis of VBM studies publication-title: Neurobiol Aging – ident: e_1_2_6_6_1 doi: 10.1002/hbm.20718 – ident: e_1_2_6_17_1 doi: 10.1002/hbm.20854 – reference: 18486104 - Biol Psychiatry. 2008 Nov 1;64(9):774-81 – reference: 18985131 - Soc Cogn Affect Neurosci. 2007 Jun;2(2):150-8 – reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 – reference: 20413149 - Brain Lang. 2010 Jul;114(1):1-15 – reference: 19559800 - Neuroimage. 2009 Oct 15;48(1):18-20 – reference: 19652121 - Arch Gen Psychiatry. 2009 Aug;66(8):811-22 – reference: 19329570 - Cereb Cortex. 2009 Dec;19(12):2767-96 – reference: 12169260 - Neuroimage. 2002 Jul;16(3 Pt 1):765-80 – reference: 19929758 - J Cogn Neurosci. 2010 Dec;22(12):2864-85 – reference: 19800353 - Neuropsychologia. 2010 Jan;48(2):409-18 – reference: 19172646 - Hum Brain Mapp. 2009 Sep;30(9):2907-26 – reference: 20554870 - J Neurosci. 2010 Jun 16;30(24):8197-202 – reference: 20056149 - Neuroimage. 2010 Apr 15;50(3):1148-67 – reference: 19923283 - J Neurosci. 2009 Nov 18;29(46):14496-505 – reference: 20408186 - Hum Brain Mapp. 1996;4(1):58-73 – reference: 20445067 - J Neurosci. 2010 May 5;30(18):6409-21 – reference: 20089919 - J Neurosci. 2010 Jan 20;30(3):1110-7 – reference: 15275924 - Neuroimage. 2004 Aug;22(4):1679-93 – reference: 19076401 - Ann N Y Acad Sci. 2008 Dec;1145:237-59 – reference: 20109489 - Neurosci Biobehav Rev. 2010 Jul;34(8):1178-94 – reference: 15846811 - Hum Brain Mapp. 2005 May;25(1):155-64 – reference: 19603407 - Hum Brain Mapp. 2010 Feb;31(2):173-84 – reference: 20005012 - Neurobiol Aging. 2011 Oct;32(10):1733-41 – reference: 19800975 - Neuroimage. 2010 Jan 15;49(2):1728-40 – reference: 19063980 - Neuroimage. 2009 Mar;45(1 Suppl):S210-21 – reference: 19744536 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1390-4 – reference: 18387823 - Neuroimage. 2008 Jun;41(2):424-36 |
SSID | ssj0011501 |
Score | 2.582969 |
Snippet | Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate‐based meta‐analysis (CBMA) of neuroimaging results that has been... Activation Likelihood Estimation (ALE) is an objective, quantitative technique for coordinate-based meta-analysis (CBMA) of neuroimaging results that has been... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | activation likelihood estimation Algorithms Biological and medical sciences Brain - physiology Brain Mapping - methods Data Interpretation, Statistical fMRI functional neuroimaging Functional Neuroimaging - methods Fundamental and applied biological sciences. Psychology Humans Image Processing, Computer-Assisted Investigative techniques, diagnostic techniques (general aspects) magnetic resonance imaging Magnetic Resonance Imaging - methods Medical sciences meta-analysis Meta-Analysis as Topic Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Nervous system neuroimaging PET Radiodiagnosis. Nmr imagery. Nmr spectrometry Vertebrates: nervous system and sense organs |
Title | Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses |
URI | https://api.istex.fr/ark:/67375/WNG-4XGP2W0B-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21186 https://www.ncbi.nlm.nih.gov/pubmed/21305667 https://www.proquest.com/docview/1517355494 https://www.proquest.com/docview/911946243 https://pubmed.ncbi.nlm.nih.gov/PMC4791073 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhhdJLf5L-uEmDKCXk4o3tlWWbnpK2yVLYUEpK9lAQsiwRs7FSsruQ5tRH6DP2SToj2d5um0LpbbFHYj0ejb4Zz3wi5BWXWakN1yFg1zxkaabCXLEqNCyOuc4LWRXYKDw-4aNP7P0knayR110vjOeH6BNuuDKcv8YFLsvZ_pI09LxsBhC95Ei3jbVaCIg-9tRRCHRcsAVbbFiAB-5YhaJkvx-5shfdQbVeY22knIF6jD_X4jbg-Wf95K-41m1MRw_I5-6RfD3KdLCYlwN18xvb438-80NyvwWs9MBb2COypu0G2TywEKw3X-kudSWkLje_Qe6O2y_1m6QZ17Zu6hvYGSnmemv749v35XECVNpqed21ltC2tITWlmK3hc8V04t6Cn8ayZcpEoL4Tkva6LmEgdJRqujZY3J69O70zShsj3YIFTgBHubcJDqPyjwpo4oXRWpKZXJAFxUfypLnkWQF-AZwP4BoFJKwMQkvVMXKKFlUwydk3V5a_YxQrqMqB5yihxpkZCUTDpLMGFPKjMcmIHvdOxaqpT3H0zcuhCdsTgQoVTilBuRlL_rFc33cJrTrDKWXkFdTLI7LUnF2cizY5PhDchYdircB2VmxpH5AkiYQ9LJhQLY70xKt45gJAGAZQsCCBYT2t2HJ43ccafXlYiZgfyoYT3CGp94Ql3PHGBLyLCDZion2AsgmvnrH1ueOVZxlgBwzmHPPWeDfNSBGh2P34_m_i26Re4A0E5-72ibr86uFfgFobl7uuGX7E2YNS0s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NTQJeBmzAAmNYCE17SZekjpNIvGzAVmCpECpaX5DlJLYWdcnQ2kqwJ34Cv5FfwtlOUgpDQrxVydlqnPPdd5fzdwDPmYgyqZh0EbvGLg2j3I1zWriK-j6TcSKKRB8UTods8JG-HYfjFXjRnoWx_BBdwk3vDGOv9QbXCen9BWvoWVb1MHyJ2Q1Y0x29TUD1oSOP0lDHhFvoZN0EbXDLK-QF-93QJW-0phf2i66OFFNcIGU7W1wHPf-soPwV2RrXdHQHPrUPZStSJr35LOvlV7_xPf7vU9-F9QazkgOrZPdgRdYbsHlQY7xefSW7xFSRmvT8BtxMm4_1m1ClZV1W5RU6R6LTvWX949v3RUcBIupicd2cLiFNdQkpa6IPXNh0MTkvJ_ivNf8y0Zwg9rAlqeRM4EBhWFXk9D6Mjl6PXg7cpruDm6MdYG7MVCBjL4uDzCtYkoQqy1WMAKNgfZGx2BM0QfOAFghBTa552KjAN5r7ucpFUvQfwGp9UcstIEx6RYxQRfYlyohCBAwlqVIqExHzlQN77UvmecN8rhtwnHPL2RxwXFRuFtWBZ53oZ0v3cZ3QrtGUTkJcTnR9XBTy0-Exp-Pj98Gpd8hfObCzpErdgCAMMO6lfQe2W93ije2YcsRgkUaBCXWAdLdx1-tPOaKWF_MpRxeVUBboGR5aTVzM7euokEUOREs62gloQvHlO3V5ZojFaYTgMcI594wK_n0F-OAwNT8e_bvoU7g1GKUn_OTN8N1juI3AM7CprG1YnV3O5RMEd7Nsx-zhn9VqT2Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTZp4AbbxERjDQmjaS7okdRxHPG0rXfloNaGh9QHJchJbi7pk09pKsCf-BP5G_hLOzkcpDAnxViVnq7mcz7-73P0M8IrJKFGaKRexK3dpGKUuT2nmaur7TPFYZrFpFB6O2OATfTcOxyvwuumFqfgh2oSbWRnWX5sFfpXp_QVp6HlSdDB64ewOrFHmcWPSvY8td5RBOjbawj3WjdEFN7RCXrDfDl3ajNaMXr-Y4kg5Rf3o6mCL25DnnwWUvwJbuzP178Pn5pmqgpRJZz5LOunNb3SP__nQD-BejVjJQWViG7Ciyk3YOigxWi--kl1ia0htcn4T1of1p_otKIZ5mRf5DW6NxCR78_LHt--L8wSILLPFddtbQuraEpKXxLRbVMlicpFP8E8b9mViGEGqVktSqJnEgdJyqqjpQzjtvzk9Grj12Q5uil6AuZzpQHEv4UHiZSyOQ52kmiO8yFhXJox7ksboHND_IKRJDQsblfhCUz_VqYyz7iNYLS9L9QQIU17GEaiorkIZmcmAoSTVWicyYr52YK95xyKtec_N8RsXomJsDgQqVVilOvCyFb2qyD5uE9q1htJKyOuJqY6LQnE2OhZ0fHwSnHmHoufAzpIltQOCMMCol3Yd2G5MS9SeYyoQgUUGA8bUAdLexjVvPuTIUl3OpwI3qJiywMzwuDLExdy-iQlZ5EC0ZKKtgKETX75T5ueWVpxGCB0jnHPPWuDfNSAGh0P74-m_i76A9ZNeX3x4O3r_DO4i6gyqPNY2rM6u5-o5IrtZsmNX8E_f6U4e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimizing+within%E2%80%90experiment+and+within%E2%80%90group+effects+in+activation+likelihood+estimation+meta%E2%80%90analyses&rft.jtitle=Human+brain+mapping&rft.au=Turkeltaub%2C+Peter+E.&rft.au=Eickhoff%2C+Simon+B.&rft.au=Laird%2C+Angela+R.&rft.au=Fox%2C+Mick&rft.date=2012-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=33&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1002%2Fhbm.21186&rft.externalDBID=10.1002%252Fhbm.21186&rft.externalDocID=HBM21186 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |