Mitochondrial Functions in Infection and Immunity

Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited...

Full description

Saved in:
Bibliographic Details
Published inTrends in cell biology Vol. 30; no. 4; pp. 263 - 275
Main Authors Tiku, Varnesh, Tan, Man-Wah, Dikic, Ivan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2020
Elsevier BV
The Authors. Published by Elsevier Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses. Bacteria and viruses have evolved specific ways of targeting mitochondria to perturb mitochondrial function that can prove to be beneficial for these microbes.Many bacteria and viruses use specific virulence mechanisms to modulate mitochondrial dynamics, leading to either mitochondrial fusion or fission.Mitochondrial metabolism can also be impacted by bacterial and viral infections.While in some cases bacteria and viruses induce the mitochondrial cell death pathway, in others cell death is inhibited promoting intracellular bacterial and viral proliferation.Mitochondria regulate different innate immune signaling pathways induced upon bacterial or viral infections.
AbstractList Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses.Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses.
Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses. Bacteria and viruses have evolved specific ways of targeting mitochondria to perturb mitochondrial function that can prove to be beneficial for these microbes.Many bacteria and viruses use specific virulence mechanisms to modulate mitochondrial dynamics, leading to either mitochondrial fusion or fission.Mitochondrial metabolism can also be impacted by bacterial and viral infections.While in some cases bacteria and viruses induce the mitochondrial cell death pathway, in others cell death is inhibited promoting intracellular bacterial and viral proliferation.Mitochondria regulate different innate immune signaling pathways induced upon bacterial or viral infections.
Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses. Bacteria and viruses have evolved specific ways of targeting mitochondria to perturb mitochondrial function that can prove to be beneficial for these microbes. Many bacteria and viruses use specific virulence mechanisms to modulate mitochondrial dynamics, leading to either mitochondrial fusion or fission. Mitochondrial metabolism can also be impacted by bacterial and viral infections. While in some cases bacteria and viruses induce the mitochondrial cell death pathway, in others cell death is inhibited promoting intracellular bacterial and viral proliferation. Mitochondria regulate different innate immune signaling pathways induced upon bacterial or viral infections.
Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses.
Author Tan, Man-Wah
Dikic, Ivan
Tiku, Varnesh
Author_xml – sequence: 1
  givenname: Varnesh
  surname: Tiku
  fullname: Tiku, Varnesh
  organization: Department of Infectious Diseases, Genentech Inc, South San Francisco, USA
– sequence: 2
  givenname: Man-Wah
  surname: Tan
  fullname: Tan, Man-Wah
  email: tan.man-wah@gene.com
  organization: Department of Infectious Diseases, Genentech Inc, South San Francisco, USA
– sequence: 3
  givenname: Ivan
  surname: Dikic
  fullname: Dikic, Ivan
  email: dikic@biochem2.uni-frankfurt.de
  organization: Department of Infectious Diseases, Genentech Inc, South San Francisco, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32200805$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7Lb6A7yRAW-8mTEfM0kGQSjF6kLFG70O2ZMzNutMUpOZwv57s24ruhf1KoS8z8vJec7ISYgBCXnJaMMok2-3zQybhlNOG8oaSuUTsmJa9bWgWp-QFe0lr3XP21NylvOWUqo4E8_IqeCcUk27FWGf_RzhJgaXvB2rqyXA7GPIlQ_VOgz4-1bZ4Kr1NC3Bz7vn5Olgx4wv7s9z8u3qw9fLT_X1l4_ry4vrGjpGZa1ax5gTAmDDQYKAXqK1qpU4tAOTnPO23TjUDhxY2VKHSgnWC2BaC61RnJP3h97bZTOhAwxzsqO5TX6yaWei9ebfl-BvzPd4ZxTjshOqFLy5L0jx54J5NpPPgONoA8YlGy40063ulC7R10fRbVxSKN8zvBVS9x3ToqRe_T3Rn1EetlkC6hCAFHNOOBjws91vsAzoR8Oo2XszW1O8mb03Q5kp3grJjsiH8seYdwcGi4U7j8lk8BgAnU_Fm3HRP0r3RzSMPniw4w_c_Yf9BXD3wis
CitedBy_id crossref_primary_10_1016_j_micpath_2025_107429
crossref_primary_10_1038_s41598_020_79966_9
crossref_primary_10_1172_jci_insight_159600
crossref_primary_10_3389_fnagi_2020_614650
crossref_primary_10_1016_j_celrep_2024_114607
crossref_primary_10_3390_md18120639
crossref_primary_10_3390_jcm9092942
crossref_primary_10_1038_s41598_020_68053_8
crossref_primary_10_3389_fviro_2022_918806
crossref_primary_10_1016_j_hsr_2024_100155
crossref_primary_10_1111_cmi_13352
crossref_primary_10_3389_fimmu_2021_723393
crossref_primary_10_1146_annurev_physiol_042222_025000
crossref_primary_10_3390_brainsci12050536
crossref_primary_10_1080_14756366_2021_1937144
crossref_primary_10_1016_j_mib_2021_07_014
crossref_primary_10_1186_s12964_020_00659_x
crossref_primary_10_3389_fcimb_2020_609812
crossref_primary_10_3390_biology10090913
crossref_primary_10_3389_fcimb_2023_1228275
crossref_primary_10_3390_antiox10060872
crossref_primary_10_1093_mam_ozae044_422
crossref_primary_10_1016_j_bbamcr_2023_119486
crossref_primary_10_4081_jbr_2023_11724
crossref_primary_10_1002_1873_3468_14060
crossref_primary_10_1016_j_psj_2023_102663
crossref_primary_10_1038_s41586_022_04667_4
crossref_primary_10_1016_j_smim_2022_101644
crossref_primary_10_3390_antiox12040782
crossref_primary_10_1080_21505594_2021_2018767
crossref_primary_10_3389_fimmu_2024_1508787
crossref_primary_10_1002_jcla_24704
crossref_primary_10_1042_BST20220014
crossref_primary_10_1016_j_chom_2022_02_010
crossref_primary_10_1016_j_tibs_2021_12_007
crossref_primary_10_1186_s12979_021_00252_x
crossref_primary_10_1371_journal_pone_0303449
crossref_primary_10_3389_fmolb_2022_1016352
crossref_primary_10_3390_ijms21186841
crossref_primary_10_1186_s12915_024_01858_5
crossref_primary_10_1111_1758_2229_12938
crossref_primary_10_1186_s12979_024_00482_9
crossref_primary_10_1007_s12035_021_02399_6
crossref_primary_10_1093_lifemedi_lnac014
crossref_primary_10_3390_v14030611
crossref_primary_10_4236_aim_2023_138026
crossref_primary_10_3389_fonc_2022_881829
crossref_primary_10_1136_bjsports_2022_105734
crossref_primary_10_1093_function_zqaa019
crossref_primary_10_1083_jcb_202310134
crossref_primary_10_1159_000533602
crossref_primary_10_3389_fcimb_2024_1380736
crossref_primary_10_15252_embj_2022112006
crossref_primary_10_3390_ijms24031924
crossref_primary_10_3389_fcell_2021_738932
crossref_primary_10_3390_ijms23179739
crossref_primary_10_3390_pathogens12081005
crossref_primary_10_1038_s41586_024_07260_z
crossref_primary_10_1007_s11356_022_22949_2
crossref_primary_10_3390_biology10101000
crossref_primary_10_3390_ijms23179511
crossref_primary_10_1007_s00018_021_03787_w
crossref_primary_10_1016_j_jinf_2021_04_014
crossref_primary_10_1111_1348_0421_13206
crossref_primary_10_1016_j_rvsc_2024_105370
crossref_primary_10_1038_s41422_022_00766_z
crossref_primary_10_1016_j_isci_2024_109573
crossref_primary_10_1016_j_abb_2020_108668
crossref_primary_10_1096_fba_2022_00081
crossref_primary_10_1002_jor_25696
crossref_primary_10_3389_fphys_2021_730048
crossref_primary_10_3389_fmicb_2023_1256042
crossref_primary_10_1016_j_psj_2025_105005
crossref_primary_10_3390_genes13030435
crossref_primary_10_1093_cvr_cvab036
crossref_primary_10_1016_j_mito_2024_101979
crossref_primary_10_1007_s10571_021_01117_z
crossref_primary_10_3389_fphar_2020_581114
crossref_primary_10_1038_s41564_021_00964_2
crossref_primary_10_1242_dmm_048912
crossref_primary_10_3390_cells11111771
crossref_primary_10_1042_BCJ20190654
crossref_primary_10_1371_journal_pgen_1010103
crossref_primary_10_3389_fimmu_2021_748758
crossref_primary_10_3389_fimmu_2021_750969
crossref_primary_10_3390_molecules25163760
crossref_primary_10_15252_embr_202153086
crossref_primary_10_3389_fnmol_2023_1166879
crossref_primary_10_1111_apha_14150
crossref_primary_10_1016_j_envpol_2024_123676
crossref_primary_10_3390_ani14192777
crossref_primary_10_1016_j_celrep_2021_109989
crossref_primary_10_1515_hsz_2024_0043
crossref_primary_10_1016_j_jid_2023_03_1671
crossref_primary_10_1038_s41598_025_93147_6
crossref_primary_10_1016_j_cytogfr_2024_08_005
crossref_primary_10_1016_j_semcdb_2023_10_006
crossref_primary_10_1021_acschemneuro_1c00675
crossref_primary_10_1111_bph_15238
crossref_primary_10_1016_j_ejcb_2024_151401
crossref_primary_10_1186_s12979_020_00204_x
crossref_primary_10_1124_pharmrev_122_000568
crossref_primary_10_1152_ajpcell_00360_2021
crossref_primary_10_1172_JCI151540
crossref_primary_10_1007_s00424_023_02799_8
crossref_primary_10_1016_j_tcb_2021_09_010
crossref_primary_10_1016_j_ijbiomac_2024_130100
crossref_primary_10_1172_JCI162331
crossref_primary_10_3390_ijms25010574
crossref_primary_10_1016_j_bbrc_2022_06_084
crossref_primary_10_3389_fimmu_2022_935710
crossref_primary_10_1016_j_nantod_2023_101942
crossref_primary_10_1038_s41392_021_00800_3
crossref_primary_10_1186_s12951_022_01754_6
crossref_primary_10_3390_ijms22169092
crossref_primary_10_1128_mbio_01292_24
crossref_primary_10_1186_s13567_024_01284_z
crossref_primary_10_1016_j_phrs_2023_106835
crossref_primary_10_1016_j_apsb_2021_01_011
crossref_primary_10_1038_s41467_024_48824_x
crossref_primary_10_20900_immunometab20210003
crossref_primary_10_1016_j_bcp_2021_114809
crossref_primary_10_1515_hsz_2020_0135
crossref_primary_10_3390_membranes11110804
crossref_primary_10_1099_mgen_0_000862
crossref_primary_10_3389_fnhum_2021_656313
crossref_primary_10_17709_2410_1893_2024_11_1_4
crossref_primary_10_3390_ijms251910697
crossref_primary_10_1111_imcb_12677
crossref_primary_10_1016_j_cmet_2021_10_003
crossref_primary_10_1016_j_tem_2024_10_009
crossref_primary_10_1172_jci_insight_161096
crossref_primary_10_3390_ijms22126484
crossref_primary_10_1016_j_isci_2022_105342
crossref_primary_10_1016_j_isci_2024_111367
crossref_primary_10_1016_j_neuint_2021_105114
crossref_primary_10_3389_fcimb_2023_1135203
crossref_primary_10_1016_j_intimp_2023_109931
crossref_primary_10_3389_fvets_2021_640901
crossref_primary_10_3390_diseases8020019
crossref_primary_10_1016_j_pt_2022_02_002
crossref_primary_10_3390_ijms22136714
crossref_primary_10_3389_fcell_2021_723108
crossref_primary_10_1128_msystems_00135_23
crossref_primary_10_1016_j_intimp_2024_111808
crossref_primary_10_1186_s12967_023_04787_z
crossref_primary_10_1007_s00018_022_04207_3
crossref_primary_10_1016_j_bbabio_2020_148323
crossref_primary_10_1016_j_cmet_2023_10_011
crossref_primary_10_3390_antiox10071152
crossref_primary_10_3390_medsci13010028
crossref_primary_10_3390_biom13020226
crossref_primary_10_1007_s13577_022_00756_8
crossref_primary_10_1097_CCM_0000000000005913
crossref_primary_10_1038_s41564_022_01205_w
crossref_primary_10_1111_mpp_70061
crossref_primary_10_3390_ijms252312950
crossref_primary_10_3389_fimmu_2021_686029
crossref_primary_10_1016_j_devcel_2022_10_001
crossref_primary_10_1038_s41467_025_56927_2
crossref_primary_10_1186_s13578_023_01107_2
crossref_primary_10_1152_ajpheart_00531_2024
crossref_primary_10_1016_j_jsps_2020_08_024
crossref_primary_10_1038_s44298_024_00057_x
crossref_primary_10_1002_INMD_20230044
crossref_primary_10_1016_j_bbabio_2020_148277
crossref_primary_10_1016_j_tplants_2022_04_007
crossref_primary_10_1111_1462_2920_15376
crossref_primary_10_1016_j_jia_2023_12_027
crossref_primary_10_3390_ijms25021306
crossref_primary_10_1007_s10585_024_10290_6
crossref_primary_10_1089_dna_2021_0588
crossref_primary_10_1016_j_aquaculture_2022_738086
crossref_primary_10_3390_ijms22158325
crossref_primary_10_1016_j_cyto_2024_156669
crossref_primary_10_1021_acsnano_3c08165
crossref_primary_10_1093_exposome_osac002
crossref_primary_10_1016_j_tiv_2023_105740
crossref_primary_10_1016_j_fct_2024_114522
crossref_primary_10_1590_0074_02760210127
crossref_primary_10_3389_fcimb_2020_593805
crossref_primary_10_3389_fcell_2022_938177
crossref_primary_10_1111_joim_13792
crossref_primary_10_1080_08830185_2021_1990277
crossref_primary_10_1016_j_chom_2023_11_020
crossref_primary_10_1128_mBio_00276_21
crossref_primary_10_1016_j_isci_2023_107180
crossref_primary_10_1016_j_neuint_2021_104958
crossref_primary_10_1016_j_tim_2021_09_010
crossref_primary_10_1016_j_molcel_2022_02_030
crossref_primary_10_1038_s41598_024_52582_7
crossref_primary_10_1016_j_pbi_2024_102529
crossref_primary_10_3389_fcell_2021_795685
crossref_primary_10_3389_fphar_2020_578599
crossref_primary_10_3389_fcimb_2022_920425
crossref_primary_10_1128_spectrum_00718_22
crossref_primary_10_3390_biom13071032
crossref_primary_10_3389_fcimb_2023_1130197
crossref_primary_10_1128_IAI_00687_20
crossref_primary_10_3389_fendo_2023_1346441
crossref_primary_10_1016_j_isci_2020_101631
crossref_primary_10_3389_fimmu_2023_1160035
crossref_primary_10_3389_fimmu_2020_622602
crossref_primary_10_1007_s00705_022_05415_9
crossref_primary_10_1074_mcp_RA120_002370
crossref_primary_10_1016_j_vetmic_2024_110298
crossref_primary_10_1126_science_abi4343
crossref_primary_10_1016_j_vetmic_2024_110292
crossref_primary_10_3389_fgene_2021_667936
crossref_primary_10_3390_jof7020070
crossref_primary_10_1038_s41582_022_00715_9
crossref_primary_10_1038_s42255_022_00605_w
crossref_primary_10_3390_ijms23073621
crossref_primary_10_1016_j_jbc_2024_107359
Cites_doi 10.1016/j.cell.2014.11.036
10.1371/journal.pone.0021285
10.1016/j.chom.2016.07.008
10.1083/jcb.200309161
10.1016/j.chom.2017.07.020
10.1006/abbi.1997.0264
10.1128/mBio.02550-18
10.1084/jem.20110996
10.1073/pnas.1100126108
10.1371/journal.ppat.1002124
10.1038/ni.2550
10.1126/science.aao6047
10.1016/j.ijmm.2014.03.006
10.1016/j.mito.2017.11.007
10.1074/jbc.M110.137885
10.1016/j.cub.2017.09.015
10.1074/jbc.M115.689950
10.1126/science.1207385
10.3389/fimmu.2016.00150
10.1073/pnas.1212831109
10.1091/mbc.e12-10-0721
10.1126/scisignal.2000287
10.1016/j.chom.2018.10.005
10.1016/j.celrep.2014.10.004
10.1074/jbc.M114.597187
10.1186/s40779-018-0187-0
10.1016/j.mib.2012.11.008
10.1016/j.immuni.2013.08.001
10.1083/jcb.201608063
10.1038/nature14156
10.1016/S0014-5793(97)00542-5
10.1016/j.antiviral.2013.06.016
10.1021/pr2003352
10.1016/j.cell.2005.08.012
10.1016/j.mito.2011.08.008
10.1083/jcb.201007152
10.1016/j.cell.2013.02.054
10.4049/jimmunol.1501612
10.1128/IAI.73.1.504-513.2005
10.1083/jcb.200211046
10.1074/jbc.273.12.7052
10.1242/jcs.051193
10.1016/j.nbd.2015.11.015
10.1038/sj.embor.7401161
10.1371/journal.ppat.1002057
10.1016/j.cell.2011.06.041
10.4161/15548627.2014.981915
10.1083/jcb.201308006
10.1073/pnas.1315784110
10.1371/journal.ppat.1005264
10.1189/jlb.0703328
10.1074/jbc.M602796200
10.1038/embor.2011.54
10.1038/nature09663
10.1128/IAI.73.3.1861-1864.2005
10.1128/JVI.05605-11
10.1084/jem.20040402
10.1111/imm.12464
10.1371/journal.pone.0011606
10.1038/nature09973
10.1016/j.chom.2008.12.011
10.1371/journal.ppat.0010004
10.1164/rccm.200701-161OC
10.1242/jcs.169136
10.1038/cdd.2017.186
10.1038/cddis.2015.409
10.1016/j.cell.2014.11.037
10.1111/cmi.12962
10.1523/JNEUROSCI.2455-14.2015
10.1038/ni.2563
10.1038/nsmb.1949
10.1016/j.tim.2013.02.003
10.1016/j.immuni.2012.01.009
10.1056/NEJMra1215233
10.1242/jcs.185165
10.1016/j.virol.2016.10.022
10.1038/ni.1980
10.1038/s41590-019-0324-2
10.1038/emboj.2009.89
10.4049/jimmunol.1301170
10.1083/jcb.201508099
10.1186/s13054-015-0989-3
10.1038/nri.2016.58
10.1111/cmi.12066
10.1016/j.stem.2016.07.019
10.1038/nature06501
10.1073/pnas.0609012103
10.1038/s41467-018-05321-2
10.4049/jimmunol.1303196
10.1093/emboj/19.23.6361
10.1073/pnas.0407043101
10.1073/pnas.0611030104
10.1038/srep18176
10.1073/pnas.1105175108
10.1128/JB.00227-17
10.18632/oncotarget.2028
10.1002/eji.201546259
10.1371/journal.ppat.1000719
10.4049/jimmunol.176.6.3707
10.1038/ncomms5713
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright Elsevier BV Apr 2020
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: Copyright Elsevier BV Apr 2020
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7QL
7QP
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1016/j.tcb.2020.01.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-3088
EndPage 275
ExternalDocumentID PMC7126537
32200805
10_1016_j_tcb_2020_01_006
S0962892420300180
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
186
1B1
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IH2
IHE
J1W
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XPP
Y6R
YNT
Z5R
~G-
6I.
AACTN
AAFTH
AAIAV
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RCE
RIG
VQA
ZA5
AAYXX
AGRNS
BNPGV
CITATION
SSH
NPM
7QL
7QP
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5106-74d11d33ccb2c6c3c96eaa746ef4f1622244bde8dcdca640de773193c188388e3
IEDL.DBID .~1
ISSN 0962-8924
1879-3088
IngestDate Thu Aug 21 18:34:21 EDT 2025
Fri Jul 11 02:12:12 EDT 2025
Wed Aug 13 06:09:58 EDT 2025
Wed Feb 19 02:29:55 EST 2025
Thu Apr 24 22:58:24 EDT 2025
Tue Jul 01 01:53:43 EDT 2025
Fri Feb 23 02:48:07 EST 2024
Tue Aug 26 16:33:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords viruses
bacteria
cell death
innate immunity
mitochondrial morphology
mitochondrial metabolism
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5106-74d11d33ccb2c6c3c96eaa746ef4f1622244bde8dcdca640de773193c188388e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0962892420300180
PMID 32200805
PQID 2436895183
PQPubID 2045389
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7126537
proquest_miscellaneous_2381848578
proquest_journals_2436895183
pubmed_primary_32200805
crossref_citationtrail_10_1016_j_tcb_2020_01_006
crossref_primary_10_1016_j_tcb_2020_01_006
elsevier_sciencedirect_doi_10_1016_j_tcb_2020_01_006
elsevier_clinicalkey_doi_10_1016_j_tcb_2020_01_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Trends in cell biology
PublicationTitleAlternate Trends Cell Biol
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
The Authors. Published by Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: The Authors. Published by Elsevier Ltd
References Shi (bb0135) 2014; 193
Somashekar (bb0170) 2011; 10
Ojcius (bb0200) 1998; 273
Shimada (bb0425) 2012; 36
Abuaita (bb0380) 2018; 24
Vastag (bb0205) 2011; 7
Cipolat (bb0020) 2004; 101
Chen (bb0245) 2006; 176
Donnino (bb0295) 2015; 19
Laguna (bb0265) 2006; 103
McArthur (bb0510) 2018; 359
Galmiche (bb0085) 2002; 19
Wood (bb0255) 2015; 290
Anand (bb0015) 2014; 204
West (bb0345) 2011; 472
Dong (bb0275) 2005; 73
Osellame (bb0060) 2016; 129
Wi (bb0350) 2014; 289
Sweeney (bb0365) 2010; 5
Broz, Dixit (bb0390) 2016; 16
Stavru (bb0080) 2013; 110
Kale (bb0230) 2018; 25
White (bb0505) 2014; 159
Jabir (bb0465) 2015; 11
Lachmandas (bb0175) 2016; 46
Abdul-Sater (bb0455) 2010; 285
Hou (bb0475) 2011; 146
Kim (bb0145) 2018; 41
Barry (bb0415) 2018; 9
Fischer (bb0280) 2004; 200
Zamarin (bb0305) 2005; 1
Longo, Archer (bb0030) 2013; 369
Otera (bb0055) 2010; 191
Nakahira (bb0420) 2011; 12
Joubert (bb0330) 2012; 209
Yoshizumi (bb0120) 2014; 5
Kaarbø (bb0210) 2011; 11
Yasukawa (bb0480) 2009; 2
Stavru (bb0075) 2011; 108
Subramanian (bb0405) 2013; 153
Klingenbeck (bb0270) 2013; 15
Bender (bb0485) 2015; 11
Fields (bb0140) 2016; 86
Xia (bb0335) 2014; 5
Tondera (bb0010) 2009; 278
Appelberg (bb0180) 2015; 145
Chopra (bb0300) 2011; 6
Vladimer (bb0385) 2013; 16
Tattoli (bb0445) 2008; 9
Elgass (bb0070) 2015; 128
Omsland (bb0195) 2012; 109
Zhang (bb0290) 2018; 5
Misawa (bb0435) 2013; 14
Jain (bb0090) 2011; 108
Hernandez (bb0250) 2003; 163
Shi (bb0160) 2019; 10
Seth (bb0470) 2005; 122
Macreadie (bb0315) 1997; 410
Ruhe (bb0115) 2013; 21
Banga (bb0260) 2007; 104
Koterski (bb0235) 2005; 73
Shi (bb0355) 2011; 7
West (bb0495) 2015; 520
Siegl (bb0190) 2014; 9
Zhou (bb0395) 2011; 469
Roger (bb0005) 2017; 27
Pirbhai (bb0285) 2006; 281
Diamond (bb0220) 2010; 6
Iyer (bb0430) 2013; 39
Palmer (bb0040) 2011; 12
Park (bb0410) 2013; 191
Shi (bb0165) 2016; 7
Arnoult (bb0450) 2009; 122
Otera (bb0050) 2016; 212
Chatel-Chaix (bb0130) 2016; 20
Escoll (bb0100) 2017; 22
Mears (bb0035) 2011; 18
Shi (bb0150) 2015; 5
Dixit (bb0490) 2010; 20
Gleeson (bb0155) 2016; 196
Rasmussen (bb0225) 2011; 85
Friedman (bb0065) 2011; 334
Zhang (bb0460) 2019; 20
Rongvaux (bb0500) 2014; 159
Takahashi (bb0215) 2013; 99
Ma (bb0360) 2015; 35
Loson (bb0045) 2013; 24
Moore (bb0440) 2008; 451
Czyz (bb0185) 2017; 199
Chowdhury (bb0105) 2017; 216
Datan (bb0320) 2016; 7
Chen (bb0025) 2003; 160
Collins (bb0340) 2004; 75
Liang (bb0325) 2016; 19
Barbier (bb0125) 2017; 500
Huang (bb0310) 2012; 7
Carneiro (bb0240) 2009; 5
Haden (bb0375) 2007; 176
Lum, Morona (bb0095) 2014; 304
Lupfer (bb0400) 2013; 14
Kantrow (bb0370) 1997; 345
Kurihara (bb0110) 2019; 21
Rasmussen (10.1016/j.tcb.2020.01.006_bb0225) 2011; 85
Loson (10.1016/j.tcb.2020.01.006_bb0045) 2013; 24
Galmiche (10.1016/j.tcb.2020.01.006_bb0085) 2002; 19
Kantrow (10.1016/j.tcb.2020.01.006_bb0370) 1997; 345
Jain (10.1016/j.tcb.2020.01.006_bb0090) 2011; 108
Shi (10.1016/j.tcb.2020.01.006_bb0160) 2019; 10
Collins (10.1016/j.tcb.2020.01.006_bb0340) 2004; 75
Elgass (10.1016/j.tcb.2020.01.006_bb0070) 2015; 128
Stavru (10.1016/j.tcb.2020.01.006_bb0080) 2013; 110
Vladimer (10.1016/j.tcb.2020.01.006_bb0385) 2013; 16
Tondera (10.1016/j.tcb.2020.01.006_bb0010) 2009; 278
Shi (10.1016/j.tcb.2020.01.006_bb0165) 2016; 7
Appelberg (10.1016/j.tcb.2020.01.006_bb0180) 2015; 145
Anand (10.1016/j.tcb.2020.01.006_bb0015) 2014; 204
Abuaita (10.1016/j.tcb.2020.01.006_bb0380) 2018; 24
Mears (10.1016/j.tcb.2020.01.006_bb0035) 2011; 18
Abdul-Sater (10.1016/j.tcb.2020.01.006_bb0455) 2010; 285
West (10.1016/j.tcb.2020.01.006_bb0345) 2011; 472
Cipolat (10.1016/j.tcb.2020.01.006_bb0020) 2004; 101
Arnoult (10.1016/j.tcb.2020.01.006_bb0450) 2009; 122
Shi (10.1016/j.tcb.2020.01.006_bb0135) 2014; 193
Longo (10.1016/j.tcb.2020.01.006_bb0030) 2013; 369
Fischer (10.1016/j.tcb.2020.01.006_bb0280) 2004; 200
Pirbhai (10.1016/j.tcb.2020.01.006_bb0285) 2006; 281
Sweeney (10.1016/j.tcb.2020.01.006_bb0365) 2010; 5
Zamarin (10.1016/j.tcb.2020.01.006_bb0305) 2005; 1
Palmer (10.1016/j.tcb.2020.01.006_bb0040) 2011; 12
Liang (10.1016/j.tcb.2020.01.006_bb0325) 2016; 19
Czyz (10.1016/j.tcb.2020.01.006_bb0185) 2017; 199
Yoshizumi (10.1016/j.tcb.2020.01.006_bb0120) 2014; 5
Moore (10.1016/j.tcb.2020.01.006_bb0440) 2008; 451
Kaarbø (10.1016/j.tcb.2020.01.006_bb0210) 2011; 11
Misawa (10.1016/j.tcb.2020.01.006_bb0435) 2013; 14
Chatel-Chaix (10.1016/j.tcb.2020.01.006_bb0130) 2016; 20
Carneiro (10.1016/j.tcb.2020.01.006_bb0240) 2009; 5
Kim (10.1016/j.tcb.2020.01.006_bb0145) 2018; 41
Fields (10.1016/j.tcb.2020.01.006_bb0140) 2016; 86
Ma (10.1016/j.tcb.2020.01.006_bb0360) 2015; 35
Seth (10.1016/j.tcb.2020.01.006_bb0470) 2005; 122
Chen (10.1016/j.tcb.2020.01.006_bb0025) 2003; 160
West (10.1016/j.tcb.2020.01.006_bb0495) 2015; 520
Lum (10.1016/j.tcb.2020.01.006_bb0095) 2014; 304
Escoll (10.1016/j.tcb.2020.01.006_bb0100) 2017; 22
Chen (10.1016/j.tcb.2020.01.006_bb0245) 2006; 176
Lachmandas (10.1016/j.tcb.2020.01.006_bb0175) 2016; 46
Xia (10.1016/j.tcb.2020.01.006_bb0335) 2014; 5
Stavru (10.1016/j.tcb.2020.01.006_bb0075) 2011; 108
Vastag (10.1016/j.tcb.2020.01.006_bb0205) 2011; 7
Shi (10.1016/j.tcb.2020.01.006_bb0355) 2011; 7
Broz (10.1016/j.tcb.2020.01.006_bb0390) 2016; 16
Chowdhury (10.1016/j.tcb.2020.01.006_bb0105) 2017; 216
Iyer (10.1016/j.tcb.2020.01.006_bb0430) 2013; 39
Bender (10.1016/j.tcb.2020.01.006_bb0485) 2015; 11
McArthur (10.1016/j.tcb.2020.01.006_bb0510) 2018; 359
Haden (10.1016/j.tcb.2020.01.006_bb0375) 2007; 176
Somashekar (10.1016/j.tcb.2020.01.006_bb0170) 2011; 10
Laguna (10.1016/j.tcb.2020.01.006_bb0265) 2006; 103
Zhou (10.1016/j.tcb.2020.01.006_bb0395) 2011; 469
Macreadie (10.1016/j.tcb.2020.01.006_bb0315) 1997; 410
Zhang (10.1016/j.tcb.2020.01.006_bb0290) 2018; 5
Kale (10.1016/j.tcb.2020.01.006_bb0230) 2018; 25
Friedman (10.1016/j.tcb.2020.01.006_bb0065) 2011; 334
Otera (10.1016/j.tcb.2020.01.006_bb0055) 2010; 191
Jabir (10.1016/j.tcb.2020.01.006_bb0465) 2015; 11
Takahashi (10.1016/j.tcb.2020.01.006_bb0215) 2013; 99
Hernandez (10.1016/j.tcb.2020.01.006_bb0250) 2003; 163
Otera (10.1016/j.tcb.2020.01.006_bb0050) 2016; 212
Wood (10.1016/j.tcb.2020.01.006_bb0255) 2015; 290
Kurihara (10.1016/j.tcb.2020.01.006_bb0110) 2019; 21
Yasukawa (10.1016/j.tcb.2020.01.006_bb0480) 2009; 2
Lupfer (10.1016/j.tcb.2020.01.006_bb0400) 2013; 14
Joubert (10.1016/j.tcb.2020.01.006_bb0330) 2012; 209
White (10.1016/j.tcb.2020.01.006_bb0505) 2014; 159
Nakahira (10.1016/j.tcb.2020.01.006_bb0420) 2011; 12
Datan (10.1016/j.tcb.2020.01.006_bb0320) 2016; 7
Wi (10.1016/j.tcb.2020.01.006_bb0350) 2014; 289
Ojcius (10.1016/j.tcb.2020.01.006_bb0200) 1998; 273
Rongvaux (10.1016/j.tcb.2020.01.006_bb0500) 2014; 159
Shi (10.1016/j.tcb.2020.01.006_bb0150) 2015; 5
Park (10.1016/j.tcb.2020.01.006_bb0410) 2013; 191
Siegl (10.1016/j.tcb.2020.01.006_bb0190) 2014; 9
Gleeson (10.1016/j.tcb.2020.01.006_bb0155) 2016; 196
Shimada (10.1016/j.tcb.2020.01.006_bb0425) 2012; 36
Hou (10.1016/j.tcb.2020.01.006_bb0475) 2011; 146
Banga (10.1016/j.tcb.2020.01.006_bb0260) 2007; 104
Donnino (10.1016/j.tcb.2020.01.006_bb0295) 2015; 19
Chopra (10.1016/j.tcb.2020.01.006_bb0300) 2011; 6
Dong (10.1016/j.tcb.2020.01.006_bb0275) 2005; 73
Barbier (10.1016/j.tcb.2020.01.006_bb0125) 2017; 500
Omsland (10.1016/j.tcb.2020.01.006_bb0195) 2012; 109
Huang (10.1016/j.tcb.2020.01.006_bb0310) 2012; 7
Roger (10.1016/j.tcb.2020.01.006_bb0005) 2017; 27
Dixit (10.1016/j.tcb.2020.01.006_bb0490) 2010; 20
Klingenbeck (10.1016/j.tcb.2020.01.006_bb0270) 2013; 15
Zhang (10.1016/j.tcb.2020.01.006_bb0460) 2019; 20
Tattoli (10.1016/j.tcb.2020.01.006_bb0445) 2008; 9
Barry (10.1016/j.tcb.2020.01.006_bb0415) 2018; 9
Diamond (10.1016/j.tcb.2020.01.006_bb0220) 2010; 6
Koterski (10.1016/j.tcb.2020.01.006_bb0235) 2005; 73
Osellame (10.1016/j.tcb.2020.01.006_bb0060) 2016; 129
Subramanian (10.1016/j.tcb.2020.01.006_bb0405) 2013; 153
Ruhe (10.1016/j.tcb.2020.01.006_bb0115) 2013; 21
References_xml – volume: 12
  start-page: 565
  year: 2011
  end-page: 573
  ident: bb0040
  article-title: MiD49 and MiD51, new components of the mitochondrial fission machinery
  publication-title: EMBO Rep.
– volume: 128
  start-page: 2795
  year: 2015
  end-page: 2804
  ident: bb0070
  article-title: Analysis of ER-mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells
  publication-title: J. Cell Sci.
– volume: 46
  start-page: 2574
  year: 2016
  end-page: 2586
  ident: bb0175
  article-title: Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against
  publication-title: Eur. J. Immunol.
– volume: 6
  year: 2010
  ident: bb0220
  article-title: Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics
  publication-title: PLoS Pathog.
– volume: 122
  start-page: 3161
  year: 2009
  end-page: 3168
  ident: bb0450
  article-title: An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix
  publication-title: J. Cell Sci.
– volume: 7
  year: 2016
  ident: bb0320
  article-title: Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation
  publication-title: Cell Death Dis.
– volume: 19
  start-page: 663
  year: 2016
  end-page: 671
  ident: bb0325
  article-title: Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy
  publication-title: Cell Stem Cell
– volume: 500
  start-page: 149
  year: 2017
  end-page: 160
  ident: bb0125
  article-title: Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission
  publication-title: Virology
– volume: 85
  start-page: 11646
  year: 2011
  end-page: 11654
  ident: bb0225
  article-title: Systems virology identifies a mitochondrial fatty acid oxidation enzyme, dodecenoyl coenzyme A delta isomerase, required for Hepatitis C virus replication and likely pathogenesis
  publication-title: J. Virol.
– volume: 14
  start-page: 454
  year: 2013
  end-page: 460
  ident: bb0435
  article-title: Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome
  publication-title: Nat. Immunol.
– volume: 204
  start-page: 919
  year: 2014
  end-page: 929
  ident: bb0015
  article-title: The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
  publication-title: J. Cell Biol.
– volume: 7
  year: 2011
  ident: bb0205
  article-title: Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism
  publication-title: PLoS Pathog.
– volume: 11
  start-page: 935
  year: 2011
  end-page: 945
  ident: bb0210
  article-title: Human cytomegalovirus infection increases mitochondrial biogenesis
  publication-title: Mitochondrion
– volume: 18
  start-page: 20
  year: 2011
  end-page: 26
  ident: bb0035
  article-title: Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission
  publication-title: Nat. Struct. Mol. Biol.
– volume: 122
  start-page: 669
  year: 2005
  end-page: 682
  ident: bb0470
  article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3
  publication-title: Cell
– volume: 16
  start-page: 407
  year: 2016
  end-page: 420
  ident: bb0390
  article-title: Inflammasomes: mechanism of assembly, regulation and signalling
  publication-title: Nat. Rev. Immunol.
– volume: 5
  start-page: 123
  year: 2009
  end-page: 136
  ident: bb0240
  article-title: induces mitochondrial dysfunction and cell death in nonmyleoid cells
  publication-title: Cell Host Microbe
– volume: 334
  start-page: 358
  year: 2011
  end-page: 362
  ident: bb0065
  article-title: ER tubules mark sites of mitochondrial division
  publication-title: Science (80-. )
– volume: 73
  start-page: 504
  year: 2005
  end-page: 513
  ident: bb0235
  article-title: Virulent
  publication-title: Infect. Immun.
– volume: 15
  start-page: 675
  year: 2013
  end-page: 687
  ident: bb0270
  article-title: The
  publication-title: Cell. Microbiol.
– volume: 191
  start-page: 4358
  year: 2013
  end-page: 4366
  ident: bb0410
  article-title: The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates Its inflammasome activity
  publication-title: J. Immunol.
– volume: 39
  start-page: 311
  year: 2013
  end-page: 323
  ident: bb0430
  article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation
  publication-title: Immunity
– volume: 11
  start-page: 166
  year: 2015
  end-page: 182
  ident: bb0465
  article-title: Mitochondrial damage contributes to
  publication-title: Autophagy
– volume: 145
  start-page: 498
  year: 2015
  end-page: 507
  ident: bb0180
  article-title: The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-γ
  publication-title: Immunology
– volume: 86
  start-page: 154
  year: 2016
  end-page: 169
  ident: bb0140
  article-title: HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders
  publication-title: Neurobiol. Dis.
– volume: 103
  start-page: 18745
  year: 2006
  end-page: 18750
  ident: bb0265
  article-title: A
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 22
  start-page: 302
  year: 2017
  end-page: 316
  ident: bb0100
  article-title: modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages
  publication-title: Cell Host Microbe
– volume: 7
  year: 2012
  ident: bb0310
  article-title: HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction
  publication-title: PLoS One
– volume: 20
  start-page: 433
  year: 2019
  end-page: 446
  ident: bb0460
  article-title: Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing
  publication-title: Nat. Immunol.
– volume: 273
  start-page: 7052
  year: 1998
  end-page: 7058
  ident: bb0200
  article-title: Enhancement of ATP levels and glucose metabolism during an infection by
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 150
  year: 2016
  ident: bb0165
  article-title: Immunometabolism in tuberculosis
  publication-title: Front. Immunol.
– volume: 196
  start-page: 2444
  year: 2016
  end-page: 2449
  ident: bb0155
  article-title: Cutting Edge:
  publication-title: J. Immunol.
– volume: 5
  year: 2010
  ident: bb0365
  article-title: Differential regulation of the PGC family of genes in a mouse model of
  publication-title: PLoS One
– volume: 99
  start-page: 238
  year: 2013
  end-page: 244
  ident: bb0215
  article-title: Increased mitochondrial functions in human glioblastoma cells persistently infected with measles virus
  publication-title: Antivir. Res.
– volume: 5
  start-page: 41
  year: 2018
  ident: bb0290
  article-title: Potential therapy strategy: targeting mitochondrial dysfunction in sepsis
  publication-title: Mil. Med. Res.
– volume: 9
  start-page: 918
  year: 2014
  end-page: 929
  ident: bb0190
  article-title: Tumor suppressor p53 alters host cell metabolism to limit
  publication-title: Cell Rep.
– volume: 19
  start-page: 6361
  year: 2002
  end-page: 6370
  ident: bb0085
  article-title: The N-terminal 34 kDa fragment of
  publication-title: EMBO J.
– volume: 281
  start-page: 31495
  year: 2006
  end-page: 31501
  ident: bb0285
  article-title: The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in
  publication-title: J. Biol. Chem.
– volume: 41
  start-page: 21
  year: 2018
  end-page: 27
  ident: bb0145
  article-title: The essential role of mitochondrial dynamics in antiviral immunity
  publication-title: Mitochondrion
– volume: 10
  start-page: 4186
  year: 2011
  end-page: 4195
  ident: bb0170
  article-title: Metabolic profiling of lung granuloma in
  publication-title: J. Proteome Res.
– volume: 451
  start-page: 573-57
  year: 2008
  ident: bb0440
  article-title: NLRX1 is a regulator of mitochondrial antiviral immunity
  publication-title: Nature
– volume: 5
  start-page: 18176
  year: 2015
  ident: bb0150
  article-title: Infection with
  publication-title: Sci. Rep.
– volume: 209
  start-page: 1029
  year: 2012
  end-page: 1047
  ident: bb0330
  article-title: Chikungunya virus-induced autophagy delays caspase-dependent cell death
  publication-title: J. Exp. Med.
– volume: 345
  start-page: 278
  year: 1997
  end-page: 288
  ident: bb0370
  article-title: Oxidative metabolism in rat hepatocytes and mitochondria during sepsis
  publication-title: Arch. Biochem. Biophys.
– volume: 12
  start-page: 222
  year: 2011
  end-page: 230
  ident: bb0420
  article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
  publication-title: Nat. Immunol.
– volume: 369
  start-page: 2236
  year: 2013
  end-page: 2251
  ident: bb0030
  article-title: Mitochondrial dynamics-mitochondrial fission and fusion in human diseases
  publication-title: N. Engl. J. Med.
– volume: 159
  start-page: 1563
  year: 2014
  end-page: 1577
  ident: bb0500
  article-title: Apoptotic caspases prevent the induction of type i interferons by mitochondrial DNA
  publication-title: Cell
– volume: 200
  start-page: 905
  year: 2004
  end-page: 916
  ident: bb0280
  article-title: inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins
  publication-title: J. Exp. Med.
– volume: 520
  start-page: 553
  year: 2015
  end-page: 557
  ident: bb0495
  article-title: Mitochondrial DNA stress primes the antiviral innate immune response
  publication-title: Nature
– volume: 1
  year: 2005
  ident: bb0305
  article-title: Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1
  publication-title: PLoS Pathog.
– volume: 36
  start-page: 401
  year: 2012
  end-page: 414
  ident: bb0425
  article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
  publication-title: Immunity
– volume: 21
  year: 2019
  ident: bb0110
  article-title: targets mitochondrial dynamics to promote intracellular survival and proliferation
  publication-title: Cell. Microbiol.
– volume: 289
  start-page: 35205
  year: 2014
  end-page: 35214
  ident: bb0350
  article-title: TAK1-ECSIT-TRAF6 complex plays a key role in the TLR4 signal to activate NF-κB
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 230
  year: 2013
  end-page: 237
  ident: bb0115
  article-title: Bacterial contact-dependent growth inhibition
  publication-title: Trends Microbiol.
– volume: 108
  start-page: 3612
  year: 2011
  end-page: 3617
  ident: bb0075
  article-title: Listeria monocytogenes transiently alters mitochondrial dynamics during infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 20
  start-page: 342
  year: 2016
  end-page: 356
  ident: bb0130
  article-title: Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses
  publication-title: Cell Host Microbe
– volume: 176
  start-page: 3707
  year: 2006
  end-page: 3716
  ident: bb0245
  article-title: A mechanism of virulence: virulent
  publication-title: J. Immunol.
– volume: 10
  start-page: e02550-18
  year: 2019
  ident: bb0160
  article-title: Biphasic dynamics of macrophage immunometabolism during
  publication-title: mBio
– volume: 24
  start-page: 625
  year: 2018
  end-page: 636
  ident: bb0380
  article-title: Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized
  publication-title: Cell Host Microbe
– volume: 304
  start-page: 530
  year: 2014
  end-page: 541
  ident: bb0095
  article-title: Dynamin-related protein Drp1 and mitochondria are important for
  publication-title: Int. J. Med. Microbiol.
– volume: 35
  start-page: 10799
  year: 2015
  end-page: 10814
  ident: bb0360
  article-title: Toll-like receptors promote mitochondrial translocation of nuclear transcription factor nuclear factor of activated T-cells in prolonged microglial activation
  publication-title: J. Neurosci.
– volume: 2
  year: 2009
  ident: bb0480
  article-title: Mitofusin 2 inhibits mitochondrial antiviral signaling
  publication-title: Sci. Signal.
– volume: 199
  year: 2017
  ident: bb0185
  article-title: induces a Warburg shift in host metabolism that is linked to enhanced intracellular survival of the pathogen
  publication-title: J. Bacteriol.
– volume: 410
  start-page: 145
  year: 1997
  end-page: 149
  ident: bb0315
  article-title: HIV-1 protein Vpr causes gross mitochondrial dysfunction in the yeast
  publication-title: FEBS Lett.
– volume: 25
  start-page: 65
  year: 2018
  end-page: 80
  ident: bb0230
  article-title: BCL-2 family proteins: changing partners in the dance towards death
  publication-title: Cell Death Differ.
– volume: 20
  year: 2010
  ident: bb0490
  article-title: Peroxisomes are signaling platforms for antiviral innate immunity
  publication-title: Cell
– volume: 278
  start-page: 1589
  year: 2009
  end-page: 1600
  ident: bb0010
  article-title: SlP-2 is required for stress-induced mitochondrial hyperfusion
  publication-title: EMBO J.
– volume: 176
  start-page: 768
  year: 2007
  end-page: 777
  ident: bb0375
  article-title: Mitochondrial biogenesis restores oxidative metabolism during
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 108
  start-page: 16032
  year: 2011
  end-page: 16037
  ident: bb0090
  article-title: vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 129
  start-page: 2170
  year: 2016
  end-page: 2181
  ident: bb0060
  article-title: Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission
  publication-title: J. Cell Sci.
– volume: 290
  start-page: 29063
  year: 2015
  end-page: 29073
  ident: bb0255
  article-title: ExoT induces mitochondrial apoptosis in target host cells in a manner that depends on its GTPase-activating protein (GAP) domain activity
  publication-title: J. Biol. Chem.
– volume: 163
  start-page: 1123
  year: 2003
  end-page: 1131
  ident: bb0250
  article-title: A
  publication-title: J. Cell Biol.
– volume: 146
  start-page: 448
  year: 2011
  end-page: 461
  ident: bb0475
  article-title: MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
  publication-title: Cell
– volume: 19
  start-page: 275
  year: 2015
  ident: bb0295
  article-title: Ubiquinol (reduced coenzyme Q10) in patients with severe sepsis or septic shock: a randomized, double-blind, placebo-controlled, pilot trial
  publication-title: Crit. Care
– volume: 212
  start-page: 531
  year: 2016
  end-page: 544
  ident: bb0050
  article-title: Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling
  publication-title: J. Cell Biol.
– volume: 27
  start-page: R1177
  year: 2017
  end-page: R1192
  ident: bb0005
  article-title: The origin and diversification of mitochondria
  publication-title: Curr. Biol.
– volume: 6
  year: 2011
  ident: bb0300
  article-title: Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat
  publication-title: PLoS One
– volume: 110
  start-page: 16003
  year: 2013
  end-page: 16008
  ident: bb0080
  article-title: Atypical mitochondrial fission upon bacterial infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 75
  start-page: 995
  year: 2004
  end-page: 1000
  ident: bb0340
  article-title: Endogenously oxidized mitochondrial DNA induces
  publication-title: J. Leukoc. Biol.
– volume: 469
  start-page: 221
  year: 2011
  end-page: 225
  ident: bb0395
  article-title: A role for mitochondria in NLRP3 inflammasome activation
  publication-title: Nature
– volume: 153
  start-page: 348
  year: 2013
  end-page: 361
  ident: bb0405
  article-title: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation
  publication-title: Cell
– volume: 9
  start-page: 3001
  year: 2018
  ident: bb0415
  article-title: SUMO-mediated regulation of NLRP3 modulates inflammasome activity
  publication-title: Nat. Commun.
– volume: 285
  start-page: 41637
  year: 2010
  end-page: 41645
  ident: bb0455
  article-title: Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1
  publication-title: J. Biol. Chem.
– volume: 101
  start-page: 15927
  year: 2004
  end-page: 15932
  ident: bb0020
  article-title: OPA1 requires mitofusin 1 to promote mitochondrial fusion
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: 4713
  year: 2014
  ident: bb0120
  article-title: Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity
  publication-title: Nat. Commun.
– volume: 104
  start-page: 5121
  year: 2007
  end-page: 5126
  ident: bb0260
  article-title: inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 160
  start-page: 189
  year: 2003
  end-page: 200
  ident: bb0025
  article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
  publication-title: J. Cell Biol.
– volume: 7
  year: 2011
  ident: bb0355
  article-title: Mitochondrial ubiquitin ligase MARCH5 promotes TLR7 signaling by attenuating TANK action
  publication-title: PLoS Pathog.
– volume: 159
  start-page: 1549
  year: 2014
  end-page: 1562
  ident: bb0505
  article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type i IFN production
  publication-title: Cell
– volume: 11
  year: 2015
  ident: bb0485
  article-title: Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by Hepatitis C virus
  publication-title: PLoS Pathog.
– volume: 193
  start-page: 3080
  year: 2014
  end-page: 3089
  ident: bb0135
  article-title: SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome
  publication-title: J. Immunol.
– volume: 9
  start-page: 293
  year: 2008
  end-page: 300
  ident: bb0445
  article-title: NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production
  publication-title: EMBO Rep.
– volume: 216
  start-page: 1071
  year: 2017
  end-page: 1089
  ident: bb0105
  article-title: preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission
  publication-title: J. Cell Biol.
– volume: 16
  start-page: 23
  year: 2013
  end-page: 31
  ident: bb0385
  article-title: Inflammasomes and host defenses against bacterial infections
  publication-title: Curr. Opin. Microbiol.
– volume: 24
  start-page: 659
  year: 2013
  end-page: 667
  ident: bb0045
  article-title: Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission
  publication-title: Mol. Biol. Cell
– volume: 109
  start-page: 19781
  year: 2012
  end-page: 19785
  ident: bb0195
  article-title: Developmental stage-specific metabolic and transcriptional activity of
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 14
  start-page: 480
  year: 2013
  end-page: 488
  ident: bb0400
  article-title: Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection
  publication-title: Nat. Immunol.
– volume: 191
  start-page: 1141
  year: 2010
  end-page: 1158
  ident: bb0055
  article-title: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells
  publication-title: J. Cell Biol.
– volume: 359
  year: 2018
  ident: bb0510
  article-title: BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis
  publication-title: Science (80-. )
– volume: 5
  start-page: 3907
  year: 2014
  end-page: 3918
  ident: bb0335
  article-title: Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus
  publication-title: Oncotarget
– volume: 472
  start-page: 476
  year: 2011
  end-page: 480
  ident: bb0345
  article-title: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS
  publication-title: Nature
– volume: 73
  start-page: 1861
  year: 2005
  end-page: 1864
  ident: bb0275
  article-title: Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in
  publication-title: Infect. Immun.
– volume: 159
  start-page: 1549
  year: 2014
  ident: 10.1016/j.tcb.2020.01.006_bb0505
  article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type i IFN production
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.036
– volume: 6
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0300
  article-title: Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021285
– volume: 20
  start-page: 342
  year: 2016
  ident: 10.1016/j.tcb.2020.01.006_bb0130
  article-title: Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.07.008
– volume: 163
  start-page: 1123
  year: 2003
  ident: 10.1016/j.tcb.2020.01.006_bb0250
  article-title: A Salmonella protein causes macrophage cell death by inducing autophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200309161
– volume: 22
  start-page: 302
  year: 2017
  ident: 10.1016/j.tcb.2020.01.006_bb0100
  article-title: Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.07.020
– volume: 345
  start-page: 278
  year: 1997
  ident: 10.1016/j.tcb.2020.01.006_bb0370
  article-title: Oxidative metabolism in rat hepatocytes and mitochondria during sepsis
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1997.0264
– volume: 10
  start-page: e02550-18
  year: 2019
  ident: 10.1016/j.tcb.2020.01.006_bb0160
  article-title: Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis infection
  publication-title: mBio
  doi: 10.1128/mBio.02550-18
– volume: 209
  start-page: 1029
  year: 2012
  ident: 10.1016/j.tcb.2020.01.006_bb0330
  article-title: Chikungunya virus-induced autophagy delays caspase-dependent cell death
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20110996
– volume: 108
  start-page: 3612
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0075
  article-title: Listeria monocytogenes transiently alters mitochondrial dynamics during infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1100126108
– volume: 7
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0205
  article-title: Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002124
– volume: 14
  start-page: 454
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0435
  article-title: Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2550
– volume: 359
  year: 2018
  ident: 10.1016/j.tcb.2020.01.006_bb0510
  article-title: BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis
  publication-title: Science (80-. )
  doi: 10.1126/science.aao6047
– volume: 304
  start-page: 530
  year: 2014
  ident: 10.1016/j.tcb.2020.01.006_bb0095
  article-title: Dynamin-related protein Drp1 and mitochondria are important for Shigella flexneri infection
  publication-title: Int. J. Med. Microbiol.
  doi: 10.1016/j.ijmm.2014.03.006
– volume: 41
  start-page: 21
  year: 2018
  ident: 10.1016/j.tcb.2020.01.006_bb0145
  article-title: The essential role of mitochondrial dynamics in antiviral immunity
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2017.11.007
– volume: 285
  start-page: 41637
  year: 2010
  ident: 10.1016/j.tcb.2020.01.006_bb0455
  article-title: Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.137885
– volume: 27
  start-page: R1177
  year: 2017
  ident: 10.1016/j.tcb.2020.01.006_bb0005
  article-title: The origin and diversification of mitochondria
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.09.015
– volume: 290
  start-page: 29063
  year: 2015
  ident: 10.1016/j.tcb.2020.01.006_bb0255
  article-title: Pseudomonas aeruginosa ExoT induces mitochondrial apoptosis in target host cells in a manner that depends on its GTPase-activating protein (GAP) domain activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.689950
– volume: 334
  start-page: 358
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0065
  article-title: ER tubules mark sites of mitochondrial division
  publication-title: Science (80-. )
  doi: 10.1126/science.1207385
– volume: 7
  start-page: 150
  year: 2016
  ident: 10.1016/j.tcb.2020.01.006_bb0165
  article-title: Immunometabolism in tuberculosis
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00150
– volume: 109
  start-page: 19781
  year: 2012
  ident: 10.1016/j.tcb.2020.01.006_bb0195
  article-title: Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1212831109
– volume: 24
  start-page: 659
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0045
  article-title: Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e12-10-0721
– volume: 2
  year: 2009
  ident: 10.1016/j.tcb.2020.01.006_bb0480
  article-title: Mitofusin 2 inhibits mitochondrial antiviral signaling
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2000287
– volume: 24
  start-page: 625
  year: 2018
  ident: 10.1016/j.tcb.2020.01.006_bb0380
  article-title: Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized Staphylococcus aureus
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.10.005
– volume: 9
  start-page: 918
  year: 2014
  ident: 10.1016/j.tcb.2020.01.006_bb0190
  article-title: Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.004
– volume: 289
  start-page: 35205
  year: 2014
  ident: 10.1016/j.tcb.2020.01.006_bb0350
  article-title: TAK1-ECSIT-TRAF6 complex plays a key role in the TLR4 signal to activate NF-κB
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.597187
– volume: 5
  start-page: 41
  year: 2018
  ident: 10.1016/j.tcb.2020.01.006_bb0290
  article-title: Potential therapy strategy: targeting mitochondrial dysfunction in sepsis
  publication-title: Mil. Med. Res.
  doi: 10.1186/s40779-018-0187-0
– volume: 16
  start-page: 23
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0385
  article-title: Inflammasomes and host defenses against bacterial infections
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2012.11.008
– volume: 39
  start-page: 311
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0430
  article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.08.001
– volume: 216
  start-page: 1071
  year: 2017
  ident: 10.1016/j.tcb.2020.01.006_bb0105
  article-title: Chlamydia preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201608063
– volume: 520
  start-page: 553
  year: 2015
  ident: 10.1016/j.tcb.2020.01.006_bb0495
  article-title: Mitochondrial DNA stress primes the antiviral innate immune response
  publication-title: Nature
  doi: 10.1038/nature14156
– volume: 410
  start-page: 145
  year: 1997
  ident: 10.1016/j.tcb.2020.01.006_bb0315
  article-title: HIV-1 protein Vpr causes gross mitochondrial dysfunction in the yeast Saccharomyces cerevisiae
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(97)00542-5
– volume: 99
  start-page: 238
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0215
  article-title: Increased mitochondrial functions in human glioblastoma cells persistently infected with measles virus
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2013.06.016
– volume: 10
  start-page: 4186
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0170
  article-title: Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies
  publication-title: J. Proteome Res.
  doi: 10.1021/pr2003352
– volume: 122
  start-page: 669
  year: 2005
  ident: 10.1016/j.tcb.2020.01.006_bb0470
  article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.012
– volume: 11
  start-page: 935
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0210
  article-title: Human cytomegalovirus infection increases mitochondrial biogenesis
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2011.08.008
– volume: 191
  start-page: 1141
  year: 2010
  ident: 10.1016/j.tcb.2020.01.006_bb0055
  article-title: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201007152
– volume: 153
  start-page: 348
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0405
  article-title: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.054
– volume: 196
  start-page: 2444
  year: 2016
  ident: 10.1016/j.tcb.2020.01.006_bb0155
  article-title: Cutting Edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1501612
– volume: 73
  start-page: 504
  year: 2005
  ident: 10.1016/j.tcb.2020.01.006_bb0235
  article-title: Virulent Shigella flexneri causes damage to mitochondria and triggers necrosis in infected human monocyte-derived macrophages
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.73.1.504-513.2005
– volume: 160
  start-page: 189
  year: 2003
  ident: 10.1016/j.tcb.2020.01.006_bb0025
  article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200211046
– volume: 273
  start-page: 7052
  year: 1998
  ident: 10.1016/j.tcb.2020.01.006_bb0200
  article-title: Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia: NMR studies of living cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.12.7052
– volume: 122
  start-page: 3161
  year: 2009
  ident: 10.1016/j.tcb.2020.01.006_bb0450
  article-title: An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.051193
– volume: 86
  start-page: 154
  year: 2016
  ident: 10.1016/j.tcb.2020.01.006_bb0140
  article-title: HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2015.11.015
– volume: 9
  start-page: 293
  year: 2008
  ident: 10.1016/j.tcb.2020.01.006_bb0445
  article-title: NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7401161
– volume: 7
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0355
  article-title: Mitochondrial ubiquitin ligase MARCH5 promotes TLR7 signaling by attenuating TANK action
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002057
– volume: 146
  start-page: 448
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0475
  article-title: MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.041
– volume: 11
  start-page: 166
  year: 2015
  ident: 10.1016/j.tcb.2020.01.006_bb0465
  article-title: Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.981915
– volume: 204
  start-page: 919
  year: 2014
  ident: 10.1016/j.tcb.2020.01.006_bb0015
  article-title: The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201308006
– volume: 110
  start-page: 16003
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0080
  article-title: Atypical mitochondrial fission upon bacterial infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1315784110
– volume: 11
  year: 2015
  ident: 10.1016/j.tcb.2020.01.006_bb0485
  article-title: Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by Hepatitis C virus
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005264
– volume: 75
  start-page: 995
  year: 2004
  ident: 10.1016/j.tcb.2020.01.006_bb0340
  article-title: Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0703328
– volume: 20
  year: 2010
  ident: 10.1016/j.tcb.2020.01.006_bb0490
  article-title: Peroxisomes are signaling platforms for antiviral innate immunity
  publication-title: Cell
– volume: 281
  start-page: 31495
  year: 2006
  ident: 10.1016/j.tcb.2020.01.006_bb0285
  article-title: The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M602796200
– volume: 12
  start-page: 565
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0040
  article-title: MiD49 and MiD51, new components of the mitochondrial fission machinery
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.54
– volume: 469
  start-page: 221
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0395
  article-title: A role for mitochondria in NLRP3 inflammasome activation
  publication-title: Nature
  doi: 10.1038/nature09663
– volume: 73
  start-page: 1861
  year: 2005
  ident: 10.1016/j.tcb.2020.01.006_bb0275
  article-title: Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.73.3.1861-1864.2005
– volume: 85
  start-page: 11646
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0225
  article-title: Systems virology identifies a mitochondrial fatty acid oxidation enzyme, dodecenoyl coenzyme A delta isomerase, required for Hepatitis C virus replication and likely pathogenesis
  publication-title: J. Virol.
  doi: 10.1128/JVI.05605-11
– volume: 200
  start-page: 905
  year: 2004
  ident: 10.1016/j.tcb.2020.01.006_bb0280
  article-title: Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20040402
– volume: 145
  start-page: 498
  year: 2015
  ident: 10.1016/j.tcb.2020.01.006_bb0180
  article-title: The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-γ
  publication-title: Immunology
  doi: 10.1111/imm.12464
– volume: 5
  year: 2010
  ident: 10.1016/j.tcb.2020.01.006_bb0365
  article-title: Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011606
– volume: 472
  start-page: 476
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0345
  article-title: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS
  publication-title: Nature
  doi: 10.1038/nature09973
– volume: 5
  start-page: 123
  year: 2009
  ident: 10.1016/j.tcb.2020.01.006_bb0240
  article-title: Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.12.011
– volume: 1
  year: 2005
  ident: 10.1016/j.tcb.2020.01.006_bb0305
  article-title: Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0010004
– volume: 176
  start-page: 768
  year: 2007
  ident: 10.1016/j.tcb.2020.01.006_bb0375
  article-title: Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200701-161OC
– volume: 128
  start-page: 2795
  year: 2015
  ident: 10.1016/j.tcb.2020.01.006_bb0070
  article-title: Analysis of ER-mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.169136
– volume: 25
  start-page: 65
  year: 2018
  ident: 10.1016/j.tcb.2020.01.006_bb0230
  article-title: BCL-2 family proteins: changing partners in the dance towards death
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2017.186
– volume: 7
  year: 2016
  ident: 10.1016/j.tcb.2020.01.006_bb0320
  article-title: Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2015.409
– volume: 159
  start-page: 1563
  year: 2014
  ident: 10.1016/j.tcb.2020.01.006_bb0500
  article-title: Apoptotic caspases prevent the induction of type i interferons by mitochondrial DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.037
– volume: 21
  year: 2019
  ident: 10.1016/j.tcb.2020.01.006_bb0110
  article-title: Chlamydia trachomatis targets mitochondrial dynamics to promote intracellular survival and proliferation
  publication-title: Cell. Microbiol.
  doi: 10.1111/cmi.12962
– volume: 35
  start-page: 10799
  year: 2015
  ident: 10.1016/j.tcb.2020.01.006_bb0360
  article-title: Toll-like receptors promote mitochondrial translocation of nuclear transcription factor nuclear factor of activated T-cells in prolonged microglial activation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2455-14.2015
– volume: 14
  start-page: 480
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0400
  article-title: Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2563
– volume: 18
  start-page: 20
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0035
  article-title: Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1949
– volume: 21
  start-page: 230
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0115
  article-title: Bacterial contact-dependent growth inhibition
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2013.02.003
– volume: 7
  year: 2012
  ident: 10.1016/j.tcb.2020.01.006_bb0310
  article-title: HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction
  publication-title: PLoS One
– volume: 36
  start-page: 401
  year: 2012
  ident: 10.1016/j.tcb.2020.01.006_bb0425
  article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.01.009
– volume: 369
  start-page: 2236
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0030
  article-title: Mitochondrial dynamics-mitochondrial fission and fusion in human diseases
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1215233
– volume: 129
  start-page: 2170
  year: 2016
  ident: 10.1016/j.tcb.2020.01.006_bb0060
  article-title: Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.185165
– volume: 500
  start-page: 149
  year: 2017
  ident: 10.1016/j.tcb.2020.01.006_bb0125
  article-title: Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission
  publication-title: Virology
  doi: 10.1016/j.virol.2016.10.022
– volume: 12
  start-page: 222
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0420
  article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1980
– volume: 20
  start-page: 433
  year: 2019
  ident: 10.1016/j.tcb.2020.01.006_bb0460
  article-title: Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0324-2
– volume: 278
  start-page: 1589
  year: 2009
  ident: 10.1016/j.tcb.2020.01.006_bb0010
  article-title: SlP-2 is required for stress-induced mitochondrial hyperfusion
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.89
– volume: 191
  start-page: 4358
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0410
  article-title: The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates Its inflammasome activity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1301170
– volume: 212
  start-page: 531
  year: 2016
  ident: 10.1016/j.tcb.2020.01.006_bb0050
  article-title: Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201508099
– volume: 19
  start-page: 275
  year: 2015
  ident: 10.1016/j.tcb.2020.01.006_bb0295
  article-title: Ubiquinol (reduced coenzyme Q10) in patients with severe sepsis or septic shock: a randomized, double-blind, placebo-controlled, pilot trial
  publication-title: Crit. Care
  doi: 10.1186/s13054-015-0989-3
– volume: 16
  start-page: 407
  year: 2016
  ident: 10.1016/j.tcb.2020.01.006_bb0390
  article-title: Inflammasomes: mechanism of assembly, regulation and signalling
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.58
– volume: 15
  start-page: 675
  year: 2013
  ident: 10.1016/j.tcb.2020.01.006_bb0270
  article-title: The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level
  publication-title: Cell. Microbiol.
  doi: 10.1111/cmi.12066
– volume: 19
  start-page: 663
  year: 2016
  ident: 10.1016/j.tcb.2020.01.006_bb0325
  article-title: Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.07.019
– volume: 451
  start-page: 573-57
  year: 2008
  ident: 10.1016/j.tcb.2020.01.006_bb0440
  article-title: NLRX1 is a regulator of mitochondrial antiviral immunity
  publication-title: Nature
  doi: 10.1038/nature06501
– volume: 103
  start-page: 18745
  year: 2006
  ident: 10.1016/j.tcb.2020.01.006_bb0265
  article-title: A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0609012103
– volume: 9
  start-page: 3001
  year: 2018
  ident: 10.1016/j.tcb.2020.01.006_bb0415
  article-title: SUMO-mediated regulation of NLRP3 modulates inflammasome activity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05321-2
– volume: 193
  start-page: 3080
  year: 2014
  ident: 10.1016/j.tcb.2020.01.006_bb0135
  article-title: SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1303196
– volume: 19
  start-page: 6361
  year: 2002
  ident: 10.1016/j.tcb.2020.01.006_bb0085
  article-title: The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.23.6361
– volume: 101
  start-page: 15927
  year: 2004
  ident: 10.1016/j.tcb.2020.01.006_bb0020
  article-title: OPA1 requires mitofusin 1 to promote mitochondrial fusion
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0407043101
– volume: 104
  start-page: 5121
  year: 2007
  ident: 10.1016/j.tcb.2020.01.006_bb0260
  article-title: Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0611030104
– volume: 5
  start-page: 18176
  year: 2015
  ident: 10.1016/j.tcb.2020.01.006_bb0150
  article-title: Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs
  publication-title: Sci. Rep.
  doi: 10.1038/srep18176
– volume: 108
  start-page: 16032
  year: 2011
  ident: 10.1016/j.tcb.2020.01.006_bb0090
  article-title: Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1105175108
– volume: 199
  year: 2017
  ident: 10.1016/j.tcb.2020.01.006_bb0185
  article-title: Brucella abortus induces a Warburg shift in host metabolism that is linked to enhanced intracellular survival of the pathogen
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00227-17
– volume: 5
  start-page: 3907
  year: 2014
  ident: 10.1016/j.tcb.2020.01.006_bb0335
  article-title: Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2028
– volume: 46
  start-page: 2574
  year: 2016
  ident: 10.1016/j.tcb.2020.01.006_bb0175
  article-title: Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201546259
– volume: 6
  year: 2010
  ident: 10.1016/j.tcb.2020.01.006_bb0220
  article-title: Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000719
– volume: 176
  start-page: 3707
  year: 2006
  ident: 10.1016/j.tcb.2020.01.006_bb0245
  article-title: A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.6.3707
– volume: 5
  start-page: 4713
  year: 2014
  ident: 10.1016/j.tcb.2020.01.006_bb0120
  article-title: Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5713
SSID ssj0007213
Score 2.6697333
SecondaryResourceType review_article
Snippet Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 263
SubjectTerms bacteria
Bacterial diseases
cell death
Homeostasis
Immune response
Immunity
Infections
innate immunity
Microorganisms
Mitochondria
mitochondrial metabolism
mitochondrial morphology
Pathogenesis
Review
viruses
Title Mitochondrial Functions in Infection and Immunity
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0962892420300180
https://dx.doi.org/10.1016/j.tcb.2020.01.006
https://www.ncbi.nlm.nih.gov/pubmed/32200805
https://www.proquest.com/docview/2436895183
https://www.proquest.com/docview/2381848578
https://pubmed.ncbi.nlm.nih.gov/PMC7126537
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcCiK4EV8G60SwZMQm8dmd3ssYmkt9uADe1uyj2JFVtF68OK3O5uXVqWCp5DsTMhO5snOA-BIxUSqLJYBp1oGpK1VIJkZB2lKNSdpKGPmCoUvhrR3Q85H6agBp1UtjEurLHV_odNzbV0-aZXUbD1NJq0rdL4xWkATg3zq2lC5CnbCHJefvH-meWCEU4yTpyj5CF2dbOY5XlMlMUSMw7xzpxt69Ltt-ul7fk-h_GKTuquwUjqTfqf43jVoGLsOS8V4ybcNiC5QXFG9We24zO-iCcu5zJ9Yv18mYVk_s9rv51Ui07dNuOmeXZ_2gnJEQqBQmGjAiI4inSRKyVhRlag2NVnGCDVjMo4oGn9CpDZcK60ySkJtGEOhS1TEecK5SbZgwT5aswM-OhY004xSpjFmNoTjq5jGCJmyTLXD0IOwIo5QZf9wN8biQVSJYvcC6SkcPUUYCaSnB8c1ylPRPGMecFxRXFRVoajHBKr2eUikRpphm7_QmtUvFaXMvojYNeNHh5MnHhzWyyht7ggls-bxFWGcg0M4qjkPtgsOqHeGqtH536kHbIY3agDXyXt2xU7u8o7eLIppmrDd_-1mD5bdXZFP1ISF6fOr2UdXaSoPclk4gMVOf9Abuuvg8nbwAZedEwc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfQivq3PCp6Esn2kSfYo4rKr7l5U8Baax-KKZEXXg__eSZsWV0XBa5MpzXTmmxkyD4ATlRKpilRGnGoZkY5WkWRmFOU51ZzksUyZKxQeDGnvjlze5_dzcF7Xwri0So_9FaaXaO2ftD0328_jcfsGnW-MFtDEoJy6NlTzsOC6U-UtWDjrX_WGDSBjkFNNlKeo_EhQX26WaV5TJTFKTOOyeaebe_Szefrufn7NovxklrqrsOL9yfCs-uQ1mDN2HRarCZPvG5AMUGMR4ax2ghZ20YqVghaObdj3eVg2LKwO-2WhyPR9E-66F7fnvchPSYgU6hONGNFJorNMKZkqqjLVoaYoGKFmREYJRftPiNSGa6VVQUmsDWOod5lKOM84N9kWtOzEmh0I0beghWaUMo1hsyEcX8U0BsmUFaoTxwHENXOE8i3E3SSLJ1Hnij0K5Kdw_BRxIpCfAZw2JM9V_4zfNqc1x0VdGIpQJhDdfyMiDdGM5PxFtl__UuHV9lWkrh8_-pw8C-C4WUaFc7cohTWTN9zjfBzCEekC2K4koDkZoqNzwfMA2IxsNBtcM-_ZFTt-KJt6sySlecZ2_3eaI1jq3Q6uxXV_eLUHy26lSi_ah9b05c0coOc0lYdeMz4AXdUUFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+Functions+in+Infection+and+Immunity&rft.jtitle=Trends+in+cell+biology&rft.au=Tiku%2C+Varnesh&rft.au=Tan%2C+Man-Wah&rft.au=Dikic%2C+Ivan&rft.date=2020-04-01&rft.issn=0962-8924&rft.volume=30&rft.issue=4&rft.spage=263&rft.epage=275&rft_id=info:doi/10.1016%2Fj.tcb.2020.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcb_2020_01_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8924&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8924&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8924&client=summon