Mitochondrial Functions in Infection and Immunity
Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited...
Saved in:
Published in | Trends in cell biology Vol. 30; no. 4; pp. 263 - 275 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2020
Elsevier BV The Authors. Published by Elsevier Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses.
Bacteria and viruses have evolved specific ways of targeting mitochondria to perturb mitochondrial function that can prove to be beneficial for these microbes.Many bacteria and viruses use specific virulence mechanisms to modulate mitochondrial dynamics, leading to either mitochondrial fusion or fission.Mitochondrial metabolism can also be impacted by bacterial and viral infections.While in some cases bacteria and viruses induce the mitochondrial cell death pathway, in others cell death is inhibited promoting intracellular bacterial and viral proliferation.Mitochondria regulate different innate immune signaling pathways induced upon bacterial or viral infections. |
---|---|
AbstractList | Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses.Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses. Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses. Bacteria and viruses have evolved specific ways of targeting mitochondria to perturb mitochondrial function that can prove to be beneficial for these microbes.Many bacteria and viruses use specific virulence mechanisms to modulate mitochondrial dynamics, leading to either mitochondrial fusion or fission.Mitochondrial metabolism can also be impacted by bacterial and viral infections.While in some cases bacteria and viruses induce the mitochondrial cell death pathway, in others cell death is inhibited promoting intracellular bacterial and viral proliferation.Mitochondria regulate different innate immune signaling pathways induced upon bacterial or viral infections. Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses. Bacteria and viruses have evolved specific ways of targeting mitochondria to perturb mitochondrial function that can prove to be beneficial for these microbes. Many bacteria and viruses use specific virulence mechanisms to modulate mitochondrial dynamics, leading to either mitochondrial fusion or fission. Mitochondrial metabolism can also be impacted by bacterial and viral infections. While in some cases bacteria and viruses induce the mitochondrial cell death pathway, in others cell death is inhibited promoting intracellular bacterial and viral proliferation. Mitochondria regulate different innate immune signaling pathways induced upon bacterial or viral infections. Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect mitochondria dynamics and functions to influence their intracellular survival or evade host immunity. On the other side, major host responses elicited against infections are directly dependent on mitochondrial functions, thus placing mitochondria centrally in maintaining homeostasis upon infection. In this review, we summarize how different bacteria and viruses impact morphological and functional changes in host mitochondria and how this manipulation can influence microbial pathogenesis as well as the host cell metabolism and immune responses. |
Author | Tan, Man-Wah Dikic, Ivan Tiku, Varnesh |
Author_xml | – sequence: 1 givenname: Varnesh surname: Tiku fullname: Tiku, Varnesh organization: Department of Infectious Diseases, Genentech Inc, South San Francisco, USA – sequence: 2 givenname: Man-Wah surname: Tan fullname: Tan, Man-Wah email: tan.man-wah@gene.com organization: Department of Infectious Diseases, Genentech Inc, South San Francisco, USA – sequence: 3 givenname: Ivan surname: Dikic fullname: Dikic, Ivan email: dikic@biochem2.uni-frankfurt.de organization: Department of Infectious Diseases, Genentech Inc, South San Francisco, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32200805$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEUhoNU7Lb6A7yRAW-8mTEfM0kGQSjF6kLFG70O2ZMzNutMUpOZwv57s24ruhf1KoS8z8vJec7ISYgBCXnJaMMok2-3zQybhlNOG8oaSuUTsmJa9bWgWp-QFe0lr3XP21NylvOWUqo4E8_IqeCcUk27FWGf_RzhJgaXvB2rqyXA7GPIlQ_VOgz4-1bZ4Kr1NC3Bz7vn5Olgx4wv7s9z8u3qw9fLT_X1l4_ry4vrGjpGZa1ax5gTAmDDQYKAXqK1qpU4tAOTnPO23TjUDhxY2VKHSgnWC2BaC61RnJP3h97bZTOhAwxzsqO5TX6yaWei9ebfl-BvzPd4ZxTjshOqFLy5L0jx54J5NpPPgONoA8YlGy40063ulC7R10fRbVxSKN8zvBVS9x3ToqRe_T3Rn1EetlkC6hCAFHNOOBjws91vsAzoR8Oo2XszW1O8mb03Q5kp3grJjsiH8seYdwcGi4U7j8lk8BgAnU_Fm3HRP0r3RzSMPniw4w_c_Yf9BXD3wis |
CitedBy_id | crossref_primary_10_1016_j_micpath_2025_107429 crossref_primary_10_1038_s41598_020_79966_9 crossref_primary_10_1172_jci_insight_159600 crossref_primary_10_3389_fnagi_2020_614650 crossref_primary_10_1016_j_celrep_2024_114607 crossref_primary_10_3390_md18120639 crossref_primary_10_3390_jcm9092942 crossref_primary_10_1038_s41598_020_68053_8 crossref_primary_10_3389_fviro_2022_918806 crossref_primary_10_1016_j_hsr_2024_100155 crossref_primary_10_1111_cmi_13352 crossref_primary_10_3389_fimmu_2021_723393 crossref_primary_10_1146_annurev_physiol_042222_025000 crossref_primary_10_3390_brainsci12050536 crossref_primary_10_1080_14756366_2021_1937144 crossref_primary_10_1016_j_mib_2021_07_014 crossref_primary_10_1186_s12964_020_00659_x crossref_primary_10_3389_fcimb_2020_609812 crossref_primary_10_3390_biology10090913 crossref_primary_10_3389_fcimb_2023_1228275 crossref_primary_10_3390_antiox10060872 crossref_primary_10_1093_mam_ozae044_422 crossref_primary_10_1016_j_bbamcr_2023_119486 crossref_primary_10_4081_jbr_2023_11724 crossref_primary_10_1002_1873_3468_14060 crossref_primary_10_1016_j_psj_2023_102663 crossref_primary_10_1038_s41586_022_04667_4 crossref_primary_10_1016_j_smim_2022_101644 crossref_primary_10_3390_antiox12040782 crossref_primary_10_1080_21505594_2021_2018767 crossref_primary_10_3389_fimmu_2024_1508787 crossref_primary_10_1002_jcla_24704 crossref_primary_10_1042_BST20220014 crossref_primary_10_1016_j_chom_2022_02_010 crossref_primary_10_1016_j_tibs_2021_12_007 crossref_primary_10_1186_s12979_021_00252_x crossref_primary_10_1371_journal_pone_0303449 crossref_primary_10_3389_fmolb_2022_1016352 crossref_primary_10_3390_ijms21186841 crossref_primary_10_1186_s12915_024_01858_5 crossref_primary_10_1111_1758_2229_12938 crossref_primary_10_1186_s12979_024_00482_9 crossref_primary_10_1007_s12035_021_02399_6 crossref_primary_10_1093_lifemedi_lnac014 crossref_primary_10_3390_v14030611 crossref_primary_10_4236_aim_2023_138026 crossref_primary_10_3389_fonc_2022_881829 crossref_primary_10_1136_bjsports_2022_105734 crossref_primary_10_1093_function_zqaa019 crossref_primary_10_1083_jcb_202310134 crossref_primary_10_1159_000533602 crossref_primary_10_3389_fcimb_2024_1380736 crossref_primary_10_15252_embj_2022112006 crossref_primary_10_3390_ijms24031924 crossref_primary_10_3389_fcell_2021_738932 crossref_primary_10_3390_ijms23179739 crossref_primary_10_3390_pathogens12081005 crossref_primary_10_1038_s41586_024_07260_z crossref_primary_10_1007_s11356_022_22949_2 crossref_primary_10_3390_biology10101000 crossref_primary_10_3390_ijms23179511 crossref_primary_10_1007_s00018_021_03787_w crossref_primary_10_1016_j_jinf_2021_04_014 crossref_primary_10_1111_1348_0421_13206 crossref_primary_10_1016_j_rvsc_2024_105370 crossref_primary_10_1038_s41422_022_00766_z crossref_primary_10_1016_j_isci_2024_109573 crossref_primary_10_1016_j_abb_2020_108668 crossref_primary_10_1096_fba_2022_00081 crossref_primary_10_1002_jor_25696 crossref_primary_10_3389_fphys_2021_730048 crossref_primary_10_3389_fmicb_2023_1256042 crossref_primary_10_1016_j_psj_2025_105005 crossref_primary_10_3390_genes13030435 crossref_primary_10_1093_cvr_cvab036 crossref_primary_10_1016_j_mito_2024_101979 crossref_primary_10_1007_s10571_021_01117_z crossref_primary_10_3389_fphar_2020_581114 crossref_primary_10_1038_s41564_021_00964_2 crossref_primary_10_1242_dmm_048912 crossref_primary_10_3390_cells11111771 crossref_primary_10_1042_BCJ20190654 crossref_primary_10_1371_journal_pgen_1010103 crossref_primary_10_3389_fimmu_2021_748758 crossref_primary_10_3389_fimmu_2021_750969 crossref_primary_10_3390_molecules25163760 crossref_primary_10_15252_embr_202153086 crossref_primary_10_3389_fnmol_2023_1166879 crossref_primary_10_1111_apha_14150 crossref_primary_10_1016_j_envpol_2024_123676 crossref_primary_10_3390_ani14192777 crossref_primary_10_1016_j_celrep_2021_109989 crossref_primary_10_1515_hsz_2024_0043 crossref_primary_10_1016_j_jid_2023_03_1671 crossref_primary_10_1038_s41598_025_93147_6 crossref_primary_10_1016_j_cytogfr_2024_08_005 crossref_primary_10_1016_j_semcdb_2023_10_006 crossref_primary_10_1021_acschemneuro_1c00675 crossref_primary_10_1111_bph_15238 crossref_primary_10_1016_j_ejcb_2024_151401 crossref_primary_10_1186_s12979_020_00204_x crossref_primary_10_1124_pharmrev_122_000568 crossref_primary_10_1152_ajpcell_00360_2021 crossref_primary_10_1172_JCI151540 crossref_primary_10_1007_s00424_023_02799_8 crossref_primary_10_1016_j_tcb_2021_09_010 crossref_primary_10_1016_j_ijbiomac_2024_130100 crossref_primary_10_1172_JCI162331 crossref_primary_10_3390_ijms25010574 crossref_primary_10_1016_j_bbrc_2022_06_084 crossref_primary_10_3389_fimmu_2022_935710 crossref_primary_10_1016_j_nantod_2023_101942 crossref_primary_10_1038_s41392_021_00800_3 crossref_primary_10_1186_s12951_022_01754_6 crossref_primary_10_3390_ijms22169092 crossref_primary_10_1128_mbio_01292_24 crossref_primary_10_1186_s13567_024_01284_z crossref_primary_10_1016_j_phrs_2023_106835 crossref_primary_10_1016_j_apsb_2021_01_011 crossref_primary_10_1038_s41467_024_48824_x crossref_primary_10_20900_immunometab20210003 crossref_primary_10_1016_j_bcp_2021_114809 crossref_primary_10_1515_hsz_2020_0135 crossref_primary_10_3390_membranes11110804 crossref_primary_10_1099_mgen_0_000862 crossref_primary_10_3389_fnhum_2021_656313 crossref_primary_10_17709_2410_1893_2024_11_1_4 crossref_primary_10_3390_ijms251910697 crossref_primary_10_1111_imcb_12677 crossref_primary_10_1016_j_cmet_2021_10_003 crossref_primary_10_1016_j_tem_2024_10_009 crossref_primary_10_1172_jci_insight_161096 crossref_primary_10_3390_ijms22126484 crossref_primary_10_1016_j_isci_2022_105342 crossref_primary_10_1016_j_isci_2024_111367 crossref_primary_10_1016_j_neuint_2021_105114 crossref_primary_10_3389_fcimb_2023_1135203 crossref_primary_10_1016_j_intimp_2023_109931 crossref_primary_10_3389_fvets_2021_640901 crossref_primary_10_3390_diseases8020019 crossref_primary_10_1016_j_pt_2022_02_002 crossref_primary_10_3390_ijms22136714 crossref_primary_10_3389_fcell_2021_723108 crossref_primary_10_1128_msystems_00135_23 crossref_primary_10_1016_j_intimp_2024_111808 crossref_primary_10_1186_s12967_023_04787_z crossref_primary_10_1007_s00018_022_04207_3 crossref_primary_10_1016_j_bbabio_2020_148323 crossref_primary_10_1016_j_cmet_2023_10_011 crossref_primary_10_3390_antiox10071152 crossref_primary_10_3390_medsci13010028 crossref_primary_10_3390_biom13020226 crossref_primary_10_1007_s13577_022_00756_8 crossref_primary_10_1097_CCM_0000000000005913 crossref_primary_10_1038_s41564_022_01205_w crossref_primary_10_1111_mpp_70061 crossref_primary_10_3390_ijms252312950 crossref_primary_10_3389_fimmu_2021_686029 crossref_primary_10_1016_j_devcel_2022_10_001 crossref_primary_10_1038_s41467_025_56927_2 crossref_primary_10_1186_s13578_023_01107_2 crossref_primary_10_1152_ajpheart_00531_2024 crossref_primary_10_1016_j_jsps_2020_08_024 crossref_primary_10_1038_s44298_024_00057_x crossref_primary_10_1002_INMD_20230044 crossref_primary_10_1016_j_bbabio_2020_148277 crossref_primary_10_1016_j_tplants_2022_04_007 crossref_primary_10_1111_1462_2920_15376 crossref_primary_10_1016_j_jia_2023_12_027 crossref_primary_10_3390_ijms25021306 crossref_primary_10_1007_s10585_024_10290_6 crossref_primary_10_1089_dna_2021_0588 crossref_primary_10_1016_j_aquaculture_2022_738086 crossref_primary_10_3390_ijms22158325 crossref_primary_10_1016_j_cyto_2024_156669 crossref_primary_10_1021_acsnano_3c08165 crossref_primary_10_1093_exposome_osac002 crossref_primary_10_1016_j_tiv_2023_105740 crossref_primary_10_1016_j_fct_2024_114522 crossref_primary_10_1590_0074_02760210127 crossref_primary_10_3389_fcimb_2020_593805 crossref_primary_10_3389_fcell_2022_938177 crossref_primary_10_1111_joim_13792 crossref_primary_10_1080_08830185_2021_1990277 crossref_primary_10_1016_j_chom_2023_11_020 crossref_primary_10_1128_mBio_00276_21 crossref_primary_10_1016_j_isci_2023_107180 crossref_primary_10_1016_j_neuint_2021_104958 crossref_primary_10_1016_j_tim_2021_09_010 crossref_primary_10_1016_j_molcel_2022_02_030 crossref_primary_10_1038_s41598_024_52582_7 crossref_primary_10_1016_j_pbi_2024_102529 crossref_primary_10_3389_fcell_2021_795685 crossref_primary_10_3389_fphar_2020_578599 crossref_primary_10_3389_fcimb_2022_920425 crossref_primary_10_1128_spectrum_00718_22 crossref_primary_10_3390_biom13071032 crossref_primary_10_3389_fcimb_2023_1130197 crossref_primary_10_1128_IAI_00687_20 crossref_primary_10_3389_fendo_2023_1346441 crossref_primary_10_1016_j_isci_2020_101631 crossref_primary_10_3389_fimmu_2023_1160035 crossref_primary_10_3389_fimmu_2020_622602 crossref_primary_10_1007_s00705_022_05415_9 crossref_primary_10_1074_mcp_RA120_002370 crossref_primary_10_1016_j_vetmic_2024_110298 crossref_primary_10_1126_science_abi4343 crossref_primary_10_1016_j_vetmic_2024_110292 crossref_primary_10_3389_fgene_2021_667936 crossref_primary_10_3390_jof7020070 crossref_primary_10_1038_s41582_022_00715_9 crossref_primary_10_1038_s42255_022_00605_w crossref_primary_10_3390_ijms23073621 crossref_primary_10_1016_j_jbc_2024_107359 |
Cites_doi | 10.1016/j.cell.2014.11.036 10.1371/journal.pone.0021285 10.1016/j.chom.2016.07.008 10.1083/jcb.200309161 10.1016/j.chom.2017.07.020 10.1006/abbi.1997.0264 10.1128/mBio.02550-18 10.1084/jem.20110996 10.1073/pnas.1100126108 10.1371/journal.ppat.1002124 10.1038/ni.2550 10.1126/science.aao6047 10.1016/j.ijmm.2014.03.006 10.1016/j.mito.2017.11.007 10.1074/jbc.M110.137885 10.1016/j.cub.2017.09.015 10.1074/jbc.M115.689950 10.1126/science.1207385 10.3389/fimmu.2016.00150 10.1073/pnas.1212831109 10.1091/mbc.e12-10-0721 10.1126/scisignal.2000287 10.1016/j.chom.2018.10.005 10.1016/j.celrep.2014.10.004 10.1074/jbc.M114.597187 10.1186/s40779-018-0187-0 10.1016/j.mib.2012.11.008 10.1016/j.immuni.2013.08.001 10.1083/jcb.201608063 10.1038/nature14156 10.1016/S0014-5793(97)00542-5 10.1016/j.antiviral.2013.06.016 10.1021/pr2003352 10.1016/j.cell.2005.08.012 10.1016/j.mito.2011.08.008 10.1083/jcb.201007152 10.1016/j.cell.2013.02.054 10.4049/jimmunol.1501612 10.1128/IAI.73.1.504-513.2005 10.1083/jcb.200211046 10.1074/jbc.273.12.7052 10.1242/jcs.051193 10.1016/j.nbd.2015.11.015 10.1038/sj.embor.7401161 10.1371/journal.ppat.1002057 10.1016/j.cell.2011.06.041 10.4161/15548627.2014.981915 10.1083/jcb.201308006 10.1073/pnas.1315784110 10.1371/journal.ppat.1005264 10.1189/jlb.0703328 10.1074/jbc.M602796200 10.1038/embor.2011.54 10.1038/nature09663 10.1128/IAI.73.3.1861-1864.2005 10.1128/JVI.05605-11 10.1084/jem.20040402 10.1111/imm.12464 10.1371/journal.pone.0011606 10.1038/nature09973 10.1016/j.chom.2008.12.011 10.1371/journal.ppat.0010004 10.1164/rccm.200701-161OC 10.1242/jcs.169136 10.1038/cdd.2017.186 10.1038/cddis.2015.409 10.1016/j.cell.2014.11.037 10.1111/cmi.12962 10.1523/JNEUROSCI.2455-14.2015 10.1038/ni.2563 10.1038/nsmb.1949 10.1016/j.tim.2013.02.003 10.1016/j.immuni.2012.01.009 10.1056/NEJMra1215233 10.1242/jcs.185165 10.1016/j.virol.2016.10.022 10.1038/ni.1980 10.1038/s41590-019-0324-2 10.1038/emboj.2009.89 10.4049/jimmunol.1301170 10.1083/jcb.201508099 10.1186/s13054-015-0989-3 10.1038/nri.2016.58 10.1111/cmi.12066 10.1016/j.stem.2016.07.019 10.1038/nature06501 10.1073/pnas.0609012103 10.1038/s41467-018-05321-2 10.4049/jimmunol.1303196 10.1093/emboj/19.23.6361 10.1073/pnas.0407043101 10.1073/pnas.0611030104 10.1038/srep18176 10.1073/pnas.1105175108 10.1128/JB.00227-17 10.18632/oncotarget.2028 10.1002/eji.201546259 10.1371/journal.ppat.1000719 10.4049/jimmunol.176.6.3707 10.1038/ncomms5713 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. Copyright Elsevier BV Apr 2020 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: Copyright Elsevier BV Apr 2020 – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7QL 7QP 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1016/j.tcb.2020.01.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-3088 |
EndPage | 275 |
ExternalDocumentID | PMC7126537 32200805 10_1016_j_tcb_2020_01_006 S0962892420300180 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 186 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IH2 IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XPP Y6R YNT Z5R ~G- 6I. AACTN AAFTH AAIAV ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RCE RIG VQA ZA5 AAYXX AGRNS BNPGV CITATION SSH NPM 7QL 7QP 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5106-74d11d33ccb2c6c3c96eaa746ef4f1622244bde8dcdca640de773193c188388e3 |
IEDL.DBID | .~1 |
ISSN | 0962-8924 1879-3088 |
IngestDate | Thu Aug 21 18:34:21 EDT 2025 Fri Jul 11 02:12:12 EDT 2025 Wed Aug 13 06:09:58 EDT 2025 Wed Feb 19 02:29:55 EST 2025 Thu Apr 24 22:58:24 EDT 2025 Tue Jul 01 01:53:43 EDT 2025 Fri Feb 23 02:48:07 EST 2024 Tue Aug 26 16:33:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | viruses bacteria cell death innate immunity mitochondrial morphology mitochondrial metabolism |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5106-74d11d33ccb2c6c3c96eaa746ef4f1622244bde8dcdca640de773193c188388e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0962892420300180 |
PMID | 32200805 |
PQID | 2436895183 |
PQPubID | 2045389 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7126537 proquest_miscellaneous_2381848578 proquest_journals_2436895183 pubmed_primary_32200805 crossref_citationtrail_10_1016_j_tcb_2020_01_006 crossref_primary_10_1016_j_tcb_2020_01_006 elsevier_sciencedirect_doi_10_1016_j_tcb_2020_01_006 elsevier_clinicalkey_doi_10_1016_j_tcb_2020_01_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Trends in cell biology |
PublicationTitleAlternate | Trends Cell Biol |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV The Authors. Published by Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: The Authors. Published by Elsevier Ltd |
References | Shi (bb0135) 2014; 193 Somashekar (bb0170) 2011; 10 Ojcius (bb0200) 1998; 273 Shimada (bb0425) 2012; 36 Abuaita (bb0380) 2018; 24 Vastag (bb0205) 2011; 7 Cipolat (bb0020) 2004; 101 Chen (bb0245) 2006; 176 Donnino (bb0295) 2015; 19 Laguna (bb0265) 2006; 103 McArthur (bb0510) 2018; 359 Galmiche (bb0085) 2002; 19 Wood (bb0255) 2015; 290 Anand (bb0015) 2014; 204 West (bb0345) 2011; 472 Dong (bb0275) 2005; 73 Osellame (bb0060) 2016; 129 Wi (bb0350) 2014; 289 Sweeney (bb0365) 2010; 5 Broz, Dixit (bb0390) 2016; 16 Stavru (bb0080) 2013; 110 Kale (bb0230) 2018; 25 White (bb0505) 2014; 159 Jabir (bb0465) 2015; 11 Lachmandas (bb0175) 2016; 46 Abdul-Sater (bb0455) 2010; 285 Hou (bb0475) 2011; 146 Kim (bb0145) 2018; 41 Barry (bb0415) 2018; 9 Fischer (bb0280) 2004; 200 Zamarin (bb0305) 2005; 1 Longo, Archer (bb0030) 2013; 369 Otera (bb0055) 2010; 191 Nakahira (bb0420) 2011; 12 Joubert (bb0330) 2012; 209 Yoshizumi (bb0120) 2014; 5 Kaarbø (bb0210) 2011; 11 Yasukawa (bb0480) 2009; 2 Stavru (bb0075) 2011; 108 Subramanian (bb0405) 2013; 153 Klingenbeck (bb0270) 2013; 15 Bender (bb0485) 2015; 11 Fields (bb0140) 2016; 86 Xia (bb0335) 2014; 5 Tondera (bb0010) 2009; 278 Appelberg (bb0180) 2015; 145 Chopra (bb0300) 2011; 6 Vladimer (bb0385) 2013; 16 Tattoli (bb0445) 2008; 9 Elgass (bb0070) 2015; 128 Omsland (bb0195) 2012; 109 Zhang (bb0290) 2018; 5 Misawa (bb0435) 2013; 14 Jain (bb0090) 2011; 108 Hernandez (bb0250) 2003; 163 Shi (bb0160) 2019; 10 Seth (bb0470) 2005; 122 Macreadie (bb0315) 1997; 410 Ruhe (bb0115) 2013; 21 Banga (bb0260) 2007; 104 Koterski (bb0235) 2005; 73 Shi (bb0355) 2011; 7 West (bb0495) 2015; 520 Siegl (bb0190) 2014; 9 Zhou (bb0395) 2011; 469 Roger (bb0005) 2017; 27 Pirbhai (bb0285) 2006; 281 Diamond (bb0220) 2010; 6 Iyer (bb0430) 2013; 39 Palmer (bb0040) 2011; 12 Park (bb0410) 2013; 191 Shi (bb0165) 2016; 7 Arnoult (bb0450) 2009; 122 Otera (bb0050) 2016; 212 Chatel-Chaix (bb0130) 2016; 20 Escoll (bb0100) 2017; 22 Mears (bb0035) 2011; 18 Shi (bb0150) 2015; 5 Dixit (bb0490) 2010; 20 Gleeson (bb0155) 2016; 196 Rasmussen (bb0225) 2011; 85 Friedman (bb0065) 2011; 334 Zhang (bb0460) 2019; 20 Rongvaux (bb0500) 2014; 159 Takahashi (bb0215) 2013; 99 Ma (bb0360) 2015; 35 Loson (bb0045) 2013; 24 Moore (bb0440) 2008; 451 Czyz (bb0185) 2017; 199 Chowdhury (bb0105) 2017; 216 Datan (bb0320) 2016; 7 Chen (bb0025) 2003; 160 Collins (bb0340) 2004; 75 Liang (bb0325) 2016; 19 Barbier (bb0125) 2017; 500 Huang (bb0310) 2012; 7 Carneiro (bb0240) 2009; 5 Haden (bb0375) 2007; 176 Lum, Morona (bb0095) 2014; 304 Lupfer (bb0400) 2013; 14 Kantrow (bb0370) 1997; 345 Kurihara (bb0110) 2019; 21 Rasmussen (10.1016/j.tcb.2020.01.006_bb0225) 2011; 85 Loson (10.1016/j.tcb.2020.01.006_bb0045) 2013; 24 Galmiche (10.1016/j.tcb.2020.01.006_bb0085) 2002; 19 Kantrow (10.1016/j.tcb.2020.01.006_bb0370) 1997; 345 Jain (10.1016/j.tcb.2020.01.006_bb0090) 2011; 108 Shi (10.1016/j.tcb.2020.01.006_bb0160) 2019; 10 Collins (10.1016/j.tcb.2020.01.006_bb0340) 2004; 75 Elgass (10.1016/j.tcb.2020.01.006_bb0070) 2015; 128 Stavru (10.1016/j.tcb.2020.01.006_bb0080) 2013; 110 Vladimer (10.1016/j.tcb.2020.01.006_bb0385) 2013; 16 Tondera (10.1016/j.tcb.2020.01.006_bb0010) 2009; 278 Shi (10.1016/j.tcb.2020.01.006_bb0165) 2016; 7 Appelberg (10.1016/j.tcb.2020.01.006_bb0180) 2015; 145 Anand (10.1016/j.tcb.2020.01.006_bb0015) 2014; 204 Abuaita (10.1016/j.tcb.2020.01.006_bb0380) 2018; 24 Mears (10.1016/j.tcb.2020.01.006_bb0035) 2011; 18 Abdul-Sater (10.1016/j.tcb.2020.01.006_bb0455) 2010; 285 West (10.1016/j.tcb.2020.01.006_bb0345) 2011; 472 Cipolat (10.1016/j.tcb.2020.01.006_bb0020) 2004; 101 Arnoult (10.1016/j.tcb.2020.01.006_bb0450) 2009; 122 Shi (10.1016/j.tcb.2020.01.006_bb0135) 2014; 193 Longo (10.1016/j.tcb.2020.01.006_bb0030) 2013; 369 Fischer (10.1016/j.tcb.2020.01.006_bb0280) 2004; 200 Pirbhai (10.1016/j.tcb.2020.01.006_bb0285) 2006; 281 Sweeney (10.1016/j.tcb.2020.01.006_bb0365) 2010; 5 Zamarin (10.1016/j.tcb.2020.01.006_bb0305) 2005; 1 Palmer (10.1016/j.tcb.2020.01.006_bb0040) 2011; 12 Liang (10.1016/j.tcb.2020.01.006_bb0325) 2016; 19 Czyz (10.1016/j.tcb.2020.01.006_bb0185) 2017; 199 Yoshizumi (10.1016/j.tcb.2020.01.006_bb0120) 2014; 5 Moore (10.1016/j.tcb.2020.01.006_bb0440) 2008; 451 Kaarbø (10.1016/j.tcb.2020.01.006_bb0210) 2011; 11 Misawa (10.1016/j.tcb.2020.01.006_bb0435) 2013; 14 Chatel-Chaix (10.1016/j.tcb.2020.01.006_bb0130) 2016; 20 Carneiro (10.1016/j.tcb.2020.01.006_bb0240) 2009; 5 Kim (10.1016/j.tcb.2020.01.006_bb0145) 2018; 41 Fields (10.1016/j.tcb.2020.01.006_bb0140) 2016; 86 Ma (10.1016/j.tcb.2020.01.006_bb0360) 2015; 35 Seth (10.1016/j.tcb.2020.01.006_bb0470) 2005; 122 Chen (10.1016/j.tcb.2020.01.006_bb0025) 2003; 160 West (10.1016/j.tcb.2020.01.006_bb0495) 2015; 520 Lum (10.1016/j.tcb.2020.01.006_bb0095) 2014; 304 Escoll (10.1016/j.tcb.2020.01.006_bb0100) 2017; 22 Chen (10.1016/j.tcb.2020.01.006_bb0245) 2006; 176 Lachmandas (10.1016/j.tcb.2020.01.006_bb0175) 2016; 46 Xia (10.1016/j.tcb.2020.01.006_bb0335) 2014; 5 Stavru (10.1016/j.tcb.2020.01.006_bb0075) 2011; 108 Vastag (10.1016/j.tcb.2020.01.006_bb0205) 2011; 7 Shi (10.1016/j.tcb.2020.01.006_bb0355) 2011; 7 Broz (10.1016/j.tcb.2020.01.006_bb0390) 2016; 16 Chowdhury (10.1016/j.tcb.2020.01.006_bb0105) 2017; 216 Iyer (10.1016/j.tcb.2020.01.006_bb0430) 2013; 39 Bender (10.1016/j.tcb.2020.01.006_bb0485) 2015; 11 McArthur (10.1016/j.tcb.2020.01.006_bb0510) 2018; 359 Haden (10.1016/j.tcb.2020.01.006_bb0375) 2007; 176 Somashekar (10.1016/j.tcb.2020.01.006_bb0170) 2011; 10 Laguna (10.1016/j.tcb.2020.01.006_bb0265) 2006; 103 Zhou (10.1016/j.tcb.2020.01.006_bb0395) 2011; 469 Macreadie (10.1016/j.tcb.2020.01.006_bb0315) 1997; 410 Zhang (10.1016/j.tcb.2020.01.006_bb0290) 2018; 5 Kale (10.1016/j.tcb.2020.01.006_bb0230) 2018; 25 Friedman (10.1016/j.tcb.2020.01.006_bb0065) 2011; 334 Otera (10.1016/j.tcb.2020.01.006_bb0055) 2010; 191 Jabir (10.1016/j.tcb.2020.01.006_bb0465) 2015; 11 Takahashi (10.1016/j.tcb.2020.01.006_bb0215) 2013; 99 Hernandez (10.1016/j.tcb.2020.01.006_bb0250) 2003; 163 Otera (10.1016/j.tcb.2020.01.006_bb0050) 2016; 212 Wood (10.1016/j.tcb.2020.01.006_bb0255) 2015; 290 Kurihara (10.1016/j.tcb.2020.01.006_bb0110) 2019; 21 Yasukawa (10.1016/j.tcb.2020.01.006_bb0480) 2009; 2 Lupfer (10.1016/j.tcb.2020.01.006_bb0400) 2013; 14 Joubert (10.1016/j.tcb.2020.01.006_bb0330) 2012; 209 White (10.1016/j.tcb.2020.01.006_bb0505) 2014; 159 Nakahira (10.1016/j.tcb.2020.01.006_bb0420) 2011; 12 Datan (10.1016/j.tcb.2020.01.006_bb0320) 2016; 7 Wi (10.1016/j.tcb.2020.01.006_bb0350) 2014; 289 Ojcius (10.1016/j.tcb.2020.01.006_bb0200) 1998; 273 Rongvaux (10.1016/j.tcb.2020.01.006_bb0500) 2014; 159 Shi (10.1016/j.tcb.2020.01.006_bb0150) 2015; 5 Park (10.1016/j.tcb.2020.01.006_bb0410) 2013; 191 Siegl (10.1016/j.tcb.2020.01.006_bb0190) 2014; 9 Gleeson (10.1016/j.tcb.2020.01.006_bb0155) 2016; 196 Shimada (10.1016/j.tcb.2020.01.006_bb0425) 2012; 36 Hou (10.1016/j.tcb.2020.01.006_bb0475) 2011; 146 Banga (10.1016/j.tcb.2020.01.006_bb0260) 2007; 104 Donnino (10.1016/j.tcb.2020.01.006_bb0295) 2015; 19 Chopra (10.1016/j.tcb.2020.01.006_bb0300) 2011; 6 Dong (10.1016/j.tcb.2020.01.006_bb0275) 2005; 73 Barbier (10.1016/j.tcb.2020.01.006_bb0125) 2017; 500 Omsland (10.1016/j.tcb.2020.01.006_bb0195) 2012; 109 Huang (10.1016/j.tcb.2020.01.006_bb0310) 2012; 7 Roger (10.1016/j.tcb.2020.01.006_bb0005) 2017; 27 Dixit (10.1016/j.tcb.2020.01.006_bb0490) 2010; 20 Klingenbeck (10.1016/j.tcb.2020.01.006_bb0270) 2013; 15 Zhang (10.1016/j.tcb.2020.01.006_bb0460) 2019; 20 Tattoli (10.1016/j.tcb.2020.01.006_bb0445) 2008; 9 Barry (10.1016/j.tcb.2020.01.006_bb0415) 2018; 9 Diamond (10.1016/j.tcb.2020.01.006_bb0220) 2010; 6 Koterski (10.1016/j.tcb.2020.01.006_bb0235) 2005; 73 Osellame (10.1016/j.tcb.2020.01.006_bb0060) 2016; 129 Subramanian (10.1016/j.tcb.2020.01.006_bb0405) 2013; 153 Ruhe (10.1016/j.tcb.2020.01.006_bb0115) 2013; 21 |
References_xml | – volume: 12 start-page: 565 year: 2011 end-page: 573 ident: bb0040 article-title: MiD49 and MiD51, new components of the mitochondrial fission machinery publication-title: EMBO Rep. – volume: 128 start-page: 2795 year: 2015 end-page: 2804 ident: bb0070 article-title: Analysis of ER-mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells publication-title: J. Cell Sci. – volume: 46 start-page: 2574 year: 2016 end-page: 2586 ident: bb0175 article-title: Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against publication-title: Eur. J. Immunol. – volume: 6 year: 2010 ident: bb0220 article-title: Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics publication-title: PLoS Pathog. – volume: 122 start-page: 3161 year: 2009 end-page: 3168 ident: bb0450 article-title: An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix publication-title: J. Cell Sci. – volume: 7 year: 2016 ident: bb0320 article-title: Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation publication-title: Cell Death Dis. – volume: 19 start-page: 663 year: 2016 end-page: 671 ident: bb0325 article-title: Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy publication-title: Cell Stem Cell – volume: 500 start-page: 149 year: 2017 end-page: 160 ident: bb0125 article-title: Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission publication-title: Virology – volume: 85 start-page: 11646 year: 2011 end-page: 11654 ident: bb0225 article-title: Systems virology identifies a mitochondrial fatty acid oxidation enzyme, dodecenoyl coenzyme A delta isomerase, required for Hepatitis C virus replication and likely pathogenesis publication-title: J. Virol. – volume: 14 start-page: 454 year: 2013 end-page: 460 ident: bb0435 article-title: Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome publication-title: Nat. Immunol. – volume: 204 start-page: 919 year: 2014 end-page: 929 ident: bb0015 article-title: The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission publication-title: J. Cell Biol. – volume: 7 year: 2011 ident: bb0205 article-title: Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism publication-title: PLoS Pathog. – volume: 11 start-page: 935 year: 2011 end-page: 945 ident: bb0210 article-title: Human cytomegalovirus infection increases mitochondrial biogenesis publication-title: Mitochondrion – volume: 18 start-page: 20 year: 2011 end-page: 26 ident: bb0035 article-title: Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission publication-title: Nat. Struct. Mol. Biol. – volume: 122 start-page: 669 year: 2005 end-page: 682 ident: bb0470 article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3 publication-title: Cell – volume: 16 start-page: 407 year: 2016 end-page: 420 ident: bb0390 article-title: Inflammasomes: mechanism of assembly, regulation and signalling publication-title: Nat. Rev. Immunol. – volume: 5 start-page: 123 year: 2009 end-page: 136 ident: bb0240 article-title: induces mitochondrial dysfunction and cell death in nonmyleoid cells publication-title: Cell Host Microbe – volume: 334 start-page: 358 year: 2011 end-page: 362 ident: bb0065 article-title: ER tubules mark sites of mitochondrial division publication-title: Science (80-. ) – volume: 73 start-page: 504 year: 2005 end-page: 513 ident: bb0235 article-title: Virulent publication-title: Infect. Immun. – volume: 15 start-page: 675 year: 2013 end-page: 687 ident: bb0270 article-title: The publication-title: Cell. Microbiol. – volume: 191 start-page: 4358 year: 2013 end-page: 4366 ident: bb0410 article-title: The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates Its inflammasome activity publication-title: J. Immunol. – volume: 39 start-page: 311 year: 2013 end-page: 323 ident: bb0430 article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation publication-title: Immunity – volume: 11 start-page: 166 year: 2015 end-page: 182 ident: bb0465 article-title: Mitochondrial damage contributes to publication-title: Autophagy – volume: 145 start-page: 498 year: 2015 end-page: 507 ident: bb0180 article-title: The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-γ publication-title: Immunology – volume: 86 start-page: 154 year: 2016 end-page: 169 ident: bb0140 article-title: HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders publication-title: Neurobiol. Dis. – volume: 103 start-page: 18745 year: 2006 end-page: 18750 ident: bb0265 article-title: A publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 22 start-page: 302 year: 2017 end-page: 316 ident: bb0100 article-title: modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages publication-title: Cell Host Microbe – volume: 7 year: 2012 ident: bb0310 article-title: HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction publication-title: PLoS One – volume: 20 start-page: 433 year: 2019 end-page: 446 ident: bb0460 article-title: Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing publication-title: Nat. Immunol. – volume: 273 start-page: 7052 year: 1998 end-page: 7058 ident: bb0200 article-title: Enhancement of ATP levels and glucose metabolism during an infection by publication-title: J. Biol. Chem. – volume: 7 start-page: 150 year: 2016 ident: bb0165 article-title: Immunometabolism in tuberculosis publication-title: Front. Immunol. – volume: 196 start-page: 2444 year: 2016 end-page: 2449 ident: bb0155 article-title: Cutting Edge: publication-title: J. Immunol. – volume: 5 year: 2010 ident: bb0365 article-title: Differential regulation of the PGC family of genes in a mouse model of publication-title: PLoS One – volume: 99 start-page: 238 year: 2013 end-page: 244 ident: bb0215 article-title: Increased mitochondrial functions in human glioblastoma cells persistently infected with measles virus publication-title: Antivir. Res. – volume: 5 start-page: 41 year: 2018 ident: bb0290 article-title: Potential therapy strategy: targeting mitochondrial dysfunction in sepsis publication-title: Mil. Med. Res. – volume: 9 start-page: 918 year: 2014 end-page: 929 ident: bb0190 article-title: Tumor suppressor p53 alters host cell metabolism to limit publication-title: Cell Rep. – volume: 19 start-page: 6361 year: 2002 end-page: 6370 ident: bb0085 article-title: The N-terminal 34 kDa fragment of publication-title: EMBO J. – volume: 281 start-page: 31495 year: 2006 end-page: 31501 ident: bb0285 article-title: The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in publication-title: J. Biol. Chem. – volume: 41 start-page: 21 year: 2018 end-page: 27 ident: bb0145 article-title: The essential role of mitochondrial dynamics in antiviral immunity publication-title: Mitochondrion – volume: 10 start-page: 4186 year: 2011 end-page: 4195 ident: bb0170 article-title: Metabolic profiling of lung granuloma in publication-title: J. Proteome Res. – volume: 451 start-page: 573-57 year: 2008 ident: bb0440 article-title: NLRX1 is a regulator of mitochondrial antiviral immunity publication-title: Nature – volume: 5 start-page: 18176 year: 2015 ident: bb0150 article-title: Infection with publication-title: Sci. Rep. – volume: 209 start-page: 1029 year: 2012 end-page: 1047 ident: bb0330 article-title: Chikungunya virus-induced autophagy delays caspase-dependent cell death publication-title: J. Exp. Med. – volume: 345 start-page: 278 year: 1997 end-page: 288 ident: bb0370 article-title: Oxidative metabolism in rat hepatocytes and mitochondria during sepsis publication-title: Arch. Biochem. Biophys. – volume: 12 start-page: 222 year: 2011 end-page: 230 ident: bb0420 article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome publication-title: Nat. Immunol. – volume: 369 start-page: 2236 year: 2013 end-page: 2251 ident: bb0030 article-title: Mitochondrial dynamics-mitochondrial fission and fusion in human diseases publication-title: N. Engl. J. Med. – volume: 159 start-page: 1563 year: 2014 end-page: 1577 ident: bb0500 article-title: Apoptotic caspases prevent the induction of type i interferons by mitochondrial DNA publication-title: Cell – volume: 200 start-page: 905 year: 2004 end-page: 916 ident: bb0280 article-title: inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins publication-title: J. Exp. Med. – volume: 520 start-page: 553 year: 2015 end-page: 557 ident: bb0495 article-title: Mitochondrial DNA stress primes the antiviral innate immune response publication-title: Nature – volume: 1 year: 2005 ident: bb0305 article-title: Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1 publication-title: PLoS Pathog. – volume: 36 start-page: 401 year: 2012 end-page: 414 ident: bb0425 article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis publication-title: Immunity – volume: 21 year: 2019 ident: bb0110 article-title: targets mitochondrial dynamics to promote intracellular survival and proliferation publication-title: Cell. Microbiol. – volume: 289 start-page: 35205 year: 2014 end-page: 35214 ident: bb0350 article-title: TAK1-ECSIT-TRAF6 complex plays a key role in the TLR4 signal to activate NF-κB publication-title: J. Biol. Chem. – volume: 21 start-page: 230 year: 2013 end-page: 237 ident: bb0115 article-title: Bacterial contact-dependent growth inhibition publication-title: Trends Microbiol. – volume: 108 start-page: 3612 year: 2011 end-page: 3617 ident: bb0075 article-title: Listeria monocytogenes transiently alters mitochondrial dynamics during infection publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 342 year: 2016 end-page: 356 ident: bb0130 article-title: Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses publication-title: Cell Host Microbe – volume: 176 start-page: 3707 year: 2006 end-page: 3716 ident: bb0245 article-title: A mechanism of virulence: virulent publication-title: J. Immunol. – volume: 10 start-page: e02550-18 year: 2019 ident: bb0160 article-title: Biphasic dynamics of macrophage immunometabolism during publication-title: mBio – volume: 24 start-page: 625 year: 2018 end-page: 636 ident: bb0380 article-title: Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized publication-title: Cell Host Microbe – volume: 304 start-page: 530 year: 2014 end-page: 541 ident: bb0095 article-title: Dynamin-related protein Drp1 and mitochondria are important for publication-title: Int. J. Med. Microbiol. – volume: 35 start-page: 10799 year: 2015 end-page: 10814 ident: bb0360 article-title: Toll-like receptors promote mitochondrial translocation of nuclear transcription factor nuclear factor of activated T-cells in prolonged microglial activation publication-title: J. Neurosci. – volume: 2 year: 2009 ident: bb0480 article-title: Mitofusin 2 inhibits mitochondrial antiviral signaling publication-title: Sci. Signal. – volume: 199 year: 2017 ident: bb0185 article-title: induces a Warburg shift in host metabolism that is linked to enhanced intracellular survival of the pathogen publication-title: J. Bacteriol. – volume: 410 start-page: 145 year: 1997 end-page: 149 ident: bb0315 article-title: HIV-1 protein Vpr causes gross mitochondrial dysfunction in the yeast publication-title: FEBS Lett. – volume: 25 start-page: 65 year: 2018 end-page: 80 ident: bb0230 article-title: BCL-2 family proteins: changing partners in the dance towards death publication-title: Cell Death Differ. – volume: 20 year: 2010 ident: bb0490 article-title: Peroxisomes are signaling platforms for antiviral innate immunity publication-title: Cell – volume: 278 start-page: 1589 year: 2009 end-page: 1600 ident: bb0010 article-title: SlP-2 is required for stress-induced mitochondrial hyperfusion publication-title: EMBO J. – volume: 176 start-page: 768 year: 2007 end-page: 777 ident: bb0375 article-title: Mitochondrial biogenesis restores oxidative metabolism during publication-title: Am. J. Respir. Crit. Care Med. – volume: 108 start-page: 16032 year: 2011 end-page: 16037 ident: bb0090 article-title: vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 129 start-page: 2170 year: 2016 end-page: 2181 ident: bb0060 article-title: Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission publication-title: J. Cell Sci. – volume: 290 start-page: 29063 year: 2015 end-page: 29073 ident: bb0255 article-title: ExoT induces mitochondrial apoptosis in target host cells in a manner that depends on its GTPase-activating protein (GAP) domain activity publication-title: J. Biol. Chem. – volume: 163 start-page: 1123 year: 2003 end-page: 1131 ident: bb0250 article-title: A publication-title: J. Cell Biol. – volume: 146 start-page: 448 year: 2011 end-page: 461 ident: bb0475 article-title: MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response publication-title: Cell – volume: 19 start-page: 275 year: 2015 ident: bb0295 article-title: Ubiquinol (reduced coenzyme Q10) in patients with severe sepsis or septic shock: a randomized, double-blind, placebo-controlled, pilot trial publication-title: Crit. Care – volume: 212 start-page: 531 year: 2016 end-page: 544 ident: bb0050 article-title: Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling publication-title: J. Cell Biol. – volume: 27 start-page: R1177 year: 2017 end-page: R1192 ident: bb0005 article-title: The origin and diversification of mitochondria publication-title: Curr. Biol. – volume: 6 year: 2011 ident: bb0300 article-title: Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat publication-title: PLoS One – volume: 110 start-page: 16003 year: 2013 end-page: 16008 ident: bb0080 article-title: Atypical mitochondrial fission upon bacterial infection publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 75 start-page: 995 year: 2004 end-page: 1000 ident: bb0340 article-title: Endogenously oxidized mitochondrial DNA induces publication-title: J. Leukoc. Biol. – volume: 469 start-page: 221 year: 2011 end-page: 225 ident: bb0395 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature – volume: 153 start-page: 348 year: 2013 end-page: 361 ident: bb0405 article-title: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation publication-title: Cell – volume: 9 start-page: 3001 year: 2018 ident: bb0415 article-title: SUMO-mediated regulation of NLRP3 modulates inflammasome activity publication-title: Nat. Commun. – volume: 285 start-page: 41637 year: 2010 end-page: 41645 ident: bb0455 article-title: Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1 publication-title: J. Biol. Chem. – volume: 101 start-page: 15927 year: 2004 end-page: 15932 ident: bb0020 article-title: OPA1 requires mitofusin 1 to promote mitochondrial fusion publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: 4713 year: 2014 ident: bb0120 article-title: Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity publication-title: Nat. Commun. – volume: 104 start-page: 5121 year: 2007 end-page: 5126 ident: bb0260 article-title: inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 160 start-page: 189 year: 2003 end-page: 200 ident: bb0025 article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development publication-title: J. Cell Biol. – volume: 7 year: 2011 ident: bb0355 article-title: Mitochondrial ubiquitin ligase MARCH5 promotes TLR7 signaling by attenuating TANK action publication-title: PLoS Pathog. – volume: 159 start-page: 1549 year: 2014 end-page: 1562 ident: bb0505 article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type i IFN production publication-title: Cell – volume: 11 year: 2015 ident: bb0485 article-title: Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by Hepatitis C virus publication-title: PLoS Pathog. – volume: 193 start-page: 3080 year: 2014 end-page: 3089 ident: bb0135 article-title: SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome publication-title: J. Immunol. – volume: 9 start-page: 293 year: 2008 end-page: 300 ident: bb0445 article-title: NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production publication-title: EMBO Rep. – volume: 216 start-page: 1071 year: 2017 end-page: 1089 ident: bb0105 article-title: preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission publication-title: J. Cell Biol. – volume: 16 start-page: 23 year: 2013 end-page: 31 ident: bb0385 article-title: Inflammasomes and host defenses against bacterial infections publication-title: Curr. Opin. Microbiol. – volume: 24 start-page: 659 year: 2013 end-page: 667 ident: bb0045 article-title: Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission publication-title: Mol. Biol. Cell – volume: 109 start-page: 19781 year: 2012 end-page: 19785 ident: bb0195 article-title: Developmental stage-specific metabolic and transcriptional activity of publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 14 start-page: 480 year: 2013 end-page: 488 ident: bb0400 article-title: Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection publication-title: Nat. Immunol. – volume: 191 start-page: 1141 year: 2010 end-page: 1158 ident: bb0055 article-title: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells publication-title: J. Cell Biol. – volume: 359 year: 2018 ident: bb0510 article-title: BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis publication-title: Science (80-. ) – volume: 5 start-page: 3907 year: 2014 end-page: 3918 ident: bb0335 article-title: Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus publication-title: Oncotarget – volume: 472 start-page: 476 year: 2011 end-page: 480 ident: bb0345 article-title: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS publication-title: Nature – volume: 73 start-page: 1861 year: 2005 end-page: 1864 ident: bb0275 article-title: Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in publication-title: Infect. Immun. – volume: 159 start-page: 1549 year: 2014 ident: 10.1016/j.tcb.2020.01.006_bb0505 article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type i IFN production publication-title: Cell doi: 10.1016/j.cell.2014.11.036 – volume: 6 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0300 article-title: Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat publication-title: PLoS One doi: 10.1371/journal.pone.0021285 – volume: 20 start-page: 342 year: 2016 ident: 10.1016/j.tcb.2020.01.006_bb0130 article-title: Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.07.008 – volume: 163 start-page: 1123 year: 2003 ident: 10.1016/j.tcb.2020.01.006_bb0250 article-title: A Salmonella protein causes macrophage cell death by inducing autophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200309161 – volume: 22 start-page: 302 year: 2017 ident: 10.1016/j.tcb.2020.01.006_bb0100 article-title: Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.07.020 – volume: 345 start-page: 278 year: 1997 ident: 10.1016/j.tcb.2020.01.006_bb0370 article-title: Oxidative metabolism in rat hepatocytes and mitochondria during sepsis publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1997.0264 – volume: 10 start-page: e02550-18 year: 2019 ident: 10.1016/j.tcb.2020.01.006_bb0160 article-title: Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis infection publication-title: mBio doi: 10.1128/mBio.02550-18 – volume: 209 start-page: 1029 year: 2012 ident: 10.1016/j.tcb.2020.01.006_bb0330 article-title: Chikungunya virus-induced autophagy delays caspase-dependent cell death publication-title: J. Exp. Med. doi: 10.1084/jem.20110996 – volume: 108 start-page: 3612 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0075 article-title: Listeria monocytogenes transiently alters mitochondrial dynamics during infection publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1100126108 – volume: 7 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0205 article-title: Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002124 – volume: 14 start-page: 454 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0435 article-title: Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome publication-title: Nat. Immunol. doi: 10.1038/ni.2550 – volume: 359 year: 2018 ident: 10.1016/j.tcb.2020.01.006_bb0510 article-title: BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis publication-title: Science (80-. ) doi: 10.1126/science.aao6047 – volume: 304 start-page: 530 year: 2014 ident: 10.1016/j.tcb.2020.01.006_bb0095 article-title: Dynamin-related protein Drp1 and mitochondria are important for Shigella flexneri infection publication-title: Int. J. Med. Microbiol. doi: 10.1016/j.ijmm.2014.03.006 – volume: 41 start-page: 21 year: 2018 ident: 10.1016/j.tcb.2020.01.006_bb0145 article-title: The essential role of mitochondrial dynamics in antiviral immunity publication-title: Mitochondrion doi: 10.1016/j.mito.2017.11.007 – volume: 285 start-page: 41637 year: 2010 ident: 10.1016/j.tcb.2020.01.006_bb0455 article-title: Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.137885 – volume: 27 start-page: R1177 year: 2017 ident: 10.1016/j.tcb.2020.01.006_bb0005 article-title: The origin and diversification of mitochondria publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.09.015 – volume: 290 start-page: 29063 year: 2015 ident: 10.1016/j.tcb.2020.01.006_bb0255 article-title: Pseudomonas aeruginosa ExoT induces mitochondrial apoptosis in target host cells in a manner that depends on its GTPase-activating protein (GAP) domain activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.689950 – volume: 334 start-page: 358 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0065 article-title: ER tubules mark sites of mitochondrial division publication-title: Science (80-. ) doi: 10.1126/science.1207385 – volume: 7 start-page: 150 year: 2016 ident: 10.1016/j.tcb.2020.01.006_bb0165 article-title: Immunometabolism in tuberculosis publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00150 – volume: 109 start-page: 19781 year: 2012 ident: 10.1016/j.tcb.2020.01.006_bb0195 article-title: Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1212831109 – volume: 24 start-page: 659 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0045 article-title: Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e12-10-0721 – volume: 2 year: 2009 ident: 10.1016/j.tcb.2020.01.006_bb0480 article-title: Mitofusin 2 inhibits mitochondrial antiviral signaling publication-title: Sci. Signal. doi: 10.1126/scisignal.2000287 – volume: 24 start-page: 625 year: 2018 ident: 10.1016/j.tcb.2020.01.006_bb0380 article-title: Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized Staphylococcus aureus publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.10.005 – volume: 9 start-page: 918 year: 2014 ident: 10.1016/j.tcb.2020.01.006_bb0190 article-title: Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.004 – volume: 289 start-page: 35205 year: 2014 ident: 10.1016/j.tcb.2020.01.006_bb0350 article-title: TAK1-ECSIT-TRAF6 complex plays a key role in the TLR4 signal to activate NF-κB publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.597187 – volume: 5 start-page: 41 year: 2018 ident: 10.1016/j.tcb.2020.01.006_bb0290 article-title: Potential therapy strategy: targeting mitochondrial dysfunction in sepsis publication-title: Mil. Med. Res. doi: 10.1186/s40779-018-0187-0 – volume: 16 start-page: 23 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0385 article-title: Inflammasomes and host defenses against bacterial infections publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2012.11.008 – volume: 39 start-page: 311 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0430 article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation publication-title: Immunity doi: 10.1016/j.immuni.2013.08.001 – volume: 216 start-page: 1071 year: 2017 ident: 10.1016/j.tcb.2020.01.006_bb0105 article-title: Chlamydia preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission publication-title: J. Cell Biol. doi: 10.1083/jcb.201608063 – volume: 520 start-page: 553 year: 2015 ident: 10.1016/j.tcb.2020.01.006_bb0495 article-title: Mitochondrial DNA stress primes the antiviral innate immune response publication-title: Nature doi: 10.1038/nature14156 – volume: 410 start-page: 145 year: 1997 ident: 10.1016/j.tcb.2020.01.006_bb0315 article-title: HIV-1 protein Vpr causes gross mitochondrial dysfunction in the yeast Saccharomyces cerevisiae publication-title: FEBS Lett. doi: 10.1016/S0014-5793(97)00542-5 – volume: 99 start-page: 238 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0215 article-title: Increased mitochondrial functions in human glioblastoma cells persistently infected with measles virus publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2013.06.016 – volume: 10 start-page: 4186 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0170 article-title: Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies publication-title: J. Proteome Res. doi: 10.1021/pr2003352 – volume: 122 start-page: 669 year: 2005 ident: 10.1016/j.tcb.2020.01.006_bb0470 article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3 publication-title: Cell doi: 10.1016/j.cell.2005.08.012 – volume: 11 start-page: 935 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0210 article-title: Human cytomegalovirus infection increases mitochondrial biogenesis publication-title: Mitochondrion doi: 10.1016/j.mito.2011.08.008 – volume: 191 start-page: 1141 year: 2010 ident: 10.1016/j.tcb.2020.01.006_bb0055 article-title: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201007152 – volume: 153 start-page: 348 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0405 article-title: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation publication-title: Cell doi: 10.1016/j.cell.2013.02.054 – volume: 196 start-page: 2444 year: 2016 ident: 10.1016/j.tcb.2020.01.006_bb0155 article-title: Cutting Edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication publication-title: J. Immunol. doi: 10.4049/jimmunol.1501612 – volume: 73 start-page: 504 year: 2005 ident: 10.1016/j.tcb.2020.01.006_bb0235 article-title: Virulent Shigella flexneri causes damage to mitochondria and triggers necrosis in infected human monocyte-derived macrophages publication-title: Infect. Immun. doi: 10.1128/IAI.73.1.504-513.2005 – volume: 160 start-page: 189 year: 2003 ident: 10.1016/j.tcb.2020.01.006_bb0025 article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development publication-title: J. Cell Biol. doi: 10.1083/jcb.200211046 – volume: 273 start-page: 7052 year: 1998 ident: 10.1016/j.tcb.2020.01.006_bb0200 article-title: Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia: NMR studies of living cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.12.7052 – volume: 122 start-page: 3161 year: 2009 ident: 10.1016/j.tcb.2020.01.006_bb0450 article-title: An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix publication-title: J. Cell Sci. doi: 10.1242/jcs.051193 – volume: 86 start-page: 154 year: 2016 ident: 10.1016/j.tcb.2020.01.006_bb0140 article-title: HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2015.11.015 – volume: 9 start-page: 293 year: 2008 ident: 10.1016/j.tcb.2020.01.006_bb0445 article-title: NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production publication-title: EMBO Rep. doi: 10.1038/sj.embor.7401161 – volume: 7 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0355 article-title: Mitochondrial ubiquitin ligase MARCH5 promotes TLR7 signaling by attenuating TANK action publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002057 – volume: 146 start-page: 448 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0475 article-title: MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response publication-title: Cell doi: 10.1016/j.cell.2011.06.041 – volume: 11 start-page: 166 year: 2015 ident: 10.1016/j.tcb.2020.01.006_bb0465 article-title: Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy publication-title: Autophagy doi: 10.4161/15548627.2014.981915 – volume: 204 start-page: 919 year: 2014 ident: 10.1016/j.tcb.2020.01.006_bb0015 article-title: The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission publication-title: J. Cell Biol. doi: 10.1083/jcb.201308006 – volume: 110 start-page: 16003 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0080 article-title: Atypical mitochondrial fission upon bacterial infection publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1315784110 – volume: 11 year: 2015 ident: 10.1016/j.tcb.2020.01.006_bb0485 article-title: Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by Hepatitis C virus publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005264 – volume: 75 start-page: 995 year: 2004 ident: 10.1016/j.tcb.2020.01.006_bb0340 article-title: Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0703328 – volume: 20 year: 2010 ident: 10.1016/j.tcb.2020.01.006_bb0490 article-title: Peroxisomes are signaling platforms for antiviral innate immunity publication-title: Cell – volume: 281 start-page: 31495 year: 2006 ident: 10.1016/j.tcb.2020.01.006_bb0285 article-title: The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602796200 – volume: 12 start-page: 565 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0040 article-title: MiD49 and MiD51, new components of the mitochondrial fission machinery publication-title: EMBO Rep. doi: 10.1038/embor.2011.54 – volume: 469 start-page: 221 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0395 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature doi: 10.1038/nature09663 – volume: 73 start-page: 1861 year: 2005 ident: 10.1016/j.tcb.2020.01.006_bb0275 article-title: Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells publication-title: Infect. Immun. doi: 10.1128/IAI.73.3.1861-1864.2005 – volume: 85 start-page: 11646 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0225 article-title: Systems virology identifies a mitochondrial fatty acid oxidation enzyme, dodecenoyl coenzyme A delta isomerase, required for Hepatitis C virus replication and likely pathogenesis publication-title: J. Virol. doi: 10.1128/JVI.05605-11 – volume: 200 start-page: 905 year: 2004 ident: 10.1016/j.tcb.2020.01.006_bb0280 article-title: Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins publication-title: J. Exp. Med. doi: 10.1084/jem.20040402 – volume: 145 start-page: 498 year: 2015 ident: 10.1016/j.tcb.2020.01.006_bb0180 article-title: The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-γ publication-title: Immunology doi: 10.1111/imm.12464 – volume: 5 year: 2010 ident: 10.1016/j.tcb.2020.01.006_bb0365 article-title: Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis publication-title: PLoS One doi: 10.1371/journal.pone.0011606 – volume: 472 start-page: 476 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0345 article-title: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS publication-title: Nature doi: 10.1038/nature09973 – volume: 5 start-page: 123 year: 2009 ident: 10.1016/j.tcb.2020.01.006_bb0240 article-title: Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.12.011 – volume: 1 year: 2005 ident: 10.1016/j.tcb.2020.01.006_bb0305 article-title: Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0010004 – volume: 176 start-page: 768 year: 2007 ident: 10.1016/j.tcb.2020.01.006_bb0375 article-title: Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.200701-161OC – volume: 128 start-page: 2795 year: 2015 ident: 10.1016/j.tcb.2020.01.006_bb0070 article-title: Analysis of ER-mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells publication-title: J. Cell Sci. doi: 10.1242/jcs.169136 – volume: 25 start-page: 65 year: 2018 ident: 10.1016/j.tcb.2020.01.006_bb0230 article-title: BCL-2 family proteins: changing partners in the dance towards death publication-title: Cell Death Differ. doi: 10.1038/cdd.2017.186 – volume: 7 year: 2016 ident: 10.1016/j.tcb.2020.01.006_bb0320 article-title: Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation publication-title: Cell Death Dis. doi: 10.1038/cddis.2015.409 – volume: 159 start-page: 1563 year: 2014 ident: 10.1016/j.tcb.2020.01.006_bb0500 article-title: Apoptotic caspases prevent the induction of type i interferons by mitochondrial DNA publication-title: Cell doi: 10.1016/j.cell.2014.11.037 – volume: 21 year: 2019 ident: 10.1016/j.tcb.2020.01.006_bb0110 article-title: Chlamydia trachomatis targets mitochondrial dynamics to promote intracellular survival and proliferation publication-title: Cell. Microbiol. doi: 10.1111/cmi.12962 – volume: 35 start-page: 10799 year: 2015 ident: 10.1016/j.tcb.2020.01.006_bb0360 article-title: Toll-like receptors promote mitochondrial translocation of nuclear transcription factor nuclear factor of activated T-cells in prolonged microglial activation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2455-14.2015 – volume: 14 start-page: 480 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0400 article-title: Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection publication-title: Nat. Immunol. doi: 10.1038/ni.2563 – volume: 18 start-page: 20 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0035 article-title: Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1949 – volume: 21 start-page: 230 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0115 article-title: Bacterial contact-dependent growth inhibition publication-title: Trends Microbiol. doi: 10.1016/j.tim.2013.02.003 – volume: 7 year: 2012 ident: 10.1016/j.tcb.2020.01.006_bb0310 article-title: HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction publication-title: PLoS One – volume: 36 start-page: 401 year: 2012 ident: 10.1016/j.tcb.2020.01.006_bb0425 article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis publication-title: Immunity doi: 10.1016/j.immuni.2012.01.009 – volume: 369 start-page: 2236 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0030 article-title: Mitochondrial dynamics-mitochondrial fission and fusion in human diseases publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1215233 – volume: 129 start-page: 2170 year: 2016 ident: 10.1016/j.tcb.2020.01.006_bb0060 article-title: Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission publication-title: J. Cell Sci. doi: 10.1242/jcs.185165 – volume: 500 start-page: 149 year: 2017 ident: 10.1016/j.tcb.2020.01.006_bb0125 article-title: Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission publication-title: Virology doi: 10.1016/j.virol.2016.10.022 – volume: 12 start-page: 222 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0420 article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome publication-title: Nat. Immunol. doi: 10.1038/ni.1980 – volume: 20 start-page: 433 year: 2019 ident: 10.1016/j.tcb.2020.01.006_bb0460 article-title: Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0324-2 – volume: 278 start-page: 1589 year: 2009 ident: 10.1016/j.tcb.2020.01.006_bb0010 article-title: SlP-2 is required for stress-induced mitochondrial hyperfusion publication-title: EMBO J. doi: 10.1038/emboj.2009.89 – volume: 191 start-page: 4358 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0410 article-title: The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates Its inflammasome activity publication-title: J. Immunol. doi: 10.4049/jimmunol.1301170 – volume: 212 start-page: 531 year: 2016 ident: 10.1016/j.tcb.2020.01.006_bb0050 article-title: Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling publication-title: J. Cell Biol. doi: 10.1083/jcb.201508099 – volume: 19 start-page: 275 year: 2015 ident: 10.1016/j.tcb.2020.01.006_bb0295 article-title: Ubiquinol (reduced coenzyme Q10) in patients with severe sepsis or septic shock: a randomized, double-blind, placebo-controlled, pilot trial publication-title: Crit. Care doi: 10.1186/s13054-015-0989-3 – volume: 16 start-page: 407 year: 2016 ident: 10.1016/j.tcb.2020.01.006_bb0390 article-title: Inflammasomes: mechanism of assembly, regulation and signalling publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.58 – volume: 15 start-page: 675 year: 2013 ident: 10.1016/j.tcb.2020.01.006_bb0270 article-title: The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level publication-title: Cell. Microbiol. doi: 10.1111/cmi.12066 – volume: 19 start-page: 663 year: 2016 ident: 10.1016/j.tcb.2020.01.006_bb0325 article-title: Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.07.019 – volume: 451 start-page: 573-57 year: 2008 ident: 10.1016/j.tcb.2020.01.006_bb0440 article-title: NLRX1 is a regulator of mitochondrial antiviral immunity publication-title: Nature doi: 10.1038/nature06501 – volume: 103 start-page: 18745 year: 2006 ident: 10.1016/j.tcb.2020.01.006_bb0265 article-title: A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0609012103 – volume: 9 start-page: 3001 year: 2018 ident: 10.1016/j.tcb.2020.01.006_bb0415 article-title: SUMO-mediated regulation of NLRP3 modulates inflammasome activity publication-title: Nat. Commun. doi: 10.1038/s41467-018-05321-2 – volume: 193 start-page: 3080 year: 2014 ident: 10.1016/j.tcb.2020.01.006_bb0135 article-title: SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome publication-title: J. Immunol. doi: 10.4049/jimmunol.1303196 – volume: 19 start-page: 6361 year: 2002 ident: 10.1016/j.tcb.2020.01.006_bb0085 article-title: The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release publication-title: EMBO J. doi: 10.1093/emboj/19.23.6361 – volume: 101 start-page: 15927 year: 2004 ident: 10.1016/j.tcb.2020.01.006_bb0020 article-title: OPA1 requires mitofusin 1 to promote mitochondrial fusion publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0407043101 – volume: 104 start-page: 5121 year: 2007 ident: 10.1016/j.tcb.2020.01.006_bb0260 article-title: Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0611030104 – volume: 5 start-page: 18176 year: 2015 ident: 10.1016/j.tcb.2020.01.006_bb0150 article-title: Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs publication-title: Sci. Rep. doi: 10.1038/srep18176 – volume: 108 start-page: 16032 year: 2011 ident: 10.1016/j.tcb.2020.01.006_bb0090 article-title: Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1105175108 – volume: 199 year: 2017 ident: 10.1016/j.tcb.2020.01.006_bb0185 article-title: Brucella abortus induces a Warburg shift in host metabolism that is linked to enhanced intracellular survival of the pathogen publication-title: J. Bacteriol. doi: 10.1128/JB.00227-17 – volume: 5 start-page: 3907 year: 2014 ident: 10.1016/j.tcb.2020.01.006_bb0335 article-title: Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus publication-title: Oncotarget doi: 10.18632/oncotarget.2028 – volume: 46 start-page: 2574 year: 2016 ident: 10.1016/j.tcb.2020.01.006_bb0175 article-title: Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.201546259 – volume: 6 year: 2010 ident: 10.1016/j.tcb.2020.01.006_bb0220 article-title: Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000719 – volume: 176 start-page: 3707 year: 2006 ident: 10.1016/j.tcb.2020.01.006_bb0245 article-title: A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis publication-title: J. Immunol. doi: 10.4049/jimmunol.176.6.3707 – volume: 5 start-page: 4713 year: 2014 ident: 10.1016/j.tcb.2020.01.006_bb0120 article-title: Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity publication-title: Nat. Commun. doi: 10.1038/ncomms5713 |
SSID | ssj0007213 |
Score | 2.6697333 |
SecondaryResourceType | review_article |
Snippet | Mitochondria have a central role in regulating a range of cellular activities and host responses upon bacterial infection. Multiple pathogens affect... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 263 |
SubjectTerms | bacteria Bacterial diseases cell death Homeostasis Immune response Immunity Infections innate immunity Microorganisms Mitochondria mitochondrial metabolism mitochondrial morphology Pathogenesis Review viruses |
Title | Mitochondrial Functions in Infection and Immunity |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0962892420300180 https://dx.doi.org/10.1016/j.tcb.2020.01.006 https://www.ncbi.nlm.nih.gov/pubmed/32200805 https://www.proquest.com/docview/2436895183 https://www.proquest.com/docview/2381848578 https://pubmed.ncbi.nlm.nih.gov/PMC7126537 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcCiK4EV8G60SwZMQm8dmd3ssYmkt9uADe1uyj2JFVtF68OK3O5uXVqWCp5DsTMhO5snOA-BIxUSqLJYBp1oGpK1VIJkZB2lKNSdpKGPmCoUvhrR3Q85H6agBp1UtjEurLHV_odNzbV0-aZXUbD1NJq0rdL4xWkATg3zq2lC5CnbCHJefvH-meWCEU4yTpyj5CF2dbOY5XlMlMUSMw7xzpxt69Ltt-ul7fk-h_GKTuquwUjqTfqf43jVoGLsOS8V4ybcNiC5QXFG9We24zO-iCcu5zJ9Yv18mYVk_s9rv51Ui07dNuOmeXZ_2gnJEQqBQmGjAiI4inSRKyVhRlag2NVnGCDVjMo4oGn9CpDZcK60ySkJtGEOhS1TEecK5SbZgwT5aswM-OhY004xSpjFmNoTjq5jGCJmyTLXD0IOwIo5QZf9wN8biQVSJYvcC6SkcPUUYCaSnB8c1ylPRPGMecFxRXFRVoajHBKr2eUikRpphm7_QmtUvFaXMvojYNeNHh5MnHhzWyyht7ggls-bxFWGcg0M4qjkPtgsOqHeGqtH536kHbIY3agDXyXt2xU7u8o7eLIppmrDd_-1mD5bdXZFP1ISF6fOr2UdXaSoPclk4gMVOf9Abuuvg8nbwAZedEwc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfQivq3PCp6Esn2kSfYo4rKr7l5U8Baax-KKZEXXg__eSZsWV0XBa5MpzXTmmxkyD4ATlRKpilRGnGoZkY5WkWRmFOU51ZzksUyZKxQeDGnvjlze5_dzcF7Xwri0So_9FaaXaO2ftD0328_jcfsGnW-MFtDEoJy6NlTzsOC6U-UtWDjrX_WGDSBjkFNNlKeo_EhQX26WaV5TJTFKTOOyeaebe_Szefrufn7NovxklrqrsOL9yfCs-uQ1mDN2HRarCZPvG5AMUGMR4ax2ghZ20YqVghaObdj3eVg2LKwO-2WhyPR9E-66F7fnvchPSYgU6hONGNFJorNMKZkqqjLVoaYoGKFmREYJRftPiNSGa6VVQUmsDWOod5lKOM84N9kWtOzEmh0I0beghWaUMo1hsyEcX8U0BsmUFaoTxwHENXOE8i3E3SSLJ1Hnij0K5Kdw_BRxIpCfAZw2JM9V_4zfNqc1x0VdGIpQJhDdfyMiDdGM5PxFtl__UuHV9lWkrh8_-pw8C-C4WUaFc7cohTWTN9zjfBzCEekC2K4koDkZoqNzwfMA2IxsNBtcM-_ZFTt-KJt6sySlecZ2_3eaI1jq3Q6uxXV_eLUHy26lSi_ah9b05c0coOc0lYdeMz4AXdUUFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+Functions+in+Infection+and+Immunity&rft.jtitle=Trends+in+cell+biology&rft.au=Tiku%2C+Varnesh&rft.au=Tan%2C+Man-Wah&rft.au=Dikic%2C+Ivan&rft.date=2020-04-01&rft.issn=0962-8924&rft.volume=30&rft.issue=4&rft.spage=263&rft.epage=275&rft_id=info:doi/10.1016%2Fj.tcb.2020.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcb_2020_01_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8924&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8924&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8924&client=summon |