Expansion of the world's deserts due to vegetation-albedo feedback under global warming
Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying. Using a coupled atmosphere‐ocean‐land model with a dynamic vegetation component that predicts surface albedo change, here we simulate the cl...
Saved in:
Published in | Geophysical research letters Vol. 36; no. 17; pp. np - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.09.2009
American Geophysical Union John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying. Using a coupled atmosphere‐ocean‐land model with a dynamic vegetation component that predicts surface albedo change, here we simulate the climate change from 1901 to 2099 with CO2 and other forcings. In a standard IPCC‐style simulation, the model simulated an increase in the world's ‘warm desert’ area of 2.5 million km2 or 10% at the end of the 21st century. In a more realistic simulation where the vegetation‐albedo feedback was allowed to interact, the ‘warm desert’ area expands by 8.5 million km2 or 34%. This occurs mostly as an expansion of the world's major subtropical deserts such as the Sahara, the Kalahari, the Gobi, and the Great Sandy Desert. It is suggested that vegetation‐albedo feedback should be fully included in IPCC future climate projections. |
---|---|
AbstractList | Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying. Using a coupled atmosphere-ocean-land model with a dynamic vegetation component that predicts surface albedo change, here we simulate the climate change from 1901 to 2099 with CO sub(2) and other forcings. In a standard IPCC-style simulation, the model simulated an increase in the world's 'warm desert' area of 2.5 million km super(2) or 10% at the end of the 21st century. In a more realistic simulation where the vegetation-albedo feedback was allowed to interact, the 'warm desert' area expands by 8.5 million km super(2) or 34%. This occurs mostly as an expansion of the world's major subtropical deserts such as the Sahara, the Kalahari, the Gobi, and the Great Sandy Desert. It is suggested that vegetation-albedo feedback should be fully included in IPCC future climate projections. Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying. Using a coupled atmosphere‐ocean‐land model with a dynamic vegetation component that predicts surface albedo change, here we simulate the climate change from 1901 to 2099 with CO 2 and other forcings. In a standard IPCC‐style simulation, the model simulated an increase in the world's ‘warm desert’ area of 2.5 million km 2 or 10% at the end of the 21st century. In a more realistic simulation where the vegetation‐albedo feedback was allowed to interact, the ‘warm desert’ area expands by 8.5 million km 2 or 34%. This occurs mostly as an expansion of the world's major subtropical deserts such as the Sahara, the Kalahari, the Gobi, and the Great Sandy Desert. It is suggested that vegetation‐albedo feedback should be fully included in IPCC future climate projections. Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying. Using a coupled atmosphere‐ocean‐land model with a dynamic vegetation component that predicts surface albedo change, here we simulate the climate change from 1901 to 2099 with CO2 and other forcings. In a standard IPCC‐style simulation, the model simulated an increase in the world's ‘warm desert’ area of 2.5 million km2 or 10% at the end of the 21st century. In a more realistic simulation where the vegetation‐albedo feedback was allowed to interact, the ‘warm desert’ area expands by 8.5 million km2 or 34%. This occurs mostly as an expansion of the world's major subtropical deserts such as the Sahara, the Kalahari, the Gobi, and the Great Sandy Desert. It is suggested that vegetation‐albedo feedback should be fully included in IPCC future climate projections. |
Author | Yoon, Jinho Zeng, Ning |
Author_xml | – sequence: 1 givenname: Ning surname: Zeng fullname: Zeng, Ning email: zeng@atmos.umd.edu organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA – sequence: 2 givenname: Jinho surname: Yoon fullname: Yoon, Jinho organization: Department of Atmospheric and Oceanic Science, University of Maryland, Maryland, College Park, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21997351$$DView record in Pascal Francis |
BookMark | eNp9kVFrFDEQx4NU8Fr75gcIguiDayfZZLN5lFLvpIfVohR8Cdns7LltbnNNdr3225typ0hBnyYwv99_hswhORjCgIS8YPCOAdcnHEDPl1DqSusnZMa0EEUNoA7ILHfym6vqGTlM6RoASijZjFyd3W3skPow0NDR8QfSbYi-fZ1oiwnjmOuEdAz0J65wtGMGC-sbbAPtENvGuhs6DS1GuvKhsZ5ubVz3w-o5edpZn_B4X4_Itw9nX08XxfJi_vH0_bJwkkFVlGAlQsNRMaiZk9A1jeZOMIG141qqyqFtBRedFNngTAM47Spt24ojqvKIvNnlbmK4nTCNZt0nh97bAcOUDJNcCKbLGjL68hF6HaY45O1MLTRnUsqHvFd7yCZnfRft4PpkNrFf23hv8gJalZJlju84F0NKETvj-t33jNH23jAwDycxf58kS28fSb9z_4HvZ2x7j_f_Zc38cskrrqssFTupTyPe_ZFsvDGVKpU0V5_m5nyhFuffv3w2uvwF_p6qVA |
CODEN | GPRLAJ |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_150100 crossref_primary_10_1155_2018_5473105 crossref_primary_10_1175_2011EI398_1 crossref_primary_10_3390_rs14236166 crossref_primary_10_1016_j_agee_2011_11_011 crossref_primary_10_1002_2015JG003108 crossref_primary_10_1016_j_enconman_2018_03_001 crossref_primary_10_1007_s00382_019_05002_w crossref_primary_10_1016_j_jag_2019_03_018 crossref_primary_10_1007_s11356_024_32432_9 crossref_primary_10_1002_eco_263 crossref_primary_10_5194_esd_7_167_2016 crossref_primary_10_1016_j_accre_2023_05_001 crossref_primary_10_1007_s00704_013_0880_6 crossref_primary_10_4236_ajcc_2020_93012 crossref_primary_10_1029_2022WR032273 crossref_primary_10_1016_j_ecocom_2016_02_004 crossref_primary_10_3390_rs70100990 crossref_primary_10_1002_eco_1405 crossref_primary_10_1016_j_epsl_2017_12_034 crossref_primary_10_1002_ece3_1607 crossref_primary_10_1007_s11692_015_9346_3 crossref_primary_10_5194_hess_21_863_2017 crossref_primary_10_1093_femsec_fiad009 crossref_primary_10_1016_j_palaeo_2015_04_027 crossref_primary_10_1007_s13351_015_5036_4 crossref_primary_10_1029_2018WR023113 crossref_primary_10_1002_2016RG000550 crossref_primary_10_1002_2016EA000238 crossref_primary_10_1016_j_palaeo_2023_111613 crossref_primary_10_1007_s00704_011_0428_6 crossref_primary_10_1007_s11442_019_1582_5 crossref_primary_10_1146_annurev_earth_053018_060428 crossref_primary_10_1016_j_jaridenv_2018_04_008 crossref_primary_10_1007_s12524_024_01915_0 crossref_primary_10_1016_j_tfp_2024_100569 crossref_primary_10_3934_dcdsb_2012_17_2815 crossref_primary_10_1016_j_scitotenv_2021_150868 crossref_primary_10_1029_2022EF003459 crossref_primary_10_3390_w15091692 crossref_primary_10_1016_j_heliyon_2023_e17047 crossref_primary_10_1111_gcb_12447 crossref_primary_10_59717_j_xinn_energy_2024_100046 crossref_primary_10_1007_s00703_012_0220_x crossref_primary_10_1029_2010JD014633 crossref_primary_10_1080_24750263_2023_2223213 crossref_primary_10_1175_JCLI_D_17_0848_1 crossref_primary_10_1080_21550085_2014_885173 crossref_primary_10_1111_gcb_17292 crossref_primary_10_1016_j_wace_2021_100334 crossref_primary_10_1111_j_1469_1795_2010_00369_x crossref_primary_10_1175_JCLI_D_14_00388_1 crossref_primary_10_1007_s00442_015_3235_4 crossref_primary_10_3390_rs11202369 crossref_primary_10_5194_bg_22_153_2025 crossref_primary_10_36023_ujrs_2023_10_1_229 crossref_primary_10_1155_2021_5580286 crossref_primary_10_1007_s00376_015_4267_8 crossref_primary_10_1038_hdy_2014_25 crossref_primary_10_1016_j_cogsc_2018_11_014 crossref_primary_10_1126_science_aar5629 crossref_primary_10_1007_s10113_013_0582_8 crossref_primary_10_1007_s11356_024_34508_y crossref_primary_10_1016_j_scitotenv_2020_140425 crossref_primary_10_1007_s12583_024_0069_1 crossref_primary_10_1111_1365_2435_12708 crossref_primary_10_1890_13_0587_1 crossref_primary_10_1038_s41558_022_01507_1 crossref_primary_10_1029_2010RG000328 crossref_primary_10_5194_esd_10_631_2019 crossref_primary_10_3390_rs14184499 |
Cites_doi | 10.1029/2004GL020904 10.1175/1520‐0442(2004)017<1459:SOTLCT>2.0.CO;2 10.1126/science.1100217 10.1175/1520‐0469(2000)057<1741:AQETCM>2.0.CO;2 10.1073/pnas.0601798103 10.1007/s00382‐005‐0073‐9 10.1126/science.1155121 10.1175/JCLI3800.1 10.1126/science.286.5444.1537 10.1126/science.1120529 10.1038/371052a0 10.1002/qj.49710142802 10.1175/1520‐0442(1999)012<0857:ALAITF>2.0.CO;2 10.1038/320602a0 10.1007/s00382‐004‐0504‐z 10.1175/JHM544.1 10.1029/2007GL032415 10.1007/s00382‐004‐0411‐3 10.1038/nature01675 10.1126/science.1139601 10.1029/1999GL900494 10.1007/BF02915395 10.1002/qj.49712253008 10.1088/1748‐9326/3/4/044001 10.1175/1520‐0469(2000)057<1767:AQETCM>2.0.CO;2 10.1029/2007GL030472 10.1029/2004GB002273 10.1175/JCLI3990.1 10.1038/nature06025 |
ContentType | Journal Article |
Copyright | Copyright 2009 by the American Geophysical Union. 2009 INIST-CNRS Copyright 2009 by American Geophysical Union |
Copyright_xml | – notice: Copyright 2009 by the American Geophysical Union. – notice: 2009 INIST-CNRS – notice: Copyright 2009 by American Geophysical Union |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7TG 7TN 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
DOI | 10.1029/2009GL039699 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Proquest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Technology Research Database CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | 2257298431 21997351 10_1029_2009GL039699 GRL26296 ark_67375_WNG_KH7HKZQP_9 |
Genre | article Feature |
GeographicLocations | Africa Sahara |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 31~ 33P 3V. 50Y 5GY 5VS 6TJ 702 7XC 8-1 88I 8FE 8FG 8FH 8G5 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABJCF ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ASPBG ATCPS AVUZU AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU CS3 D1K DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ K6- L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R M7S MEWTI MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W P62 PALCI PATMY PCBAR PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR RNS ROL SAMSI SUPJJ TN5 TWZ UPT UQL VH1 VOH WBKPD WH7 WIH WIN WXSBR WYJ XSW ZCG ZZTAW ~02 ~OA ~~A AAFWJ AAMMB AANHP ACCMX ACRPL ACTHY ACYXJ ADNMO AEFGJ AEUYN AFPKN AGQPQ AGXDD AIDQK AIDYY PHGZM PHGZT PQGLB AAYXX CITATION IQODW 7TG 7TN 7XB 8FD 8FK F1W FR3 H8D H96 KL. KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c5106-30a5e0b2e71081c50fbb92c414e8c29576cead424f54c5121900c9c69ad62ee73 |
IEDL.DBID | BENPR |
ISSN | 0094-8276 |
IngestDate | Thu Jul 10 19:23:12 EDT 2025 Fri Jul 25 11:10:51 EDT 2025 Mon Jul 21 09:16:55 EDT 2025 Tue Jul 01 01:05:03 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 Wed Aug 20 07:26:44 EDT 2025 Wed Oct 30 09:55:23 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | simulation climate warming vegetation climate ocean-atmosphere interaction subtropical zone lead expansion Dynamical climatology Ocean-atmosphere model dynamics deserts global warming Feedback global change standard samples style Forcing projection albedo climate change |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5106-30a5e0b2e71081c50fbb92c414e8c29576cead424f54c5121900c9c69ad62ee73 |
Notes | ArticleID:2009GL039699 ark:/67375/WNG-KH7HKZQP-9 istex:53D08424E9EA029ECF40232A6D1FE4BBF05FB849 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2009GL039699 |
PQID | 849215557 |
PQPubID | 54723 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1524419380 proquest_journals_849215557 pascalfrancis_primary_21997351 crossref_citationtrail_10_1029_2009GL039699 crossref_primary_10_1029_2009GL039699 wiley_primary_10_1029_2009GL039699_GRL26296 istex_primary_ark_67375_WNG_KH7HKZQP_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2009 |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: September 2009 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationTitleAlternate | Geophys. Res. Lett |
PublicationYear | 2009 |
Publisher | Blackwell Publishing Ltd American Geophysical Union John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union – name: John Wiley & Sons, Inc |
References | Neelin, J. D., et al. (2006), Tropical drying trends in global warming models and observations, Proc. Natl. Acad. Sci. U. S. A., 103(16), 6110-6115, doi:10.1073/pnas.0601798103. Kalnay, E., and M. Cai (2003), Impact of urbanization and land-use change on climate, Nature, 423(6939), 528-531, doi:10.1038/nature01675. Mahowald, N. M. (2007), Anthropocene changes in desert area: Sensitivity to climate model predictions, Geophys. Res. Lett., 34, L18817, doi:10.1029/2007GL030472. Burke, E. J., et al. (2006), Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model, J. Hydrometeorol., 7(5), 1113-1125, doi:10.1175/JHM544.1. Charney, J. G. (1975), Dynamics of deserts and drought in the Sahel, Q. J. R. Meteorol. Soc., 101(428), 193-202, doi:10.1002/qj.49710142802. Bonan, G. B. (2008), Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320(5882), 1444-1449, doi:10.1126/science.1155121. Seager, R., et al. (2007), Model projections of an imminent transition to a more arid climate in southwestern North America, Science, 316(5828), 1181-1184, doi:10.1126/science.1139601. Zhang, X. B., et al. (2007), Detection of human influence on twentieth-century precipitation trends, Nature, 448(7152), 461-464, doi:10.1038/nature06025. Friedlingstein, P., et al. (2006), Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison, J. Clim., 19(14), 3337-3353, doi:10.1175/JCLI3800.1. Folland, C. K., et al. (1986), Sahel rainfall and worldwide sea temperatures, 1901-85, Nature, 320(6063), 602-607, doi:10.1038/320602a0. Zeng, N., and J. D. Neelin (1999), A land-atmosphere interaction theory for the tropical deforestation problem, J. Clim., 12(3), 857-872, doi:10.1175/1520-0442(1999)012<0857:ALAITF>2.0.CO;2. Crucifix, M., et al. (2005), Vegetation and climate variability: A GCM modelling study, Clim. Dyn., 24(5), 457-467, doi:10.1007/s00382-004-0504-z. Wang, G., et al. (2004), Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS-IBIS atmosphere-biosphere model, Clim. Dyn., 22(6-7), 625-637, doi:10.1007/s00382-004-0411-3. Foley, J. A., et al. (1994), Feedbacks between climate and boreal forests during the Holocene epoch, Nature, 371(6492), 52-54, doi:10.1038/371052a0. Koster, R. D., et al. (2004), Regions of strong coupling between soil moisture and precipitation, Science, 305(5687), 1138-1140, doi:10.1126/science.1100217. Pielke, R. A.Sr. (2005), Land use and climate change, Science, 310(5754), 1625-1626, doi:10.1126/science.1120529. Mariotti, A., et al. (2008), Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations, Environ. Res. Lett., 3, 044001, doi:10.1088/1748-9326/3/4/044001. Hales, K., et al. (2004), Sensitivity of tropical land climate to leaf area index: Role of surface conductance versus albedo, J. Clim., 17(7), 1459-1473, doi:10.1175/1520-0442(2004)017<1459:SOTLCT>2.0.CO;2. Alessandri, A., and A. Navarra (2008), On the coupling between vegetation and rainfall inter-annual anomalies: Possible contributions to seasonal rainfall predictability over land areas, Geophys. Res. Lett., 35, L02718, doi:10.1029/2007GL032415. Neelin, J. D., and N. Zeng (2000), A quasi-equilibrium tropical circulation model-Formulation, J. Atmos. Sci., 57(11), 1741-1766, doi:10.1175/1520-0469(2000)057<1741:AQETCM>2.0.CO;2. Dirmeyer, P. A., and J. Shukla (1996), The effect on regional and global climate of expansion of the world's deserts, Q. J. R. Meteorol. Soc., 122(530), 451-482, doi:10.1002/qj.49712253008. Zeng, N. (2003), Glacial-interglacial atmospheric CO2 change-The glacial burial hypothesis, Adv. Atmos. Sci., 20(5), 677-693, doi:10.1007/BF02915395. Zeng, N., et al. (2000), A quasi-equilibrium tropical circulation model-Implementation and simulation, J. Atmos. Sci., 57(11), 1767-1796, doi:10.1175/1520-0469(2000)057<1767:AQETCM>2.0.CO;2. Zeng, N., et al. (1999), Enhancement of interdecadal climate variability in the Sahel by vegetation interaction, Science, 286(5444), 1537-1540, doi:10.1126/science.286.5444.1537. Held, I. M., and B. J. Soden (2006), Robust responses of the hydrological cycle to global warming, J. Clim., 19(21), 5686-5699, doi:10.1175/JCLI3990.1. Zeng, N., A. Mariotti, and P. Wetzel (2005), Terrestrial mechanisms of interannual CO2 variability, Global Biogeochem. Cycles, 19, GB1016, doi:10.1029/2004GB002273. Claussen, M., C. Kubatzki, V. Brovkin, A. Ganopolski, P. Hoelzmann, and H. Pachur (1999), Simulation of an abrupt change in Saharan vegetation in the mid-Holocene, Geophys. Res. Lett., 26(14), 2037-2040, doi:10.1029/1999GL900494. Knorr, W., and K. G. Schnitzler (2006), Enhanced albedo feedback in North Africa from possible combined vegetation and soil-formation processes, Clim. Dyn., 26(1), 55-63, doi:10.1007/s00382-005-0073-9. Zeng, N., H. Qian, E. Munoz, and R. Iacono (2004), How strong is carbon cycle-climate feedback under global warming? Geophys. Res. Lett., 31, L20203, doi:10.1029/2004GL020904. 2004; 22 2007; 448 2005; 310 1999; 26 1994; 371 2006; 7 1999; 286 2007 2008; 35 2006; 19 1996; 122 2008; 3 2008; 320 2004; 305 2007; 34 2005; 24 2004; 31 2007; 316 2005; 19 1986; 320 2004; 17 2000; 57 2006; 26 1999; 12 1975; 101 2003; 423 2003; 20 2006; 103 Meehl G. A. (e_1_2_6_19_1) 2007 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Seager, R., et al. (2007), Model projections of an imminent transition to a more arid climate in southwestern North America, Science, 316(5828), 1181-1184, doi:10.1126/science.1139601. – reference: Mariotti, A., et al. (2008), Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations, Environ. Res. Lett., 3, 044001, doi:10.1088/1748-9326/3/4/044001. – reference: Held, I. M., and B. J. Soden (2006), Robust responses of the hydrological cycle to global warming, J. Clim., 19(21), 5686-5699, doi:10.1175/JCLI3990.1. – reference: Alessandri, A., and A. Navarra (2008), On the coupling between vegetation and rainfall inter-annual anomalies: Possible contributions to seasonal rainfall predictability over land areas, Geophys. Res. Lett., 35, L02718, doi:10.1029/2007GL032415. – reference: Zeng, N., A. Mariotti, and P. Wetzel (2005), Terrestrial mechanisms of interannual CO2 variability, Global Biogeochem. Cycles, 19, GB1016, doi:10.1029/2004GB002273. – reference: Burke, E. J., et al. (2006), Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model, J. Hydrometeorol., 7(5), 1113-1125, doi:10.1175/JHM544.1. – reference: Claussen, M., C. Kubatzki, V. Brovkin, A. Ganopolski, P. Hoelzmann, and H. Pachur (1999), Simulation of an abrupt change in Saharan vegetation in the mid-Holocene, Geophys. Res. Lett., 26(14), 2037-2040, doi:10.1029/1999GL900494. – reference: Pielke, R. A.Sr. (2005), Land use and climate change, Science, 310(5754), 1625-1626, doi:10.1126/science.1120529. – reference: Friedlingstein, P., et al. (2006), Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison, J. Clim., 19(14), 3337-3353, doi:10.1175/JCLI3800.1. – reference: Zeng, N., and J. D. Neelin (1999), A land-atmosphere interaction theory for the tropical deforestation problem, J. Clim., 12(3), 857-872, doi:10.1175/1520-0442(1999)012<0857:ALAITF>2.0.CO;2. – reference: Neelin, J. D., and N. Zeng (2000), A quasi-equilibrium tropical circulation model-Formulation, J. Atmos. Sci., 57(11), 1741-1766, doi:10.1175/1520-0469(2000)057<1741:AQETCM>2.0.CO;2. – reference: Zeng, N. (2003), Glacial-interglacial atmospheric CO2 change-The glacial burial hypothesis, Adv. Atmos. Sci., 20(5), 677-693, doi:10.1007/BF02915395. – reference: Kalnay, E., and M. Cai (2003), Impact of urbanization and land-use change on climate, Nature, 423(6939), 528-531, doi:10.1038/nature01675. – reference: Mahowald, N. M. (2007), Anthropocene changes in desert area: Sensitivity to climate model predictions, Geophys. Res. Lett., 34, L18817, doi:10.1029/2007GL030472. – reference: Foley, J. A., et al. (1994), Feedbacks between climate and boreal forests during the Holocene epoch, Nature, 371(6492), 52-54, doi:10.1038/371052a0. – reference: Bonan, G. B. (2008), Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320(5882), 1444-1449, doi:10.1126/science.1155121. – reference: Charney, J. G. (1975), Dynamics of deserts and drought in the Sahel, Q. J. R. Meteorol. Soc., 101(428), 193-202, doi:10.1002/qj.49710142802. – reference: Zeng, N., et al. (1999), Enhancement of interdecadal climate variability in the Sahel by vegetation interaction, Science, 286(5444), 1537-1540, doi:10.1126/science.286.5444.1537. – reference: Knorr, W., and K. G. Schnitzler (2006), Enhanced albedo feedback in North Africa from possible combined vegetation and soil-formation processes, Clim. Dyn., 26(1), 55-63, doi:10.1007/s00382-005-0073-9. – reference: Wang, G., et al. (2004), Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS-IBIS atmosphere-biosphere model, Clim. Dyn., 22(6-7), 625-637, doi:10.1007/s00382-004-0411-3. – reference: Zhang, X. B., et al. (2007), Detection of human influence on twentieth-century precipitation trends, Nature, 448(7152), 461-464, doi:10.1038/nature06025. – reference: Folland, C. K., et al. (1986), Sahel rainfall and worldwide sea temperatures, 1901-85, Nature, 320(6063), 602-607, doi:10.1038/320602a0. – reference: Zeng, N., et al. (2000), A quasi-equilibrium tropical circulation model-Implementation and simulation, J. Atmos. Sci., 57(11), 1767-1796, doi:10.1175/1520-0469(2000)057<1767:AQETCM>2.0.CO;2. – reference: Crucifix, M., et al. (2005), Vegetation and climate variability: A GCM modelling study, Clim. Dyn., 24(5), 457-467, doi:10.1007/s00382-004-0504-z. – reference: Koster, R. D., et al. (2004), Regions of strong coupling between soil moisture and precipitation, Science, 305(5687), 1138-1140, doi:10.1126/science.1100217. – reference: Zeng, N., H. Qian, E. Munoz, and R. Iacono (2004), How strong is carbon cycle-climate feedback under global warming? Geophys. Res. Lett., 31, L20203, doi:10.1029/2004GL020904. – reference: Dirmeyer, P. A., and J. Shukla (1996), The effect on regional and global climate of expansion of the world's deserts, Q. J. R. Meteorol. Soc., 122(530), 451-482, doi:10.1002/qj.49712253008. – reference: Neelin, J. D., et al. (2006), Tropical drying trends in global warming models and observations, Proc. Natl. Acad. Sci. U. S. A., 103(16), 6110-6115, doi:10.1073/pnas.0601798103. – reference: Hales, K., et al. (2004), Sensitivity of tropical land climate to leaf area index: Role of surface conductance versus albedo, J. Clim., 17(7), 1459-1473, doi:10.1175/1520-0442(2004)017<1459:SOTLCT>2.0.CO;2. – volume: 19 start-page: 5686 issue: 21 year: 2006 end-page: 5699 article-title: Robust responses of the hydrological cycle to global warming publication-title: J. Clim. – volume: 57 start-page: 1741 issue: 11 year: 2000 end-page: 1766 article-title: A quasi‐equilibrium tropical circulation model—Formulation publication-title: J. Atmos. Sci. – volume: 57 start-page: 1767 issue: 11 year: 2000 end-page: 1796 article-title: A quasi‐equilibrium tropical circulation model—Implementation and simulation publication-title: J. Atmos. Sci. – volume: 19 year: 2005 article-title: Terrestrial mechanisms of interannual CO variability publication-title: Global Biogeochem. Cycles – volume: 316 start-page: 1181 issue: 5828 year: 2007 end-page: 1184 article-title: Model projections of an imminent transition to a more arid climate in southwestern North America publication-title: Science – volume: 31 year: 2004 article-title: How strong is carbon cycle‐climate feedback under global warming? publication-title: Geophys. Res. Lett. – volume: 26 start-page: 2037 issue: 14 year: 1999 end-page: 2040 article-title: Simulation of an abrupt change in Saharan vegetation in the mid‐Holocene publication-title: Geophys. Res. Lett. – volume: 7 start-page: 1113 issue: 5 year: 2006 end-page: 1125 article-title: Modeling the recent evolution of global drought and projections for the twenty‐first century with the Hadley Centre climate model publication-title: J. Hydrometeorol. – volume: 101 start-page: 193 issue: 428 year: 1975 end-page: 202 article-title: Dynamics of deserts and drought in the Sahel publication-title: Q. J. R. Meteorol. Soc. – volume: 122 start-page: 451 issue: 530 year: 1996 end-page: 482 article-title: The effect on regional and global climate of expansion of the world's deserts publication-title: Q. J. R. Meteorol. Soc. – volume: 305 start-page: 1138 issue: 5687 year: 2004 end-page: 1140 article-title: Regions of strong coupling between soil moisture and precipitation publication-title: Science – start-page: 747 year: 2007 end-page: 845 – volume: 24 start-page: 457 issue: 5 year: 2005 end-page: 467 article-title: Vegetation and climate variability: A GCM modelling study publication-title: Clim. Dyn. – volume: 26 start-page: 55 issue: 1 year: 2006 end-page: 63 article-title: Enhanced albedo feedback in North Africa from possible combined vegetation and soil‐formation processes publication-title: Clim. Dyn. – volume: 103 start-page: 6110 issue: 16 year: 2006 end-page: 6115 article-title: Tropical drying trends in global warming models and observations publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 19 start-page: 3337 issue: 14 year: 2006 end-page: 3353 article-title: Climate‐carbon cycle feedback analysis: Results from the C4MIP model intercomparison publication-title: J. Clim. – volume: 320 start-page: 602 issue: 6063 year: 1986 end-page: 607 article-title: Sahel rainfall and worldwide sea temperatures, 1901–85 publication-title: Nature – volume: 17 start-page: 1459 issue: 7 year: 2004 end-page: 1473 article-title: Sensitivity of tropical land climate to leaf area index: Role of surface conductance versus albedo publication-title: J. Clim. – volume: 3 year: 2008 article-title: Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations publication-title: Environ. Res. Lett. – volume: 423 start-page: 528 issue: 6939 year: 2003 end-page: 531 article-title: Impact of urbanization and land‐use change on climate publication-title: Nature – volume: 34 year: 2007 article-title: Anthropocene changes in desert area: Sensitivity to climate model predictions publication-title: Geophys. Res. Lett. – volume: 35 year: 2008 article-title: On the coupling between vegetation and rainfall inter‐annual anomalies: Possible contributions to seasonal rainfall predictability over land areas publication-title: Geophys. Res. Lett. – volume: 371 start-page: 52 issue: 6492 year: 1994 end-page: 54 article-title: Feedbacks between climate and boreal forests during the Holocene epoch publication-title: Nature – volume: 286 start-page: 1537 issue: 5444 year: 1999 end-page: 1540 article-title: Enhancement of interdecadal climate variability in the Sahel by vegetation interaction publication-title: Science – volume: 12 start-page: 857 issue: 3 year: 1999 end-page: 872 article-title: A land‐atmosphere interaction theory for the tropical deforestation problem publication-title: J. Clim. – volume: 320 start-page: 1444 issue: 5882 year: 2008 end-page: 1449 article-title: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests publication-title: Science – volume: 20 start-page: 677 issue: 5 year: 2003 end-page: 693 article-title: Glacial‐interglacial atmospheric CO change—The glacial burial hypothesis publication-title: Adv. Atmos. Sci. – volume: 310 start-page: 1625 issue: 5754 year: 2005 end-page: 1626 article-title: Land use and climate change publication-title: Science – volume: 22 start-page: 625 issue: 6–7 year: 2004 end-page: 637 article-title: Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS‐IBIS atmosphere‐biosphere model publication-title: Clim. Dyn. – volume: 448 start-page: 461 issue: 7152 year: 2007 end-page: 464 article-title: Detection of human influence on twentieth‐century precipitation trends publication-title: Nature – ident: e_1_2_6_29_1 doi: 10.1029/2004GL020904 – ident: e_1_2_6_12_1 doi: 10.1175/1520‐0442(2004)017<1459:SOTLCT>2.0.CO;2 – ident: e_1_2_6_16_1 doi: 10.1126/science.1100217 – ident: e_1_2_6_20_1 doi: 10.1175/1520‐0469(2000)057<1741:AQETCM>2.0.CO;2 – ident: e_1_2_6_21_1 doi: 10.1073/pnas.0601798103 – ident: e_1_2_6_15_1 doi: 10.1007/s00382‐005‐0073‐9 – ident: e_1_2_6_3_1 doi: 10.1126/science.1155121 – ident: e_1_2_6_11_1 doi: 10.1175/JCLI3800.1 – ident: e_1_2_6_27_1 doi: 10.1126/science.286.5444.1537 – ident: e_1_2_6_22_1 doi: 10.1126/science.1120529 – ident: e_1_2_6_9_1 doi: 10.1038/371052a0 – ident: e_1_2_6_5_1 doi: 10.1002/qj.49710142802 – ident: e_1_2_6_26_1 doi: 10.1175/1520‐0442(1999)012<0857:ALAITF>2.0.CO;2 – ident: e_1_2_6_10_1 doi: 10.1038/320602a0 – ident: e_1_2_6_7_1 doi: 10.1007/s00382‐004‐0504‐z – ident: e_1_2_6_4_1 doi: 10.1175/JHM544.1 – ident: e_1_2_6_2_1 doi: 10.1029/2007GL032415 – ident: e_1_2_6_24_1 doi: 10.1007/s00382‐004‐0411‐3 – ident: e_1_2_6_14_1 doi: 10.1038/nature01675 – ident: e_1_2_6_23_1 doi: 10.1126/science.1139601 – ident: e_1_2_6_6_1 doi: 10.1029/1999GL900494 – start-page: 747 volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_6_19_1 – ident: e_1_2_6_25_1 doi: 10.1007/BF02915395 – ident: e_1_2_6_8_1 doi: 10.1002/qj.49712253008 – ident: e_1_2_6_18_1 doi: 10.1088/1748‐9326/3/4/044001 – ident: e_1_2_6_28_1 doi: 10.1175/1520‐0469(2000)057<1767:AQETCM>2.0.CO;2 – ident: e_1_2_6_17_1 doi: 10.1029/2007GL030472 – ident: e_1_2_6_30_1 doi: 10.1029/2004GB002273 – ident: e_1_2_6_13_1 doi: 10.1175/JCLI3990.1 – ident: e_1_2_6_31_1 doi: 10.1038/nature06025 |
SSID | ssj0003031 |
Score | 2.3196669 |
Snippet | Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying.... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | np |
SubjectTerms | Albedo Atmospheric sciences Biosphere Carbon dioxide Climate change Computer simulation desertification Deserts Earth Earth sciences Earth, ocean, space Exact sciences and technology Feedback Global warming Intergovernmental Panel on Climate Change Mathematical models Vegetation vegetation feedback |
Title | Expansion of the world's deserts due to vegetation-albedo feedback under global warming |
URI | https://api.istex.fr/ark:/67375/WNG-KH7HKZQP-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2009GL039699 https://www.proquest.com/docview/849215557 https://www.proquest.com/docview/1524419380 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdYKyQuaHyJbqMyEh8HZM117MQ-oYHaVGxUY6Js2sWKHWeHTc1oWhj_Pc-OG7YDOyVRnpXkffnZ75f3EHqTCFg2mGxEmLGWcK4SAleCUJeZjApWypDB_zpLp3P-5UycRWxOE2GVG58YHHVZW79Hvi-5gtlJiOzj9U_im0b55GrsoLGF-uCBpeyh_qfx7Pikc8Xgn9uWeYoTybI0It8pU_s-K5Af0USloezrvzmp79l74zGSRQNsqtr-FncC0NthbJiHJtvocQwg8UEr8SfogVs8RQ_z0KD3D5wFSKdtnqHT8Q1Yut8Mw3WFIc7DoTrq-waXzqfg4bh2eFXjX-4iYg5JcWVcWeMKpjRT2Evs_zBb4rZoCP5deNzMxXM0n4y_f56S2EaBWDA4j2wrhKOGOQgm5MgKWhmjmOUj7qRlChYcFtSJM14JDiPAhVFqlU1VUabMuSx5gXqLeuFeIjxKnQWHWApKDa-oLSorS9ZWAEoENwP0YcNIbWONcd_q4kqHXDdT-jbbB-htR33d1tb4D927IJOOqFheejxaJvTpLNeH02x6eP7tWAPh8I7QugHMw2lALQdodyNFHW210Z1mDdDr7i4Ymc-cFAtXrxsNQQ6EjSqRFL4wCP_eF9b5yRFLmUp37n3eLnrU5qY8Ym0P9VbLtXsFIc7KDNGWnORD1D_4MT-fD6Na_wXWvffB |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguiKdYCsVIFA4oqtexk_iAEIJuUna7AtSqFRcTO04PrTZls0vbH8V_ZOw8aA_01lMSZZyHZzwz9nyeAXgdCpw26HgYMG1MwLkMA7wSAbWxjqlgReIj-LvTKNvnXw7F4Qr86fbCOFhlpxO9oi4q49bItxIu0ToJEX84_RW4olEuuNpV0GikYmwvznDGVr_f-Yzs3WRstL33KQvaogKBQfFzOK9cWKqZRdOaDI2gpdaSGT7kNjFMovttsHM546Xg2AIHNKVGmkjmRcSsjUN87i1Y4yEacrcxfZT2ih-tQVOgT_IgYXHU4uwpk1suBpFOaCgjn2T2nwVcc8w8d4jMvEamlE01jSvu7mWn2Vu90X2417qr5GMjXw9gxc4ewu3UlwO-wDMPIDX1IzjYPke94pbeSFUS9CqJz8X6tiaFdQF_PC4tWVTktz1qEY5BfqJtUZESDajOzTFx-9nmpElRQs5yh9I5egz7N9K_T2B1Vs3sUyDDyBpUv4WgVPOSmrw0ScGafEOh4HoA77qOVKbNaO4Ka5woH1lnUl3u9gFs9tSnTSaP_9C98TzpifL5sUO_xUIdTFM1zuJs_OPbV4WEG1eY1jdgDryDg2AA6x0XVasZatXL8QBe9XdxSLs4TT6z1bJW6FKhkyrDhOIfeuZf-8Eq_T5hEZPRs2vf9xLuZHu7EzXZmY7X4W4TFXNYueewupgv7Qt0rhZ6w4s0gZ83PYb-AgmpL2o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8arUBcJj5FNxhGYnBA0VzHTuIDQsD6MVqqMjFt4mJix9lhUzOalm1_Gv8dz04atgO77ZREsfPh92m_n98DeB0KnDbouBswbUzAuQwDvBIBtbGOqWBZ4iP4XyfR8IB_ORJHa_BntRfGwSpXOtEr6qwwbo18J-ESrZPA-XteoyKmu_0PZ78CV0DKBVpX1TQqDhnZy3OcvZXv93aR1NuM9XvfPw-DusBAYJAVHeYrFZZqZtHMJl0jaK61ZIZ3uU0Mk-iKGxxoznguOPZA4abUSBPJNIuYtXGIz70D7dhNilrQ_tSbTPcbM4C2oSrXJ3mQsDiqUfeUyR0XkRiMaSgjn3L2nz1sO9JeOHxmWiKJ8qq2xjXn96oL7W1g_wGs184r-Vhx20NYs7NHcHfgiwNf4pmHk5ryMRz2LlDLuIU4UuQEfUziM7O-LUlmXfgfj0tLFgX5bY9rvGOQnmqbFSRHc6pTc0Lc7rY5qRKWkPPUYXaOn8DBrYzwU2jNipl9BqQbWYPKOBOUap5Tk-YmyViVfSgUXHfg3Woglanzm7syG6fKx9mZVFeHvQPbTeuzKq_Hf9q98TRpGqXzE4eFi4U6nAzUaBgPRz--TRU23LpGtKYDc1AeFIkObK6oqGo9UaqGqzvwqrmLAu6iNunMFstSoYOFLqsME4p_6Il_4werwf6YRUxGGze-7yXcQ_lR473JaBPuVyEyB5x7Dq3FfGlfoKe10Fs1TxP4edti9BeSrzT8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expansion+of+the+world%27s+deserts+due+to+vegetation-albedo+feedback+under+global+warming&rft.jtitle=Geophysical+research+letters&rft.au=Zeng%2C+Ning&rft.au=Yoon%2C+Jinho&rft.date=2009-09-01&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=36&rft.issue=17&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1029%2F2009GL039699&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |