Expansion of the world's deserts due to vegetation-albedo feedback under global warming

Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying. Using a coupled atmosphere‐ocean‐land model with a dynamic vegetation component that predicts surface albedo change, here we simulate the cl...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 36; no. 17; pp. np - n/a
Main Authors Zeng, Ning, Yoon, Jinho
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.09.2009
American Geophysical Union
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying. Using a coupled atmosphere‐ocean‐land model with a dynamic vegetation component that predicts surface albedo change, here we simulate the climate change from 1901 to 2099 with CO2 and other forcings. In a standard IPCC‐style simulation, the model simulated an increase in the world's ‘warm desert’ area of 2.5 million km2 or 10% at the end of the 21st century. In a more realistic simulation where the vegetation‐albedo feedback was allowed to interact, the ‘warm desert’ area expands by 8.5 million km2 or 34%. This occurs mostly as an expansion of the world's major subtropical deserts such as the Sahara, the Kalahari, the Gobi, and the Great Sandy Desert. It is suggested that vegetation‐albedo feedback should be fully included in IPCC future climate projections.
AbstractList Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying. Using a coupled atmosphere-ocean-land model with a dynamic vegetation component that predicts surface albedo change, here we simulate the climate change from 1901 to 2099 with CO sub(2) and other forcings. In a standard IPCC-style simulation, the model simulated an increase in the world's 'warm desert' area of 2.5 million km super(2) or 10% at the end of the 21st century. In a more realistic simulation where the vegetation-albedo feedback was allowed to interact, the 'warm desert' area expands by 8.5 million km super(2) or 34%. This occurs mostly as an expansion of the world's major subtropical deserts such as the Sahara, the Kalahari, the Gobi, and the Great Sandy Desert. It is suggested that vegetation-albedo feedback should be fully included in IPCC future climate projections.
Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying. Using a coupled atmosphere‐ocean‐land model with a dynamic vegetation component that predicts surface albedo change, here we simulate the climate change from 1901 to 2099 with CO 2 and other forcings. In a standard IPCC‐style simulation, the model simulated an increase in the world's ‘warm desert’ area of 2.5 million km 2 or 10% at the end of the 21st century. In a more realistic simulation where the vegetation‐albedo feedback was allowed to interact, the ‘warm desert’ area expands by 8.5 million km 2 or 34%. This occurs mostly as an expansion of the world's major subtropical deserts such as the Sahara, the Kalahari, the Gobi, and the Great Sandy Desert. It is suggested that vegetation‐albedo feedback should be fully included in IPCC future climate projections.
Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying. Using a coupled atmosphere‐ocean‐land model with a dynamic vegetation component that predicts surface albedo change, here we simulate the climate change from 1901 to 2099 with CO2 and other forcings. In a standard IPCC‐style simulation, the model simulated an increase in the world's ‘warm desert’ area of 2.5 million km2 or 10% at the end of the 21st century. In a more realistic simulation where the vegetation‐albedo feedback was allowed to interact, the ‘warm desert’ area expands by 8.5 million km2 or 34%. This occurs mostly as an expansion of the world's major subtropical deserts such as the Sahara, the Kalahari, the Gobi, and the Great Sandy Desert. It is suggested that vegetation‐albedo feedback should be fully included in IPCC future climate projections.
Author Yoon, Jinho
Zeng, Ning
Author_xml – sequence: 1
  givenname: Ning
  surname: Zeng
  fullname: Zeng, Ning
  email: zeng@atmos.umd.edu
  organization: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
– sequence: 2
  givenname: Jinho
  surname: Yoon
  fullname: Yoon, Jinho
  organization: Department of Atmospheric and Oceanic Science, University of Maryland, Maryland, College Park, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21997351$$DView record in Pascal Francis
BookMark eNp9kVFrFDEQx4NU8Fr75gcIguiDayfZZLN5lFLvpIfVohR8Cdns7LltbnNNdr3225typ0hBnyYwv99_hswhORjCgIS8YPCOAdcnHEDPl1DqSusnZMa0EEUNoA7ILHfym6vqGTlM6RoASijZjFyd3W3skPow0NDR8QfSbYi-fZ1oiwnjmOuEdAz0J65wtGMGC-sbbAPtENvGuhs6DS1GuvKhsZ5ubVz3w-o5edpZn_B4X4_Itw9nX08XxfJi_vH0_bJwkkFVlGAlQsNRMaiZk9A1jeZOMIG141qqyqFtBRedFNngTAM47Spt24ojqvKIvNnlbmK4nTCNZt0nh97bAcOUDJNcCKbLGjL68hF6HaY45O1MLTRnUsqHvFd7yCZnfRft4PpkNrFf23hv8gJalZJlju84F0NKETvj-t33jNH23jAwDycxf58kS28fSb9z_4HvZ2x7j_f_Zc38cskrrqssFTupTyPe_ZFsvDGVKpU0V5_m5nyhFuffv3w2uvwF_p6qVA
CODEN GPRLAJ
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_150100
crossref_primary_10_1155_2018_5473105
crossref_primary_10_1175_2011EI398_1
crossref_primary_10_3390_rs14236166
crossref_primary_10_1016_j_agee_2011_11_011
crossref_primary_10_1002_2015JG003108
crossref_primary_10_1016_j_enconman_2018_03_001
crossref_primary_10_1007_s00382_019_05002_w
crossref_primary_10_1016_j_jag_2019_03_018
crossref_primary_10_1007_s11356_024_32432_9
crossref_primary_10_1002_eco_263
crossref_primary_10_5194_esd_7_167_2016
crossref_primary_10_1016_j_accre_2023_05_001
crossref_primary_10_1007_s00704_013_0880_6
crossref_primary_10_4236_ajcc_2020_93012
crossref_primary_10_1029_2022WR032273
crossref_primary_10_1016_j_ecocom_2016_02_004
crossref_primary_10_3390_rs70100990
crossref_primary_10_1002_eco_1405
crossref_primary_10_1016_j_epsl_2017_12_034
crossref_primary_10_1002_ece3_1607
crossref_primary_10_1007_s11692_015_9346_3
crossref_primary_10_5194_hess_21_863_2017
crossref_primary_10_1093_femsec_fiad009
crossref_primary_10_1016_j_palaeo_2015_04_027
crossref_primary_10_1007_s13351_015_5036_4
crossref_primary_10_1029_2018WR023113
crossref_primary_10_1002_2016RG000550
crossref_primary_10_1002_2016EA000238
crossref_primary_10_1016_j_palaeo_2023_111613
crossref_primary_10_1007_s00704_011_0428_6
crossref_primary_10_1007_s11442_019_1582_5
crossref_primary_10_1146_annurev_earth_053018_060428
crossref_primary_10_1016_j_jaridenv_2018_04_008
crossref_primary_10_1007_s12524_024_01915_0
crossref_primary_10_1016_j_tfp_2024_100569
crossref_primary_10_3934_dcdsb_2012_17_2815
crossref_primary_10_1016_j_scitotenv_2021_150868
crossref_primary_10_1029_2022EF003459
crossref_primary_10_3390_w15091692
crossref_primary_10_1016_j_heliyon_2023_e17047
crossref_primary_10_1111_gcb_12447
crossref_primary_10_59717_j_xinn_energy_2024_100046
crossref_primary_10_1007_s00703_012_0220_x
crossref_primary_10_1029_2010JD014633
crossref_primary_10_1080_24750263_2023_2223213
crossref_primary_10_1175_JCLI_D_17_0848_1
crossref_primary_10_1080_21550085_2014_885173
crossref_primary_10_1111_gcb_17292
crossref_primary_10_1016_j_wace_2021_100334
crossref_primary_10_1111_j_1469_1795_2010_00369_x
crossref_primary_10_1175_JCLI_D_14_00388_1
crossref_primary_10_1007_s00442_015_3235_4
crossref_primary_10_3390_rs11202369
crossref_primary_10_5194_bg_22_153_2025
crossref_primary_10_36023_ujrs_2023_10_1_229
crossref_primary_10_1155_2021_5580286
crossref_primary_10_1007_s00376_015_4267_8
crossref_primary_10_1038_hdy_2014_25
crossref_primary_10_1016_j_cogsc_2018_11_014
crossref_primary_10_1126_science_aar5629
crossref_primary_10_1007_s10113_013_0582_8
crossref_primary_10_1007_s11356_024_34508_y
crossref_primary_10_1016_j_scitotenv_2020_140425
crossref_primary_10_1007_s12583_024_0069_1
crossref_primary_10_1111_1365_2435_12708
crossref_primary_10_1890_13_0587_1
crossref_primary_10_1038_s41558_022_01507_1
crossref_primary_10_1029_2010RG000328
crossref_primary_10_5194_esd_10_631_2019
crossref_primary_10_3390_rs14184499
Cites_doi 10.1029/2004GL020904
10.1175/1520‐0442(2004)017<1459:SOTLCT>2.0.CO;2
10.1126/science.1100217
10.1175/1520‐0469(2000)057<1741:AQETCM>2.0.CO;2
10.1073/pnas.0601798103
10.1007/s00382‐005‐0073‐9
10.1126/science.1155121
10.1175/JCLI3800.1
10.1126/science.286.5444.1537
10.1126/science.1120529
10.1038/371052a0
10.1002/qj.49710142802
10.1175/1520‐0442(1999)012<0857:ALAITF>2.0.CO;2
10.1038/320602a0
10.1007/s00382‐004‐0504‐z
10.1175/JHM544.1
10.1029/2007GL032415
10.1007/s00382‐004‐0411‐3
10.1038/nature01675
10.1126/science.1139601
10.1029/1999GL900494
10.1007/BF02915395
10.1002/qj.49712253008
10.1088/1748‐9326/3/4/044001
10.1175/1520‐0469(2000)057<1767:AQETCM>2.0.CO;2
10.1029/2007GL030472
10.1029/2004GB002273
10.1175/JCLI3990.1
10.1038/nature06025
ContentType Journal Article
Copyright Copyright 2009 by the American Geophysical Union.
2009 INIST-CNRS
Copyright 2009 by American Geophysical Union
Copyright_xml – notice: Copyright 2009 by the American Geophysical Union.
– notice: 2009 INIST-CNRS
– notice: Copyright 2009 by American Geophysical Union
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7TG
7TN
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1029/2009GL039699
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Proquest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Technology Research Database
CrossRef

Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 2257298431
21997351
10_1029_2009GL039699
GRL26296
ark_67375_WNG_KH7HKZQP_9
Genre article
Feature
GeographicLocations Africa
Sahara
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
31~
33P
3V.
50Y
5GY
5VS
6TJ
702
7XC
8-1
88I
8FE
8FG
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ASPBG
ATCPS
AVUZU
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D1K
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K6-
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
P62
PALCI
PATMY
PCBAR
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
RNS
ROL
SAMSI
SUPJJ
TN5
TWZ
UPT
UQL
VH1
VOH
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZCG
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AANHP
ACCMX
ACRPL
ACTHY
ACYXJ
ADNMO
AEFGJ
AEUYN
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
PHGZM
PHGZT
PQGLB
AAYXX
CITATION
IQODW
7TG
7TN
7XB
8FD
8FK
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c5106-30a5e0b2e71081c50fbb92c414e8c29576cead424f54c5121900c9c69ad62ee73
IEDL.DBID BENPR
ISSN 0094-8276
IngestDate Thu Jul 10 19:23:12 EDT 2025
Fri Jul 25 11:10:51 EDT 2025
Mon Jul 21 09:16:55 EDT 2025
Tue Jul 01 01:05:03 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
Wed Aug 20 07:26:44 EDT 2025
Wed Oct 30 09:55:23 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords simulation
climate warming
vegetation
climate
ocean-atmosphere interaction
subtropical zone
lead
expansion
Dynamical climatology
Ocean-atmosphere model
dynamics
deserts
global warming
Feedback
global change
standard samples
style
Forcing
projection
albedo
climate change
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5106-30a5e0b2e71081c50fbb92c414e8c29576cead424f54c5121900c9c69ad62ee73
Notes ArticleID:2009GL039699
ark:/67375/WNG-KH7HKZQP-9
istex:53D08424E9EA029ECF40232A6D1FE4BBF05FB849
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2009GL039699
PQID 849215557
PQPubID 54723
PageCount 5
ParticipantIDs proquest_miscellaneous_1524419380
proquest_journals_849215557
pascalfrancis_primary_21997351
crossref_citationtrail_10_1029_2009GL039699
crossref_primary_10_1029_2009GL039699
wiley_primary_10_1029_2009GL039699_GRL26296
istex_primary_ark_67375_WNG_KH7HKZQP_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2009
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: September 2009
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 2009
Publisher Blackwell Publishing Ltd
American Geophysical Union
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
– name: John Wiley & Sons, Inc
References Neelin, J. D., et al. (2006), Tropical drying trends in global warming models and observations, Proc. Natl. Acad. Sci. U. S. A., 103(16), 6110-6115, doi:10.1073/pnas.0601798103.
Kalnay, E., and M. Cai (2003), Impact of urbanization and land-use change on climate, Nature, 423(6939), 528-531, doi:10.1038/nature01675.
Mahowald, N. M. (2007), Anthropocene changes in desert area: Sensitivity to climate model predictions, Geophys. Res. Lett., 34, L18817, doi:10.1029/2007GL030472.
Burke, E. J., et al. (2006), Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model, J. Hydrometeorol., 7(5), 1113-1125, doi:10.1175/JHM544.1.
Charney, J. G. (1975), Dynamics of deserts and drought in the Sahel, Q. J. R. Meteorol. Soc., 101(428), 193-202, doi:10.1002/qj.49710142802.
Bonan, G. B. (2008), Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320(5882), 1444-1449, doi:10.1126/science.1155121.
Seager, R., et al. (2007), Model projections of an imminent transition to a more arid climate in southwestern North America, Science, 316(5828), 1181-1184, doi:10.1126/science.1139601.
Zhang, X. B., et al. (2007), Detection of human influence on twentieth-century precipitation trends, Nature, 448(7152), 461-464, doi:10.1038/nature06025.
Friedlingstein, P., et al. (2006), Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison, J. Clim., 19(14), 3337-3353, doi:10.1175/JCLI3800.1.
Folland, C. K., et al. (1986), Sahel rainfall and worldwide sea temperatures, 1901-85, Nature, 320(6063), 602-607, doi:10.1038/320602a0.
Zeng, N., and J. D. Neelin (1999), A land-atmosphere interaction theory for the tropical deforestation problem, J. Clim., 12(3), 857-872, doi:10.1175/1520-0442(1999)012<0857:ALAITF>2.0.CO;2.
Crucifix, M., et al. (2005), Vegetation and climate variability: A GCM modelling study, Clim. Dyn., 24(5), 457-467, doi:10.1007/s00382-004-0504-z.
Wang, G., et al. (2004), Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS-IBIS atmosphere-biosphere model, Clim. Dyn., 22(6-7), 625-637, doi:10.1007/s00382-004-0411-3.
Foley, J. A., et al. (1994), Feedbacks between climate and boreal forests during the Holocene epoch, Nature, 371(6492), 52-54, doi:10.1038/371052a0.
Koster, R. D., et al. (2004), Regions of strong coupling between soil moisture and precipitation, Science, 305(5687), 1138-1140, doi:10.1126/science.1100217.
Pielke, R. A.Sr. (2005), Land use and climate change, Science, 310(5754), 1625-1626, doi:10.1126/science.1120529.
Mariotti, A., et al. (2008), Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations, Environ. Res. Lett., 3, 044001, doi:10.1088/1748-9326/3/4/044001.
Hales, K., et al. (2004), Sensitivity of tropical land climate to leaf area index: Role of surface conductance versus albedo, J. Clim., 17(7), 1459-1473, doi:10.1175/1520-0442(2004)017<1459:SOTLCT>2.0.CO;2.
Alessandri, A., and A. Navarra (2008), On the coupling between vegetation and rainfall inter-annual anomalies: Possible contributions to seasonal rainfall predictability over land areas, Geophys. Res. Lett., 35, L02718, doi:10.1029/2007GL032415.
Neelin, J. D., and N. Zeng (2000), A quasi-equilibrium tropical circulation model-Formulation, J. Atmos. Sci., 57(11), 1741-1766, doi:10.1175/1520-0469(2000)057<1741:AQETCM>2.0.CO;2.
Dirmeyer, P. A., and J. Shukla (1996), The effect on regional and global climate of expansion of the world's deserts, Q. J. R. Meteorol. Soc., 122(530), 451-482, doi:10.1002/qj.49712253008.
Zeng, N. (2003), Glacial-interglacial atmospheric CO2 change-The glacial burial hypothesis, Adv. Atmos. Sci., 20(5), 677-693, doi:10.1007/BF02915395.
Zeng, N., et al. (2000), A quasi-equilibrium tropical circulation model-Implementation and simulation, J. Atmos. Sci., 57(11), 1767-1796, doi:10.1175/1520-0469(2000)057<1767:AQETCM>2.0.CO;2.
Zeng, N., et al. (1999), Enhancement of interdecadal climate variability in the Sahel by vegetation interaction, Science, 286(5444), 1537-1540, doi:10.1126/science.286.5444.1537.
Held, I. M., and B. J. Soden (2006), Robust responses of the hydrological cycle to global warming, J. Clim., 19(21), 5686-5699, doi:10.1175/JCLI3990.1.
Zeng, N., A. Mariotti, and P. Wetzel (2005), Terrestrial mechanisms of interannual CO2 variability, Global Biogeochem. Cycles, 19, GB1016, doi:10.1029/2004GB002273.
Claussen, M., C. Kubatzki, V. Brovkin, A. Ganopolski, P. Hoelzmann, and H. Pachur (1999), Simulation of an abrupt change in Saharan vegetation in the mid-Holocene, Geophys. Res. Lett., 26(14), 2037-2040, doi:10.1029/1999GL900494.
Knorr, W., and K. G. Schnitzler (2006), Enhanced albedo feedback in North Africa from possible combined vegetation and soil-formation processes, Clim. Dyn., 26(1), 55-63, doi:10.1007/s00382-005-0073-9.
Zeng, N., H. Qian, E. Munoz, and R. Iacono (2004), How strong is carbon cycle-climate feedback under global warming? Geophys. Res. Lett., 31, L20203, doi:10.1029/2004GL020904.
2004; 22
2007; 448
2005; 310
1999; 26
1994; 371
2006; 7
1999; 286
2007
2008; 35
2006; 19
1996; 122
2008; 3
2008; 320
2004; 305
2007; 34
2005; 24
2004; 31
2007; 316
2005; 19
1986; 320
2004; 17
2000; 57
2006; 26
1999; 12
1975; 101
2003; 423
2003; 20
2006; 103
Meehl G. A. (e_1_2_6_19_1) 2007
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Seager, R., et al. (2007), Model projections of an imminent transition to a more arid climate in southwestern North America, Science, 316(5828), 1181-1184, doi:10.1126/science.1139601.
– reference: Mariotti, A., et al. (2008), Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations, Environ. Res. Lett., 3, 044001, doi:10.1088/1748-9326/3/4/044001.
– reference: Held, I. M., and B. J. Soden (2006), Robust responses of the hydrological cycle to global warming, J. Clim., 19(21), 5686-5699, doi:10.1175/JCLI3990.1.
– reference: Alessandri, A., and A. Navarra (2008), On the coupling between vegetation and rainfall inter-annual anomalies: Possible contributions to seasonal rainfall predictability over land areas, Geophys. Res. Lett., 35, L02718, doi:10.1029/2007GL032415.
– reference: Zeng, N., A. Mariotti, and P. Wetzel (2005), Terrestrial mechanisms of interannual CO2 variability, Global Biogeochem. Cycles, 19, GB1016, doi:10.1029/2004GB002273.
– reference: Burke, E. J., et al. (2006), Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model, J. Hydrometeorol., 7(5), 1113-1125, doi:10.1175/JHM544.1.
– reference: Claussen, M., C. Kubatzki, V. Brovkin, A. Ganopolski, P. Hoelzmann, and H. Pachur (1999), Simulation of an abrupt change in Saharan vegetation in the mid-Holocene, Geophys. Res. Lett., 26(14), 2037-2040, doi:10.1029/1999GL900494.
– reference: Pielke, R. A.Sr. (2005), Land use and climate change, Science, 310(5754), 1625-1626, doi:10.1126/science.1120529.
– reference: Friedlingstein, P., et al. (2006), Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison, J. Clim., 19(14), 3337-3353, doi:10.1175/JCLI3800.1.
– reference: Zeng, N., and J. D. Neelin (1999), A land-atmosphere interaction theory for the tropical deforestation problem, J. Clim., 12(3), 857-872, doi:10.1175/1520-0442(1999)012<0857:ALAITF>2.0.CO;2.
– reference: Neelin, J. D., and N. Zeng (2000), A quasi-equilibrium tropical circulation model-Formulation, J. Atmos. Sci., 57(11), 1741-1766, doi:10.1175/1520-0469(2000)057<1741:AQETCM>2.0.CO;2.
– reference: Zeng, N. (2003), Glacial-interglacial atmospheric CO2 change-The glacial burial hypothesis, Adv. Atmos. Sci., 20(5), 677-693, doi:10.1007/BF02915395.
– reference: Kalnay, E., and M. Cai (2003), Impact of urbanization and land-use change on climate, Nature, 423(6939), 528-531, doi:10.1038/nature01675.
– reference: Mahowald, N. M. (2007), Anthropocene changes in desert area: Sensitivity to climate model predictions, Geophys. Res. Lett., 34, L18817, doi:10.1029/2007GL030472.
– reference: Foley, J. A., et al. (1994), Feedbacks between climate and boreal forests during the Holocene epoch, Nature, 371(6492), 52-54, doi:10.1038/371052a0.
– reference: Bonan, G. B. (2008), Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320(5882), 1444-1449, doi:10.1126/science.1155121.
– reference: Charney, J. G. (1975), Dynamics of deserts and drought in the Sahel, Q. J. R. Meteorol. Soc., 101(428), 193-202, doi:10.1002/qj.49710142802.
– reference: Zeng, N., et al. (1999), Enhancement of interdecadal climate variability in the Sahel by vegetation interaction, Science, 286(5444), 1537-1540, doi:10.1126/science.286.5444.1537.
– reference: Knorr, W., and K. G. Schnitzler (2006), Enhanced albedo feedback in North Africa from possible combined vegetation and soil-formation processes, Clim. Dyn., 26(1), 55-63, doi:10.1007/s00382-005-0073-9.
– reference: Wang, G., et al. (2004), Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS-IBIS atmosphere-biosphere model, Clim. Dyn., 22(6-7), 625-637, doi:10.1007/s00382-004-0411-3.
– reference: Zhang, X. B., et al. (2007), Detection of human influence on twentieth-century precipitation trends, Nature, 448(7152), 461-464, doi:10.1038/nature06025.
– reference: Folland, C. K., et al. (1986), Sahel rainfall and worldwide sea temperatures, 1901-85, Nature, 320(6063), 602-607, doi:10.1038/320602a0.
– reference: Zeng, N., et al. (2000), A quasi-equilibrium tropical circulation model-Implementation and simulation, J. Atmos. Sci., 57(11), 1767-1796, doi:10.1175/1520-0469(2000)057<1767:AQETCM>2.0.CO;2.
– reference: Crucifix, M., et al. (2005), Vegetation and climate variability: A GCM modelling study, Clim. Dyn., 24(5), 457-467, doi:10.1007/s00382-004-0504-z.
– reference: Koster, R. D., et al. (2004), Regions of strong coupling between soil moisture and precipitation, Science, 305(5687), 1138-1140, doi:10.1126/science.1100217.
– reference: Zeng, N., H. Qian, E. Munoz, and R. Iacono (2004), How strong is carbon cycle-climate feedback under global warming? Geophys. Res. Lett., 31, L20203, doi:10.1029/2004GL020904.
– reference: Dirmeyer, P. A., and J. Shukla (1996), The effect on regional and global climate of expansion of the world's deserts, Q. J. R. Meteorol. Soc., 122(530), 451-482, doi:10.1002/qj.49712253008.
– reference: Neelin, J. D., et al. (2006), Tropical drying trends in global warming models and observations, Proc. Natl. Acad. Sci. U. S. A., 103(16), 6110-6115, doi:10.1073/pnas.0601798103.
– reference: Hales, K., et al. (2004), Sensitivity of tropical land climate to leaf area index: Role of surface conductance versus albedo, J. Clim., 17(7), 1459-1473, doi:10.1175/1520-0442(2004)017<1459:SOTLCT>2.0.CO;2.
– volume: 19
  start-page: 5686
  issue: 21
  year: 2006
  end-page: 5699
  article-title: Robust responses of the hydrological cycle to global warming
  publication-title: J. Clim.
– volume: 57
  start-page: 1741
  issue: 11
  year: 2000
  end-page: 1766
  article-title: A quasi‐equilibrium tropical circulation model—Formulation
  publication-title: J. Atmos. Sci.
– volume: 57
  start-page: 1767
  issue: 11
  year: 2000
  end-page: 1796
  article-title: A quasi‐equilibrium tropical circulation model—Implementation and simulation
  publication-title: J. Atmos. Sci.
– volume: 19
  year: 2005
  article-title: Terrestrial mechanisms of interannual CO variability
  publication-title: Global Biogeochem. Cycles
– volume: 316
  start-page: 1181
  issue: 5828
  year: 2007
  end-page: 1184
  article-title: Model projections of an imminent transition to a more arid climate in southwestern North America
  publication-title: Science
– volume: 31
  year: 2004
  article-title: How strong is carbon cycle‐climate feedback under global warming?
  publication-title: Geophys. Res. Lett.
– volume: 26
  start-page: 2037
  issue: 14
  year: 1999
  end-page: 2040
  article-title: Simulation of an abrupt change in Saharan vegetation in the mid‐Holocene
  publication-title: Geophys. Res. Lett.
– volume: 7
  start-page: 1113
  issue: 5
  year: 2006
  end-page: 1125
  article-title: Modeling the recent evolution of global drought and projections for the twenty‐first century with the Hadley Centre climate model
  publication-title: J. Hydrometeorol.
– volume: 101
  start-page: 193
  issue: 428
  year: 1975
  end-page: 202
  article-title: Dynamics of deserts and drought in the Sahel
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 122
  start-page: 451
  issue: 530
  year: 1996
  end-page: 482
  article-title: The effect on regional and global climate of expansion of the world's deserts
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 305
  start-page: 1138
  issue: 5687
  year: 2004
  end-page: 1140
  article-title: Regions of strong coupling between soil moisture and precipitation
  publication-title: Science
– start-page: 747
  year: 2007
  end-page: 845
– volume: 24
  start-page: 457
  issue: 5
  year: 2005
  end-page: 467
  article-title: Vegetation and climate variability: A GCM modelling study
  publication-title: Clim. Dyn.
– volume: 26
  start-page: 55
  issue: 1
  year: 2006
  end-page: 63
  article-title: Enhanced albedo feedback in North Africa from possible combined vegetation and soil‐formation processes
  publication-title: Clim. Dyn.
– volume: 103
  start-page: 6110
  issue: 16
  year: 2006
  end-page: 6115
  article-title: Tropical drying trends in global warming models and observations
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 19
  start-page: 3337
  issue: 14
  year: 2006
  end-page: 3353
  article-title: Climate‐carbon cycle feedback analysis: Results from the C4MIP model intercomparison
  publication-title: J. Clim.
– volume: 320
  start-page: 602
  issue: 6063
  year: 1986
  end-page: 607
  article-title: Sahel rainfall and worldwide sea temperatures, 1901–85
  publication-title: Nature
– volume: 17
  start-page: 1459
  issue: 7
  year: 2004
  end-page: 1473
  article-title: Sensitivity of tropical land climate to leaf area index: Role of surface conductance versus albedo
  publication-title: J. Clim.
– volume: 3
  year: 2008
  article-title: Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations
  publication-title: Environ. Res. Lett.
– volume: 423
  start-page: 528
  issue: 6939
  year: 2003
  end-page: 531
  article-title: Impact of urbanization and land‐use change on climate
  publication-title: Nature
– volume: 34
  year: 2007
  article-title: Anthropocene changes in desert area: Sensitivity to climate model predictions
  publication-title: Geophys. Res. Lett.
– volume: 35
  year: 2008
  article-title: On the coupling between vegetation and rainfall inter‐annual anomalies: Possible contributions to seasonal rainfall predictability over land areas
  publication-title: Geophys. Res. Lett.
– volume: 371
  start-page: 52
  issue: 6492
  year: 1994
  end-page: 54
  article-title: Feedbacks between climate and boreal forests during the Holocene epoch
  publication-title: Nature
– volume: 286
  start-page: 1537
  issue: 5444
  year: 1999
  end-page: 1540
  article-title: Enhancement of interdecadal climate variability in the Sahel by vegetation interaction
  publication-title: Science
– volume: 12
  start-page: 857
  issue: 3
  year: 1999
  end-page: 872
  article-title: A land‐atmosphere interaction theory for the tropical deforestation problem
  publication-title: J. Clim.
– volume: 320
  start-page: 1444
  issue: 5882
  year: 2008
  end-page: 1449
  article-title: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
– volume: 20
  start-page: 677
  issue: 5
  year: 2003
  end-page: 693
  article-title: Glacial‐interglacial atmospheric CO change—The glacial burial hypothesis
  publication-title: Adv. Atmos. Sci.
– volume: 310
  start-page: 1625
  issue: 5754
  year: 2005
  end-page: 1626
  article-title: Land use and climate change
  publication-title: Science
– volume: 22
  start-page: 625
  issue: 6–7
  year: 2004
  end-page: 637
  article-title: Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS‐IBIS atmosphere‐biosphere model
  publication-title: Clim. Dyn.
– volume: 448
  start-page: 461
  issue: 7152
  year: 2007
  end-page: 464
  article-title: Detection of human influence on twentieth‐century precipitation trends
  publication-title: Nature
– ident: e_1_2_6_29_1
  doi: 10.1029/2004GL020904
– ident: e_1_2_6_12_1
  doi: 10.1175/1520‐0442(2004)017<1459:SOTLCT>2.0.CO;2
– ident: e_1_2_6_16_1
  doi: 10.1126/science.1100217
– ident: e_1_2_6_20_1
  doi: 10.1175/1520‐0469(2000)057<1741:AQETCM>2.0.CO;2
– ident: e_1_2_6_21_1
  doi: 10.1073/pnas.0601798103
– ident: e_1_2_6_15_1
  doi: 10.1007/s00382‐005‐0073‐9
– ident: e_1_2_6_3_1
  doi: 10.1126/science.1155121
– ident: e_1_2_6_11_1
  doi: 10.1175/JCLI3800.1
– ident: e_1_2_6_27_1
  doi: 10.1126/science.286.5444.1537
– ident: e_1_2_6_22_1
  doi: 10.1126/science.1120529
– ident: e_1_2_6_9_1
  doi: 10.1038/371052a0
– ident: e_1_2_6_5_1
  doi: 10.1002/qj.49710142802
– ident: e_1_2_6_26_1
  doi: 10.1175/1520‐0442(1999)012<0857:ALAITF>2.0.CO;2
– ident: e_1_2_6_10_1
  doi: 10.1038/320602a0
– ident: e_1_2_6_7_1
  doi: 10.1007/s00382‐004‐0504‐z
– ident: e_1_2_6_4_1
  doi: 10.1175/JHM544.1
– ident: e_1_2_6_2_1
  doi: 10.1029/2007GL032415
– ident: e_1_2_6_24_1
  doi: 10.1007/s00382‐004‐0411‐3
– ident: e_1_2_6_14_1
  doi: 10.1038/nature01675
– ident: e_1_2_6_23_1
  doi: 10.1126/science.1139601
– ident: e_1_2_6_6_1
  doi: 10.1029/1999GL900494
– start-page: 747
  volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_6_19_1
– ident: e_1_2_6_25_1
  doi: 10.1007/BF02915395
– ident: e_1_2_6_8_1
  doi: 10.1002/qj.49712253008
– ident: e_1_2_6_18_1
  doi: 10.1088/1748‐9326/3/4/044001
– ident: e_1_2_6_28_1
  doi: 10.1175/1520‐0469(2000)057<1767:AQETCM>2.0.CO;2
– ident: e_1_2_6_17_1
  doi: 10.1029/2007GL030472
– ident: e_1_2_6_30_1
  doi: 10.1029/2004GB002273
– ident: e_1_2_6_13_1
  doi: 10.1175/JCLI3990.1
– ident: e_1_2_6_31_1
  doi: 10.1038/nature06025
SSID ssj0003031
Score 2.3196669
Snippet Many subtropical regions are expected to become drier due to climate change. This will lead to reduced vegetation which may in turn amplify the initial drying....
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage np
SubjectTerms Albedo
Atmospheric sciences
Biosphere
Carbon dioxide
Climate change
Computer simulation
desertification
Deserts
Earth
Earth sciences
Earth, ocean, space
Exact sciences and technology
Feedback
Global warming
Intergovernmental Panel on Climate Change
Mathematical models
Vegetation
vegetation feedback
Title Expansion of the world's deserts due to vegetation-albedo feedback under global warming
URI https://api.istex.fr/ark:/67375/WNG-KH7HKZQP-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2009GL039699
https://www.proquest.com/docview/849215557
https://www.proquest.com/docview/1524419380
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdYKyQuaHyJbqMyEh8HZM117MQ-oYHaVGxUY6Js2sWKHWeHTc1oWhj_Pc-OG7YDOyVRnpXkffnZ75f3EHqTCFg2mGxEmLGWcK4SAleCUJeZjApWypDB_zpLp3P-5UycRWxOE2GVG58YHHVZW79Hvi-5gtlJiOzj9U_im0b55GrsoLGF-uCBpeyh_qfx7Pikc8Xgn9uWeYoTybI0It8pU_s-K5Af0USloezrvzmp79l74zGSRQNsqtr-FncC0NthbJiHJtvocQwg8UEr8SfogVs8RQ_z0KD3D5wFSKdtnqHT8Q1Yut8Mw3WFIc7DoTrq-waXzqfg4bh2eFXjX-4iYg5JcWVcWeMKpjRT2Evs_zBb4rZoCP5deNzMxXM0n4y_f56S2EaBWDA4j2wrhKOGOQgm5MgKWhmjmOUj7qRlChYcFtSJM14JDiPAhVFqlU1VUabMuSx5gXqLeuFeIjxKnQWHWApKDa-oLSorS9ZWAEoENwP0YcNIbWONcd_q4kqHXDdT-jbbB-htR33d1tb4D927IJOOqFheejxaJvTpLNeH02x6eP7tWAPh8I7QugHMw2lALQdodyNFHW210Z1mDdDr7i4Ymc-cFAtXrxsNQQ6EjSqRFL4wCP_eF9b5yRFLmUp37n3eLnrU5qY8Ym0P9VbLtXsFIc7KDNGWnORD1D_4MT-fD6Na_wXWvffB
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguiKdYCsVIFA4oqtexk_iAEIJuUna7AtSqFRcTO04PrTZls0vbH8V_ZOw8aA_01lMSZZyHZzwz9nyeAXgdCpw26HgYMG1MwLkMA7wSAbWxjqlgReIj-LvTKNvnXw7F4Qr86fbCOFhlpxO9oi4q49bItxIu0ToJEX84_RW4olEuuNpV0GikYmwvznDGVr_f-Yzs3WRstL33KQvaogKBQfFzOK9cWKqZRdOaDI2gpdaSGT7kNjFMovttsHM546Xg2AIHNKVGmkjmRcSsjUN87i1Y4yEacrcxfZT2ih-tQVOgT_IgYXHU4uwpk1suBpFOaCgjn2T2nwVcc8w8d4jMvEamlE01jSvu7mWn2Vu90X2417qr5GMjXw9gxc4ewu3UlwO-wDMPIDX1IzjYPke94pbeSFUS9CqJz8X6tiaFdQF_PC4tWVTktz1qEY5BfqJtUZESDajOzTFx-9nmpElRQs5yh9I5egz7N9K_T2B1Vs3sUyDDyBpUv4WgVPOSmrw0ScGafEOh4HoA77qOVKbNaO4Ka5woH1lnUl3u9gFs9tSnTSaP_9C98TzpifL5sUO_xUIdTFM1zuJs_OPbV4WEG1eY1jdgDryDg2AA6x0XVasZatXL8QBe9XdxSLs4TT6z1bJW6FKhkyrDhOIfeuZf-8Eq_T5hEZPRs2vf9xLuZHu7EzXZmY7X4W4TFXNYueewupgv7Qt0rhZ6w4s0gZ83PYb-AgmpL2o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8arUBcJj5FNxhGYnBA0VzHTuIDQsD6MVqqMjFt4mJix9lhUzOalm1_Gv8dz04atgO77ZREsfPh92m_n98DeB0KnDbouBswbUzAuQwDvBIBtbGOqWBZ4iP4XyfR8IB_ORJHa_BntRfGwSpXOtEr6qwwbo18J-ESrZPA-XteoyKmu_0PZ78CV0DKBVpX1TQqDhnZy3OcvZXv93aR1NuM9XvfPw-DusBAYJAVHeYrFZZqZtHMJl0jaK61ZIZ3uU0Mk-iKGxxoznguOPZA4abUSBPJNIuYtXGIz70D7dhNilrQ_tSbTPcbM4C2oSrXJ3mQsDiqUfeUyR0XkRiMaSgjn3L2nz1sO9JeOHxmWiKJ8qq2xjXn96oL7W1g_wGs184r-Vhx20NYs7NHcHfgiwNf4pmHk5ryMRz2LlDLuIU4UuQEfUziM7O-LUlmXfgfj0tLFgX5bY9rvGOQnmqbFSRHc6pTc0Lc7rY5qRKWkPPUYXaOn8DBrYzwU2jNipl9BqQbWYPKOBOUap5Tk-YmyViVfSgUXHfg3Woglanzm7syG6fKx9mZVFeHvQPbTeuzKq_Hf9q98TRpGqXzE4eFi4U6nAzUaBgPRz--TRU23LpGtKYDc1AeFIkObK6oqGo9UaqGqzvwqrmLAu6iNunMFstSoYOFLqsME4p_6Il_4werwf6YRUxGGze-7yXcQ_lR473JaBPuVyEyB5x7Dq3FfGlfoKe10Fs1TxP4edti9BeSrzT8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expansion+of+the+world%27s+deserts+due+to+vegetation-albedo+feedback+under+global+warming&rft.jtitle=Geophysical+research+letters&rft.au=Zeng%2C+Ning&rft.au=Yoon%2C+Jinho&rft.date=2009-09-01&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=36&rft.issue=17&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1029%2F2009GL039699&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon