Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands

Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate cha...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 28; no. 22; pp. 6752 - 6770
Main Authors Kwon, Min Jung, Ballantyne, Ashley, Ciais, Philippe, Qiu, Chunjing, Salmon, Elodie, Raoult, Nina, Guenet, Bertrand, Göckede, Mathias, Euskirchen, Eugénie S., Nykänen, Hannu, Schuur, Edward A. G., Turetsky, Merritt R., Dieleman, Catherine M., Kane, Evan S., Zona, Donatella
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.11.2022
Wiley
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw‐related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE‐PCH4) using site‐specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m−2 year−1; including 6 ± 7 g C–CH4 m−2 year−1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m−2 year−1 and decreased CH4 emission by 4 ± 4 g CH4 m−2 year−1, thus accumulating less C over 100 years (0.2 ± 0.2 kg C m−2). Yet, the reduced emission of CH4, which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2‐eq m−2 year−1. Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non‐permafrost peatlands lost >2 kg C m−2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario. Northern peatlands store >400 Pg of carbon that is subject to increased decomposition if the water table (WT) decreases due to climate change including permafrost thaw‐related drying. The land surface model, ORCHIDEE‐PCH4, was optimized based on measurements across northern peatland sites and simulations showed that lowering the WT by 10 cm (1) reduced the CO2 sink by 13 +/‐ 15 g C m‐2 yr‐1, (2) decreased CH4 emission by 4 +/‐ 4 g CH4 m‐2 yr‐1, (3) accumulated 0.2 kg m‐2 less carbon over 100 years, and (4) decreased greenhouse gas balance by 310 360 g CO2‐eq m‐2 yr‐1.
AbstractList Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m-2 year-1 ; including 6 ± 7 g C-CH4 m-2 year-1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m-2 year-1 and decreased CH4 emission by 4 ± 4 g CH4 m-2 year-1 , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m-2 ). Yet, the reduced emission of CH4 , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2-eq m-2 year-1 . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost >2 kg C m-2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario.Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m-2 year-1 ; including 6 ± 7 g C-CH4 m-2 year-1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m-2 year-1 and decreased CH4 emission by 4 ± 4 g CH4 m-2 year-1 , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m-2 ). Yet, the reduced emission of CH4 , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2-eq m-2 year-1 . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost >2 kg C m-2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario.
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO and CH fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m  year ; including 6 ± 7 g C-CH m  year emission). We found, however, that lowering the WT by 10 cm reduced the CO sink by 13 ± 15 g C m  year and decreased CH emission by 4 ± 4 g CH m  year , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m ). Yet, the reduced emission of CH , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO  m  year . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost >2 kg C m over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario.
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw‐related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE‐PCH4) using site‐specific observations to investigate changes in CO₂ and CH₄ fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m⁻² year⁻¹; including 6 ± 7 g C–CH₄ m⁻² year⁻¹ emission). We found, however, that lowering the WT by 10 cm reduced the CO₂ sink by 13 ± 15 g C m⁻² year⁻¹ and decreased CH₄ emission by 4 ± 4 g CH₄ m⁻² year⁻¹, thus accumulating less C over 100 years (0.2 ± 0.2 kg C m⁻²). Yet, the reduced emission of CH₄, which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO₂‐ₑq m⁻² year⁻¹. Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non‐permafrost peatlands lost >2 kg C m⁻² over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH₄ emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario.
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw‐related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE‐PCH4) using site‐specific observations to investigate changes in CO 2 and CH 4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m −2  year −1 ; including 6 ± 7 g C–CH 4 m −2  year −1 emission). We found, however, that lowering the WT by 10 cm reduced the CO 2 sink by 13 ± 15 g C m −2  year −1 and decreased CH 4 emission by 4 ± 4 g CH 4 m −2  year −1 , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m −2 ). Yet, the reduced emission of CH 4 , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO 2‐eq  m −2  year −1 . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non‐permafrost peatlands lost >2 kg C m −2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH 4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario. Northern peatlands store >400 Pg of carbon that is subject to increased decomposition if the water table (WT) decreases due to climate change including permafrost thaw‐related drying. The land surface model, ORCHIDEE‐PCH4, was optimized based on measurements across northern peatland sites and simulations showed that lowering the WT by 10 cm (1) reduced the CO 2 sink by 13 +/‐ 15 g C m ‐2 yr ‐1 , (2) decreased CH 4 emission by 4 +/‐ 4 g CH 4 m ‐2 yr ‐1 , (3) accumulated 0.2 kg m ‐2 less carbon over 100 years, and (4) decreased greenhouse gas balance by 310 360 g CO 2 ‐eq m ‐2 yr ‐1 .
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw‐related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE‐PCH4) using site‐specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m−2 year−1; including 6 ± 7 g C–CH4 m−2 year−1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m−2 year−1 and decreased CH4 emission by 4 ± 4 g CH4 m−2 year−1, thus accumulating less C over 100 years (0.2 ± 0.2 kg C m−2). Yet, the reduced emission of CH4, which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2‐eq m−2 year−1. Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non‐permafrost peatlands lost >2 kg C m−2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario.
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw‐related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE‐PCH4) using site‐specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m−2 year−1; including 6 ± 7 g C–CH4 m−2 year−1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m−2 year−1 and decreased CH4 emission by 4 ± 4 g CH4 m−2 year−1, thus accumulating less C over 100 years (0.2 ± 0.2 kg C m−2). Yet, the reduced emission of CH4, which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2‐eq m−2 year−1. Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non‐permafrost peatlands lost >2 kg C m−2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario. Northern peatlands store >400 Pg of carbon that is subject to increased decomposition if the water table (WT) decreases due to climate change including permafrost thaw‐related drying. The land surface model, ORCHIDEE‐PCH4, was optimized based on measurements across northern peatland sites and simulations showed that lowering the WT by 10 cm (1) reduced the CO2 sink by 13 +/‐ 15 g C m‐2 yr‐1, (2) decreased CH4 emission by 4 +/‐ 4 g CH4 m‐2 yr‐1, (3) accumulated 0.2 kg m‐2 less carbon over 100 years, and (4) decreased greenhouse gas balance by 310 360 g CO2‐eq m‐2 yr‐1.
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw‐related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE‐PCH4) using site‐specific observations to investigate changes in CO 2 and CH 4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m −2  year −1 ; including 6 ± 7 g C–CH 4 m −2  year −1 emission). We found, however, that lowering the WT by 10 cm reduced the CO 2 sink by 13 ± 15 g C m −2  year −1 and decreased CH 4 emission by 4 ± 4 g CH 4 m −2  year −1 , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m −2 ). Yet, the reduced emission of CH 4 , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO 2‐eq  m −2  year −1 . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non‐permafrost peatlands lost >2 kg C m −2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH 4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario.
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m−2 year−1; including 6 ± 7 g C–CH4 m−2 year−1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m−2 year−1 and decreased CH4 emission by 4 ± 4 g CH4 m−2 year−1, thus accumulating less C over 100 years (0.2 ± 0.2 kg C m−2). Yet, the reduced emission of CH4, which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2-eq m−2 year−1. Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost >2 kg C m−2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier
Author Raoult, Nina
Salmon, Elodie
Euskirchen, Eugénie S.
Qiu, Chunjing
Turetsky, Merritt R.
Nykänen, Hannu
Schuur, Edward A. G.
Zona, Donatella
Göckede, Mathias
Kwon, Min Jung
Kane, Evan S.
Guenet, Bertrand
Ciais, Philippe
Ballantyne, Ashley
Dieleman, Catherine M.
AuthorAffiliation 15 Department of Biology San Diego State University San Diego California USA
1 Laboratoire des Sciences du Climat et de l'Environnement CEA‐CNRS‐UVSQ Gif‐sur‐Yvette France
5 Laboratoire de Géologie, Ecole Normale Supérieure CNRS, PSL Research University Paris France
8 Department of Environmental and Biological Sciences University of Eastern Finland Kuopio Finland
10 Institute of Arctic and Alpine Research University of Colorado Boulder Colorado USA
3 Department of Ecosystem and Conservation Science University of Montana Missoula Montana USA
6 Systems Department Max Planck Institute for Biogeochemistry Jena Germany
7 Institute of Arctic Biology University of Alaska Fairbanks Fairbanks Alaska USA
11 School of Environmental Sciences University of Guelph Guelph Ontario Canada
13 USDA Forest Service Northern Research Station Houghton Michigan USA
14 Department of Animal and Plant Science University of Sheffield Sheffield UK
12 College of Forest Resources and Environmental Science Michigan Technologica
AuthorAffiliation_xml – name: 12 College of Forest Resources and Environmental Science Michigan Technological University Houghton Michigan USA
– name: 6 Systems Department Max Planck Institute for Biogeochemistry Jena Germany
– name: 5 Laboratoire de Géologie, Ecole Normale Supérieure CNRS, PSL Research University Paris France
– name: 10 Institute of Arctic and Alpine Research University of Colorado Boulder Colorado USA
– name: 14 Department of Animal and Plant Science University of Sheffield Sheffield UK
– name: 15 Department of Biology San Diego State University San Diego California USA
– name: 1 Laboratoire des Sciences du Climat et de l'Environnement CEA‐CNRS‐UVSQ Gif‐sur‐Yvette France
– name: 3 Department of Ecosystem and Conservation Science University of Montana Missoula Montana USA
– name: 11 School of Environmental Sciences University of Guelph Guelph Ontario Canada
– name: 9 College of the Environment, Forestry, and Natural Sciences Northern Arizona University Flagstaff Arizona USA
– name: 7 Institute of Arctic Biology University of Alaska Fairbanks Fairbanks Alaska USA
– name: 4 INRAE, AgroParisTech, Université Paris‐Saclay Gif‐sur‐Yvette France
– name: 8 Department of Environmental and Biological Sciences University of Eastern Finland Kuopio Finland
– name: 2 Institute of Soil Science University of Hamburg Hamburg Germany
– name: 13 USDA Forest Service Northern Research Station Houghton Michigan USA
Author_xml – sequence: 1
  givenname: Min Jung
  orcidid: 0000-0002-7330-2320
  surname: Kwon
  fullname: Kwon, Min Jung
  email: minjung.kwon86@gmail.com
  organization: University of Hamburg
– sequence: 2
  givenname: Ashley
  orcidid: 0000-0003-1532-5126
  surname: Ballantyne
  fullname: Ballantyne, Ashley
  organization: University of Montana
– sequence: 3
  givenname: Philippe
  orcidid: 0000-0001-8560-4943
  surname: Ciais
  fullname: Ciais, Philippe
  organization: CEA‐CNRS‐UVSQ
– sequence: 4
  givenname: Chunjing
  orcidid: 0000-0002-9951-3951
  surname: Qiu
  fullname: Qiu, Chunjing
  organization: INRAE, AgroParisTech, Université Paris‐Saclay
– sequence: 5
  givenname: Elodie
  orcidid: 0000-0001-5066-4591
  surname: Salmon
  fullname: Salmon, Elodie
  organization: CEA‐CNRS‐UVSQ
– sequence: 6
  givenname: Nina
  orcidid: 0000-0003-2907-9456
  surname: Raoult
  fullname: Raoult, Nina
  organization: CEA‐CNRS‐UVSQ
– sequence: 7
  givenname: Bertrand
  orcidid: 0000-0002-4311-8645
  surname: Guenet
  fullname: Guenet, Bertrand
  organization: CNRS, PSL Research University
– sequence: 8
  givenname: Mathias
  orcidid: 0000-0003-2833-8401
  surname: Göckede
  fullname: Göckede, Mathias
  organization: Max Planck Institute for Biogeochemistry
– sequence: 9
  givenname: Eugénie S.
  orcidid: 0000-0002-0848-4295
  surname: Euskirchen
  fullname: Euskirchen, Eugénie S.
  organization: University of Alaska Fairbanks
– sequence: 10
  givenname: Hannu
  orcidid: 0000-0002-1410-9352
  surname: Nykänen
  fullname: Nykänen, Hannu
  organization: University of Eastern Finland
– sequence: 11
  givenname: Edward A. G.
  orcidid: 0000-0002-1096-2436
  surname: Schuur
  fullname: Schuur, Edward A. G.
  organization: Northern Arizona University
– sequence: 12
  givenname: Merritt R.
  surname: Turetsky
  fullname: Turetsky, Merritt R.
  organization: University of Colorado
– sequence: 13
  givenname: Catherine M.
  orcidid: 0000-0002-4280-5849
  surname: Dieleman
  fullname: Dieleman, Catherine M.
  organization: University of Guelph
– sequence: 14
  givenname: Evan S.
  surname: Kane
  fullname: Kane, Evan S.
  organization: USDA Forest Service Northern Research Station
– sequence: 15
  givenname: Donatella
  surname: Zona
  fullname: Zona, Donatella
  organization: San Diego State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36039832$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03775356$$DView record in HAL
BookMark eNqFkk1vEzEQhi1URD_gwB9AlrjAYVt_7Id9QSoRtEiRuMCBk2V7ZxO3GzvY3kb99zgkDVCB8MWW55l3_HrmFB354AGhl5Sc07IuFtac05bL-gk6obxtKlaL9mh7buqKEsqP0WlKN4QQzkj7DB3zlnApODtB3-ZhA9H5Bd7oDBFnbUbAEfrJQsJWRxM8Ts7f4pQj-EVeYu37QyAHe5uw89iHmJcQPV6DzmNB0nP0dNBjghf7_Qx9_fjhy-y6mn---jS7nFe2oaSurOAdF8wA7Xtq6nbgnRzqHjrGjZBgbMsN7ajlg6R9rY0kpmXWFJYC1VzzM_Rup7uezAp6Cz5HPap1dCsd71XQTv0Z8W6pFuFOSUEaRrsi8HYnsHyUdn05V9s7wruu4U17Rwv7Zl8shu8TpKxWLlkYi2MIU1JMUCqF6Eo3_ot2RLCWEUkK-voRehOm6MuvFYo1jLFGskK9-t3o4akPzSzAxQ6wMaQUYVDWZZ1d2Pp2o6JEbcdFlXFRP8fll_VDxoPo39i9-saNcP9vUF3N3u8yfgBGEc4w
CitedBy_id crossref_primary_10_1007_s42773_024_00422_2
crossref_primary_10_1016_j_apsoil_2024_105582
crossref_primary_10_1111_nph_19772
crossref_primary_10_1016_j_jhydrol_2023_130069
crossref_primary_10_1080_15481603_2024_2391144
crossref_primary_10_1016_j_jhydrol_2024_131729
crossref_primary_10_5194_amt_17_5619_2024
crossref_primary_10_1007_s10021_023_00883_9
crossref_primary_10_5194_bg_21_3143_2024
crossref_primary_10_1016_j_agrformet_2024_109889
crossref_primary_10_1016_j_scitotenv_2024_178366
crossref_primary_10_1029_2021GB007177
crossref_primary_10_1093_nsr_nwae178
crossref_primary_10_5194_acp_24_10013_2024
crossref_primary_10_1016_j_catena_2023_107350
crossref_primary_10_5194_bg_21_1173_2024
crossref_primary_10_1002_hyp_14781
crossref_primary_10_1016_j_agrformet_2024_110311
Cites_doi 10.5194/bg‐8‐1925‐2011
10.2151/sola.2016‐045
10.1073/pnas.1813305116
10.2307/3241751
10.2136/sssaj1992.03615995005600020023x
10.1038/s41558‐021‐01108‐4
10.1111/gcb.13612
10.1016/j.catena.2017.09.010
10.1007/BF00029370
10.1038/s41467‐020‐15499‐z
10.1002/2017GB005774
10.1038/s41467‐020‐15725‐8
10.1038/nature14338
10.1016/j.soilbio.2013.01.002
10.1046/j.1365‐2486.2000.00362.x
10.1038/ngeo1160
10.1890/09‐1251.1
10.1139/cjfr‐2014‐0100
10.1029/2020JG005872
10.3389/feart.2020.573357
10.1038/nature13259
10.1038/s41558‐022‐01296‐7
10.1007/s004420050176
10.1029/1999GB001204
10.1111/gcb.14465
10.5194/tc‐11‐2975‐2017
10.5194/gmd‐11‐121‐2018
10.1002/jgrg.20045
10.1029/2010GL043584
10.1016/j.oneear.2021.12.008
10.1038/d41586‐020‐02568‐y
10.1016/B978-012370626-3.00061-2
10.1023/A:1022602019183
10.1029/2004GL021157
10.1029/2011GB004037
10.1111/gcb.15785
10.5194/tc‐13‐753‐2019
10.1038/ngeo2674
10.1007/s10021‐019‐00460‐z
10.3389/fmicb.2020.616518
10.1038/ncomms1523
10.1672/0277‐5212(2006)26[889:TCBONA]2.0.CO;2
10.1038/s41561‐021‐00769‐2
10.1038/ngeo2305
10.1111/gcb.14744
10.1029/97gb02732
10.1111/gcb.12071
10.1002/hyp.7412
10.5194/bg‐11‐6573‐2014
10.1073/pnas.1916387117
10.2136/sssaj1987.03615995005100050015x
10.1038/s41561‐021‐00770‐9
10.5194/bg‐9‐235‐2012
10.1111/gcb.14340
10.1038/nclimate3240
10.1038/s41561‐020‐0607‐0
10.1029/2021GL095276
10.1029/2020GL087820
10.3389/feart.2020.577746
10.5194/essd‐13‐5127‐2021
10.1038/s41558‐019‐0615‐5
10.1038/s41558‐020‐0734‐z
10.1002/2014JG002799@10.1002/(ISSN)2169‐9291.ARCTICJOINT
10.1029/2010GL044018
10.1111/j.1365‐2389.2012.01499.x
10.1038/415512a
10.1038/s41561‐019‐0454‐z
10.1111/ele.13697
10.1038/s41561‐019‐0462‐z
10.1038/s43017‐021‐00238‐9
10.1088/1748‐9326/ab6d7e
10.5194/gmd‐12‐2961‐2019
10.1111/gcb.12580
10.5194/gmd‐3‐565‐2010
10.1038/s41612‐019‐0086‐4
10.1038/s41558‐020‐0763‐7
10.1126/science.1131722
10.5194/essd‐13‐5151‐2021
10.1038/s41561‐021‐00771‐8
10.1088/2515‐7620/ab9895
10.5194/bg‐13‐4219‐2016
10.1029/2008GB003327
10.1038/s41586‐021‐03523‐1
10.1088/1748‐9326/10/9/094011
10.1007/s10021‐009‐9283‐z
10.1038/ngeo1323
10.1890/0012‐9615(2006)076[0299:BTLTPB]2.0.CO;2
10.1029/2007JG000496
10.1038/s41467‐021‐25619‐y
10.1038/s41612‐018‐0026‐8
10.5194/gmd‐7‐631‐2014
10.1016/j.soilbio.2012.10.032
10.1038/s41467‐018‐03406‐6
10.1111/j.1600‐0889.2007.00333.x
10.5194/bg‐17‐5849‐2020
10.1111/gcb.15659
10.5194/tc‐2020‐91
10.1029/2002GB002015
10.1111/1365-2435.12127
10.1111/gcb.15099
10.1002/2014JG002872
10.1029/2019JG005528
10.1016/j.baae.2008.05.005
10.1126/science.1174268
10.1029/2011JF002284
10.1111/gcb.14578
10.1016/j.scitotenv.2016.12.104
10.5194/gmd‐2021‐280
10.1038/ngeo2247
10.5194/gmd‐11‐4739‐2018
10.1029/2003GB002199
10.1016/j.foreco.2016.09.006
10.1007/s11104‐019‐04375‐5
10.5194/gmd‐11‐497‐2018
10.2307/1941811
10.1038/s41558‐021‐01059‐w
10.2134/agronj2000.922345x
10.1023/A:1004466330076
10.1007/s11104‐014‐2301‐8
10.1029/2009GB003487
10.1016/j.earscirev.2020.103227
10.1038/ncomms13043
10.1111/gcb.13558
10.1128/AEM.00241‐21
10.1111/gcb.12757
10.5194/bg‐13‐5315‐2016
10.5194/tc‐14‐445‐2020
10.1029/2018MS001329
10.1007/s00442‐007‐0785‐0
10.1002/eco.1493
10.1111/gcb.14137
10.1111/gcb.13281
10.1038/s41558‐019‐0592‐8
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - NonCommercial
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - NonCommercial
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
1XC
VOOES
5PM
DOI 10.1111/gcb.16394
DatabaseName Wiley Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
DocumentTitleAlternate Kwon et al
EISSN 1365-2486
EndPage 6770
ExternalDocumentID PMC9805217
oai_HAL_hal_03775356v1
36039832
10_1111_gcb_16394
GCB16394
Genre article
Journal Article
GeographicLocations Arctic region
GeographicLocations_xml – name: Arctic region
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  funderid: ANR‐10‐LABX‐100‐01; ANR‐16‐CONV‐0003; ANR‐18‐MPGA‐0007
– fundername: National Science Foundation
  funderid: DEB‐1026415; DEB‐1636476; LTREB‐2011276
– fundername: Academy of Finland
  funderid: 337550
– fundername: H2020 Societal Challenges
  funderid: 101000289; 641816
– fundername: ;
  grantid: 101000289; 641816
– fundername: ;
  grantid: 337550
– fundername: ;
  grantid: ANR‐10‐LABX‐100‐01; ANR‐16‐CONV‐0003; ANR‐18‐MPGA‐0007
– fundername: ;
  grantid: DEB‐1026415; DEB‐1636476; LTREB‐2011276
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
1XC
VOOES
5PM
ID FETCH-LOGICAL-c5104-c837382be1dd1b46f379f4de723b89ebc63b171c3f91d4ab90b62cbd1b1e1a3a3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Thu Aug 21 18:38:06 EDT 2025
Fri Jun 13 07:01:50 EDT 2025
Fri Jul 11 18:24:36 EDT 2025
Fri Jul 11 01:51:20 EDT 2025
Tue Jul 08 16:10:43 EDT 2025
Mon Jul 21 05:35:42 EDT 2025
Tue Jul 01 03:53:09 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Jan 22 16:23:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords high latitude
carbon flux
land surface model
manipulation experiment
carbon stock
drainage
permafrost thaw
Language English
License Attribution-NonCommercial
2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5104-c837382be1dd1b46f379f4de723b89ebc63b171c3f91d4ab90b62cbd1b1e1a3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7330-2320
0000-0002-4311-8645
0000-0001-5066-4591
0000-0002-9951-3951
0000-0002-4280-5849
0000-0003-1532-5126
0000-0003-2907-9456
0000-0003-2833-8401
0000-0002-1096-2436
0000-0002-1410-9352
0000-0001-8560-4943
0000-0002-0848-4295
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16394
PMID 36039832
PQID 2725222592
PQPubID 30327
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9805217
hal_primary_oai_HAL_hal_03775356v1
proquest_miscellaneous_2811988716
proquest_miscellaneous_2708262090
proquest_journals_2725222592
pubmed_primary_36039832
crossref_citationtrail_10_1111_gcb_16394
crossref_primary_10_1111_gcb_16394
wiley_primary_10_1111_gcb_16394_GCB16394
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Wiley
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: John Wiley and Sons Inc
References 2018; 160
2019; 11
2019; 13
2015; 387
2019; 12
2020; 17
2000; 92
2020; 15
2020; 14
2020; 447
2020; 13
2020; 11
2020; 10
1992; 56
2020; 207
1999; 207
2016; 381
2014; 20
2009; 12
2018; 9
2004; 31
2013; 59
2013; 58
2009; 10
2000; 14
2018; 1
2013; 118
2006; 26
2019; 25
2008; 113
2012; 26
2010; 3
1998; 12
2014; 11
2019; 9
2010; 37
1987; 51
2011; 2
2019; 2
2015; 520
2015; 120
2002; 415
2011; 4
2014; 45
2011; 8
2016; 13
2016; 12
2018; 24
2016; 7
2005; 19
2022; 3
2022; 5
2007; 153
2022; 12
2020; 26
2020; 23
2018; 11
2012; 117
2016; 9
2016; 22
2021; 24
2017; 7
2021; 27
2013; 27
2000; 6
2006; 76
2021; 126
1997; 110
2003; 17
2020; 125
2013; 19
2020; 8
2017; 31
2020; 2
2019; 116
2011; 21
2020; 47
2021; 593
1995; 168
1996; 25
2014; 8
2014; 7
2008; 60
2012; 63
2009; 326
2009; 23
2021; 8
1991; 1
2021; 87
2017; 23
2015; 10
2009
2020; 585
2004
2006; 314
2015; 8
2022; 49
2021; 14
1971; 74
2021; 13
1988; 3
2021; 15
2021; 12
2021; 11
2014; 509
2021
2017; 11
2015; 21
2020; 117
2017; 580
2013
2012; 9
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
Laine J. (e_1_2_8_65_1) 1996; 25
e_1_2_8_14_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
Douville H. (e_1_2_8_24_1) 2021
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
Haupt R. L. (e_1_2_8_40_1) 2004
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
Gulev S. K. (e_1_2_8_37_1) 2021
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_74_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
Kirtman B. (e_1_2_8_51_1) 2013
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
R Development Core Team (e_1_2_8_103_1) 2013
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 25
  start-page: 1315
  issue: 4
  year: 2019
  end-page: 1325
  article-title: Drainage enhances modern soil carbon contribution but reduces old soil carbon contribution to ecosystem respiration in tundra ecosystems
  publication-title: Global Change Biology
– volume: 585
  start-page: 336
  issue: 7825
  year: 2020
  end-page: 337
  article-title: The Arctic is burning like never before—And that's bad news for climate change
  publication-title: Nature
– volume: 11
  start-page: 497
  issue: 2
  year: 2018
  end-page: 519
  article-title: ORCHIDEE‐PEAT (revision 4596), a model for northern peatland CO , water, and energy fluxes on daily to annual scales
  publication-title: Geoscientific Model Development
– volume: 76
  start-page: 299
  issue: 3
  year: 2006
  end-page: 322
  article-title: Beyond “the limits to peat bog growth”: Cross‐scale feedback in peatland development
  publication-title: Ecological Monographs
– volume: 26
  start-page: 4119
  issue: 7
  year: 2020
  end-page: 4133
  article-title: Modelling past and future peatland carbon dynamics across the pan‐Arctic
  publication-title: Global Change Biology
– volume: 17
  start-page: 1053
  issue: 2
  year: 2003
  article-title: Dynamics of plant‐mediated organic matter and nutrient cycling following water‐level drawdown in boreal peatlands
  publication-title: Global Biogeochemical Cycles
– volume: 11
  start-page: 293
  issue: 1
  year: 2019
  end-page: 326
  article-title: A new process‐based soil methane scheme: Evaluation over arctic field sites with the ISBA land surface model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 8
  start-page: 113
  issue: 1
  year: 2015
  end-page: 127
  article-title: Hydrological feedbacks in northern peatlands
  publication-title: Ecohydrology
– volume: 160
  start-page: 134
  year: 2018
  end-page: 140
  article-title: PEATMAP: Refining estimates of global peatland distribution based on a meta‐analysis
  publication-title: Catena
– volume: 51
  start-page: 1173
  issue: 5
  year: 1987
  end-page: 1179
  article-title: Analysis of factors controlling soil organic matter levels in Great Plains grasslands
  publication-title: Soil Science Society of America Journal
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  end-page: 99
  article-title: Genetic algorithms and machine learning
  publication-title: Machine Learning
– volume: 60
  start-page: 250
  issue: 2
  year: 2008
  end-page: 264
  article-title: Vulnerability of permafrost carbon to global warming. Part I: Model description and role of heat generated by organic matter decomposition
  publication-title: Tellus B: Chemical and Physical Meteorology
– volume: 118
  start-page: 795
  issue: 2
  year: 2013
  end-page: 807
  article-title: Simulation of six years of carbon fluxes for a sedge‐dominated oligotrophic minerogenic peatland in Northern Sweden using the McGill Wetland Model (MWM)
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 14
  start-page: 465
  issue: 7
  year: 2021
  end-page: 467
  article-title: No support for carbon storage of >1,000 GtC in northern peatlands
  publication-title: Nature Geoscience
– volume: 125
  issue: 6
  year: 2020
  article-title: Carbon thaw rate doubles when accounting for subsidence in a permafrost warming experiment
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 49
  issue: 10
  year: 2022
  article-title: Modeling pan‐Arctic peatland carbon dynamics under alternative warming scenarios
  publication-title: Geophysical Research Letters
– volume: 11
  start-page: 1644
  issue: 1
  year: 2020
  article-title: Prompt rewetting of drained peatlands reduces climate warming despite methane emissions
  publication-title: Nature Communications
– volume: 387
  start-page: 277
  issue: 1–2
  year: 2015
  end-page: 294
  article-title: Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm)
  publication-title: Plant and Soil
– volume: 63
  start-page: 798
  issue: 6
  year: 2012
  end-page: 807
  article-title: Carbon loss in drained forestry peatlands in Finland, estimated by re‐sampling peatlands surveyed in the 1980s
  publication-title: European Journal of Soil Science
– volume: 13
  start-page: 5127
  issue: 11
  year: 2021
  end-page: 5149
  article-title: The Boreal–Arctic wetland and lake dataset (BAWLD)
  publication-title: Earth System Science Data
– volume: 12
  start-page: 53
  issue: 1
  year: 1998
  end-page: 69
  article-title: Methane fluxes on boreal peatlands of different fertility and the effect of long‐term experimental lowering of the water table on flux rates
  publication-title: Global Biogeochemical Cycles
– volume: 21
  start-page: 391
  issue: 2
  year: 2011
  end-page: 401
  article-title: Manipulative lowering of the water table during summer does not affect CO emissions and uptake in a fen in Germany
  publication-title: Ecological Applications: A Publication of the Ecological Society of America
– volume: 15
  start-page: 2813
  issue: 7
  year: 2021
  end-page: 2838
  article-title: Assessing methane emissions for northern peatlands in ORCHIDEE‐PEAT revision 7020
  publication-title: Geoscientific Model Development Discussions
– volume: 14
  start-page: 468
  issue: 7
  year: 2021
  end-page: 469
  article-title: Lateral expansion of northern peatlands calls into question a 1,055 GtC estimate of carbon storage
  publication-title: Nature Geoscience
– volume: 21
  start-page: 1634
  issue: 4
  year: 2015
  end-page: 1651
  article-title: Polygonal tundra geomorphological change in response to warming alters future CO and CH flux on the Barrow Peninsula
  publication-title: Global Change Biology
– volume: 126
  issue: 5
  year: 2021
  article-title: Predicted vulnerability of carbon in permafrost peatlands with future climate change and permafrost thaw in western Canada
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 26
  year: 2012
  article-title: Increased CO loss from vegetated drained lake tundra ecosystems due to flooding
  publication-title: Global Biogeochemical Cycles
– volume: 9
  start-page: 312
  year: 2016
  end-page: 318
  article-title: Pan‐Arctic ice‐wedge degradation in warming permafrost and its influence on tundra hydrology
  publication-title: Nature Geoscience
– volume: 23
  start-page: 2396
  issue: 6
  year: 2017
  end-page: 2412
  article-title: Plants, microorganisms and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain
  publication-title: Global Change Biology
– volume: 207
  start-page: 107
  issue: 1
  year: 1999
  end-page: 120
  article-title: Post‐drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland
  publication-title: Plant and Soil
– volume: 12
  start-page: 373
  issue: 4
  year: 2022
  end-page: 379
  article-title: Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia
  publication-title: Nature Climate Change
– volume: 3
  start-page: 85
  issue: 1
  year: 2022
  end-page: 98
  article-title: Lake and drained lake basin systems in lowland permafrost regions
  publication-title: Nature Reviews Earth and Environment
– volume: 45
  start-page: 185
  year: 2014
  end-page: 193
  article-title: Response of plant community structure and primary productivity to experimental drought and flooding in an Alaskan fen1
  publication-title: Canadian Journal of Forest Research
– volume: 47
  issue: 11
  year: 2020
  article-title: Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation
  publication-title: Geophysical Research Letters
– volume: 580
  start-page: 1389
  year: 2017
  end-page: 1400
  article-title: Including hydrological self‐regulating processes in peatland models: Effects on peatmoss drought projections
  publication-title: Science of the Total Environment
– volume: 1
  start-page: 182
  issue: 2
  year: 1991
  end-page: 195
  article-title: Northern peatlands: Role in the carbon cycle and probable responses to climatic warming
  publication-title: Ecological Applications
– volume: 381
  start-page: 29
  year: 2016
  end-page: 36
  article-title: Calculating carbon changes in peat soils drained for forestry with four different profile‐based methods
  publication-title: Forest Ecology and Management
– volume: 22
  start-page: 3487
  issue: 10
  year: 2016
  end-page: 3502
  article-title: Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra
  publication-title: Global Change Biology
– volume: 5
  start-page: 86
  issue: 1
  year: 2022
  end-page: 97
  article-title: A strong mitigation scenario maintains climate neutrality of northern peatlands
  publication-title: One Earth
– volume: 12
  start-page: 225
  year: 2016
  end-page: 231
  article-title: Attributing historical vhanges in probabilities of record‐breaking daily temperature and precipitation extreme events
  publication-title: SOLA
– volume: 13
  start-page: 4219
  year: 2016
  end-page: 4235
  article-title: Long‐term drainage reduces CO uptake and increases CO emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics
  publication-title: Biogeosciences
– volume: 23
  start-page: 1138
  issue: 6
  year: 2020
  end-page: 1153
  article-title: When the source of flooding matters: Divergent responses in carbon fluxes in an Alaskan rich fen to two types of inundation
  publication-title: Ecosystems
– volume: 2
  start-page: 514
  issue: 1
  year: 2011
  article-title: Experimental drying intensifies burning and carbon losses in a northern peatland
  publication-title: Nature Communications
– volume: 8
  start-page: 1925
  issue: 7
  year: 2011
  end-page: 1953
  article-title: Barriers to predicting changes in global terrestrial methane fluxes: Analyses using CLM4Me, a methane biogeochemistry model integrated in CESM
  publication-title: Biogeosciences
– volume: 113
  year: 2008
  article-title: Short‐term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland
  publication-title: Journal of Geophysical Research
– volume: 10
  start-page: 555
  issue: 6
  year: 2020
  end-page: 560
  article-title: Increasing contribution of peatlands to boreal evapotranspiration in a warming climate
  publication-title: Nature Climate Change
– volume: 9
  start-page: 1071
  issue: 1
  year: 2018
  article-title: The underappreciated potential of peatlands in global climate change mitigation strategies
  publication-title: Nature Communications
– volume: 13
  start-page: 753
  issue: 3
  year: 2019
  end-page: 773
  article-title: New ground ice maps for Canada using a paleogeographic modelling approach
  publication-title: The Cryosphere
– volume: 9
  start-page: 235
  issue: 1
  year: 2012
  end-page: 248
  article-title: A dynamic model of wetland extent and peat accumulation: Results for the Holocene
  publication-title: Biogeosciences
– volume: 12
  start-page: 5693
  issue: 1
  year: 2021
  article-title: Rewetting does not return drained fen peatlands to their old selves
  publication-title: Nature Communications
– volume: 11
  start-page: 3414
  year: 2021
  article-title: Temporal, spatial, and temperature controls on organic carbon mineralization and methanogenesis in Arctic High‐centered polygon soils
  publication-title: Frontiers in Microbiology
– volume: 37
  start-page: L19702
  issue: 19
  year: 2010
  article-title: CO fluxes at northern fens and bogs have opposite responses to inter‐annual fluctuations in water table
  publication-title: Geophysical Research Letters
– volume: 11
  start-page: 121
  issue: 1
  year: 2018
  end-page: 163
  article-title: ORCHIDEE‐MICT (v8.4.1), a land surface model for the high latitudes: Model description and validation
  publication-title: Geoscientific Model Development
– volume: 12
  start-page: 917
  issue: 11
  year: 2019
  end-page: 921
  article-title: Rapid expansion of northern peatlands and doubled estimate of carbon storage
  publication-title: Nature Geoscience
– volume: 24
  start-page: 781
  issue: 4
  year: 2021
  end-page: 790
  article-title: Trophic interactions regulate peatland carbon cycling
  publication-title: Ecology Letters
– volume: 13
  start-page: 5151
  issue: 11
  year: 2021
  end-page: 5189
  article-title: BAWLD‐CH4: A comprehensive dataset of methane fluxes from boreal and arctic ecosystems
  publication-title: Earth System Science Data
– volume: 25
  start-page: 93
  issue: 1
  year: 2019
  end-page: 107
  article-title: The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide
  publication-title: Global Change Biology
– volume: 9
  start-page: 852
  issue: 11
  year: 2019
  end-page: 857
  article-title: Large loss of CO in winter observed across the northern permafrost region
  publication-title: Nature Climate Change
– volume: 13
  start-page: 560
  issue: 8
  year: 2020
  end-page: 565
  article-title: Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
  publication-title: Nature Geoscience
– volume: 31
  issue: 21
  year: 2004
  article-title: Ebullition of methane‐containing gas bubbles from near‐surface
  publication-title: Geophysical Research Letters
– volume: 3
  start-page: 565
  issue: 2
  year: 2010
  end-page: 584
  article-title: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ‐WHyMe v1.3.1
  publication-title: Geoscientific Model Development
– volume: 37
  start-page: L13402
  issue: 13
  year: 2010
  article-title: Global peatland dynamics since the Last Glacial Maximum
  publication-title: Geophysical Research Letters
– volume: 14
  start-page: 1
  issue: 12
  year: 2020
  end-page: 28
  article-title: Projecting circum‐Arctic excess ground ice melt with a sub‐grid representation in the Community Land Model
  publication-title: The Cryosphere Discussions
– volume: 14
  start-page: 445
  issue: 2
  year: 2020
  end-page: 459
  article-title: Soil moisture and hydrology projections of the permafrost region—A model intercomparison
  publication-title: The Cryosphere
– start-page: 541
  year: 2009
  end-page: 548
– volume: 74
  start-page: 23
  issue: 1
  year: 1971
  end-page: 27
  article-title: Photosynthesis and respiration of three mosses at winter low temperatures
  publication-title: Bryologist
– volume: 10
  start-page: 330
  issue: 4
  year: 2009
  end-page: 339
  article-title: Decreased summer water table depth affects peatland vegetation
  publication-title: Basic and Applied Ecology
– year: 2013
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  end-page: 7
  article-title: Improved calculation of warming‐equivalent emissions for short‐lived climate pollutants
  publication-title: NPJ Climate and Atmospheric Science
– volume: 24
  start-page: 3331
  issue: 8
  year: 2018
  end-page: 3343
  article-title: Nongrowing season methane emissions–a significant component of annual emissions across northern ecosystems
  publication-title: Global Change Biology
– volume: 117
  start-page: 20438
  issue: 34
  year: 2020
  end-page: 20446
  article-title: Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 116
  start-page: 4822
  issue: 11
  year: 2019
  end-page: 4827
  article-title: Widespread global peatland establishment and persistence over the last 130,000 y
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 58
  start-page: 50
  year: 2013
  end-page: 60
  article-title: Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen
  publication-title: Soil Biology and Biochemistry
– volume: 19
  start-page: 589
  issue: 2
  year: 2013
  end-page: 603
  article-title: Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
  publication-title: Global Change Biology
– volume: 11
  start-page: 6573
  issue: 23
  year: 2014
  end-page: 6593
  article-title: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
  publication-title: Biogeosciences
– volume: 415
  start-page: 512
  issue: 6871
  year: 2002
  end-page: 514
  article-title: Quantifying the risk of extreme seasonal precipitation events in a changing climate
  publication-title: Nature
– year: 2021
– volume: 12
  start-page: 2961
  issue: 7
  year: 2019
  end-page: 2982
  article-title: Modelling northern peatland area and carbon dynamics since the Holocene with the ORCHIDEE‐PEAT land surface model (SVN r5488)
  publication-title: Geoscientific Model Development
– volume: 7
  start-page: 263
  year: 2017
  end-page: 267
  article-title: Towards a rain‐dominated Arctic
  publication-title: Nature Climate Change
– volume: 12
  start-page: 922
  issue: 11
  year: 2019
  end-page: 928
  article-title: Widespread drying of European peatlands in recent centuries
  publication-title: Nature Geoscience
– volume: 23
  year: 2009
  article-title: Methane fluxes during the initiation of a large‐scale water table manipulation experiment in the Alaskan Arctic tundra
  publication-title: Global Biogeochemical Cycles
– volume: 8
  start-page: 573357
  year: 2020
  article-title: Pathways for methane emissions and oxidation that influence the net carbon balance of a subtropical cypress swamp
  publication-title: Frontiers in Earth Science
– volume: 11
  start-page: 2975
  issue: 6
  year: 2017
  end-page: 2996
  article-title: Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage‐induced changes in permafrost ecosystem structure
  publication-title: The Cryosphere
– volume: 593
  start-page: 548
  issue: 7860
  year: 2021
  end-page: 552
  article-title: Overriding water table control on managed peatland greenhouse gas emissions
  publication-title: Nature
– volume: 6
  start-page: 709
  issue: 7
  year: 2000
  end-page: 725
  article-title: A global prognostic scheme of leaf onset using satellite data
  publication-title: Global Change Biology
– volume: 17
  start-page: 5849
  issue: 22
  year: 2020
  end-page: 5860
  article-title: Hysteretic temperature sensitivity of wetland CH fluxes explained by substrate availability and microbial activity
  publication-title: Biogeosciences
– volume: 117
  start-page: F04019
  issue: F4
  year: 2012
  article-title: Drainage subsidence associated with Arctic permafrost degradation
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 8
  start-page: 577746
  year: 2021
  article-title: Consequences of increased variation in peatland hydrology for carbon storage: Legacy effects of drought and flood in a boreal fen ecosystem
  publication-title: Frontiers in Earth Science
– volume: 11
  start-page: 2201
  issue: 1
  year: 2020
  article-title: Fast response of cold ice‐rich permafrost in northeast Siberia to a warming climate
  publication-title: Nature Communications
– volume: 23
  issue: 2
  year: 2009
  article-title: Soil organic carbon pools in the northern circumpolar permafrost region
  publication-title: Global Biogeochemical Cycles
– year: 2004
– volume: 4
  start-page: 444
  year: 2011
  end-page: 448
  article-title: Reduction in areal extent of high‐latitude wetlands in response to permafrost thaw
  publication-title: Nature Geoscience
– volume: 314
  start-page: 285
  issue: 5797
  year: 2006
  end-page: 288
  article-title: Rapid early development of circumarctic peatlands and atmospheric CH and CO variations
  publication-title: Science
– volume: 12
  start-page: 1268
  issue: 8
  year: 2009
  end-page: 1282
  article-title: Effects of water table drawdown on root production and aboveground biomass in a boreal bog
  publication-title: Ecosystems
– volume: 25
  start-page: 3254
  issue: 10
  year: 2019
  end-page: 3266
  article-title: Negative feedback processes following drainage slow down permafrost degradation
  publication-title: Global Change Biology
– volume: 56
  start-page: 476
  issue: 2
  year: 1992
  end-page: 488
  article-title: Modeling soil organic matter in organic‐amended and nitrogen‐fertilized long‐term plots
  publication-title: Soil Science Society of America Journal
– volume: 11
  start-page: 766
  issue: 9
  year: 2021
  end-page: 771
  article-title: Differences in the temperature dependence of wetland CO and CH emissions vary with water table depth
  publication-title: Nature Climate Change
– volume: 110
  start-page: 414
  issue: 3
  year: 1997
  end-page: 422
  article-title: Seasonal variation in CH emissions and production and oxidation potentials at microsites on an oligotrophic pine fen
  publication-title: Oecologia
– volume: 24
  start-page: 4598
  issue: 10
  year: 2018
  end-page: 4613
  article-title: Carbon emissions from South‐East Asian peatlands will increase despite emission‐reduction schemes
  publication-title: Global Change Biology
– volume: 153
  start-page: 931
  year: 2007
  end-page: 941
  article-title: Artic mosses govern belowground environment and ecosystem processes
  publication-title: Oecologia
– volume: 326
  start-page: 810
  issue: 5954
  year: 2009
  end-page: 811
  article-title: Peatland response to global change
  publication-title: Science
– volume: 23
  start-page: 2970
  issue: 20
  year: 2009
  end-page: 2980
  article-title: Effect of atmospheric pressure and temperature on entrapped gas content in peat
  publication-title: Hydrological Processes
– volume: 11
  start-page: 618
  issue: 7
  year: 2021
  end-page: 622
  article-title: Tradeoff of CO and CH emissions from global peatlands under water‐table drawdown
  publication-title: Nature Climate Change
– volume: 23
  start-page: 2428
  issue: 6
  year: 2017
  end-page: 2440
  article-title: A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability
  publication-title: Global Change Biology
– volume: 11
  start-page: 4739
  issue: 12
  year: 2018
  end-page: 4754
  article-title: Land surface model parameter optimisation using in situ flux data: Comparison of gradient‐based versus random search algorithms (a case study using ORCHIDEE v1.9.5.2)
  publication-title: Geoscientific Model Development
– volume: 4
  start-page: 895
  issue: 12
  year: 2011
  end-page: 900
  article-title: Drought‐induced carbon loss in peatlands
  publication-title: Nature Geoscience
– volume: 120
  start-page: 788
  issue: 4
  year: 2015
  end-page: 808
  article-title: Identifying multiscale zonation and assessing the relative importance of polygon geomorphology on carbon fluxes in an Arctic tundra ecosystem
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 14
  start-page: 745
  issue: 3
  year: 2000
  end-page: 765
  article-title: A process‐based, climate‐sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate
  publication-title: Global Biogeochemical Cycles
– volume: 13
  start-page: 5315
  issue: 18
  year: 2016
  end-page: 5332
  article-title: Impacts of a decadal drainage disturbance on surface–atmosphere fluxes of carbon dioxide in a permafrost ecosystem
  publication-title: Biogeosciences
– volume: 31
  start-page: 1704
  issue: 12
  year: 2017
  end-page: 1717
  article-title: Long‐term drainage reduces CO uptake and CH emissions in a Siberian permafrost ecosystem
  publication-title: Global Biogeochemical Cycles
– volume: 15
  issue: 4
  year: 2020
  article-title: Demonstrating GWP*: A means of reporting warming‐equivalent emissions that captures the contrasting impacts of short‐ and long‐lived climate pollutants
  publication-title: Environmental Research Letters
– volume: 19
  start-page: GB1015
  issue: 1
  year: 2005
  article-title: A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system
  publication-title: Global Biogeochemical Cycles
– volume: 20
  start-page: 2183
  issue: 7
  year: 2014
  end-page: 2197
  article-title: A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands
  publication-title: Global Change Biology
– volume: 10
  issue: 9
  year: 2015
  article-title: Permafrost thaw and resulting soil moisture changes regulate projected high‐latitude CO and CH emissions
  publication-title: Environmental Research Letters
– volume: 2
  issue: 6
  year: 2020
  article-title: Drainage reduces the resilience of a boreal peatland
  publication-title: Environmental Research Communications
– volume: 520
  start-page: 171
  year: 2015
  end-page: 179
  article-title: Climate change and the permafrost carbon feedback
  publication-title: Nature
– volume: 509
  start-page: 479
  year: 2014
  end-page: 482
  article-title: Future increases in Arctic precipitation linked to local evaporation and sea‐ice retreat
  publication-title: Nature
– volume: 8
  start-page: 20
  issue: 1
  year: 2014
  end-page: 23
  article-title: Net regional methane sink in High Arctic soils of northeast Greenland
  publication-title: Nature Geoscience
– volume: 447
  start-page: 365
  issue: 1
  year: 2020
  end-page: 378
  article-title: Carbon storage change and δ C transitions of peat columns in a partially forestry‐drained boreal bog
  publication-title: Plant and Soil
– volume: 59
  start-page: 72
  year: 2013
  end-page: 85
  article-title: Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models
  publication-title: Soil Biology and Biochemistry
– volume: 14
  start-page: 470
  issue: 7
  year: 2021
  end-page: 472
  article-title: J. E. Nichols and D. M. Peteet reply
  publication-title: Nature Geoscience
– volume: 27
  start-page: 4040
  issue: 17
  year: 2021
  end-page: 4059
  article-title: Statistical upscaling of ecosystem CO fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties
  publication-title: Global Change Biology
– volume: 10
  start-page: 317
  issue: 4
  year: 2020
  end-page: 321
  article-title: Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic
  publication-title: Nature Climate Change
– volume: 7
  issue: 1
  year: 2016
  article-title: Circumpolar distribution and carbon storage of thermokarst landscapes
  publication-title: Nature Communications
– volume: 26
  start-page: 889
  issue: 4
  year: 2006
  end-page: 916
  article-title: The carbon balance of North American wetlands
  publication-title: Wetlands
– volume: 9
  start-page: 945
  issue: 12
  year: 2019
  end-page: 947
  article-title: Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100
  publication-title: Nature Climate Change
– volume: 25
  start-page: 179
  issue: 3
  year: 1996
  end-page: 184
  article-title: Effect of water‐level drawdown on global climatic warming: Northern peatlands
  publication-title: Ambio
– volume: 1
  start-page: 1
  issue: 1
  year: 2018
  end-page: 8
  article-title: A solution to the misrepresentations of CO ‐equivalent emissions of short‐lived climate pollutants under ambitious mitigation
  publication-title: NPJ Climate and Atmospheric Science
– volume: 27
  start-page: 5124
  issue: 20
  year: 2021
  end-page: 5140
  article-title: Disproportionate microbial responses to decadal drainage on a Siberian floodplain
  publication-title: Global Change Biology
– volume: 92
  start-page: 345
  issue: 2
  year: 2000
  end-page: 352
  article-title: Comparing simulated and measured values using mean squared deviation and its components
  publication-title: Agronomy Journal
– volume: 87
  start-page: e00241
  issue: 12
  year: 2021
  end-page: e00221
  article-title: The rhizosphere responds: Rich fen peat and root microbial ecology after long‐term water table manipulation
  publication-title: Applied and Environmental Microbiology
– start-page: 953
  year: 2013
  end-page: 1028
– volume: 168
  start-page: 571
  issue: 1
  year: 1995
  end-page: 577
  article-title: Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy
  publication-title: Plant and Soil
– volume: 7
  start-page: 631
  issue: 2
  year: 2014
  end-page: 647
  article-title: Simulating high‐latitude permafrost regions by the JSBACH terrestrial ecosystem model
  publication-title: Geoscientific Model Development
– volume: 7
  start-page: 716
  issue: 10
  year: 2014
  end-page: 721
  article-title: Global assessment of trends in wetting and drying over land
  publication-title: Nature Geoscience
– volume: 207
  year: 2020
  article-title: Pore‐scale controls on hydrological and geochemical processes in peat: Implications on interacting processes
  publication-title: Earth‐Science Reviews
– volume: 120
  start-page: 525
  issue: 3
  year: 2015
  end-page: 537
  article-title: Permafrost thaw and soil moisture drive CO and CH release from upland tundra
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 27
  start-page: 1442
  issue: 6
  year: 2013
  end-page: 1454
  article-title: Dominant bryophyte control over high‐latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation
  publication-title: Functional Ecology
– ident: e_1_2_8_105_1
  doi: 10.5194/bg‐8‐1925‐2011
– ident: e_1_2_8_112_1
  doi: 10.2151/sola.2016‐045
– ident: e_1_2_8_120_1
  doi: 10.1073/pnas.1813305116
– ident: e_1_2_8_4_1
  doi: 10.2307/3241751
– ident: e_1_2_8_98_1
  doi: 10.2136/sssaj1992.03615995005600020023x
– ident: e_1_2_8_21_1
  doi: 10.1038/s41558‐021‐01108‐4
– ident: e_1_2_8_91_1
  doi: 10.1111/gcb.13612
– ident: e_1_2_8_137_1
  doi: 10.1016/j.catena.2017.09.010
– ident: e_1_2_8_74_1
  doi: 10.1007/BF00029370
– ident: e_1_2_8_38_1
  doi: 10.1038/s41467‐020‐15499‐z
– ident: e_1_2_8_53_1
  doi: 10.1002/2017GB005774
– ident: e_1_2_8_87_1
  doi: 10.1038/s41467‐020‐15725‐8
– ident: e_1_2_8_111_1
  doi: 10.1038/nature14338
– ident: e_1_2_8_79_1
  doi: 10.1016/j.soilbio.2013.01.002
– ident: e_1_2_8_11_1
  doi: 10.1046/j.1365‐2486.2000.00362.x
– ident: e_1_2_8_5_1
  doi: 10.1038/ngeo1160
– ident: e_1_2_8_80_1
  doi: 10.1890/09‐1251.1
– ident: e_1_2_8_22_1
  doi: 10.1139/cjfr‐2014‐0100
– ident: e_1_2_8_119_1
  doi: 10.1029/2020JG005872
– ident: e_1_2_8_132_1
  doi: 10.3389/feart.2020.573357
– ident: e_1_2_8_10_1
  doi: 10.1038/nature13259
– volume-title: R: A language and environment for statistical computing
  year: 2013
  ident: e_1_2_8_103_1
– ident: e_1_2_8_29_1
  doi: 10.1038/s41558‐022‐01296‐7
– ident: e_1_2_8_109_1
  doi: 10.1007/s004420050176
– ident: e_1_2_8_130_1
  doi: 10.1029/1999GB001204
– ident: e_1_2_8_76_1
  doi: 10.1111/gcb.14465
– ident: e_1_2_8_30_1
  doi: 10.5194/tc‐11‐2975‐2017
– ident: e_1_2_8_36_1
  doi: 10.5194/gmd‐11‐121‐2018
– ident: e_1_2_8_135_1
  doi: 10.1002/jgrg.20045
– ident: e_1_2_8_139_1
  doi: 10.1029/2010GL043584
– ident: e_1_2_8_100_1
  doi: 10.1016/j.oneear.2021.12.008
– ident: e_1_2_8_134_1
  doi: 10.1038/d41586‐020‐02568‐y
– ident: e_1_2_8_18_1
  doi: 10.1016/B978-012370626-3.00061-2
– ident: e_1_2_8_32_1
  doi: 10.1023/A:1022602019183
– ident: e_1_2_8_6_1
  doi: 10.1029/2004GL021157
– ident: e_1_2_8_140_1
  doi: 10.1029/2011GB004037
– ident: e_1_2_8_63_1
  doi: 10.1111/gcb.15785
– ident: e_1_2_8_95_1
  doi: 10.5194/tc‐13‐753‐2019
– ident: e_1_2_8_71_1
  doi: 10.1038/ngeo2674
– ident: e_1_2_8_26_1
  doi: 10.1007/s10021‐019‐00460‐z
– ident: e_1_2_8_107_1
  doi: 10.3389/fmicb.2020.616518
– ident: e_1_2_8_121_1
  doi: 10.1038/ncomms1523
– ident: e_1_2_8_13_1
  doi: 10.1672/0277‐5212(2006)26[889:TCBONA]2.0.CO;2
– ident: e_1_2_8_138_1
  doi: 10.1038/s41561‐021‐00769‐2
– ident: e_1_2_8_46_1
  doi: 10.1038/ngeo2305
– ident: e_1_2_8_31_1
  doi: 10.1111/gcb.14744
– ident: e_1_2_8_88_1
  doi: 10.1029/97gb02732
– ident: e_1_2_8_94_1
  doi: 10.1111/gcb.12071
– ident: e_1_2_8_127_1
  doi: 10.1002/hyp.7412
– ident: e_1_2_8_44_1
  doi: 10.5194/bg‐11‐6573‐2014
– ident: e_1_2_8_43_1
  doi: 10.1073/pnas.1916387117
– ident: e_1_2_8_97_1
  doi: 10.2136/sssaj1987.03615995005100050015x
– ident: e_1_2_8_104_1
  doi: 10.1038/s41561‐021‐00770‐9
– ident: e_1_2_8_54_1
  doi: 10.5194/bg‐9‐235‐2012
– ident: e_1_2_8_133_1
  doi: 10.1111/gcb.14340
– ident: e_1_2_8_9_1
  doi: 10.1038/nclimate3240
– ident: e_1_2_8_49_1
  doi: 10.1038/s41561‐020‐0607‐0
– ident: e_1_2_8_20_1
  doi: 10.1029/2021GL095276
– ident: e_1_2_8_124_1
  doi: 10.1029/2020GL087820
– ident: e_1_2_8_48_1
  doi: 10.3389/feart.2020.577746
– ident: e_1_2_8_93_1
  doi: 10.5194/essd‐13‐5127‐2021
– ident: e_1_2_8_69_1
  doi: 10.1038/s41558‐019‐0615‐5
– ident: e_1_2_8_90_1
  doi: 10.1038/s41558‐020‐0734‐z
– ident: e_1_2_8_129_1
  doi: 10.1002/2014JG002799@10.1002/(ISSN)2169‐9291.ARCTICJOINT
– ident: e_1_2_8_115_1
  doi: 10.1029/2010GL044018
– ident: e_1_2_8_113_1
  doi: 10.1111/j.1365‐2389.2012.01499.x
– ident: e_1_2_8_96_1
  doi: 10.1038/415512a
– ident: e_1_2_8_84_1
  doi: 10.1038/s41561‐019‐0454‐z
– ident: e_1_2_8_136_1
  doi: 10.1111/ele.13697
– volume-title: Climate Change 2021: The physical science bases. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change
  year: 2021
  ident: e_1_2_8_24_1
– ident: e_1_2_8_116_1
  doi: 10.1038/s41561‐019‐0462‐z
– ident: e_1_2_8_14_1
– ident: e_1_2_8_45_1
  doi: 10.1038/s43017‐021‐00238‐9
– ident: e_1_2_8_72_1
  doi: 10.1088/1748‐9326/ab6d7e
– ident: e_1_2_8_102_1
  doi: 10.5194/gmd‐12‐2961‐2019
– ident: e_1_2_8_122_1
  doi: 10.1111/gcb.12580
– ident: e_1_2_8_131_1
  doi: 10.5194/gmd‐3‐565‐2010
– ident: e_1_2_8_16_1
  doi: 10.1038/s41612‐019‐0086‐4
– ident: e_1_2_8_41_1
  doi: 10.1038/s41558‐020‐0763‐7
– ident: e_1_2_8_73_1
  doi: 10.1126/science.1131722
– ident: e_1_2_8_59_1
  doi: 10.5194/essd‐13‐5151‐2021
– ident: e_1_2_8_85_1
  doi: 10.1038/s41561‐021‐00771‐8
– ident: e_1_2_8_39_1
  doi: 10.1088/2515‐7620/ab9895
– ident: e_1_2_8_61_1
  doi: 10.5194/bg‐13‐4219‐2016
– ident: e_1_2_8_117_1
  doi: 10.1029/2008GB003327
– ident: e_1_2_8_27_1
  doi: 10.1038/s41586‐021‐03523‐1
– ident: e_1_2_8_67_1
  doi: 10.1088/1748‐9326/10/9/094011
– ident: e_1_2_8_81_1
  doi: 10.1007/s10021‐009‐9283‐z
– ident: e_1_2_8_28_1
  doi: 10.1038/ngeo1323
– ident: e_1_2_8_8_1
  doi: 10.1890/0012‐9615(2006)076[0299:BTLTPB]2.0.CO;2
– ident: e_1_2_8_123_1
  doi: 10.1029/2007JG000496
– ident: e_1_2_8_56_1
  doi: 10.1038/s41467‐021‐25619‐y
– ident: e_1_2_8_2_1
  doi: 10.1038/s41612‐018‐0026‐8
– ident: e_1_2_8_25_1
  doi: 10.5194/gmd‐7‐631‐2014
– ident: e_1_2_8_47_1
  doi: 10.1016/j.soilbio.2012.10.032
– ident: e_1_2_8_68_1
  doi: 10.1038/s41467‐018‐03406‐6
– ident: e_1_2_8_50_1
  doi: 10.1111/j.1600‐0889.2007.00333.x
– volume-title: Climate Change 2021: The physical science bases. Contribution of Working Group I to the sixth assessment report of the intergovernmental panel on climate change
  year: 2021
  ident: e_1_2_8_37_1
– start-page: 953
  volume-title: Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_8_51_1
– ident: e_1_2_8_17_1
  doi: 10.5194/bg‐17‐5849‐2020
– ident: e_1_2_8_126_1
  doi: 10.1111/gcb.15659
– ident: e_1_2_8_15_1
  doi: 10.5194/tc‐2020‐91
– ident: e_1_2_8_64_1
  doi: 10.1029/2002GB002015
– ident: e_1_2_8_114_1
  doi: 10.1111/1365-2435.12127
– ident: e_1_2_8_19_1
  doi: 10.1111/gcb.15099
– ident: e_1_2_8_82_1
  doi: 10.1002/2014JG002872
– ident: e_1_2_8_106_1
  doi: 10.1029/2019JG005528
– ident: e_1_2_8_12_1
  doi: 10.1016/j.baae.2008.05.005
– ident: e_1_2_8_23_1
  doi: 10.1126/science.1174268
– ident: e_1_2_8_70_1
  doi: 10.1029/2011JF002284
– ident: e_1_2_8_62_1
  doi: 10.1111/gcb.14578
– ident: e_1_2_8_86_1
  doi: 10.1016/j.scitotenv.2016.12.104
– ident: e_1_2_8_110_1
  doi: 10.5194/gmd‐2021‐280
– ident: e_1_2_8_35_1
  doi: 10.1038/ngeo2247
– volume: 25
  start-page: 179
  issue: 3
  year: 1996
  ident: e_1_2_8_65_1
  article-title: Effect of water‐level drawdown on global climatic warming: Northern peatlands
  publication-title: Ambio
– ident: e_1_2_8_7_1
  doi: 10.5194/gmd‐11‐4739‐2018
– ident: e_1_2_8_57_1
  doi: 10.1029/2003GB002199
– ident: e_1_2_8_58_1
  doi: 10.1016/j.foreco.2016.09.006
– ident: e_1_2_8_89_1
  doi: 10.1007/s11104‐019‐04375‐5
– ident: e_1_2_8_101_1
  doi: 10.5194/gmd‐11‐497‐2018
– ident: e_1_2_8_33_1
  doi: 10.2307/1941811
– ident: e_1_2_8_42_1
  doi: 10.1038/s41558‐021‐01059‐w
– ident: e_1_2_8_55_1
  doi: 10.2134/agronj2000.922345x
– ident: e_1_2_8_77_1
  doi: 10.1023/A:1004466330076
– ident: e_1_2_8_99_1
  doi: 10.1007/s11104‐014‐2301‐8
– ident: e_1_2_8_141_1
  doi: 10.1029/2009GB003487
– ident: e_1_2_8_75_1
  doi: 10.1016/j.earscirev.2020.103227
– ident: e_1_2_8_92_1
  doi: 10.1038/ncomms13043
– volume-title: Practical genetic algorithms
  year: 2004
  ident: e_1_2_8_40_1
– ident: e_1_2_8_60_1
  doi: 10.1111/gcb.13558
– ident: e_1_2_8_108_1
  doi: 10.1128/AEM.00241‐21
– ident: e_1_2_8_66_1
  doi: 10.1111/gcb.12757
– ident: e_1_2_8_52_1
  doi: 10.5194/bg‐13‐5315‐2016
– ident: e_1_2_8_3_1
  doi: 10.5194/tc‐14‐445‐2020
– ident: e_1_2_8_78_1
  doi: 10.1029/2018MS001329
– ident: e_1_2_8_34_1
  doi: 10.1007/s00442‐007‐0785‐0
– ident: e_1_2_8_128_1
  doi: 10.1002/eco.1493
– ident: e_1_2_8_118_1
  doi: 10.1111/gcb.14137
– ident: e_1_2_8_125_1
  doi: 10.1111/gcb.13281
– ident: e_1_2_8_83_1
  doi: 10.1038/s41558‐019‐0592‐8
SSID ssj0003206
Score 2.5055904
Snippet Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6752
SubjectTerms Arctic region
Biological Sciences
Carbon
Carbon dioxide
Carbon Dioxide - analysis
carbon flux
Carbon Sequestration
Carbon sinks
carbon stock
climate
Climate change
cold
Continental interfaces, environment
Decomposition
drainage
Drying
Ecosystem
Emissions
Emissions control
Greenhouse effect
Greenhouse gases
Greenhouse Gases - analysis
greenhouses
Groundwater
Groundwater table
high latitude
Hydrology
land surface model
manipulation experiment
Methane
Methane - analysis
Ocean, Atmosphere
Peatlands
Permafrost
permafrost thaw
Permafrost thaws
Saturated soils
Sciences of the Universe
Soil
Soil surfaces
Stocks
Storage capacity
Storage conditions
Water table
Title Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16394
https://www.ncbi.nlm.nih.gov/pubmed/36039832
https://www.proquest.com/docview/2725222592
https://www.proquest.com/docview/2708262090
https://www.proquest.com/docview/2811988716
https://hal.science/hal-03775356
https://pubmed.ncbi.nlm.nih.gov/PMC9805217
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_aguCLH6e10VpWEfElx-3HJVl8qkfbQ6qIWKgghOxHeodlryQ5Rf96Zza5tNeqiG-Xmwls9mZmf3OZ-Q0hL2zKjS41j60VLoYTT8dFmajYZKktU2tY6UKB7PtkeiLfno5PN8jrVS9Myw_R_-GGnhHiNTp4oesrTn5m9BDAhEIuUKzVQkD08ZI6SvAwV5OJsYRQw0THKoRVPP2da2fR5gwrIW_CzJvVkldRbDiGDu-SL6sHaKtPvg6XjR6an9e4Hf_zCe-ROx08pfutPd0nG84PyK12YOWPAdk-uOyLA7UuMNQDEr0D8L2oghp9SSfnc0DC4eoB-XyMk9jgiKTfAdhWtMFuLVohZ6yrqSkqvfC0hpyYYuOKP2tmtPC2FzQQsWs699TjKyZXeXoB50doUX5ITg4PPk2mcTfRITbg-xIsAImUuHbMWqZlUopUldK6lAudKadNIjRLmRGlYlYWWo10ArYEusyxQhRim2z5hXc7hEIeVnBIIEFs5FhZxTItmM6MFFJnkkfk1eq3zU1Hd45TN87zVdoD25uH7Y3I8171ouX4-K0SGEgvR1bu6f5xjt-NRApJ3zj5xiKyu7KfvIsFdc5TPsasWsGanvVi8GJ8NVN4t1iiDkCxhI_U6C86GWMqwwQ3Io9ak-yXI5KRUBCcI5KuGevaetclfj4LbOIqDLVIYb-CLf55B_KjyZvw4fG_qz4htzn2i4TmzV2y1VRL9xRQXKP3yCaXH_aC0_4CpvlFmQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RQguPAothgILQoiLo-wjtlfiUqKWAGkPqJXKAVneh5uIalM5Dgh-PbNrx20oIMTN9oyl9Xqe9sw3AC9MyrQqFYuN4TZGj6fiokxkrLPUlKnRtLShQPYwGR2L9yeDkzV4veyFafAhug9uXjOCvfYK7j9IX9LyU616GE1IsQ7X_ETvkFB9vACP4ixM1qR8INDYUN7iCvk6nu7WFW-0PvG1kFcDzav1kpfj2OCI9m_D5-UjNPUnX3qLWvX0j1_QHf_3Ge_ArTZCJbuNSN2FNes24Xozs_L7JmztXbTGIVtrG-abEB1g_D2rAht5SYZnUwyGw9k9-DT2w9jQS5JvGNtWpPYNW6TysLF2TnRRqZkjc0yLie9dcaf1hBTOdIQajfacTB1x_i-TrRw5RxcSupTvw_H-3tFwFLdDHWKN6i9QCDyWElOWGkOVSEqeylIYmzKuMmmVTriiKdW8lNSIQsm-SlCckJdaWvCCb8GGmzn7AAimYgXDHBLJWgykkTRTnKpMCy5UJlgEr5YvN9ct4rkfvHGWLzMf3N48bG8EzzvW8wbm47dMKCEd3QNzj3bHub_W5ynmfYPkK41gZylAeWsO5jlL2cAn1hLX9KwjoyL7vzOFs7OF58FoLGF92f8LT0apzHyOG8F2I5PdcnjS5xLtcwTpirSurHeV4qaTACguw1yLFPcrCOOfdyB_O3wTDh7-O-tTuDE6Ohjn43eHHx7BTebbR0Iv5w5s1NXCPsagrlZPgu7-BCUdSN0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB_aiuIXH6fVaNVVRPySI_u4JIuf6rVn1bOIWKgghOwjvcOSO3I5Rf96Zze5tGdVxG9JZgKbzTyTmd8APDUJ06pQLDSG2xA9ngrzIpahThNTJEbTwvoC2cP44Ei8OR4cb8CLVS9Mgw_RfXBzmuHttVPwuSnOKfmJVn0MJqTYhEsijlIn0nsfzrCjOPODNSkfCLQ1lLewQq6Mp7t1zRltTlwp5MU482K55Pkw1vuh0XX4vHqCpvzkS39Zq77-8Qu4438-4g241sanZLcRqJuwYcseXG4mVn7vwfb-WWMcsrWWYdGD4B1G37PKs5FnZHg6xVDYn92CT2M3ig19JPmGkW1FateuRSoHGmsXROeVmpVkgUkxcZ0r5Uk9IXlpOkKNJntBpiUp3T8mW5Vkjg7E9yjfhqPR_sfhQdiOdAg1Kr9AEXBISkxZagxVIi54IgthbMK4SqVVOuaKJlTzQlIjciUjFaMwIS-1NOc534atclbau0AwEcsZZpBI1mIgjaSp4lSlWnChUsECeL56t5lu8c7d2I3TbJX34PZmfnsDeNKxzhuQj98yoYB0dAfLfbA7zty1iCeY9Q3irzSAnZX8ZK0xWGQsYQOXVktc0-OOjGrs_s3kpZ0tHQ_GYjGLZPQXnpRSmboMN4A7jUh2y-FxxCVa5wCSNWFdW-86pZxOPJy49FMtEtwvL4t_3oHs1fClP7j376yP4Mr7vVE2fn349j5cZa53xDdy7sBWXS3tA4zoavXQa-5POaNHlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lowering+water+table+reduces+carbon+sink+strength+and+carbon+stocks+in+northern+peatlands&rft.jtitle=Global+change+biology&rft.au=Kwon%2C+Min+Jung&rft.au=Ballantyne%2C+Ashley&rft.au=Ciais%2C+Philippe&rft.au=Qiu%2C+Chunjing&rft.date=2022-11-01&rft.issn=1354-1013&rft.volume=28&rft.issue=22+p.6752-6770&rft.spage=6752&rft.epage=6770&rft_id=info:doi/10.1111%2Fgcb.16394&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon