Bandgap Engineering of Lead-Halide Perovskite-Type Ferroelectrics
Semiconducting ferroelectricity is realized in hybrid perovskite‐type compounds (cyclohexylammonium)2PbBr4−4xI4x (x = 0–1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. Thi...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 28; no. 13; pp. 2579 - 2586 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.04.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Semiconducting ferroelectricity is realized in hybrid perovskite‐type compounds (cyclohexylammonium)2PbBr4−4xI4x (x = 0–1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite‐type compounds. |
---|---|
AbstractList | Semiconducting ferroelectricity is realized in hybrid perovskite‐type compounds (cyclohexylammonium)2PbBr4−4xI4x (x = 0–1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite‐type compounds. Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium) sub(2)PbBr sub(4-4x)I sub(4x) (x = 0-1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite-type compounds. Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium)2 PbBr4-4 x I4 x (x = 0-1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite-type compounds. Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium)2 PbBr4-4 x I4 x (x = 0-1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite-type compounds.Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium)2 PbBr4-4 x I4 x (x = 0-1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite-type compounds. |
Author | Mao, Jiang-Gao Ye, Heng-Yun Hu, Chun-Li Xiong, Ren-Gen Liao, Wei-Qiang Zhang, Yi You, Yu-Meng Li, Peng-Fei |
Author_xml | – sequence: 1 givenname: Heng-Yun surname: Ye fullname: Ye, Heng-Yun organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China – sequence: 2 givenname: Wei-Qiang surname: Liao fullname: Liao, Wei-Qiang organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China – sequence: 3 givenname: Chun-Li surname: Hu fullname: Hu, Chun-Li organization: Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fujian, 350002, Fuzhou, P. R. China – sequence: 4 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China – sequence: 5 givenname: Yu-Meng surname: You fullname: You, Yu-Meng email: youyumeng@seu.edu.cn organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China – sequence: 6 givenname: Jiang-Gao surname: Mao fullname: Mao, Jiang-Gao organization: Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fujian, 350002, Fuzhou, P. R. China – sequence: 7 givenname: Peng-Fei surname: Li fullname: Li, Peng-Fei organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China – sequence: 8 givenname: Ren-Gen surname: Xiong fullname: Xiong, Ren-Gen email: youyumeng@seu.edu.cn organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26833877$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1vEzEQgGELFdG0cOWIInHhsmHG33sMpR-gUEAK6tFydseR281uam-g-ffdKiVClVBPvjzvWPYcsYO2a4mxtwgTBOAffb3yEw6oQHEuX7ARKo6FhFIdsBGUQhWllvaQHeV8DQClBv2KHXJthbDGjNj0k2_rpV-PT9tlbIlSbJfjLoxn5OviwjexpvEPSt3vfBN7KubbNY3PKKWOGqr6FKv8mr0Mvsn05vE8Zr_OTucnF8Xs-_mXk-msqBSCLJQUC0mBS01BYSiVQcsDeGHrkgetalkthK00VkTaLGzwwVNtOEgjUIdSHLMPu7nr1N1uKPduFXNFTeNb6jbZoQU7YDT4PDXGSkBEPtD3T-h1t0nt8BDHwYBRaEAP6t2j2ixWVLt1iiuftu7vPw5gsgNV6nJOFPYEwT0syj0syu0XNQTySVDF3vexa_vkY_P_rNxlf2JD22cucdPP36b_tsWujbmnu33r043TRhjlri7P3fynNXj1Fd2luAfcbLQG |
CitedBy_id | crossref_primary_10_1002_slct_201600841 crossref_primary_10_1016_j_jssc_2018_11_012 crossref_primary_10_1063_5_0035778 crossref_primary_10_1088_1361_648X_acef9c crossref_primary_10_1002_smtd_202400425 crossref_primary_10_1016_j_molstruc_2018_01_093 crossref_primary_10_1002_adfm_201805038 crossref_primary_10_1039_D3QI00594A crossref_primary_10_1002_ejic_201601269 crossref_primary_10_1039_D0TA08780G crossref_primary_10_1021_acs_jpcc_8b06538 crossref_primary_10_1002_aelm_202200415 crossref_primary_10_1002_adfm_202314790 crossref_primary_10_2139_ssrn_4172037 crossref_primary_10_1039_C6TC03818B crossref_primary_10_1021_acs_jpcc_7b05126 crossref_primary_10_1021_jacs_9b12368 crossref_primary_10_1021_acs_chemmater_1c03906 crossref_primary_10_1002_adma_201808336 crossref_primary_10_1016_j_trechm_2021_09_010 crossref_primary_10_1039_D3CE00706E crossref_primary_10_1039_C9NA00125E crossref_primary_10_1039_D4NJ04595E crossref_primary_10_1038_s41467_024_48948_0 crossref_primary_10_1021_acs_inorgchem_3c03646 crossref_primary_10_1021_acs_jpcc_1c04545 crossref_primary_10_1021_jacs_4c01882 crossref_primary_10_1039_C9QI00365G crossref_primary_10_1002_adma_202005213 crossref_primary_10_1002_ange_202012601 crossref_primary_10_1002_ange_201606079 crossref_primary_10_1002_chem_202101707 crossref_primary_10_1016_j_mssp_2024_108252 crossref_primary_10_1021_jacs_8b13827 crossref_primary_10_1088_1402_4896_ad25ca crossref_primary_10_1002_smll_202310768 crossref_primary_10_1021_acsami_4c11534 crossref_primary_10_1021_acs_nanolett_1c00395 crossref_primary_10_1126_sciadv_aay4213 crossref_primary_10_1002_anie_201802580 crossref_primary_10_1021_acs_inorgchem_4c03742 crossref_primary_10_1002_anie_202005092 crossref_primary_10_1126_science_aav3057 crossref_primary_10_1021_acs_inorgchem_0c02649 crossref_primary_10_1021_jacs_3c09395 crossref_primary_10_1021_jacs_9b02558 crossref_primary_10_1002_adma_202002972 crossref_primary_10_1002_anie_202012601 crossref_primary_10_1021_jacs_2c07892 crossref_primary_10_1039_C6TC05105G crossref_primary_10_1021_acsaelm_0c00852 crossref_primary_10_1021_acs_cgd_2c00780 crossref_primary_10_1021_acs_inorgchem_9b01538 crossref_primary_10_1039_D1TA09537D crossref_primary_10_1021_jacs_0c00375 crossref_primary_10_1126_science_aai8535 crossref_primary_10_1021_jacs_0c00371 crossref_primary_10_1021_jacs_9b10048 crossref_primary_10_1016_j_mtchem_2019_07_001 crossref_primary_10_1002_chem_201806032 crossref_primary_10_1039_C9TC03543E crossref_primary_10_1016_j_jcis_2025_01_211 crossref_primary_10_1002_adfm_202009457 crossref_primary_10_1016_j_isci_2021_103486 crossref_primary_10_1039_C6QI00347H crossref_primary_10_1002_ange_201803716 crossref_primary_10_1021_acs_cgd_6b01179 crossref_primary_10_1039_C8QI00424B crossref_primary_10_1039_C9TC04384E crossref_primary_10_1002_adma_202307518 crossref_primary_10_1021_acs_chemmater_3c00596 crossref_primary_10_1002_ange_202005092 crossref_primary_10_1039_C9DT00945K crossref_primary_10_1002_ejic_201600932 crossref_primary_10_1039_C7QI00218A crossref_primary_10_1021_acsami_0c02313 crossref_primary_10_1002_anie_201916254 crossref_primary_10_1051_e3sconf_202560100038 crossref_primary_10_1021_acs_chemmater_9b00450 crossref_primary_10_3390_nano8060356 crossref_primary_10_1021_jacs_2c04872 crossref_primary_10_1002_adfm_202200223 crossref_primary_10_1021_acs_cgd_3c00519 crossref_primary_10_1021_acs_jpclett_7b00673 crossref_primary_10_1002_anie_201907660 crossref_primary_10_1002_slct_201601860 crossref_primary_10_1021_acs_chemmater_3c02424 crossref_primary_10_1002_anie_201803716 crossref_primary_10_1021_acs_inorgchem_2c00099 crossref_primary_10_1016_j_jssc_2023_124011 crossref_primary_10_1021_acs_chemmater_6b02653 crossref_primary_10_1021_acs_chemmater_1c01129 crossref_primary_10_1021_acs_nanolett_8b00603 crossref_primary_10_1063_5_0016010 crossref_primary_10_1002_adom_201900350 crossref_primary_10_1002_smll_202106888 crossref_primary_10_1002_apxr_202200044 crossref_primary_10_1016_j_matchemphys_2020_123791 crossref_primary_10_1002_anie_202218675 crossref_primary_10_1021_acs_jpcc_1c08962 crossref_primary_10_1016_j_isci_2022_104450 crossref_primary_10_1016_j_nanoen_2020_105110 crossref_primary_10_1021_jacs_9b07776 crossref_primary_10_1038_s41467_021_25644_x crossref_primary_10_1002_ange_202305310 crossref_primary_10_1016_j_poly_2020_114345 crossref_primary_10_1002_adom_201700743 crossref_primary_10_1039_C7QI00301C crossref_primary_10_1007_s11426_022_1446_3 crossref_primary_10_1002_adma_201705298 crossref_primary_10_1002_ange_201907660 crossref_primary_10_1021_acsami_8b21579 crossref_primary_10_1088_1361_6463_abb047 crossref_primary_10_1002_adfm_202214858 crossref_primary_10_1039_C9QI00684B crossref_primary_10_1021_acsenergylett_3c02738 crossref_primary_10_1021_acs_jpclett_3c00566 crossref_primary_10_1016_j_ica_2021_120544 crossref_primary_10_1039_D2CE00883A crossref_primary_10_1021_acsami_8b18883 crossref_primary_10_1002_chem_202001266 crossref_primary_10_1002_adfm_202411671 crossref_primary_10_1039_C8CS00563J crossref_primary_10_1039_C7CC01107E crossref_primary_10_1039_D3TC04393B crossref_primary_10_1002_asia_201900512 crossref_primary_10_1016_j_cclet_2024_110216 crossref_primary_10_1016_j_nanoen_2021_106039 crossref_primary_10_1016_j_orgel_2017_05_047 crossref_primary_10_1002_ange_202218675 crossref_primary_10_1063_5_0233435 crossref_primary_10_1016_j_ica_2018_07_042 crossref_primary_10_1038_s41524_020_00374_8 crossref_primary_10_1039_D2QM01340A crossref_primary_10_1002_adma_202101263 crossref_primary_10_1002_ange_201601933 crossref_primary_10_1021_acs_inorgchem_8b03424 crossref_primary_10_1002_anie_202304486 crossref_primary_10_1021_acs_inorgchem_2c02496 crossref_primary_10_1021_acs_jpcc_2c01731 crossref_primary_10_1002_adfm_202102793 crossref_primary_10_1021_jacs_9b10919 crossref_primary_10_1021_acs_inorgchem_6b02478 crossref_primary_10_1126_science_aas9330 crossref_primary_10_1039_C8DT00623G crossref_primary_10_1016_j_ica_2022_121254 crossref_primary_10_1021_jacs_9b11697 crossref_primary_10_1002_anie_201601933 crossref_primary_10_1002_chem_202303717 crossref_primary_10_1002_aenm_202102236 crossref_primary_10_1364_JOSAB_36_001616 crossref_primary_10_1002_ange_202304486 crossref_primary_10_1039_C7CE00964J crossref_primary_10_1021_acs_cgd_8b00938 crossref_primary_10_1016_j_jes_2020_08_014 crossref_primary_10_1016_j_ssc_2024_115699 crossref_primary_10_1002_adma_201901843 crossref_primary_10_1002_ange_201802580 crossref_primary_10_1039_C8TC02791A crossref_primary_10_1039_C8CE01461B crossref_primary_10_1039_C6NJ03973A crossref_primary_10_1021_jacs_8b04014 crossref_primary_10_1021_acs_nanolett_3c01848 crossref_primary_10_1021_acs_inorgchem_3c01762 crossref_primary_10_1002_adma_202205410 crossref_primary_10_1002_anie_201810698 crossref_primary_10_1021_acs_chemmater_9b01227 crossref_primary_10_1016_j_apsusc_2021_151259 crossref_primary_10_1021_acs_inorgchem_9b03098 crossref_primary_10_1039_D3CE01019H crossref_primary_10_1021_acs_jpclett_4c01691 crossref_primary_10_1140_epjb_s10051_022_00381_2 crossref_primary_10_1016_j_inoche_2021_108622 crossref_primary_10_1021_acs_accounts_8b00677 crossref_primary_10_1021_acs_inorgchem_3c02607 crossref_primary_10_1002_ange_202004235 crossref_primary_10_1039_D3CS00262D crossref_primary_10_1039_C8DT03456G crossref_primary_10_1039_C7DT01780D crossref_primary_10_1002_anie_202305310 crossref_primary_10_1021_jacs_7b00492 crossref_primary_10_1038_am_2016_193 crossref_primary_10_1002_pssr_202300144 crossref_primary_10_1021_jacs_4c06929 crossref_primary_10_1103_PhysRevMaterials_3_094408 crossref_primary_10_1016_j_ccr_2021_214180 crossref_primary_10_1021_jacs_0c08189 crossref_primary_10_1021_acs_chemmater_2c00214 crossref_primary_10_1039_C7QI00270J crossref_primary_10_1039_C7RA06429B crossref_primary_10_1039_C8TC04372H crossref_primary_10_1039_D2NH00229A crossref_primary_10_1002_ange_201916254 crossref_primary_10_1088_1361_6463_aba930 crossref_primary_10_1021_acs_inorgchem_0c03309 crossref_primary_10_1021_jacs_9b01874 crossref_primary_10_1038_s41570_021_00335_9 crossref_primary_10_1039_D1QM00566A crossref_primary_10_1039_D2CE00009A crossref_primary_10_1038_s41563_022_01322_1 crossref_primary_10_1039_D2NJ03613D crossref_primary_10_1021_acs_inorgchem_7b01863 crossref_primary_10_1107_S2052252521005418 crossref_primary_10_1021_jacs_0c09288 crossref_primary_10_1038_s41467_024_45986_6 crossref_primary_10_1063_5_0039082 crossref_primary_10_1002_cphc_202400801 crossref_primary_10_1007_s11664_019_07868_2 crossref_primary_10_1002_ejic_201700529 crossref_primary_10_1016_j_ccr_2019_02_012 crossref_primary_10_1016_j_nanoen_2023_108219 crossref_primary_10_1002_adma_201808088 crossref_primary_10_1039_C7DT01378G crossref_primary_10_1002_ange_201805625 crossref_primary_10_1016_j_cclet_2019_11_011 crossref_primary_10_1039_D0CC07443H crossref_primary_10_1021_acs_chemmater_9b02409 crossref_primary_10_1002_anie_201606079 crossref_primary_10_1063_1_4948967 crossref_primary_10_1002_slct_201601442 crossref_primary_10_1080_00958972_2018_1454592 crossref_primary_10_1016_j_solmat_2017_07_011 crossref_primary_10_1002_adma_202004999 crossref_primary_10_1016_j_ccr_2022_214663 crossref_primary_10_1039_D1CE01615F crossref_primary_10_1039_D1CE01488A crossref_primary_10_1021_jacs_0c12907 crossref_primary_10_1039_D1TC01526E crossref_primary_10_1039_D4RA07511K crossref_primary_10_1021_acs_cgd_4c01453 crossref_primary_10_1021_acs_cgd_6b00480 crossref_primary_10_1039_C9CC09477F crossref_primary_10_1002_ejic_202200172 crossref_primary_10_1021_acs_inorgchem_1c01011 crossref_primary_10_1016_j_poly_2020_114840 crossref_primary_10_1002_anie_201805625 crossref_primary_10_1063_1_5024857 crossref_primary_10_1021_acs_inorgchem_7b02055 crossref_primary_10_1021_acs_inorgchem_2c02206 crossref_primary_10_1021_jacs_0c09586 crossref_primary_10_1039_C9CS00504H crossref_primary_10_1126_science_adj1946 crossref_primary_10_1002_anie_202425653 crossref_primary_10_1038_ncomms13635 crossref_primary_10_1039_C9CE00458K crossref_primary_10_1039_D5CE00003C crossref_primary_10_1021_acs_jpclett_4c01371 crossref_primary_10_1021_jacs_0c00480 crossref_primary_10_1039_D2QI02149H crossref_primary_10_1021_jacs_0c12513 crossref_primary_10_1039_D2CE01150F crossref_primary_10_1002_advs_202400636 crossref_primary_10_1016_j_ccr_2017_09_020 crossref_primary_10_1016_j_nantod_2020_101062 crossref_primary_10_1021_acs_inorgchem_7b00662 crossref_primary_10_1039_C9NJ00775J crossref_primary_10_1021_acs_chemmater_2c00094 crossref_primary_10_1021_jacs_0c07055 crossref_primary_10_1039_C7CC04240J crossref_primary_10_1039_C7NJ01597F crossref_primary_10_1002_adfm_201905529 crossref_primary_10_1038_s41467_020_15518_z crossref_primary_10_1002_ange_201810698 crossref_primary_10_1002_adma_201902163 crossref_primary_10_1002_adfm_202412332 crossref_primary_10_1021_acs_chemmater_6b01726 crossref_primary_10_1016_j_joule_2021_07_008 crossref_primary_10_1016_j_mtcomm_2020_101190 crossref_primary_10_1021_jacs_1c05108 crossref_primary_10_1093_nsr_nwaa232 crossref_primary_10_1021_acs_chemmater_0c04440 crossref_primary_10_1002_adma_201803249 crossref_primary_10_1016_j_cclet_2022_108051 crossref_primary_10_1021_acs_inorgchem_2c04295 crossref_primary_10_1021_jacs_1c00459 crossref_primary_10_1021_acs_jpclett_9b02875 crossref_primary_10_1039_D1TA10944H crossref_primary_10_1039_C7TA03890A crossref_primary_10_1016_j_rinp_2023_106212 crossref_primary_10_1021_acs_jpcc_2c03984 crossref_primary_10_1002_anie_202004235 crossref_primary_10_1002_bio_3706 crossref_primary_10_1039_D3MA00461A crossref_primary_10_1186_s11671_020_03359_0 crossref_primary_10_1002_slct_202301981 crossref_primary_10_1021_jacs_8b13109 crossref_primary_10_1002_eom2_12057 crossref_primary_10_1021_acs_chemmater_1c03815 crossref_primary_10_1002_slct_201801332 crossref_primary_10_1039_C9QI01498E crossref_primary_10_1002_ange_201915094 crossref_primary_10_1016_j_trechm_2021_05_003 crossref_primary_10_1002_ejic_201900493 crossref_primary_10_1021_acs_inorgchem_1c02897 crossref_primary_10_1002_asia_202100837 crossref_primary_10_1002_ange_202419776 crossref_primary_10_1002_adom_202202850 crossref_primary_10_1039_C7CC02408H crossref_primary_10_1021_acs_chemrev_3c00532 crossref_primary_10_1039_C7QI00722A crossref_primary_10_1002_adts_202200922 crossref_primary_10_1002_ange_202425653 crossref_primary_10_1021_acs_inorgchem_7b01094 crossref_primary_10_1016_j_poly_2017_03_025 crossref_primary_10_1021_acs_jpcc_0c10628 crossref_primary_10_1021_jacs_8b12948 crossref_primary_10_1002_chem_202301499 crossref_primary_10_1016_j_jlumin_2024_120914 crossref_primary_10_1098_rsos_181397 crossref_primary_10_1039_C7TA01668A crossref_primary_10_1007_s40843_020_1463_0 crossref_primary_10_1002_aenm_201800681 crossref_primary_10_1002_anie_201915094 crossref_primary_10_1002_asia_201801921 crossref_primary_10_1016_j_jcis_2018_07_106 crossref_primary_10_1039_D3CC04186G crossref_primary_10_1002_jrs_5642 crossref_primary_10_1039_D2DT00991A crossref_primary_10_1039_C7RA10221F crossref_primary_10_1002_anie_202419776 crossref_primary_10_1039_C7QI00341B crossref_primary_10_1039_D0CC07377F |
Cites_doi | 10.1039/B618196A 10.1038/nmat1298 10.1038/nature08731 10.1103/PhysRevLett.110.257601 10.1039/b819455f 10.1016/0025-5408(70)90071-1 10.1038/ncomms4279 10.1103/PhysRevB.47.4174 10.1126/science.1229675 10.1021/ja301539s 10.1103/PhysRevB.89.235105 10.1016/j.cap.2004.01.027 10.1038/nmat4271 10.1021/ja8032235 10.1103/PhysRevLett.77.3865 10.1021/jacs.5b03796 10.1038/nmat4150 10.1021/jz501697b 10.1038/ncomms6900 10.1021/ja206891q 10.1002/ange.19630751402 10.1021/ja5033259 10.1002/anie.200700407 10.1002/adma.201100359 10.1002/adma.201102938 10.1080/00150198908007915 10.1038/ncomms8338 10.1038/ncomms2322 10.1021/ja3047427 10.1021/cr200174w 10.1038/nature12622 10.1038/nchem.2206 10.1126/science.286.5441.945 10.1038/nmat2294 10.1002/pssb.19660150224 10.1021/ja809598r 10.1103/PhysRevLett.107.126805 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C 10.1038/nmat3282 10.1021/nl500390f 10.1002/anie.201410930 10.1021/jp4048659 10.1038/nphoton.2014.82 10.1063/1.1736034 10.1126/science.1228604 10.1002/anie.201400348 10.1126/science.1113357 10.1143/JPSJ.77.064706 10.1038/nmat4014 10.1038/369467a0 10.1143/JPSJ.27.387 10.1021/ja503344b 10.1126/science.1168636 10.1038/nnano.2009.451 10.1021/ja204540g 10.1088/0953-8984/14/11/301 10.1038/1821436a0 10.1002/anie.201406466 10.1002/adma.201400806 10.1126/science.1218693 10.1038/nature11395 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201505224 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 2586 |
ExternalDocumentID | 26833877 10_1002_adma_201505224 ADMA201505224 ark_67375_WNG_TQ871WJ1_N |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWM RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AANHP AAYXX ACRPL ADMLS ADNMO AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c5104-543b4ef246ef51f957182f0a38d92f65d4cb38c61cee67b8fafaed72047316f93 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:18:16 EDT 2025 Fri Jul 11 02:46:45 EDT 2025 Fri Jul 25 04:38:18 EDT 2025 Wed Feb 19 01:58:31 EST 2025 Thu Apr 24 23:10:33 EDT 2025 Tue Jul 01 00:44:24 EDT 2025 Wed Jan 22 16:24:07 EST 2025 Wed Oct 30 09:50:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | phase transitions bandgap engineering metal halide perovskites semiconductivity ferroelectricity |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5104-543b4ef246ef51f957182f0a38d92f65d4cb38c61cee67b8fafaed72047316f93 |
Notes | istex:55A5B80C2F9B48F0E9767E51C5AF36CC6D2FE835 ark:/67375/WNG-TQ871WJ1-N ArticleID:ADMA201505224 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26833877 |
PQID | 2070751706 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1808047171 proquest_miscellaneous_1778401112 proquest_journals_2070751706 pubmed_primary_26833877 crossref_primary_10_1002_adma_201505224 crossref_citationtrail_10_1002_adma_201505224 wiley_primary_10_1002_adma_201505224_ADMA201505224 istex_primary_ark_67375_WNG_TQ871WJ1_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, F. De Angelis, J. Phys. Chem. C 2013, 117, 13902. S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura, Nat. Mater. 2005, 4, 163. I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. Int. Ed. 2014, 53, 11232. J. Kreisel, M. Alexe, P. A. Thomas, Nat. Mater. 2012, 11, 260. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643. F. Hao, C. C. Stoumpos, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2014, 136, 8094. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics 2014, 8, 489. W. Q. Liao, Y. Zhang, C. L. Hu, J. G. Mao, H.-Y. Ye, P. F. Li, S. D. Huang, R.-G. Xiong, Nat. Commun. 2015, 6, 7338. H. Lu, C. W. Bark, D. E. de los Ojos, J. Alcala, C. B. Eom, G. Catalan, A. Gruverman, Science 2012, 336, 59. Y. Zhang, Y. M. Liu, H.-Y. Ye, D. W. Fu, W. X. Gao, H. Ma, Z. G. Liu, Y. Y. Liu, W. Zhang, J. Y. Li, G. L. Yuan, R.-G. Xiong, Angew. Chem. Int. Ed. 2014, 53, 5064. S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Nature 2010, 463, 789. J. P. Remeika, A. M. Glass, Mater. Res. Bull. 1970, 5, 37. F. G. Wang, I. Grinberg, A. M. Rappe, Phys. Rev. B 2014, 89, 235105. K. Kikuchi, Y. Takeoka, M. Rikukawa, K. Sanui, Curr. Appl. Phys. 2004, 4, 599. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu, Nat. Mater. 2015, 14, 636. I. Chung, J. H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney, M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 8579. T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S. W. Cheong, Science 2009, 324, 63. S. Horiuchi, R. Kumai, Y. Tokura, Adv. Mater. 2011, 23, 2098. G. C. Xu, W. Zhang, X. M. Ma, Y. H. Chen, L. Zhang, H. L. Cai, Z. M. Wang, R.-G. Xiong, S. Gao, J. Am. Chem. Soc. 2011, 133, 14948. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897. S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura, Nat. Mater. 2008, 7, 922. S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, Y. Tokura, Nat. Commun. 2012, 3, 1308. T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, J. Maier, Angew. Chem. Int. Ed. 2015, 54, 1. Y. Zhang, W. Zhang, S. H. Li, Q. Ye, H. L. Cai, F. Deng, R.-G. Xiong, S. P. D. Huang, J. Am. Chem. Soc. 2012, 134, 11044. K. Aizu, J. Phys. Soc. Jpn. 1969, 27, 387. D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 7843. S. Horiuchi, R. Kumai, Y. Tokura, Angew. Chem. Int. Ed. 2007, 46, 3497. L. Hu, S. Dalgleish, M. M. Matsushita, H. Yoshikawa, K. Awaga, Nat. Commun. 2014, 5, 3279. I. Grinberg, D. V. West, M. Torres, G. Y. Gou, D. M. Stein, L. Y. Wu, G. N. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, A. M. Rappe, Nature 2013, 503, 509. Y. Zhang, H.-Y. Ye, H. L. Cai, D. W. Fu, Q. Ye, W. Zhang, Q. H. Zhou, J. L. Wang, G. L. Yuan, R.-G. Xiong, Adv. Mater. 2014, 26, 4515. H.-Y. Ye, S. H. Li, Y. Zhang, L. Zhou, F. Deng, R.-G. Xiong, J. Am. Chem. Soc. 2014, 136, 10033. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.: Condens. Matter. 2002, 14, 2717. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nat. Mater. 2015, 14, 193. V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, Int. J. Quantum Chem. 2000, 77, 895. Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, N. P. Padture, J. Phys. Chem. Lett. 2014, 5, 3335. G. Kortum, W. Braun, G. Herzog, Angew. Chem. Int. Ed. 1963, 75, 653. M. Fukunaga, Y. Noda, J. Phys. Soc. Jpn. 2008, 77, 064706. J. Tauc, R. Grigorov, A. Vancu, Phys. Status Solidi B 1966, 15, 627. S. Horiuchi, R. Kumai, Y. Tokunaga, Y. Tokura, J. Am. Chem. Soc. 2008, 130, 13382. D. B. Mitzi, C. A. Feild, W. T. A. Harrison, A. M. Guloy, Nature 1994, 369, 467. M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, UK 1977. C. K. Moller, Nature 1958, 182, 1436. A. Stroppa, D. Di Sante, P. Barone, M. Bokdam, G. Kresse, C. Franchini, M. H. Whangbo, S. Picozzi, Nat. Commun. 2014, 5, 5900. D. W. Fu, H. L. Cai, S. H. Li, Q. Ye, L. Zhou, W. Zhang, Y. Zhang, F. Deng, R.-G. Xiong, Phys. Rev. Lett. 2013, 110, 257601. A. S. Tayi, A. K. Shveyd, A. C. H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart, S. I. Stupp, Nature 2012, 488, 485. A. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S. I. Stupp, Nat. Chem. 2015, 7, 281. J. Seidel, D. Y. Fu, S. Y. Yang, E. Alarcon-Llado, J. Q. Wu, R. Ramesh, J. W. Ager, Phys. Rev. Lett. 2011, 107, 126805. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 2014, 14, 2584. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager 3rd, L. W. Martin, R. Ramesh, Nat. Nanotechnol. 2010, 5, 143. D. W. Fu, H. L. Cai, Y. M. Liu, Q. Ye, W. Zhang, Y. Zhang, X. Y. Chen, G. Giovannetti, M. Capone, J. Y. Li, R.-G. Xiong, Science 2013, 339, 425. D. G. Billing, A. Lemmerer, CrystEngComm 2009, 11, 1549. W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510. D. W. Fu, W. Zhang, H. L. Cai, J. Z. Ge, Y. Zhang, R.-G. Xiong, Adv. Mater. 2011, 23, 5658. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. J. S. Lin, A. Qteish, M. C. Payne, V. Heine, Phys. Rev. B 1993, 47, 4174. E. G. Fesenko, V. G. Gavrilyatchenko, A. F. Semenchev, Ferroelectrics 1989, 100, 195. W. Zhang, R.-G. Xiong, Chem. Rev. 2012, 112, 1163. D. G. Billing, A. Lemmerer, CrystEngComm 2007, 9, 236. D. W. Fu, W. Zhang, H. L. Cai, Y. Zhang, J. Z. Ge, R.-G. Xiong, S. D. Huang, J. Am. Chem. Soc. 2011, 133, 12780. C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, Science 1999, 286, 945. N. A. Spaldin, M. Fiebig, Science 2005, 309, 391. 2002; 14 1966; 15 2004; 4 1999; 286 2010; 463 2014; 26 2008; 7 2008; 77 1961; 32 2012; 488 2012; 11 2014; 136 1970; 5 1977 1996; 77 2009; 11 2014; 5 1963; 75 2012; 134 2015; 137 2013; 117 1989; 100 2007; 9 2014; 14 2014; 13 2005; 309 2011; 23 2013; 110 2014; 8 2012; 336 2010; 5 2012; 338 2009; 324 2014; 53 1993; 47 2015; 14 2015; 6 2013; 503 2015; 54 2009; 131 2015; 7 2014; 89 2011; 133 1958; 182 1994; 369 2012; 3 2011; 107 2012; 112 2013; 339 2000; 77 2005; 4 1969; 27 2007; 46 2008; 130 e_1_2_4_40_1 e_1_2_4_63_1 e_1_2_4_61_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 Lines M. E. (e_1_2_4_14_1) 1977 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_56_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 Yang T. Y. (e_1_2_4_27_1) 2015; 54 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_58_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_62_1 e_1_2_4_60_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_59_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_57_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – reference: D. G. Billing, A. Lemmerer, CrystEngComm 2009, 11, 1549. – reference: D. W. Fu, W. Zhang, H. L. Cai, Y. Zhang, J. Z. Ge, R.-G. Xiong, S. D. Huang, J. Am. Chem. Soc. 2011, 133, 12780. – reference: S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura, Nat. Mater. 2005, 4, 163. – reference: J. Seidel, D. Y. Fu, S. Y. Yang, E. Alarcon-Llado, J. Q. Wu, R. Ramesh, J. W. Ager, Phys. Rev. Lett. 2011, 107, 126805. – reference: H.-Y. Ye, S. H. Li, Y. Zhang, L. Zhou, F. Deng, R.-G. Xiong, J. Am. Chem. Soc. 2014, 136, 10033. – reference: Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, N. P. Padture, J. Phys. Chem. Lett. 2014, 5, 3335. – reference: J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. – reference: F. Hao, C. C. Stoumpos, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2014, 136, 8094. – reference: S. Horiuchi, R. Kumai, Y. Tokura, Angew. Chem. Int. Ed. 2007, 46, 3497. – reference: F. G. Wang, I. Grinberg, A. M. Rappe, Phys. Rev. B 2014, 89, 235105. – reference: Y. Zhang, W. Zhang, S. H. Li, Q. Ye, H. L. Cai, F. Deng, R.-G. Xiong, S. P. D. Huang, J. Am. Chem. Soc. 2012, 134, 11044. – reference: G. C. Xu, W. Zhang, X. M. Ma, Y. H. Chen, L. Zhang, H. L. Cai, Z. M. Wang, R.-G. Xiong, S. Gao, J. Am. Chem. Soc. 2011, 133, 14948. – reference: M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643. – reference: W. Zhang, R.-G. Xiong, Chem. Rev. 2012, 112, 1163. – reference: M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.: Condens. Matter. 2002, 14, 2717. – reference: T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S. W. Cheong, Science 2009, 324, 63. – reference: S. Horiuchi, R. Kumai, Y. Tokunaga, Y. Tokura, J. Am. Chem. Soc. 2008, 130, 13382. – reference: A. Stroppa, D. Di Sante, P. Barone, M. Bokdam, G. Kresse, C. Franchini, M. H. Whangbo, S. Picozzi, Nat. Commun. 2014, 5, 5900. – reference: K. Aizu, J. Phys. Soc. Jpn. 1969, 27, 387. – reference: Y. Zhang, Y. M. Liu, H.-Y. Ye, D. W. Fu, W. X. Gao, H. Ma, Z. G. Liu, Y. Y. Liu, W. Zhang, J. Y. Li, G. L. Yuan, R.-G. Xiong, Angew. Chem. Int. Ed. 2014, 53, 5064. – reference: J. P. Remeika, A. M. Glass, Mater. Res. Bull. 1970, 5, 37. – reference: I. Chung, J. H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney, M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 8579. – reference: J. Tauc, R. Grigorov, A. Vancu, Phys. Status Solidi B 1966, 15, 627. – reference: C. K. Moller, Nature 1958, 182, 1436. – reference: A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050. – reference: A. S. Tayi, A. K. Shveyd, A. C. H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart, S. I. Stupp, Nature 2012, 488, 485. – reference: K. Kikuchi, Y. Takeoka, M. Rikukawa, K. Sanui, Curr. Appl. Phys. 2004, 4, 599. – reference: I. Grinberg, D. V. West, M. Torres, G. Y. Gou, D. M. Stein, L. Y. Wu, G. N. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, A. M. Rappe, Nature 2013, 503, 509. – reference: J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 2014, 14, 2584. – reference: L. Hu, S. Dalgleish, M. M. Matsushita, H. Yoshikawa, K. Awaga, Nat. Commun. 2014, 5, 3279. – reference: D. W. Fu, W. Zhang, H. L. Cai, J. Z. Ge, Y. Zhang, R.-G. Xiong, Adv. Mater. 2011, 23, 5658. – reference: M. Fukunaga, Y. Noda, J. Phys. Soc. Jpn. 2008, 77, 064706. – reference: N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897. – reference: W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510. – reference: Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nat. Mater. 2015, 14, 193. – reference: Y. Zhang, H.-Y. Ye, H. L. Cai, D. W. Fu, Q. Ye, W. Zhang, Q. H. Zhou, J. L. Wang, G. L. Yuan, R.-G. Xiong, Adv. Mater. 2014, 26, 4515. – reference: S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura, Nat. Mater. 2008, 7, 922. – reference: S. Horiuchi, R. Kumai, Y. Tokura, Adv. Mater. 2011, 23, 2098. – reference: T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, J. Maier, Angew. Chem. Int. Ed. 2015, 54, 1. – reference: A. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S. I. Stupp, Nat. Chem. 2015, 7, 281. – reference: D. W. Fu, H. L. Cai, S. H. Li, Q. Ye, L. Zhou, W. Zhang, Y. Zhang, F. Deng, R.-G. Xiong, Phys. Rev. Lett. 2013, 110, 257601. – reference: I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. Int. Ed. 2014, 53, 11232. – reference: D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 7843. – reference: G. Kortum, W. Braun, G. Herzog, Angew. Chem. Int. Ed. 1963, 75, 653. – reference: D. W. Fu, H. L. Cai, Y. M. Liu, Q. Ye, W. Zhang, Y. Zhang, X. Y. Chen, G. Giovannetti, M. Capone, J. Y. Li, R.-G. Xiong, Science 2013, 339, 425. – reference: M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, UK 1977. – reference: W. Q. Liao, Y. Zhang, C. L. Hu, J. G. Mao, H.-Y. Ye, P. F. Li, S. D. Huang, R.-G. Xiong, Nat. Commun. 2015, 6, 7338. – reference: E. G. Fesenko, V. G. Gavrilyatchenko, A. F. Semenchev, Ferroelectrics 1989, 100, 195. – reference: D. B. Mitzi, C. A. Feild, W. T. A. Harrison, A. M. Guloy, Nature 1994, 369, 467. – reference: J. Kreisel, M. Alexe, P. A. Thomas, Nat. Mater. 2012, 11, 260. – reference: S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Nature 2010, 463, 789. – reference: S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager 3rd, L. W. Martin, R. Ramesh, Nat. Nanotechnol. 2010, 5, 143. – reference: S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, Y. Tokura, Nat. Commun. 2012, 3, 1308. – reference: V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, Int. J. Quantum Chem. 2000, 77, 895. – reference: H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu, Nat. Mater. 2015, 14, 636. – reference: F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics 2014, 8, 489. – reference: E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, F. De Angelis, J. Phys. Chem. C 2013, 117, 13902. – reference: N. A. Spaldin, M. Fiebig, Science 2005, 309, 391. – reference: H. Lu, C. W. Bark, D. E. de los Ojos, J. Alcala, C. B. Eom, G. Catalan, A. Gruverman, Science 2012, 336, 59. – reference: D. G. Billing, A. Lemmerer, CrystEngComm 2007, 9, 236. – reference: C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, Science 1999, 286, 945. – reference: J. S. Lin, A. Qteish, M. C. Payne, V. Heine, Phys. Rev. B 1993, 47, 4174. – volume: 336 start-page: 59 year: 2012 publication-title: Science – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 11 start-page: 260 year: 2012 publication-title: Nat. Mater. – volume: 23 start-page: 5658 year: 2011 publication-title: Adv. Mater. – volume: 182 start-page: 1436 year: 1958 publication-title: Nature – volume: 27 start-page: 387 year: 1969 publication-title: J. Phys. Soc. Jpn. – volume: 9 start-page: 236 year: 2007 publication-title: CrystEngComm – volume: 46 start-page: 3497 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 112 start-page: 1163 year: 2012 publication-title: Chem. Rev. – volume: 463 start-page: 789 year: 2010 publication-title: Nature – volume: 324 start-page: 63 year: 2009 publication-title: Science – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 110 start-page: 257601 year: 2013 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 163 year: 2005 publication-title: Nat. Mater. – volume: 130 start-page: 13382 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 636 year: 2015 publication-title: Nat. Mater. – volume: 100 start-page: 195 year: 1989 publication-title: Ferroelectrics – volume: 369 start-page: 467 year: 1994 publication-title: Nature – volume: 133 start-page: 12780 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 7843 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 77 start-page: 064706 year: 2008 publication-title: J. Phys. Soc. Jpn. – volume: 286 start-page: 945 year: 1999 publication-title: Science – volume: 5 start-page: 3335 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 54 start-page: 1 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 89 start-page: 235105 year: 2014 publication-title: Phys. Rev. B – volume: 7 start-page: 922 year: 2008 publication-title: Nat. Mater. – volume: 339 start-page: 425 year: 2013 publication-title: Science – volume: 14 start-page: 193 year: 2015 publication-title: Nat. Mater. – volume: 14 start-page: 2717 year: 2002 publication-title: J. Phys.: Condens. Matter. – volume: 309 start-page: 391 year: 2005 publication-title: Science – volume: 53 start-page: 5064 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 11232 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 77 start-page: 895 year: 2000 publication-title: Int. J. Quantum Chem. – volume: 6 start-page: 7338 year: 2015 publication-title: Nat. Commun. – volume: 14 start-page: 2584 year: 2014 publication-title: Nano Lett. – year: 1977 – volume: 5 start-page: 3279 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 489 year: 2014 publication-title: Nat. Photonics – volume: 15 start-page: 627 year: 1966 publication-title: Phys. Status Solidi B – volume: 133 start-page: 14948 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 4174 year: 1993 publication-title: Phys. Rev. B – volume: 32 start-page: 510 year: 1961 publication-title: J. Appl. Phys. – volume: 5 start-page: 143 year: 2010 publication-title: Nat. Nanotechnol. – volume: 75 start-page: 653 year: 1963 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1308 year: 2012 publication-title: Nat. Commun. – volume: 117 start-page: 13902 year: 2013 publication-title: J. Phys. Chem. C – volume: 503 start-page: 509 year: 2013 publication-title: Nature – volume: 4 start-page: 599 year: 2004 publication-title: Curr. Appl. Phys. – volume: 5 start-page: 5900 year: 2014 publication-title: Nat. Commun. – volume: 136 start-page: 10033 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 281 year: 2015 publication-title: Nat. Chem. – volume: 26 start-page: 4515 year: 2014 publication-title: Adv. Mater. – volume: 107 start-page: 126805 year: 2011 publication-title: Phys. Rev. Lett. – volume: 134 start-page: 8579 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 11044 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1549 year: 2009 publication-title: CrystEngComm – volume: 5 start-page: 37 year: 1970 publication-title: Mater. Res. Bull. – volume: 488 start-page: 485 year: 2012 publication-title: Nature – volume: 23 start-page: 2098 year: 2011 publication-title: Adv. Mater. – ident: e_1_2_4_37_1 doi: 10.1039/B618196A – ident: e_1_2_4_51_1 doi: 10.1038/nmat1298 – ident: e_1_2_4_29_1 doi: 10.1038/nature08731 – ident: e_1_2_4_43_1 doi: 10.1103/PhysRevLett.110.257601 – ident: e_1_2_4_38_1 doi: 10.1039/b819455f – ident: e_1_2_4_52_1 doi: 10.1016/0025-5408(70)90071-1 – ident: e_1_2_4_53_1 doi: 10.1038/ncomms4279 – ident: e_1_2_4_63_1 doi: 10.1103/PhysRevB.47.4174 – ident: e_1_2_4_40_1 doi: 10.1126/science.1229675 – ident: e_1_2_4_5_1 doi: 10.1021/ja301539s – ident: e_1_2_4_18_1 doi: 10.1103/PhysRevB.89.235105 – ident: e_1_2_4_36_1 doi: 10.1016/j.cap.2004.01.027 – ident: e_1_2_4_2_1 doi: 10.1038/nmat4271 – ident: e_1_2_4_50_1 doi: 10.1021/ja8032235 – ident: e_1_2_4_35_1 doi: 10.1039/B618196A – ident: e_1_2_4_62_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_4_11_1 doi: 10.1021/jacs.5b03796 – ident: e_1_2_4_8_1 doi: 10.1038/nmat4150 – ident: e_1_2_4_24_1 doi: 10.1021/jz501697b – ident: e_1_2_4_26_1 doi: 10.1038/ncomms6900 – ident: e_1_2_4_47_1 doi: 10.1021/ja206891q – ident: e_1_2_4_57_1 doi: 10.1002/ange.19630751402 – ident: e_1_2_4_6_1 doi: 10.1021/ja5033259 – ident: e_1_2_4_49_1 doi: 10.1002/anie.200700407 – ident: e_1_2_4_48_1 doi: 10.1002/adma.201100359 – ident: e_1_2_4_41_1 doi: 10.1002/adma.201102938 – ident: e_1_2_4_55_1 doi: 10.1080/00150198908007915 – ident: e_1_2_4_33_1 doi: 10.1038/ncomms8338 – ident: e_1_2_4_31_1 doi: 10.1038/ncomms2322 – ident: e_1_2_4_45_1 doi: 10.1021/ja3047427 – ident: e_1_2_4_46_1 doi: 10.1021/cr200174w – ident: e_1_2_4_22_1 doi: 10.1038/nature12622 – ident: e_1_2_4_32_1 doi: 10.1038/nchem.2206 – ident: e_1_2_4_1_1 doi: 10.1126/science.286.5441.945 – ident: e_1_2_4_30_1 doi: 10.1038/nmat2294 – ident: e_1_2_4_56_1 doi: 10.1002/pssb.19660150224 – ident: e_1_2_4_3_1 doi: 10.1021/ja809598r – ident: e_1_2_4_19_1 doi: 10.1103/PhysRevLett.107.126805 – ident: e_1_2_4_61_1 doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C – ident: e_1_2_4_16_1 doi: 10.1038/nmat3282 – ident: e_1_2_4_25_1 doi: 10.1021/nl500390f – volume: 54 start-page: 1 year: 2015 ident: e_1_2_4_27_1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410930 – volume-title: Principles and Applications of Ferroelectrics and Related Materials year: 1977 ident: e_1_2_4_14_1 – ident: e_1_2_4_34_1 doi: 10.1021/jp4048659 – ident: e_1_2_4_10_1 doi: 10.1038/nphoton.2014.82 – ident: e_1_2_4_23_1 doi: 10.1063/1.1736034 – ident: e_1_2_4_4_1 doi: 10.1126/science.1228604 – ident: e_1_2_4_58_1 doi: 10.1002/anie.201400348 – ident: e_1_2_4_15_1 doi: 10.1126/science.1113357 – ident: e_1_2_4_54_1 doi: 10.1143/JPSJ.77.064706 – ident: e_1_2_4_9_1 doi: 10.1038/nmat4014 – ident: e_1_2_4_12_1 doi: 10.1038/369467a0 – ident: e_1_2_4_39_1 doi: 10.1143/JPSJ.27.387 – ident: e_1_2_4_44_1 doi: 10.1021/ja503344b – ident: e_1_2_4_20_1 doi: 10.1126/science.1168636 – ident: e_1_2_4_21_1 doi: 10.1038/nnano.2009.451 – ident: e_1_2_4_42_1 doi: 10.1021/ja204540g – ident: e_1_2_4_60_1 doi: 10.1088/0953-8984/14/11/301 – ident: e_1_2_4_13_1 doi: 10.1038/1821436a0 – ident: e_1_2_4_7_1 doi: 10.1002/anie.201406466 – ident: e_1_2_4_59_1 doi: 10.1002/adma.201400806 – ident: e_1_2_4_17_1 doi: 10.1126/science.1218693 – ident: e_1_2_4_28_1 doi: 10.1038/nature11395 |
SSID | ssj0009606 |
Score | 2.6184182 |
Snippet | Semiconducting ferroelectricity is realized in hybrid perovskite‐type compounds (cyclohexylammonium)2PbBr4−4xI4x (x = 0–1). By adjusting the composition x, the... Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium)2 PbBr4-4 x I4 x (x = 0-1). By adjusting the composition x,... Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium) sub(2)PbBr sub(4-4x)I sub(4x) (x = 0-1). By adjusting the... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2579 |
SubjectTerms | Adjustment bandgap engineering Energy gaps (solid state) Ferroelectric materials Ferroelectricity Materials science metal halide perovskites Perovskites phase transitions Photovoltaic cells semiconductivity Solar cells |
Title | Bandgap Engineering of Lead-Halide Perovskite-Type Ferroelectrics |
URI | https://api.istex.fr/ark:/67375/WNG-TQ871WJ1-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201505224 https://www.ncbi.nlm.nih.gov/pubmed/26833877 https://www.proquest.com/docview/2070751706 https://www.proquest.com/docview/1778401112 https://www.proquest.com/docview/1808047171 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4EDlHegoCAhOLlNbMdOjgt0WVXqClCr9mbZzhihoqRKdquKU39CfyO_BE-ym-4iHhLcEmcc-TWez_b4G0JeQglh1pM5VbJgVDhhaB7sKvUi4ZBKBlDgReGDqZwcif2T7GTlFn_PDzFsuKFmdPM1Krix7e41aagpO96gFCOxMSQERYctREWfrvmjEJ53ZHs8o4UU-ZK1MWG769nXrNImNvDFryDnOoLtTND4DjHLwveeJ6c785ndcd9-4nX8n9ptkdsLfBqP-gF1l9yA6h65tcJaeJ_svTFV-dmcxSupce1jjNb5_fJqEpB9CfEHaOrzFveGQxquduMxNE3dh9354toH5Gi8d_h2QhfRGKgLeitoJrgV4JmQ4LPUF1mwaswnhudlwbzMSuEsz51Mg9mVyubeeAMlxsDB4Fi-4A_JRlVX8JjEEECa50kJwKwQTBjrwGaFMwE8cZPIiNBlb2i3oCrHiBlfdU-yzDQ2jx6aJyKvB_mznqTjt5Kvus4dxExziq5tKtPH0_f68GNYPx7vp3oake1l7-uFVrfhNyogLCQcisiL4XPQRzxkMRXU81anSoU1c7Ag7A8ySOYZUIFKI_KoH1lDgZjMOc-VigjrxsdfKqRH7w5Gw9uTf8n0lNwMz7J3R9omG7NmDs8C0prZ5502_QAwbR5s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAOvB-BAkFCcEqb2I6dHBfospTuCtBW7c1ykjFCRUmV3UWIU39Cf2N_ST3JJu0iHhIc44wjv8bzjTP-BuA5Fuh2PZkESqYsELkwQeLsamBFyDGSDDGli8LjiRztiZ2DuIsmpLswLT9Ef-BGmtHs16TgdCC9dc4aaoqGOCiiVGxMXIZ1SuvdeFWfzhmkCKA3dHs8DlIpko63MWRbq_VX7NI6DfH3X4HOVQzbGKHhDci65rexJ4ebi3m2mf_4idnxv_p3E64vIao_aNfULbiE5W24doG48A5svzJl8dkc-RdK_cr6lLDz9Phk5MB9gf4HrKtvMzoedmXk8PpDrOuqzbzzJZ_dhb3h9vT1KFgmZAhyp7oiiAXPBFomJNo4smnsDBuzoeFJkTIr40LkGU9yGTnLK1WWWGMNFpQGh_Jj2ZTfg7WyKvEB-OhwmuVhgcgyIZgwWY5ZnObG4SduQulB0E2Hzpds5ZQ046tueZaZpuHR_fB48LKXP2p5On4r-aKZ3V7M1IcU3aZivT95q6cfnQu5vxPpiQcb3fTrpWLP3GeUA1nEOeTBs_61U0n6z2JKrBYzHSnl3GZnRNgfZIjP0wEDFXlwv11afYOYTDhPlPKANQvkLx3SgzfjQf_08F8qPYUro-l4V---m7x_BFdduWyjkzZgbV4v8LEDXvPsSaNaZw5PIoc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE4UF6F0AJBQnBym9iOnRwXtstS6KqgVu3NcpwxQkXJKruLECd-Qn9jfwl2spvuIh4SHDMZR37MeD479jcAz7BAN-uJlEiRUcIN1yR1cZVYHjGMBUXM_EXhg5EYHvP90-R06RZ_yw_Rbbh5z2jma-_g48LuXpKG6qLhDYp9JjbKr8I6F1Hq7br_4ZJAyuPzhm2PJSQTPF3QNkZ0d7X8Slha9z389VeYcxXCNjFosAF6Ufv26MnZzmya75hvPxE7_k_zbsHNOUANe61F3YYrWN6BG0u0hXdh76Uui496HC5Jw8qGPl3nxffzoYP2BYaHWFdfJn5z2Mn8cjccYF1Xbd6dT2ZyD44He0evhmSejoEY57icJJzlHC3lAm0S2yxxYY3aSLO0yKgVScFNzlIjYhd3hcxTq63GwifB8dmxbMY2Ya2sSnwAITqUZllUINKcc8p1bjBPMqMdemI6EgGQxWgoM-cq9ykzPquWZZkq3z2q654AXnT645al47eaz5vB7dR0febPtslEnYxeq6P3bgF5sh-rUQDbi9FXc7eeuM9IB7E841AAT7vXziH9XxZdYjWbqFhKt2h2IYT-QcezeTpYIOMA7reW1VWIipSxVMoAaGMff2mQ6vUPet3Tw38p9ASuHfYH6t2b0dstuO7Eoj2atA1r03qGjxzqmuaPG8f6AaECIT8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bandgap+Engineering+of+Lead-Halide+Perovskite-Type+Ferroelectrics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ye%2C+Heng-Yun&rft.au=Liao%2C+Wei-Qiang&rft.au=Hu%2C+Chun-Li&rft.au=Zhang%2C+Yi&rft.date=2016-04-01&rft.eissn=1521-4095&rft.volume=28&rft.issue=13&rft.spage=2579&rft_id=info:doi/10.1002%2Fadma.201505224&rft_id=info%3Apmid%2F26833877&rft.externalDocID=26833877 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |