Bandgap Engineering of Lead-Halide Perovskite-Type Ferroelectrics

Semiconducting ferroelectricity is realized in hybrid perovskite‐type compounds (cyclohexylammonium)2PbBr4−4xI4x (x = 0–1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. Thi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 28; no. 13; pp. 2579 - 2586
Main Authors Ye, Heng-Yun, Liao, Wei-Qiang, Hu, Chun-Li, Zhang, Yi, You, Yu-Meng, Mao, Jiang-Gao, Li, Peng-Fei, Xiong, Ren-Gen
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.04.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Semiconducting ferroelectricity is realized in hybrid perovskite‐type compounds (cyclohexylammonium)2PbBr4−4xI4x (x = 0–1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite‐type compounds.
AbstractList Semiconducting ferroelectricity is realized in hybrid perovskite‐type compounds (cyclohexylammonium)2PbBr4−4xI4x (x = 0–1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite‐type compounds.
Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium) sub(2)PbBr sub(4-4x)I sub(4x) (x = 0-1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite-type compounds.
Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium)2 PbBr4-4 x I4 x (x = 0-1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite-type compounds.
Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium)2 PbBr4-4 x I4 x (x = 0-1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite-type compounds.Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium)2 PbBr4-4 x I4 x (x = 0-1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite-type compounds.
Author Mao, Jiang-Gao
Ye, Heng-Yun
Hu, Chun-Li
Xiong, Ren-Gen
Liao, Wei-Qiang
Zhang, Yi
You, Yu-Meng
Li, Peng-Fei
Author_xml – sequence: 1
  givenname: Heng-Yun
  surname: Ye
  fullname: Ye, Heng-Yun
  organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China
– sequence: 2
  givenname: Wei-Qiang
  surname: Liao
  fullname: Liao, Wei-Qiang
  organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China
– sequence: 3
  givenname: Chun-Li
  surname: Hu
  fullname: Hu, Chun-Li
  organization: Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fujian, 350002, Fuzhou, P. R. China
– sequence: 4
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China
– sequence: 5
  givenname: Yu-Meng
  surname: You
  fullname: You, Yu-Meng
  email: youyumeng@seu.edu.cn
  organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China
– sequence: 6
  givenname: Jiang-Gao
  surname: Mao
  fullname: Mao, Jiang-Gao
  organization: Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fujian, 350002, Fuzhou, P. R. China
– sequence: 7
  givenname: Peng-Fei
  surname: Li
  fullname: Li, Peng-Fei
  organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China
– sequence: 8
  givenname: Ren-Gen
  surname: Xiong
  fullname: Xiong, Ren-Gen
  email: youyumeng@seu.edu.cn
  organization: Ordered Matter Science Research Center, Southeast University, 211189, Nanjing, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26833877$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1vEzEQgGELFdG0cOWIInHhsmHG33sMpR-gUEAK6tFydseR281uam-g-ffdKiVClVBPvjzvWPYcsYO2a4mxtwgTBOAffb3yEw6oQHEuX7ARKo6FhFIdsBGUQhWllvaQHeV8DQClBv2KHXJthbDGjNj0k2_rpV-PT9tlbIlSbJfjLoxn5OviwjexpvEPSt3vfBN7KubbNY3PKKWOGqr6FKv8mr0Mvsn05vE8Zr_OTucnF8Xs-_mXk-msqBSCLJQUC0mBS01BYSiVQcsDeGHrkgetalkthK00VkTaLGzwwVNtOEgjUIdSHLMPu7nr1N1uKPduFXNFTeNb6jbZoQU7YDT4PDXGSkBEPtD3T-h1t0nt8BDHwYBRaEAP6t2j2ixWVLt1iiuftu7vPw5gsgNV6nJOFPYEwT0syj0syu0XNQTySVDF3vexa_vkY_P_rNxlf2JD22cucdPP36b_tsWujbmnu33r043TRhjlri7P3fynNXj1Fd2luAfcbLQG
CitedBy_id crossref_primary_10_1002_slct_201600841
crossref_primary_10_1016_j_jssc_2018_11_012
crossref_primary_10_1063_5_0035778
crossref_primary_10_1088_1361_648X_acef9c
crossref_primary_10_1002_smtd_202400425
crossref_primary_10_1016_j_molstruc_2018_01_093
crossref_primary_10_1002_adfm_201805038
crossref_primary_10_1039_D3QI00594A
crossref_primary_10_1002_ejic_201601269
crossref_primary_10_1039_D0TA08780G
crossref_primary_10_1021_acs_jpcc_8b06538
crossref_primary_10_1002_aelm_202200415
crossref_primary_10_1002_adfm_202314790
crossref_primary_10_2139_ssrn_4172037
crossref_primary_10_1039_C6TC03818B
crossref_primary_10_1021_acs_jpcc_7b05126
crossref_primary_10_1021_jacs_9b12368
crossref_primary_10_1021_acs_chemmater_1c03906
crossref_primary_10_1002_adma_201808336
crossref_primary_10_1016_j_trechm_2021_09_010
crossref_primary_10_1039_D3CE00706E
crossref_primary_10_1039_C9NA00125E
crossref_primary_10_1039_D4NJ04595E
crossref_primary_10_1038_s41467_024_48948_0
crossref_primary_10_1021_acs_inorgchem_3c03646
crossref_primary_10_1021_acs_jpcc_1c04545
crossref_primary_10_1021_jacs_4c01882
crossref_primary_10_1039_C9QI00365G
crossref_primary_10_1002_adma_202005213
crossref_primary_10_1002_ange_202012601
crossref_primary_10_1002_ange_201606079
crossref_primary_10_1002_chem_202101707
crossref_primary_10_1016_j_mssp_2024_108252
crossref_primary_10_1021_jacs_8b13827
crossref_primary_10_1088_1402_4896_ad25ca
crossref_primary_10_1002_smll_202310768
crossref_primary_10_1021_acsami_4c11534
crossref_primary_10_1021_acs_nanolett_1c00395
crossref_primary_10_1126_sciadv_aay4213
crossref_primary_10_1002_anie_201802580
crossref_primary_10_1021_acs_inorgchem_4c03742
crossref_primary_10_1002_anie_202005092
crossref_primary_10_1126_science_aav3057
crossref_primary_10_1021_acs_inorgchem_0c02649
crossref_primary_10_1021_jacs_3c09395
crossref_primary_10_1021_jacs_9b02558
crossref_primary_10_1002_adma_202002972
crossref_primary_10_1002_anie_202012601
crossref_primary_10_1021_jacs_2c07892
crossref_primary_10_1039_C6TC05105G
crossref_primary_10_1021_acsaelm_0c00852
crossref_primary_10_1021_acs_cgd_2c00780
crossref_primary_10_1021_acs_inorgchem_9b01538
crossref_primary_10_1039_D1TA09537D
crossref_primary_10_1021_jacs_0c00375
crossref_primary_10_1126_science_aai8535
crossref_primary_10_1021_jacs_0c00371
crossref_primary_10_1021_jacs_9b10048
crossref_primary_10_1016_j_mtchem_2019_07_001
crossref_primary_10_1002_chem_201806032
crossref_primary_10_1039_C9TC03543E
crossref_primary_10_1016_j_jcis_2025_01_211
crossref_primary_10_1002_adfm_202009457
crossref_primary_10_1016_j_isci_2021_103486
crossref_primary_10_1039_C6QI00347H
crossref_primary_10_1002_ange_201803716
crossref_primary_10_1021_acs_cgd_6b01179
crossref_primary_10_1039_C8QI00424B
crossref_primary_10_1039_C9TC04384E
crossref_primary_10_1002_adma_202307518
crossref_primary_10_1021_acs_chemmater_3c00596
crossref_primary_10_1002_ange_202005092
crossref_primary_10_1039_C9DT00945K
crossref_primary_10_1002_ejic_201600932
crossref_primary_10_1039_C7QI00218A
crossref_primary_10_1021_acsami_0c02313
crossref_primary_10_1002_anie_201916254
crossref_primary_10_1051_e3sconf_202560100038
crossref_primary_10_1021_acs_chemmater_9b00450
crossref_primary_10_3390_nano8060356
crossref_primary_10_1021_jacs_2c04872
crossref_primary_10_1002_adfm_202200223
crossref_primary_10_1021_acs_cgd_3c00519
crossref_primary_10_1021_acs_jpclett_7b00673
crossref_primary_10_1002_anie_201907660
crossref_primary_10_1002_slct_201601860
crossref_primary_10_1021_acs_chemmater_3c02424
crossref_primary_10_1002_anie_201803716
crossref_primary_10_1021_acs_inorgchem_2c00099
crossref_primary_10_1016_j_jssc_2023_124011
crossref_primary_10_1021_acs_chemmater_6b02653
crossref_primary_10_1021_acs_chemmater_1c01129
crossref_primary_10_1021_acs_nanolett_8b00603
crossref_primary_10_1063_5_0016010
crossref_primary_10_1002_adom_201900350
crossref_primary_10_1002_smll_202106888
crossref_primary_10_1002_apxr_202200044
crossref_primary_10_1016_j_matchemphys_2020_123791
crossref_primary_10_1002_anie_202218675
crossref_primary_10_1021_acs_jpcc_1c08962
crossref_primary_10_1016_j_isci_2022_104450
crossref_primary_10_1016_j_nanoen_2020_105110
crossref_primary_10_1021_jacs_9b07776
crossref_primary_10_1038_s41467_021_25644_x
crossref_primary_10_1002_ange_202305310
crossref_primary_10_1016_j_poly_2020_114345
crossref_primary_10_1002_adom_201700743
crossref_primary_10_1039_C7QI00301C
crossref_primary_10_1007_s11426_022_1446_3
crossref_primary_10_1002_adma_201705298
crossref_primary_10_1002_ange_201907660
crossref_primary_10_1021_acsami_8b21579
crossref_primary_10_1088_1361_6463_abb047
crossref_primary_10_1002_adfm_202214858
crossref_primary_10_1039_C9QI00684B
crossref_primary_10_1021_acsenergylett_3c02738
crossref_primary_10_1021_acs_jpclett_3c00566
crossref_primary_10_1016_j_ica_2021_120544
crossref_primary_10_1039_D2CE00883A
crossref_primary_10_1021_acsami_8b18883
crossref_primary_10_1002_chem_202001266
crossref_primary_10_1002_adfm_202411671
crossref_primary_10_1039_C8CS00563J
crossref_primary_10_1039_C7CC01107E
crossref_primary_10_1039_D3TC04393B
crossref_primary_10_1002_asia_201900512
crossref_primary_10_1016_j_cclet_2024_110216
crossref_primary_10_1016_j_nanoen_2021_106039
crossref_primary_10_1016_j_orgel_2017_05_047
crossref_primary_10_1002_ange_202218675
crossref_primary_10_1063_5_0233435
crossref_primary_10_1016_j_ica_2018_07_042
crossref_primary_10_1038_s41524_020_00374_8
crossref_primary_10_1039_D2QM01340A
crossref_primary_10_1002_adma_202101263
crossref_primary_10_1002_ange_201601933
crossref_primary_10_1021_acs_inorgchem_8b03424
crossref_primary_10_1002_anie_202304486
crossref_primary_10_1021_acs_inorgchem_2c02496
crossref_primary_10_1021_acs_jpcc_2c01731
crossref_primary_10_1002_adfm_202102793
crossref_primary_10_1021_jacs_9b10919
crossref_primary_10_1021_acs_inorgchem_6b02478
crossref_primary_10_1126_science_aas9330
crossref_primary_10_1039_C8DT00623G
crossref_primary_10_1016_j_ica_2022_121254
crossref_primary_10_1021_jacs_9b11697
crossref_primary_10_1002_anie_201601933
crossref_primary_10_1002_chem_202303717
crossref_primary_10_1002_aenm_202102236
crossref_primary_10_1364_JOSAB_36_001616
crossref_primary_10_1002_ange_202304486
crossref_primary_10_1039_C7CE00964J
crossref_primary_10_1021_acs_cgd_8b00938
crossref_primary_10_1016_j_jes_2020_08_014
crossref_primary_10_1016_j_ssc_2024_115699
crossref_primary_10_1002_adma_201901843
crossref_primary_10_1002_ange_201802580
crossref_primary_10_1039_C8TC02791A
crossref_primary_10_1039_C8CE01461B
crossref_primary_10_1039_C6NJ03973A
crossref_primary_10_1021_jacs_8b04014
crossref_primary_10_1021_acs_nanolett_3c01848
crossref_primary_10_1021_acs_inorgchem_3c01762
crossref_primary_10_1002_adma_202205410
crossref_primary_10_1002_anie_201810698
crossref_primary_10_1021_acs_chemmater_9b01227
crossref_primary_10_1016_j_apsusc_2021_151259
crossref_primary_10_1021_acs_inorgchem_9b03098
crossref_primary_10_1039_D3CE01019H
crossref_primary_10_1021_acs_jpclett_4c01691
crossref_primary_10_1140_epjb_s10051_022_00381_2
crossref_primary_10_1016_j_inoche_2021_108622
crossref_primary_10_1021_acs_accounts_8b00677
crossref_primary_10_1021_acs_inorgchem_3c02607
crossref_primary_10_1002_ange_202004235
crossref_primary_10_1039_D3CS00262D
crossref_primary_10_1039_C8DT03456G
crossref_primary_10_1039_C7DT01780D
crossref_primary_10_1002_anie_202305310
crossref_primary_10_1021_jacs_7b00492
crossref_primary_10_1038_am_2016_193
crossref_primary_10_1002_pssr_202300144
crossref_primary_10_1021_jacs_4c06929
crossref_primary_10_1103_PhysRevMaterials_3_094408
crossref_primary_10_1016_j_ccr_2021_214180
crossref_primary_10_1021_jacs_0c08189
crossref_primary_10_1021_acs_chemmater_2c00214
crossref_primary_10_1039_C7QI00270J
crossref_primary_10_1039_C7RA06429B
crossref_primary_10_1039_C8TC04372H
crossref_primary_10_1039_D2NH00229A
crossref_primary_10_1002_ange_201916254
crossref_primary_10_1088_1361_6463_aba930
crossref_primary_10_1021_acs_inorgchem_0c03309
crossref_primary_10_1021_jacs_9b01874
crossref_primary_10_1038_s41570_021_00335_9
crossref_primary_10_1039_D1QM00566A
crossref_primary_10_1039_D2CE00009A
crossref_primary_10_1038_s41563_022_01322_1
crossref_primary_10_1039_D2NJ03613D
crossref_primary_10_1021_acs_inorgchem_7b01863
crossref_primary_10_1107_S2052252521005418
crossref_primary_10_1021_jacs_0c09288
crossref_primary_10_1038_s41467_024_45986_6
crossref_primary_10_1063_5_0039082
crossref_primary_10_1002_cphc_202400801
crossref_primary_10_1007_s11664_019_07868_2
crossref_primary_10_1002_ejic_201700529
crossref_primary_10_1016_j_ccr_2019_02_012
crossref_primary_10_1016_j_nanoen_2023_108219
crossref_primary_10_1002_adma_201808088
crossref_primary_10_1039_C7DT01378G
crossref_primary_10_1002_ange_201805625
crossref_primary_10_1016_j_cclet_2019_11_011
crossref_primary_10_1039_D0CC07443H
crossref_primary_10_1021_acs_chemmater_9b02409
crossref_primary_10_1002_anie_201606079
crossref_primary_10_1063_1_4948967
crossref_primary_10_1002_slct_201601442
crossref_primary_10_1080_00958972_2018_1454592
crossref_primary_10_1016_j_solmat_2017_07_011
crossref_primary_10_1002_adma_202004999
crossref_primary_10_1016_j_ccr_2022_214663
crossref_primary_10_1039_D1CE01615F
crossref_primary_10_1039_D1CE01488A
crossref_primary_10_1021_jacs_0c12907
crossref_primary_10_1039_D1TC01526E
crossref_primary_10_1039_D4RA07511K
crossref_primary_10_1021_acs_cgd_4c01453
crossref_primary_10_1021_acs_cgd_6b00480
crossref_primary_10_1039_C9CC09477F
crossref_primary_10_1002_ejic_202200172
crossref_primary_10_1021_acs_inorgchem_1c01011
crossref_primary_10_1016_j_poly_2020_114840
crossref_primary_10_1002_anie_201805625
crossref_primary_10_1063_1_5024857
crossref_primary_10_1021_acs_inorgchem_7b02055
crossref_primary_10_1021_acs_inorgchem_2c02206
crossref_primary_10_1021_jacs_0c09586
crossref_primary_10_1039_C9CS00504H
crossref_primary_10_1126_science_adj1946
crossref_primary_10_1002_anie_202425653
crossref_primary_10_1038_ncomms13635
crossref_primary_10_1039_C9CE00458K
crossref_primary_10_1039_D5CE00003C
crossref_primary_10_1021_acs_jpclett_4c01371
crossref_primary_10_1021_jacs_0c00480
crossref_primary_10_1039_D2QI02149H
crossref_primary_10_1021_jacs_0c12513
crossref_primary_10_1039_D2CE01150F
crossref_primary_10_1002_advs_202400636
crossref_primary_10_1016_j_ccr_2017_09_020
crossref_primary_10_1016_j_nantod_2020_101062
crossref_primary_10_1021_acs_inorgchem_7b00662
crossref_primary_10_1039_C9NJ00775J
crossref_primary_10_1021_acs_chemmater_2c00094
crossref_primary_10_1021_jacs_0c07055
crossref_primary_10_1039_C7CC04240J
crossref_primary_10_1039_C7NJ01597F
crossref_primary_10_1002_adfm_201905529
crossref_primary_10_1038_s41467_020_15518_z
crossref_primary_10_1002_ange_201810698
crossref_primary_10_1002_adma_201902163
crossref_primary_10_1002_adfm_202412332
crossref_primary_10_1021_acs_chemmater_6b01726
crossref_primary_10_1016_j_joule_2021_07_008
crossref_primary_10_1016_j_mtcomm_2020_101190
crossref_primary_10_1021_jacs_1c05108
crossref_primary_10_1093_nsr_nwaa232
crossref_primary_10_1021_acs_chemmater_0c04440
crossref_primary_10_1002_adma_201803249
crossref_primary_10_1016_j_cclet_2022_108051
crossref_primary_10_1021_acs_inorgchem_2c04295
crossref_primary_10_1021_jacs_1c00459
crossref_primary_10_1021_acs_jpclett_9b02875
crossref_primary_10_1039_D1TA10944H
crossref_primary_10_1039_C7TA03890A
crossref_primary_10_1016_j_rinp_2023_106212
crossref_primary_10_1021_acs_jpcc_2c03984
crossref_primary_10_1002_anie_202004235
crossref_primary_10_1002_bio_3706
crossref_primary_10_1039_D3MA00461A
crossref_primary_10_1186_s11671_020_03359_0
crossref_primary_10_1002_slct_202301981
crossref_primary_10_1021_jacs_8b13109
crossref_primary_10_1002_eom2_12057
crossref_primary_10_1021_acs_chemmater_1c03815
crossref_primary_10_1002_slct_201801332
crossref_primary_10_1039_C9QI01498E
crossref_primary_10_1002_ange_201915094
crossref_primary_10_1016_j_trechm_2021_05_003
crossref_primary_10_1002_ejic_201900493
crossref_primary_10_1021_acs_inorgchem_1c02897
crossref_primary_10_1002_asia_202100837
crossref_primary_10_1002_ange_202419776
crossref_primary_10_1002_adom_202202850
crossref_primary_10_1039_C7CC02408H
crossref_primary_10_1021_acs_chemrev_3c00532
crossref_primary_10_1039_C7QI00722A
crossref_primary_10_1002_adts_202200922
crossref_primary_10_1002_ange_202425653
crossref_primary_10_1021_acs_inorgchem_7b01094
crossref_primary_10_1016_j_poly_2017_03_025
crossref_primary_10_1021_acs_jpcc_0c10628
crossref_primary_10_1021_jacs_8b12948
crossref_primary_10_1002_chem_202301499
crossref_primary_10_1016_j_jlumin_2024_120914
crossref_primary_10_1098_rsos_181397
crossref_primary_10_1039_C7TA01668A
crossref_primary_10_1007_s40843_020_1463_0
crossref_primary_10_1002_aenm_201800681
crossref_primary_10_1002_anie_201915094
crossref_primary_10_1002_asia_201801921
crossref_primary_10_1016_j_jcis_2018_07_106
crossref_primary_10_1039_D3CC04186G
crossref_primary_10_1002_jrs_5642
crossref_primary_10_1039_D2DT00991A
crossref_primary_10_1039_C7RA10221F
crossref_primary_10_1002_anie_202419776
crossref_primary_10_1039_C7QI00341B
crossref_primary_10_1039_D0CC07377F
Cites_doi 10.1039/B618196A
10.1038/nmat1298
10.1038/nature08731
10.1103/PhysRevLett.110.257601
10.1039/b819455f
10.1016/0025-5408(70)90071-1
10.1038/ncomms4279
10.1103/PhysRevB.47.4174
10.1126/science.1229675
10.1021/ja301539s
10.1103/PhysRevB.89.235105
10.1016/j.cap.2004.01.027
10.1038/nmat4271
10.1021/ja8032235
10.1103/PhysRevLett.77.3865
10.1021/jacs.5b03796
10.1038/nmat4150
10.1021/jz501697b
10.1038/ncomms6900
10.1021/ja206891q
10.1002/ange.19630751402
10.1021/ja5033259
10.1002/anie.200700407
10.1002/adma.201100359
10.1002/adma.201102938
10.1080/00150198908007915
10.1038/ncomms8338
10.1038/ncomms2322
10.1021/ja3047427
10.1021/cr200174w
10.1038/nature12622
10.1038/nchem.2206
10.1126/science.286.5441.945
10.1038/nmat2294
10.1002/pssb.19660150224
10.1021/ja809598r
10.1103/PhysRevLett.107.126805
10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
10.1038/nmat3282
10.1021/nl500390f
10.1002/anie.201410930
10.1021/jp4048659
10.1038/nphoton.2014.82
10.1063/1.1736034
10.1126/science.1228604
10.1002/anie.201400348
10.1126/science.1113357
10.1143/JPSJ.77.064706
10.1038/nmat4014
10.1038/369467a0
10.1143/JPSJ.27.387
10.1021/ja503344b
10.1126/science.1168636
10.1038/nnano.2009.451
10.1021/ja204540g
10.1088/0953-8984/14/11/301
10.1038/1821436a0
10.1002/anie.201406466
10.1002/adma.201400806
10.1126/science.1218693
10.1038/nature11395
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201505224
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 2586
ExternalDocumentID 26833877
10_1002_adma_201505224
ADMA201505224
ark_67375_WNG_TQ871WJ1_N
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AANHP
AAYXX
ACRPL
ADMLS
ADNMO
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c5104-543b4ef246ef51f957182f0a38d92f65d4cb38c61cee67b8fafaed72047316f93
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:18:16 EDT 2025
Fri Jul 11 02:46:45 EDT 2025
Fri Jul 25 04:38:18 EDT 2025
Wed Feb 19 01:58:31 EST 2025
Thu Apr 24 23:10:33 EDT 2025
Tue Jul 01 00:44:24 EDT 2025
Wed Jan 22 16:24:07 EST 2025
Wed Oct 30 09:50:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords phase transitions
bandgap engineering
metal halide perovskites
semiconductivity
ferroelectricity
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5104-543b4ef246ef51f957182f0a38d92f65d4cb38c61cee67b8fafaed72047316f93
Notes istex:55A5B80C2F9B48F0E9767E51C5AF36CC6D2FE835
ark:/67375/WNG-TQ871WJ1-N
ArticleID:ADMA201505224
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26833877
PQID 2070751706
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_1808047171
proquest_miscellaneous_1778401112
proquest_journals_2070751706
pubmed_primary_26833877
crossref_primary_10_1002_adma_201505224
crossref_citationtrail_10_1002_adma_201505224
wiley_primary_10_1002_adma_201505224_ADMA201505224
istex_primary_ark_67375_WNG_TQ871WJ1_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, F. De Angelis, J. Phys. Chem. C 2013, 117, 13902.
S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura, Nat. Mater. 2005, 4, 163.
I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. Int. Ed. 2014, 53, 11232.
J. Kreisel, M. Alexe, P. A. Thomas, Nat. Mater. 2012, 11, 260.
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
F. Hao, C. C. Stoumpos, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2014, 136, 8094.
F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics 2014, 8, 489.
W. Q. Liao, Y. Zhang, C. L. Hu, J. G. Mao, H.-Y. Ye, P. F. Li, S. D. Huang, R.-G. Xiong, Nat. Commun. 2015, 6, 7338.
H. Lu, C. W. Bark, D. E. de los Ojos, J. Alcala, C. B. Eom, G. Catalan, A. Gruverman, Science 2012, 336, 59.
Y. Zhang, Y. M. Liu, H.-Y. Ye, D. W. Fu, W. X. Gao, H. Ma, Z. G. Liu, Y. Y. Liu, W. Zhang, J. Y. Li, G. L. Yuan, R.-G. Xiong, Angew. Chem. Int. Ed. 2014, 53, 5064.
S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Nature 2010, 463, 789.
J. P. Remeika, A. M. Glass, Mater. Res. Bull. 1970, 5, 37.
F. G. Wang, I. Grinberg, A. M. Rappe, Phys. Rev. B 2014, 89, 235105.
K. Kikuchi, Y. Takeoka, M. Rikukawa, K. Sanui, Curr. Appl. Phys. 2004, 4, 599.
H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu, Nat. Mater. 2015, 14, 636.
I. Chung, J. H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney, M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 8579.
T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S. W. Cheong, Science 2009, 324, 63.
S. Horiuchi, R. Kumai, Y. Tokura, Adv. Mater. 2011, 23, 2098.
G. C. Xu, W. Zhang, X. M. Ma, Y. H. Chen, L. Zhang, H. L. Cai, Z. M. Wang, R.-G. Xiong, S. Gao, J. Am. Chem. Soc. 2011, 133, 14948.
N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897.
S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura, Nat. Mater. 2008, 7, 922.
S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, Y. Tokura, Nat. Commun. 2012, 3, 1308.
T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, J. Maier, Angew. Chem. Int. Ed. 2015, 54, 1.
Y. Zhang, W. Zhang, S. H. Li, Q. Ye, H. L. Cai, F. Deng, R.-G. Xiong, S. P. D. Huang, J. Am. Chem. Soc. 2012, 134, 11044.
K. Aizu, J. Phys. Soc. Jpn. 1969, 27, 387.
D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 7843.
S. Horiuchi, R. Kumai, Y. Tokura, Angew. Chem. Int. Ed. 2007, 46, 3497.
L. Hu, S. Dalgleish, M. M. Matsushita, H. Yoshikawa, K. Awaga, Nat. Commun. 2014, 5, 3279.
I. Grinberg, D. V. West, M. Torres, G. Y. Gou, D. M. Stein, L. Y. Wu, G. N. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, A. M. Rappe, Nature 2013, 503, 509.
Y. Zhang, H.-Y. Ye, H. L. Cai, D. W. Fu, Q. Ye, W. Zhang, Q. H. Zhou, J. L. Wang, G. L. Yuan, R.-G. Xiong, Adv. Mater. 2014, 26, 4515.
H.-Y. Ye, S. H. Li, Y. Zhang, L. Zhou, F. Deng, R.-G. Xiong, J. Am. Chem. Soc. 2014, 136, 10033.
M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.: Condens. Matter. 2002, 14, 2717.
Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nat. Mater. 2015, 14, 193.
V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, Int. J. Quantum Chem. 2000, 77, 895.
Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, N. P. Padture, J. Phys. Chem. Lett. 2014, 5, 3335.
G. Kortum, W. Braun, G. Herzog, Angew. Chem. Int. Ed. 1963, 75, 653.
M. Fukunaga, Y. Noda, J. Phys. Soc. Jpn. 2008, 77, 064706.
J. Tauc, R. Grigorov, A. Vancu, Phys. Status Solidi B 1966, 15, 627.
S. Horiuchi, R. Kumai, Y. Tokunaga, Y. Tokura, J. Am. Chem. Soc. 2008, 130, 13382.
D. B. Mitzi, C. A. Feild, W. T. A. Harrison, A. M. Guloy, Nature 1994, 369, 467.
M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, UK 1977.
C. K. Moller, Nature 1958, 182, 1436.
A. Stroppa, D. Di Sante, P. Barone, M. Bokdam, G. Kresse, C. Franchini, M. H. Whangbo, S. Picozzi, Nat. Commun. 2014, 5, 5900.
D. W. Fu, H. L. Cai, S. H. Li, Q. Ye, L. Zhou, W. Zhang, Y. Zhang, F. Deng, R.-G. Xiong, Phys. Rev. Lett. 2013, 110, 257601.
A. S. Tayi, A. K. Shveyd, A. C. H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart, S. I. Stupp, Nature 2012, 488, 485.
A. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S. I. Stupp, Nat. Chem. 2015, 7, 281.
J. Seidel, D. Y. Fu, S. Y. Yang, E. Alarcon-Llado, J. Q. Wu, R. Ramesh, J. W. Ager, Phys. Rev. Lett. 2011, 107, 126805.
J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 2014, 14, 2584.
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager 3rd, L. W. Martin, R. Ramesh, Nat. Nanotechnol. 2010, 5, 143.
D. W. Fu, H. L. Cai, Y. M. Liu, Q. Ye, W. Zhang, Y. Zhang, X. Y. Chen, G. Giovannetti, M. Capone, J. Y. Li, R.-G. Xiong, Science 2013, 339, 425.
D. G. Billing, A. Lemmerer, CrystEngComm 2009, 11, 1549.
W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510.
D. W. Fu, W. Zhang, H. L. Cai, J. Z. Ge, Y. Zhang, R.-G. Xiong, Adv. Mater. 2011, 23, 5658.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
J. S. Lin, A. Qteish, M. C. Payne, V. Heine, Phys. Rev. B 1993, 47, 4174.
E. G. Fesenko, V. G. Gavrilyatchenko, A. F. Semenchev, Ferroelectrics 1989, 100, 195.
W. Zhang, R.-G. Xiong, Chem. Rev. 2012, 112, 1163.
D. G. Billing, A. Lemmerer, CrystEngComm 2007, 9, 236.
D. W. Fu, W. Zhang, H. L. Cai, Y. Zhang, J. Z. Ge, R.-G. Xiong, S. D. Huang, J. Am. Chem. Soc. 2011, 133, 12780.
C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, Science 1999, 286, 945.
N. A. Spaldin, M. Fiebig, Science 2005, 309, 391.
2002; 14
1966; 15
2004; 4
1999; 286
2010; 463
2014; 26
2008; 7
2008; 77
1961; 32
2012; 488
2012; 11
2014; 136
1970; 5
1977
1996; 77
2009; 11
2014; 5
1963; 75
2012; 134
2015; 137
2013; 117
1989; 100
2007; 9
2014; 14
2014; 13
2005; 309
2011; 23
2013; 110
2014; 8
2012; 336
2010; 5
2012; 338
2009; 324
2014; 53
1993; 47
2015; 14
2015; 6
2013; 503
2015; 54
2009; 131
2015; 7
2014; 89
2011; 133
1958; 182
1994; 369
2012; 3
2011; 107
2012; 112
2013; 339
2000; 77
2005; 4
1969; 27
2007; 46
2008; 130
e_1_2_4_40_1
e_1_2_4_63_1
e_1_2_4_61_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
Lines M. E. (e_1_2_4_14_1) 1977
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_56_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
Yang T. Y. (e_1_2_4_27_1) 2015; 54
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_58_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_62_1
e_1_2_4_60_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_59_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_57_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – reference: D. G. Billing, A. Lemmerer, CrystEngComm 2009, 11, 1549.
– reference: D. W. Fu, W. Zhang, H. L. Cai, Y. Zhang, J. Z. Ge, R.-G. Xiong, S. D. Huang, J. Am. Chem. Soc. 2011, 133, 12780.
– reference: S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura, Nat. Mater. 2005, 4, 163.
– reference: J. Seidel, D. Y. Fu, S. Y. Yang, E. Alarcon-Llado, J. Q. Wu, R. Ramesh, J. W. Ager, Phys. Rev. Lett. 2011, 107, 126805.
– reference: H.-Y. Ye, S. H. Li, Y. Zhang, L. Zhou, F. Deng, R.-G. Xiong, J. Am. Chem. Soc. 2014, 136, 10033.
– reference: Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, N. P. Padture, J. Phys. Chem. Lett. 2014, 5, 3335.
– reference: J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
– reference: F. Hao, C. C. Stoumpos, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2014, 136, 8094.
– reference: S. Horiuchi, R. Kumai, Y. Tokura, Angew. Chem. Int. Ed. 2007, 46, 3497.
– reference: F. G. Wang, I. Grinberg, A. M. Rappe, Phys. Rev. B 2014, 89, 235105.
– reference: Y. Zhang, W. Zhang, S. H. Li, Q. Ye, H. L. Cai, F. Deng, R.-G. Xiong, S. P. D. Huang, J. Am. Chem. Soc. 2012, 134, 11044.
– reference: G. C. Xu, W. Zhang, X. M. Ma, Y. H. Chen, L. Zhang, H. L. Cai, Z. M. Wang, R.-G. Xiong, S. Gao, J. Am. Chem. Soc. 2011, 133, 14948.
– reference: M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
– reference: W. Zhang, R.-G. Xiong, Chem. Rev. 2012, 112, 1163.
– reference: M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.: Condens. Matter. 2002, 14, 2717.
– reference: T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S. W. Cheong, Science 2009, 324, 63.
– reference: S. Horiuchi, R. Kumai, Y. Tokunaga, Y. Tokura, J. Am. Chem. Soc. 2008, 130, 13382.
– reference: A. Stroppa, D. Di Sante, P. Barone, M. Bokdam, G. Kresse, C. Franchini, M. H. Whangbo, S. Picozzi, Nat. Commun. 2014, 5, 5900.
– reference: K. Aizu, J. Phys. Soc. Jpn. 1969, 27, 387.
– reference: Y. Zhang, Y. M. Liu, H.-Y. Ye, D. W. Fu, W. X. Gao, H. Ma, Z. G. Liu, Y. Y. Liu, W. Zhang, J. Y. Li, G. L. Yuan, R.-G. Xiong, Angew. Chem. Int. Ed. 2014, 53, 5064.
– reference: J. P. Remeika, A. M. Glass, Mater. Res. Bull. 1970, 5, 37.
– reference: I. Chung, J. H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney, M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 8579.
– reference: J. Tauc, R. Grigorov, A. Vancu, Phys. Status Solidi B 1966, 15, 627.
– reference: C. K. Moller, Nature 1958, 182, 1436.
– reference: A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
– reference: A. S. Tayi, A. K. Shveyd, A. C. H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart, S. I. Stupp, Nature 2012, 488, 485.
– reference: K. Kikuchi, Y. Takeoka, M. Rikukawa, K. Sanui, Curr. Appl. Phys. 2004, 4, 599.
– reference: I. Grinberg, D. V. West, M. Torres, G. Y. Gou, D. M. Stein, L. Y. Wu, G. N. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, A. M. Rappe, Nature 2013, 503, 509.
– reference: J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 2014, 14, 2584.
– reference: L. Hu, S. Dalgleish, M. M. Matsushita, H. Yoshikawa, K. Awaga, Nat. Commun. 2014, 5, 3279.
– reference: D. W. Fu, W. Zhang, H. L. Cai, J. Z. Ge, Y. Zhang, R.-G. Xiong, Adv. Mater. 2011, 23, 5658.
– reference: M. Fukunaga, Y. Noda, J. Phys. Soc. Jpn. 2008, 77, 064706.
– reference: N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897.
– reference: W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510.
– reference: Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nat. Mater. 2015, 14, 193.
– reference: Y. Zhang, H.-Y. Ye, H. L. Cai, D. W. Fu, Q. Ye, W. Zhang, Q. H. Zhou, J. L. Wang, G. L. Yuan, R.-G. Xiong, Adv. Mater. 2014, 26, 4515.
– reference: S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura, Nat. Mater. 2008, 7, 922.
– reference: S. Horiuchi, R. Kumai, Y. Tokura, Adv. Mater. 2011, 23, 2098.
– reference: T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, J. Maier, Angew. Chem. Int. Ed. 2015, 54, 1.
– reference: A. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S. I. Stupp, Nat. Chem. 2015, 7, 281.
– reference: D. W. Fu, H. L. Cai, S. H. Li, Q. Ye, L. Zhou, W. Zhang, Y. Zhang, F. Deng, R.-G. Xiong, Phys. Rev. Lett. 2013, 110, 257601.
– reference: I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. Int. Ed. 2014, 53, 11232.
– reference: D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 7843.
– reference: G. Kortum, W. Braun, G. Herzog, Angew. Chem. Int. Ed. 1963, 75, 653.
– reference: D. W. Fu, H. L. Cai, Y. M. Liu, Q. Ye, W. Zhang, Y. Zhang, X. Y. Chen, G. Giovannetti, M. Capone, J. Y. Li, R.-G. Xiong, Science 2013, 339, 425.
– reference: M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, UK 1977.
– reference: W. Q. Liao, Y. Zhang, C. L. Hu, J. G. Mao, H.-Y. Ye, P. F. Li, S. D. Huang, R.-G. Xiong, Nat. Commun. 2015, 6, 7338.
– reference: E. G. Fesenko, V. G. Gavrilyatchenko, A. F. Semenchev, Ferroelectrics 1989, 100, 195.
– reference: D. B. Mitzi, C. A. Feild, W. T. A. Harrison, A. M. Guloy, Nature 1994, 369, 467.
– reference: J. Kreisel, M. Alexe, P. A. Thomas, Nat. Mater. 2012, 11, 260.
– reference: S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Nature 2010, 463, 789.
– reference: S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager 3rd, L. W. Martin, R. Ramesh, Nat. Nanotechnol. 2010, 5, 143.
– reference: S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, Y. Tokura, Nat. Commun. 2012, 3, 1308.
– reference: V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, Int. J. Quantum Chem. 2000, 77, 895.
– reference: H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu, Nat. Mater. 2015, 14, 636.
– reference: F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics 2014, 8, 489.
– reference: E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, F. De Angelis, J. Phys. Chem. C 2013, 117, 13902.
– reference: N. A. Spaldin, M. Fiebig, Science 2005, 309, 391.
– reference: H. Lu, C. W. Bark, D. E. de los Ojos, J. Alcala, C. B. Eom, G. Catalan, A. Gruverman, Science 2012, 336, 59.
– reference: D. G. Billing, A. Lemmerer, CrystEngComm 2007, 9, 236.
– reference: C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, Science 1999, 286, 945.
– reference: J. S. Lin, A. Qteish, M. C. Payne, V. Heine, Phys. Rev. B 1993, 47, 4174.
– volume: 336
  start-page: 59
  year: 2012
  publication-title: Science
– volume: 136
  start-page: 8094
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 11
  start-page: 260
  year: 2012
  publication-title: Nat. Mater.
– volume: 23
  start-page: 5658
  year: 2011
  publication-title: Adv. Mater.
– volume: 182
  start-page: 1436
  year: 1958
  publication-title: Nature
– volume: 27
  start-page: 387
  year: 1969
  publication-title: J. Phys. Soc. Jpn.
– volume: 9
  start-page: 236
  year: 2007
  publication-title: CrystEngComm
– volume: 46
  start-page: 3497
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 112
  start-page: 1163
  year: 2012
  publication-title: Chem. Rev.
– volume: 463
  start-page: 789
  year: 2010
  publication-title: Nature
– volume: 324
  start-page: 63
  year: 2009
  publication-title: Science
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 110
  start-page: 257601
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 163
  year: 2005
  publication-title: Nat. Mater.
– volume: 130
  start-page: 13382
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 636
  year: 2015
  publication-title: Nat. Mater.
– volume: 100
  start-page: 195
  year: 1989
  publication-title: Ferroelectrics
– volume: 369
  start-page: 467
  year: 1994
  publication-title: Nature
– volume: 133
  start-page: 12780
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 7843
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 064706
  year: 2008
  publication-title: J. Phys. Soc. Jpn.
– volume: 286
  start-page: 945
  year: 1999
  publication-title: Science
– volume: 5
  start-page: 3335
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 54
  start-page: 1
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 89
  start-page: 235105
  year: 2014
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 922
  year: 2008
  publication-title: Nat. Mater.
– volume: 339
  start-page: 425
  year: 2013
  publication-title: Science
– volume: 14
  start-page: 193
  year: 2015
  publication-title: Nat. Mater.
– volume: 14
  start-page: 2717
  year: 2002
  publication-title: J. Phys.: Condens. Matter.
– volume: 309
  start-page: 391
  year: 2005
  publication-title: Science
– volume: 53
  start-page: 5064
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 11232
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 77
  start-page: 895
  year: 2000
  publication-title: Int. J. Quantum Chem.
– volume: 6
  start-page: 7338
  year: 2015
  publication-title: Nat. Commun.
– volume: 14
  start-page: 2584
  year: 2014
  publication-title: Nano Lett.
– year: 1977
– volume: 5
  start-page: 3279
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  start-page: 489
  year: 2014
  publication-title: Nat. Photonics
– volume: 15
  start-page: 627
  year: 1966
  publication-title: Phys. Status Solidi B
– volume: 133
  start-page: 14948
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 4174
  year: 1993
  publication-title: Phys. Rev. B
– volume: 32
  start-page: 510
  year: 1961
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 143
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 75
  start-page: 653
  year: 1963
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1308
  year: 2012
  publication-title: Nat. Commun.
– volume: 117
  start-page: 13902
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 503
  start-page: 509
  year: 2013
  publication-title: Nature
– volume: 4
  start-page: 599
  year: 2004
  publication-title: Curr. Appl. Phys.
– volume: 5
  start-page: 5900
  year: 2014
  publication-title: Nat. Commun.
– volume: 136
  start-page: 10033
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 281
  year: 2015
  publication-title: Nat. Chem.
– volume: 26
  start-page: 4515
  year: 2014
  publication-title: Adv. Mater.
– volume: 107
  start-page: 126805
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 134
  start-page: 8579
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 11044
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1549
  year: 2009
  publication-title: CrystEngComm
– volume: 5
  start-page: 37
  year: 1970
  publication-title: Mater. Res. Bull.
– volume: 488
  start-page: 485
  year: 2012
  publication-title: Nature
– volume: 23
  start-page: 2098
  year: 2011
  publication-title: Adv. Mater.
– ident: e_1_2_4_37_1
  doi: 10.1039/B618196A
– ident: e_1_2_4_51_1
  doi: 10.1038/nmat1298
– ident: e_1_2_4_29_1
  doi: 10.1038/nature08731
– ident: e_1_2_4_43_1
  doi: 10.1103/PhysRevLett.110.257601
– ident: e_1_2_4_38_1
  doi: 10.1039/b819455f
– ident: e_1_2_4_52_1
  doi: 10.1016/0025-5408(70)90071-1
– ident: e_1_2_4_53_1
  doi: 10.1038/ncomms4279
– ident: e_1_2_4_63_1
  doi: 10.1103/PhysRevB.47.4174
– ident: e_1_2_4_40_1
  doi: 10.1126/science.1229675
– ident: e_1_2_4_5_1
  doi: 10.1021/ja301539s
– ident: e_1_2_4_18_1
  doi: 10.1103/PhysRevB.89.235105
– ident: e_1_2_4_36_1
  doi: 10.1016/j.cap.2004.01.027
– ident: e_1_2_4_2_1
  doi: 10.1038/nmat4271
– ident: e_1_2_4_50_1
  doi: 10.1021/ja8032235
– ident: e_1_2_4_35_1
  doi: 10.1039/B618196A
– ident: e_1_2_4_62_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_4_11_1
  doi: 10.1021/jacs.5b03796
– ident: e_1_2_4_8_1
  doi: 10.1038/nmat4150
– ident: e_1_2_4_24_1
  doi: 10.1021/jz501697b
– ident: e_1_2_4_26_1
  doi: 10.1038/ncomms6900
– ident: e_1_2_4_47_1
  doi: 10.1021/ja206891q
– ident: e_1_2_4_57_1
  doi: 10.1002/ange.19630751402
– ident: e_1_2_4_6_1
  doi: 10.1021/ja5033259
– ident: e_1_2_4_49_1
  doi: 10.1002/anie.200700407
– ident: e_1_2_4_48_1
  doi: 10.1002/adma.201100359
– ident: e_1_2_4_41_1
  doi: 10.1002/adma.201102938
– ident: e_1_2_4_55_1
  doi: 10.1080/00150198908007915
– ident: e_1_2_4_33_1
  doi: 10.1038/ncomms8338
– ident: e_1_2_4_31_1
  doi: 10.1038/ncomms2322
– ident: e_1_2_4_45_1
  doi: 10.1021/ja3047427
– ident: e_1_2_4_46_1
  doi: 10.1021/cr200174w
– ident: e_1_2_4_22_1
  doi: 10.1038/nature12622
– ident: e_1_2_4_32_1
  doi: 10.1038/nchem.2206
– ident: e_1_2_4_1_1
  doi: 10.1126/science.286.5441.945
– ident: e_1_2_4_30_1
  doi: 10.1038/nmat2294
– ident: e_1_2_4_56_1
  doi: 10.1002/pssb.19660150224
– ident: e_1_2_4_3_1
  doi: 10.1021/ja809598r
– ident: e_1_2_4_19_1
  doi: 10.1103/PhysRevLett.107.126805
– ident: e_1_2_4_61_1
  doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
– ident: e_1_2_4_16_1
  doi: 10.1038/nmat3282
– ident: e_1_2_4_25_1
  doi: 10.1021/nl500390f
– volume: 54
  start-page: 1
  year: 2015
  ident: e_1_2_4_27_1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410930
– volume-title: Principles and Applications of Ferroelectrics and Related Materials
  year: 1977
  ident: e_1_2_4_14_1
– ident: e_1_2_4_34_1
  doi: 10.1021/jp4048659
– ident: e_1_2_4_10_1
  doi: 10.1038/nphoton.2014.82
– ident: e_1_2_4_23_1
  doi: 10.1063/1.1736034
– ident: e_1_2_4_4_1
  doi: 10.1126/science.1228604
– ident: e_1_2_4_58_1
  doi: 10.1002/anie.201400348
– ident: e_1_2_4_15_1
  doi: 10.1126/science.1113357
– ident: e_1_2_4_54_1
  doi: 10.1143/JPSJ.77.064706
– ident: e_1_2_4_9_1
  doi: 10.1038/nmat4014
– ident: e_1_2_4_12_1
  doi: 10.1038/369467a0
– ident: e_1_2_4_39_1
  doi: 10.1143/JPSJ.27.387
– ident: e_1_2_4_44_1
  doi: 10.1021/ja503344b
– ident: e_1_2_4_20_1
  doi: 10.1126/science.1168636
– ident: e_1_2_4_21_1
  doi: 10.1038/nnano.2009.451
– ident: e_1_2_4_42_1
  doi: 10.1021/ja204540g
– ident: e_1_2_4_60_1
  doi: 10.1088/0953-8984/14/11/301
– ident: e_1_2_4_13_1
  doi: 10.1038/1821436a0
– ident: e_1_2_4_7_1
  doi: 10.1002/anie.201406466
– ident: e_1_2_4_59_1
  doi: 10.1002/adma.201400806
– ident: e_1_2_4_17_1
  doi: 10.1126/science.1218693
– ident: e_1_2_4_28_1
  doi: 10.1038/nature11395
SSID ssj0009606
Score 2.6184182
Snippet Semiconducting ferroelectricity is realized in hybrid perovskite‐type compounds (cyclohexylammonium)2PbBr4−4xI4x (x = 0–1). By adjusting the composition x, the...
Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium)2 PbBr4-4 x I4 x (x = 0-1). By adjusting the composition x,...
Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium) sub(2)PbBr sub(4-4x)I sub(4x) (x = 0-1). By adjusting the...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2579
SubjectTerms Adjustment
bandgap engineering
Energy gaps (solid state)
Ferroelectric materials
Ferroelectricity
Materials science
metal halide perovskites
Perovskites
phase transitions
Photovoltaic cells
semiconductivity
Solar cells
Title Bandgap Engineering of Lead-Halide Perovskite-Type Ferroelectrics
URI https://api.istex.fr/ark:/67375/WNG-TQ871WJ1-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201505224
https://www.ncbi.nlm.nih.gov/pubmed/26833877
https://www.proquest.com/docview/2070751706
https://www.proquest.com/docview/1778401112
https://www.proquest.com/docview/1808047171
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4EDlHegoCAhOLlNbMdOjgt0WVXqClCr9mbZzhihoqRKdquKU39CfyO_BE-ym-4iHhLcEmcc-TWez_b4G0JeQglh1pM5VbJgVDhhaB7sKvUi4ZBKBlDgReGDqZwcif2T7GTlFn_PDzFsuKFmdPM1Krix7e41aagpO96gFCOxMSQERYctREWfrvmjEJ53ZHs8o4UU-ZK1MWG769nXrNImNvDFryDnOoLtTND4DjHLwveeJ6c785ndcd9-4nX8n9ptkdsLfBqP-gF1l9yA6h65tcJaeJ_svTFV-dmcxSupce1jjNb5_fJqEpB9CfEHaOrzFveGQxquduMxNE3dh9354toH5Gi8d_h2QhfRGKgLeitoJrgV4JmQ4LPUF1mwaswnhudlwbzMSuEsz51Mg9mVyubeeAMlxsDB4Fi-4A_JRlVX8JjEEECa50kJwKwQTBjrwGaFMwE8cZPIiNBlb2i3oCrHiBlfdU-yzDQ2jx6aJyKvB_mznqTjt5Kvus4dxExziq5tKtPH0_f68GNYPx7vp3oake1l7-uFVrfhNyogLCQcisiL4XPQRzxkMRXU81anSoU1c7Ag7A8ySOYZUIFKI_KoH1lDgZjMOc-VigjrxsdfKqRH7w5Gw9uTf8n0lNwMz7J3R9omG7NmDs8C0prZ5502_QAwbR5s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAOvB-BAkFCcEqb2I6dHBfospTuCtBW7c1ykjFCRUmV3UWIU39Cf2N_ST3JJu0iHhIc44wjv8bzjTP-BuA5Fuh2PZkESqYsELkwQeLsamBFyDGSDDGli8LjiRztiZ2DuIsmpLswLT9Ef-BGmtHs16TgdCC9dc4aaoqGOCiiVGxMXIZ1SuvdeFWfzhmkCKA3dHs8DlIpko63MWRbq_VX7NI6DfH3X4HOVQzbGKHhDci65rexJ4ebi3m2mf_4idnxv_p3E64vIao_aNfULbiE5W24doG48A5svzJl8dkc-RdK_cr6lLDz9Phk5MB9gf4HrKtvMzoedmXk8PpDrOuqzbzzJZ_dhb3h9vT1KFgmZAhyp7oiiAXPBFomJNo4smnsDBuzoeFJkTIr40LkGU9yGTnLK1WWWGMNFpQGh_Jj2ZTfg7WyKvEB-OhwmuVhgcgyIZgwWY5ZnObG4SduQulB0E2Hzpds5ZQ046tueZaZpuHR_fB48LKXP2p5On4r-aKZ3V7M1IcU3aZivT95q6cfnQu5vxPpiQcb3fTrpWLP3GeUA1nEOeTBs_61U0n6z2JKrBYzHSnl3GZnRNgfZIjP0wEDFXlwv11afYOYTDhPlPKANQvkLx3SgzfjQf_08F8qPYUro-l4V---m7x_BFdduWyjkzZgbV4v8LEDXvPsSaNaZw5PIoc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE4UF6F0AJBQnBym9iOnRwXtstS6KqgVu3NcpwxQkXJKruLECd-Qn9jfwl2spvuIh4SHDMZR37MeD479jcAz7BAN-uJlEiRUcIN1yR1cZVYHjGMBUXM_EXhg5EYHvP90-R06RZ_yw_Rbbh5z2jma-_g48LuXpKG6qLhDYp9JjbKr8I6F1Hq7br_4ZJAyuPzhm2PJSQTPF3QNkZ0d7X8Slha9z389VeYcxXCNjFosAF6Ufv26MnZzmya75hvPxE7_k_zbsHNOUANe61F3YYrWN6BG0u0hXdh76Uui496HC5Jw8qGPl3nxffzoYP2BYaHWFdfJn5z2Mn8cjccYF1Xbd6dT2ZyD44He0evhmSejoEY57icJJzlHC3lAm0S2yxxYY3aSLO0yKgVScFNzlIjYhd3hcxTq63GwifB8dmxbMY2Ya2sSnwAITqUZllUINKcc8p1bjBPMqMdemI6EgGQxWgoM-cq9ykzPquWZZkq3z2q654AXnT645al47eaz5vB7dR0febPtslEnYxeq6P3bgF5sh-rUQDbi9FXc7eeuM9IB7E841AAT7vXziH9XxZdYjWbqFhKt2h2IYT-QcezeTpYIOMA7reW1VWIipSxVMoAaGMff2mQ6vUPet3Tw38p9ASuHfYH6t2b0dstuO7Eoj2atA1r03qGjxzqmuaPG8f6AaECIT8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bandgap+Engineering+of+Lead-Halide+Perovskite-Type+Ferroelectrics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ye%2C+Heng-Yun&rft.au=Liao%2C+Wei-Qiang&rft.au=Hu%2C+Chun-Li&rft.au=Zhang%2C+Yi&rft.date=2016-04-01&rft.eissn=1521-4095&rft.volume=28&rft.issue=13&rft.spage=2579&rft_id=info:doi/10.1002%2Fadma.201505224&rft_id=info%3Apmid%2F26833877&rft.externalDocID=26833877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon