Boron Nitride Nanostructures: Fabrication, Functionalization and Applications
Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostru...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 12; no. 22; pp. 2942 - 2968 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.06.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two‐dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN‐involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One‐dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced.
Boron nitride nanostructures have attracted intense attention for their excellent properties. Controlled synthesis of quality samples and the electrically insulating property largely prevents the realization of the full potential of BN nanostructures. The current status of the synthesis and applications of two dimensional h‐BN are reviewed, as well as versatile strategies in pursuit of tunable electronic and magnetic properties in BN nanostructures. |
---|---|
AbstractList | Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. Boron nitride nanostructures have attracted intense attention for their excellent properties. Controlled synthesis of quality samples and the electrically insulating property largely prevents the realization of the full potential of BN nanostructures. The current status of the synthesis and applications of two dimensional h-BN are reviewed, as well as versatile strategies in pursuit of tunable electronic and magnetic properties in BN nanostructures. Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two‐dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN‐involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One‐dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. Boron nitride nanostructures have attracted intense attention for their excellent properties. Controlled synthesis of quality samples and the electrically insulating property largely prevents the realization of the full potential of BN nanostructures. The current status of the synthesis and applications of two dimensional h‐BN are reviewed, as well as versatile strategies in pursuit of tunable electronic and magnetic properties in BN nanostructures. |
Author | Tai, Guoan Yu, Jin Li, Jidong Yin, Jun Zhang, Zhuhua Guo, Wanlin Hang, Yang Li, Xuemei |
Author_xml | – sequence: 1 givenname: Jun surname: Yin fullname: Yin, Jun organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China – sequence: 2 givenname: Jidong surname: Li fullname: Li, Jidong organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China – sequence: 3 givenname: Yang surname: Hang fullname: Hang, Yang organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China – sequence: 4 givenname: Jin surname: Yu fullname: Yu, Jin organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China – sequence: 5 givenname: Guoan surname: Tai fullname: Tai, Guoan organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China – sequence: 6 givenname: Xuemei surname: Li fullname: Li, Xuemei organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China – sequence: 7 givenname: Zhuhua surname: Zhang fullname: Zhang, Zhuhua organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China – sequence: 8 givenname: Wanlin surname: Guo fullname: Guo, Wanlin email: wlguo@nuaa.edu.cn organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27073174$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEURi3Uij5gyxKNxIYFk97rx3jMrq1IqJQGVECwszyOI7k449SeEW1_PZMmjapKiJWvrXOu9Pk7InttbB0hbxBGCEBP8jKEEQWsAECwF-QQK2RlVVO1t5sRDshRztcADCmXL8kBlSAZSn5ILs9iim0x813yc1fMTBtzl3rb9cnlj8XYNMlb0_nYfijGfWvXkwn-_uGpMO28OF2twhbJr8j-woTsXm_PY_Jj_On7-edy-mVycX46La1AYGVNFxxBcdtUVAqJw01KBVzZBhkqROoU1I3iVeMEk9Jyh4IJNkQUleKMHZP3m72rFG96lzu99Nm6EEzrYp811lTwumaUD-i7Z-h17NOQYaCkYopxoGqg3m6pvlm6uV4lvzTpTj9-1ADwDWBTzDm5hba-ewjdJeODRtDrPvS6D73rY9BGz7THzf8U1Eb444O7-w-tv11Op0_dcuP63LnbnWvSb11JJoX-OZvorxMhr-qzX_qK_QX-oKnL |
CitedBy_id | crossref_primary_10_1002_cnma_201700148 crossref_primary_10_1016_j_colsurfb_2021_111867 crossref_primary_10_1002_adma_201800865 crossref_primary_10_1016_j_surfin_2024_104699 crossref_primary_10_1039_C9RA10491G crossref_primary_10_7717_peerj_matsci_27 crossref_primary_10_1140_epjp_s13360_023_04667_x crossref_primary_10_1007_s10854_017_6637_8 crossref_primary_10_1021_acs_chemmater_8b01091 crossref_primary_10_1063_1_5079655 crossref_primary_10_1002_adfm_201702168 crossref_primary_10_1080_09506608_2017_1322833 crossref_primary_10_1002_slct_202402676 crossref_primary_10_1039_D2NH00353H crossref_primary_10_1002_adfm_202414042 crossref_primary_10_1016_j_physe_2021_114788 crossref_primary_10_1039_C9TB01006H crossref_primary_10_1088_1361_6641_ab5ece crossref_primary_10_1016_j_jpcs_2022_110949 crossref_primary_10_1039_C8CY00163D crossref_primary_10_1016_j_nanoen_2021_106661 crossref_primary_10_1016_j_compscitech_2021_108995 crossref_primary_10_1016_j_apsusc_2022_154073 crossref_primary_10_1088_2053_1591_ab2de3 crossref_primary_10_1016_j_carbon_2022_01_013 crossref_primary_10_1016_j_matlet_2018_09_031 crossref_primary_10_1088_1361_648X_ab49b0 crossref_primary_10_1142_S1793604722510092 crossref_primary_10_1088_1361_6528_acf6c3 crossref_primary_10_1016_j_cattod_2018_12_028 crossref_primary_10_1039_C9CC08717F crossref_primary_10_1016_j_molstruc_2022_133968 crossref_primary_10_1002_ange_201904996 crossref_primary_10_1039_C7TC04300G crossref_primary_10_7498_aps_68_20191036 crossref_primary_10_1088_1402_4896_ac2858 crossref_primary_10_3390_bios13010116 crossref_primary_10_3390_jcs4030116 crossref_primary_10_1002_adfm_201603300 crossref_primary_10_1088_2053_1583_ac5461 crossref_primary_10_1149_1945_7111_abaf29 crossref_primary_10_1002_sus2_239 crossref_primary_10_1016_j_mtadv_2021_100181 crossref_primary_10_1002_app_54598 crossref_primary_10_1002_admi_201901198 crossref_primary_10_1016_j_colsurfb_2021_111765 crossref_primary_10_1002_solr_202100401 crossref_primary_10_1109_TMAG_2023_3294354 crossref_primary_10_1021_acs_jpcc_8b12333 crossref_primary_10_1007_s12274_016_1338_9 crossref_primary_10_1007_s13738_016_0976_x crossref_primary_10_1088_1674_1056_27_1_016301 crossref_primary_10_1016_j_chemosphere_2018_06_117 crossref_primary_10_1039_D3CP04963A crossref_primary_10_1016_j_heliyon_2023_e19362 crossref_primary_10_1016_j_apsusc_2024_160851 crossref_primary_10_1007_s11998_019_00261_y crossref_primary_10_1002_adsu_202100095 crossref_primary_10_3390_nano13091546 crossref_primary_10_1007_s10562_023_04491_z crossref_primary_10_3389_fbioe_2019_00363 crossref_primary_10_1088_1361_648X_aaa2d7 crossref_primary_10_1007_s10904_023_02594_z crossref_primary_10_3390_nano14020154 crossref_primary_10_1088_2053_1583_ac0c2a crossref_primary_10_1002_admi_202200610 crossref_primary_10_1140_epjb_s10051_020_00012_8 crossref_primary_10_1021_acscatal_4c04463 crossref_primary_10_1016_j_commatsci_2018_09_040 crossref_primary_10_1016_j_compositesb_2021_109168 crossref_primary_10_1016_j_compscitech_2021_109131 crossref_primary_10_1063_1_4966554 crossref_primary_10_1088_1361_665X_ad1fa8 crossref_primary_10_1016_j_nwnano_2023_100008 crossref_primary_10_1021_acs_iecr_3c00985 crossref_primary_10_1063_1_5039823 crossref_primary_10_1021_acsnano_8b02970 crossref_primary_10_1021_acs_jpclett_1c02626 crossref_primary_10_1016_j_vacuum_2023_112126 crossref_primary_10_1039_C6NR09312D crossref_primary_10_1039_C8NR00857D crossref_primary_10_1039_D1NJ01610E crossref_primary_10_1039_D2NH00451H crossref_primary_10_3390_nano7050115 crossref_primary_10_1002_smll_201604179 crossref_primary_10_1016_j_ces_2024_120821 crossref_primary_10_1016_j_rinp_2022_105208 crossref_primary_10_1021_acsnano_7b08977 crossref_primary_10_1016_j_ceramint_2024_03_082 crossref_primary_10_1038_s41598_025_92888_8 crossref_primary_10_1021_acs_jpclett_2c01431 crossref_primary_10_1002_advs_201801501 crossref_primary_10_1557_s43578_022_00607_0 crossref_primary_10_1007_s11224_021_01842_7 crossref_primary_10_1111_jace_19126 crossref_primary_10_1002_pssr_202300479 crossref_primary_10_1021_acs_jpcc_1c01756 crossref_primary_10_1016_j_jallcom_2020_158153 crossref_primary_10_1016_j_comptc_2025_115195 crossref_primary_10_1063_5_0202909 crossref_primary_10_1016_j_apsusc_2017_01_066 crossref_primary_10_1002_cphc_202100645 crossref_primary_10_1007_s12274_018_2076_y crossref_primary_10_1007_s11709_020_0616_5 crossref_primary_10_1039_C9TA06599G crossref_primary_10_1088_1674_4926_40_12_121801 crossref_primary_10_1080_10408347_2021_1919987 crossref_primary_10_1021_acs_chemmater_0c03549 crossref_primary_10_1021_acs_jpcc_0c10881 crossref_primary_10_1039_C8TB01649F crossref_primary_10_1016_j_diamond_2023_110736 crossref_primary_10_1103_PhysRevMaterials_1_045001 crossref_primary_10_1016_j_comptc_2024_114806 crossref_primary_10_1016_j_memsci_2018_07_003 crossref_primary_10_1016_j_nantod_2019_100799 crossref_primary_10_1039_D3VA00239J crossref_primary_10_26599_JAC_2023_9220810 crossref_primary_10_1002_anie_201904996 crossref_primary_10_1002_smll_202405404 crossref_primary_10_1021_jacs_8b08165 crossref_primary_10_1039_C7CS00261K crossref_primary_10_1007_s40843_022_2112_y crossref_primary_10_1088_2053_1591_aa9a7f crossref_primary_10_3390_inorganics12070193 crossref_primary_10_1021_acsomega_7b00061 crossref_primary_10_1186_s11671_024_03967_0 crossref_primary_10_1038_s41467_019_09016_0 crossref_primary_10_1088_2053_1583_adb6bb crossref_primary_10_1039_D1CC03011F crossref_primary_10_1021_acsami_1c10919 crossref_primary_10_1088_1361_6528_ad0052 crossref_primary_10_1016_j_apsusc_2019_02_203 crossref_primary_10_1016_j_cej_2018_05_053 crossref_primary_10_1039_D4CP02137A crossref_primary_10_1021_acsabm_8b00145 crossref_primary_10_1016_j_nantod_2019_02_006 crossref_primary_10_1016_j_compositesb_2022_110378 crossref_primary_10_1002_ange_202106161 crossref_primary_10_1021_acs_cgd_8b01542 crossref_primary_10_1016_j_comptc_2024_114836 crossref_primary_10_1039_D0CP01990A crossref_primary_10_1088_2053_1583_ad27e8 crossref_primary_10_1038_s41699_019_0115_5 crossref_primary_10_1039_C9NA00702D crossref_primary_10_1002_ange_202317256 crossref_primary_10_1016_j_apsusc_2020_147513 crossref_primary_10_1002_anie_202106161 crossref_primary_10_1016_j_physb_2023_415178 crossref_primary_10_1016_j_jmat_2022_05_007 crossref_primary_10_1007_s12274_023_5515_3 crossref_primary_10_1021_acs_iecr_1c02102 crossref_primary_10_1002_tcr_202000079 crossref_primary_10_1016_j_mseb_2021_115118 crossref_primary_10_1021_acsami_8b07332 crossref_primary_10_1007_s12274_016_1393_2 crossref_primary_10_1016_j_orgel_2021_106322 crossref_primary_10_1016_j_compositesa_2017_12_031 crossref_primary_10_1016_j_colsurfb_2020_110964 crossref_primary_10_1371_journal_pone_0305555 crossref_primary_10_1021_acscentsci_0c00822 crossref_primary_10_1016_j_diamond_2024_111463 crossref_primary_10_1021_acs_jpcc_8b07660 crossref_primary_10_1016_j_cej_2018_04_196 crossref_primary_10_1088_1361_6463_abdb6b crossref_primary_10_1021_acsami_2c21545 crossref_primary_10_1016_j_ensm_2020_10_004 crossref_primary_10_1021_acssuschemeng_8b04241 crossref_primary_10_1016_j_orgel_2020_105742 crossref_primary_10_1016_j_isci_2021_102251 crossref_primary_10_1021_acsaelm_2c00013 crossref_primary_10_1002_aenm_201903921 crossref_primary_10_1002_chem_201802958 crossref_primary_10_1016_j_compositesa_2023_107598 crossref_primary_10_7498_aps_66_217304 crossref_primary_10_1016_j_mattod_2017_09_001 crossref_primary_10_1016_j_surfrep_2018_10_001 crossref_primary_10_1002_anie_202317256 crossref_primary_10_1039_D1RA05727H crossref_primary_10_1016_j_physb_2023_415078 crossref_primary_10_2147_IJN_S266948 crossref_primary_10_1016_j_chroma_2018_07_008 crossref_primary_10_1002_adfm_201603181 crossref_primary_10_1088_1674_4926_38_3_031004 crossref_primary_10_1016_j_jmst_2021_03_084 crossref_primary_10_1021_acs_accounts_2c00564 crossref_primary_10_1021_acs_iecr_4c02418 crossref_primary_10_1088_1674_4926_38_3_031003 crossref_primary_10_7498_aps_71_20220407 crossref_primary_10_1021_acsphotonics_7b00977 crossref_primary_10_1016_j_apsusc_2019_144860 crossref_primary_10_3390_nano14151259 crossref_primary_10_1016_j_surfin_2023_102925 crossref_primary_10_1039_D0TA05008C crossref_primary_10_1007_s42823_022_00423_w crossref_primary_10_1088_1361_6528_abe155 crossref_primary_10_3390_analytica5040040 crossref_primary_10_1002_adfm_201906284 crossref_primary_10_1016_j_ica_2023_121838 crossref_primary_10_1038_s41598_023_38106_9 |
Cites_doi | 10.1021/nn202141k 10.1021/nl302398m 10.1007/s10853-015-9180-0 10.1039/C5NR01473E 10.1016/j.cplett.2009.11.051 10.1039/c3nr01180a 10.1063/1.3234374 10.1021/jp2015269 10.1063/1.3662043 10.1126/science.1244358 10.1103/PhysRevLett.109.205502 10.1021/nn305320v 10.1002/adma.200600231 10.1103/PhysRevB.74.035413 10.1038/ncomms7519 10.1038/nnano.2015.242 10.1063/1.3625922 10.1002/adma.201304937 10.1016/S0038-1098(00)00281-7 10.1103/PhysRevB.82.113406 10.1039/c0cp02001j 10.1103/PhysRevB.76.073103 10.1103/PhysRevB.65.041406 10.1039/c3nr03714b 10.1103/PhysRevLett.102.195505 10.1021/ja400637n 10.1021/nl049862e 10.1016/j.cplett.2009.06.012 10.1021/nn404331f 10.1038/srep00849 10.1103/PhysRevB.81.075125 10.1103/PhysRevB.86.125437 10.1039/c3cp44460k 10.1038/nphoton.2009.167 10.1021/nl103251m 10.1002/app.27949 10.1103/PhysRevB.80.035408 10.1039/c0cc05738j 10.1021/jp405536x 10.1021/jp5122799 10.1021/nl404735w 10.1021/nn901648q 10.1063/1.1745964 10.1039/c1nr10504c 10.1021/acs.nanolett.5b01704 10.1002/pssa.200405188 10.1021/nl400559s 10.1039/C5RA12615K 10.1103/PhysRevB.51.4606 10.1038/ncomms4193 10.1021/nn302696v 10.1021/cm034805s 10.1021/nl4033704 10.1038/ncomms8507 10.1103/PhysRevB.80.155425 10.1103/PhysRevB.83.115328 10.1002/1521-4095(200111)13:22<1701::AID-ADMA1701>3.0.CO;2-Q 10.1038/srep02666 10.1088/0957-4484/25/10/105701 10.1021/nn503140y 10.1002/smll.201500210 10.1021/nl400815w 10.1103/PhysRevB.84.235424 10.1021/nl401308v 10.1063/1.3373571 10.1021/jp400420m 10.1021/jp200671p 10.1038/nphys2954 10.1039/C2CP42994B 10.1016/j.ssc.2008.02.024 10.1021/nn5003858 10.1063/1.3115446 10.1063/1.3556640 10.1103/PhysRevLett.79.4609 10.1021/jp300593q 10.1016/j.mattod.2014.07.006 10.1021/ja901586k 10.1103/PhysRevB.84.195414 10.1038/ncomms7308 10.1126/science.1243879 10.1063/1.4764533 10.1021/nl3004754 10.1021/jp402297n 10.1038/nnano.2008.58 10.1021/nl1023707 10.1126/science.1144216 10.1039/C5CP02192H 10.1038/nnano.2014.60 10.1038/srep10337 10.1103/PhysRevB.93.085406 10.1021/nn500059s 10.1038/am.2015.8 10.1021/nl2011142 10.1007/s12274-015-0816-9 10.1002/anie.201207972 10.1103/PhysRevB.68.085404 10.1038/nature12186 10.1103/PhysRevB.89.201404 10.1021/acs.nanolett.5b01852 10.1039/C3CS60260E 10.1016/j.susc.2006.06.016 10.1063/1.4819266 10.1103/PhysRevB.80.224301 10.1038/srep05241 10.1038/nature11408 10.1021/nl200464j 10.1021/nn302099q 10.1021/nl5006542 10.1002/smll.201402468 10.1103/PhysRevLett.111.266801 10.1021/acs.chemmater.5b00505 10.1021/cm502170q 10.1103/PhysRevB.84.205412 10.1021/nl4021123 10.1007/s10409-012-0163-y 10.1038/srep04453 10.1103/PhysRevB.68.104102 10.1103/PhysRevB.83.073405 10.1021/nn402452p 10.1016/j.susc.2010.06.001 10.1021/nn5058968 10.1038/nnano.2015.91 10.1063/1.4870530 10.1103/PhysRevLett.80.4502 10.1021/nl304080y 10.1088/2053-1583/1/2/025003 10.1103/PhysRevB.90.155406 10.1103/PhysRevLett.94.015504 10.1021/nl5046632 10.1021/ar400310g 10.1002/adma.201504042 10.1021/am400016y 10.1021/acs.nanolett.5b00648 10.1021/cm502603n 10.1021/nn501837c 10.1063/1.2812113 10.1021/nl203635v 10.1038/nnano.2008.199 10.1063/1.1938002 10.1038/nature12385 10.1039/C5NR08036C 10.1021/nl502110q 10.1002/smll.200902087 10.1002/anie.200903246 10.1103/PhysRevLett.111.036104 10.1021/nl502445j 10.1021/ja908475v 10.1038/ncomms3541 10.1021/acs.chemmater.5b03607 10.1021/nl404207f 10.1002/ange.201209597 10.1038/nmat4205 10.1002/adma.201304301 10.1063/1.4730392 10.1021/nl201616h 10.1021/acs.jpca.5b01308 10.1021/nl2014857 10.1126/science.1211649 10.1021/nl5022915 10.1016/0039-6028(96)00134-3 10.1103/PhysRevB.78.155204 10.1103/PhysRevB.67.014108 10.1103/PhysRevB.13.5560 10.1002/adma.200900323 10.1038/ncomms7499 10.1021/nn101809j 10.1021/jz2009506 10.1103/PhysRevLett.105.266601 10.1002/advs.201500023 10.1063/1.2162897 10.1063/1.3559300 10.1063/1.3533804 10.1038/nmat1134 10.1103/PhysRevB.65.165410 10.1038/ncomms2818 10.1021/ja017817s 10.1039/C4RA09156F 10.1126/science.1194975 10.1103/PhysRevB.84.075405 10.1103/PhysRevB.72.035418 10.1103/PhysRevLett.113.096801 10.1021/nn300495t 10.1103/PhysRevB.75.193409 10.1021/nl080745j 10.1103/PhysRevLett.113.176101 10.1021/ja410088y 10.1103/PhysRevLett.108.226805 10.1021/ct1006345 10.1021/jp8079827 10.1021/nl2035749 10.1002/smll.201502173 10.1016/j.cplett.2010.01.073 10.1021/ja206703x 10.1016/j.susc.2003.08.046 10.1021/acs.nanolett.5b04874 10.1126/science.1218461 10.1063/1.3040007 10.1063/1.1733815 10.1021/nn504809n 10.1140/epjb/e2009-00043-5 10.1103/PhysRevLett.102.206603 10.1063/1.2679007 10.1103/PhysRevB.91.121412 10.1002/smll.201501439 10.1038/nphys2441 10.1021/nl1022139 10.1088/1674-1056/19/8/086105 10.1002/adfm.201304146 10.1038/srep16159 10.1103/PhysRevB.80.241415 10.1126/science.aad1080 10.1038/nmat3001 10.1103/PhysRevLett.105.046801 10.1039/C4RA05753H 10.1103/PhysRevLett.106.126102 10.1002/anie.201505425 10.1002/adma.201204904 10.1002/adma.201301336 10.1103/PhysRevLett.75.3918 10.1038/nnano.2010.172 10.1039/C5NR04490A 10.1021/cm201938h 10.1021/nn301940k 10.1002/smll.201400292 10.1038/nnano.2012.256 10.1088/0022-3727/42/8/085403 10.1063/1.3679174 10.1038/nnano.2015.70 10.1103/PhysRevB.86.115415 10.1002/prac.18420270164 10.1002/adma.200800137 10.1021/nl9011497 10.1063/1.4824750 10.1021/nn301675f 10.1039/C5NR02143J 10.1038/srep07743 10.1038/nnano.2015.203 10.1038/ncomms9662 10.1016/S0009-2614(00)00637-0 10.1103/PhysRevB.81.155433 10.1038/ncomms7835 10.1016/0022-0248(81)90206-2 10.1103/PhysRevLett.112.085502 10.1038/ncomms9849 10.1021/nl3011726 10.1021/acsnano.5b01261 10.1209/0295-5075/28/5/007 10.1021/acsnano.5b05847 10.1038/am.2012.10 10.1038/nnano.2015.188 10.1103/PhysRevLett.96.026402 10.1103/PhysRevLett.108.206802 10.1103/PhysRevB.39.1760 10.1021/nl203249a 10.1038/ncomms6221 10.1103/PhysRevB.69.201401 10.1038/nchem.1999 10.1103/PhysRevB.82.113404 10.1021/cm048629e 10.1103/PhysRevB.78.205415 10.1021/cm7028382 10.1021/nn1006495 10.1126/science.1171245 10.1038/nmat2711 10.1021/nl0498785 10.1021/jp105454w 10.1021/ja042388u 10.1103/PhysRevB.77.075403 10.1021/nn4009356 10.1021/ja507235s 10.1088/0957-4484/15/12/025 10.1126/science.1246137 10.1103/PhysRevLett.96.126104 10.1038/nmat3695 10.1103/PhysRevB.82.035412 10.1038/ncomms4113 10.1021/cr300356t 10.1103/PhysRevB.72.045434 10.1021/nl301406f 10.1103/PhysRevB.79.115442 10.1088/0957-4484/23/41/415605 10.1103/PhysRevLett.104.096102 10.1038/nature07736 10.1002/smll.201001628 10.1038/ncomms7160 10.1063/1.2903702 10.1002/adma.201204031 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M F28 FR3 |
DOI | 10.1002/smll.201600053 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | PubMed Materials Research Database Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 2968 |
ExternalDocumentID | 4079133941 27073174 10_1002_smll_201600053 SMLL201600053 ark_67375_WNG_PG57R8BX_R |
Genre | article Journal Article |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- AAHQN AAMNL AANHP AAYCA AFWVQ ALVPJ AAYXX ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M F28 FR3 |
ID | FETCH-LOGICAL-c5103-82f41094cb627571f41779049cb1319112e908b946be5377c4e15353005569433 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Fri Jul 11 04:01:41 EDT 2025 Sun Jul 13 04:54:15 EDT 2025 Mon Jul 21 05:18:30 EDT 2025 Tue Jul 01 02:10:22 EDT 2025 Thu Apr 24 23:05:11 EDT 2025 Wed Jan 22 17:04:41 EST 2025 Wed Oct 30 09:56:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5103-82f41094cb627571f41779049cb1319112e908b946be5377c4e15353005569433 |
Notes | ArticleID:SMLL201600053 ark:/67375/WNG-PG57R8BX-R istex:DF390CB944E7F5BF9A3C05DA5B74F64D63110BD5 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27073174 |
PQID | 1793934029 |
PQPubID | 1046358 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_1825488324 proquest_journals_1793934029 pubmed_primary_27073174 crossref_citationtrail_10_1002_smll_201600053 crossref_primary_10_1002_smll_201600053 wiley_primary_10_1002_smll_201600053_SMLL201600053 istex_primary_ark_67375_WNG_PG57R8BX_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Jun |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-Jun |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | M. Titov, M. I. Katsnelson, Phys. Rev. Lett. 2014, 113, 096801. Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou, P. M. Ajayan, Nat. Commun. 2013, 4, 2541. E. Hernández, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 1998, 80, 4502. A. Zunger, A. Katzir, A. Halperin, Phys. Rev. B 1976, 13, 5560. R. Balu, X. Zhong, R. Pandey, S. P. Karna, Appl. Phys. Lett. 2012, 100, 052104. Y. G. Zhou, P. Yang, Z. G. Wang, X. T. Zu, H. Y. Xiao, X. Sun, M. A. Khaleel, F. Gao, Phys. Chem. Chem. Phys. 2011, 13, 7378. Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Chem. Mater. 2008, 20, 1661. R. Mukherjee, S. Bhowmick, J. Chem. Theory Comput. 2011, 7, 720. G. H. Ryu, H. J. Park, J. Ryou, J. Park, J. Lee, G. Kim, H. S. Shin, C. W. Bielawski, R. S. Ruoff, S. Hong, Z. Lee, Nanoscale 2015, 7, 10600. C. Zhang, L. Fu, S. Zhao, Y. Zhou, H. Peng, Z. Liu, Adv. Mater. 2014, 26, 1776. J. Kunstmann, A. Quandt, Phys. Rev. B 2006, 74, 035413. E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, F. Guinea, Phys. Rev. Lett. 2010, 105, 266601. F. Zheng, G. Zhou, Z. Liu, J. Wu, W. Duan, B.-L. Gu, S. B. Zhang, Phys. Rev. B 2008, 78, 205415. L. Li, L. H. Li, Y. Chen, X. J. Dai, P. R. Lamb, B.-M. Cheng, M.-Y. Lin, X. Liu, Angew. Chemie 2013, 125, 4306. B. E. Douglas, S. M. Ho, Structure and Chemistry of Crystalline Solids, Springer, N.Y., 2006. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, ACS Nano 2012, 6, 8583. M. Terauchi, M. Tanaka, K. Suzuki, A. Ogino, K. Kimura, Chem. Phys. Lett. 2000, 324, 359. X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, J. Hone, Nat. Nanotech. 2015, 10, 534. B. Arnaud, S. Lebegue, P. Rabiller, M. Alouani, Phys. Rev. Lett. 2006, 96, 026402. Z. Zhang, W. Guo, Phys. Rev. B 2008, 77, 075403. P. R. Kidambi, R. Blume, J. Kling, J. B. Wagner, C. Baehtz, R. S. Weatherup, R. Schloegl, B. C. Bayer, S. Hofmann, Chem. Mater. 2014, 26, 6380. N. Marom, J. Bernstein, J. Garel, A. Tkatchenko, E. Joselevich, L. Kronik, O. Hod, Phys. Rev. Lett. 2010, 105, 046801. A. R. Oganov, J. H. Chen, C. Gatti, Y. Z. Ma, Y. M. Ma, C. W. Glass, Z. X. Liu, T. Yu, O. O. Kurakevych, V. L. Solozhenko, Nature 2009, 457, 863. J. L. He, E. D. Wu, H. T. Wang, R. P. Liu, Y. J. Tian, Phys. Rev. Lett. 2005, 94, 015504. T. T. Tran, K. Bray, M. J. Ford, M. Toth, I. Aharonovich, Nat. Nanotechnol. 2015, 11, 37. X. Blase, A. Rubio, S. Louie, M. Cohen, Euro. Phys. Lett. 1994, 28, 335. Y. Gao, W. Ren, T. Ma, Z. Liu, Y. Zhang, W.-B. Liu, L.-P. Ma, X. Ma, H.-M. Cheng, ACS Nano 2013, 7, 5199. T. Ishii, T. Sato, Y. Sekikawa, M. Iwata, J. Cryst. Growth 1981, 52, 285. A. Sinitskii, K. J. Erickson, W. Lu, A. L. Gibb, C. Zhi, Y. Bando, D. Golberg, A. Zettl, J. M. Tour, ACS Nano 2014, 8, 9867. M. Kan, J. Zhou, Q. Wang, Q. Sun, P. Jena, Phys. Rev. B 2011, 84, 205412. J. H. Meng, X. W. Zhang, H. L. Wang, X. B. Ren, C. H. Jin, Z. G. Yin, X. Liu, H. Liu, Nanoscale 2015, 7, 16046. L. Liu, Y. P. Feng, Z. X. Shen, Phys. Rev. B 2003, 68, 104102. E. Husain, T. N. Narayanan, J. J. Taha-Tijerina, S. Vinod, R. Vajtai, P. M. Ajayan, Acs Appl. Mater. Interfaces 2013, 5, 4129. A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Phys. Rev. Lett. 1995, 75, 3918. S. H. Zhang, Y. W. Li, T. S. Zhao, Q. Wang, Sci. Rep. 2014, 4, 5241. K. H. Michel, B. Verberck, Phys. Rev. B 2009, 80, 224301. J. Miller, Phys. Today 2007, 60, 20. Z.-X. Xie, L.-M. Tang, C.-N. Pan, Q. Chen, K.-Q. Chen, J. Appl. Phys. 2013, 114, 144311. A. L. Gibb, N. Alem, J.-H. Chen, K. J. Erickson, J. Ciston, A. Gautam, M. Linck, A. Zettl, J. Am. Chem. Soc. 2013, 135, 6758. Z.-H. Zhang, W.-L. Guo, B. I. Yakobson, Acta Mech. Sinica 2012, 28, 1532. A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, R. V. Gorbachev, Nano Lett. 2014, 14, 3270. A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 2014, 43, 934. Q. Weng, X. Wang, C. Zhi, Y. Bando, D. Golberg, ACS Nano 2013, 7, 1558. F. Müller, K. Stöwe, H. Sachdev, Chem. Mater. 2005, 17, 3464. W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Nat. Commun. 2013, 4, 1777. J. Yang, D. Kim, J. Hong, X. Qian, Surf. Sci. 2010, 604, 1603. L. C. Gomes, S. S. Alexandre, H. Chacham, R. W. Nunes, J. Phys. Chem. C 2013, 117, 11770. W. Auwärter, H. U. Suter, H. Sachdev, T. Greber, Chem. Mater. 2004, 16, 343. G. Kim, H. Lim, K. Y. Ma, A. R. Jang, G. H. Ryu, M. Jung, H.-J. Shin, Z. Lee, H. S. Shin, Nano Lett. 2015, 15, 4769. M. Yi, Z. Shen, L. Liu, S. Liang, RSC Adv 2015, 5, 2983. P. Bharadwaj, M. Parzefall, A. Jain, T. Taniguchi, K. Watanabe, L. Novotny, Nat. Nanotechnol. 2015, 10, 1058. L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 2006, 96, 126104. M. Morscher, M. Corso, T. Greber, J. Osterwalder, Surf. Sci. 2006, 600, 3280. Z. Zhang, W. Guo, Y. Dai, Appl. Phys. Lett. 2008, 93, 223108. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Nat. Mater. 2011, 10, 424. E. S. Penev, S. Bhowmick, A. Sadrzadeh, B. I. Yakobson, Nano Lett. 2012, 12, 2441. F. P. Bundy, R. H. Wentorf, J. Chem. Phys. 1963, 38, 1144. Y. Fan, M. Zhao, Z. Wang, X. Zhang, H. Zhang, Appl. Phys. Lett. 2011, 98, 083103. E. Kan, F. Wu, H. Xiang, J. Yang, M.-H. Whangbo, J. Phys. Chem. C 2011, 115, 17252. T. T. Xu, J.-G. Zheng, Wu, A. W. Nicholls, J. R. Roth, D. A. Dikin, R. S. Ruoff, Nano Lett. 2004, 4, 963. S. Wang, Q. Chen, J. Wang, Appl. Phys. Lett. 2011, 99, 063114. T. Gao, X. Song, H. Du, Y. Nie, Y. Chen, Q. Ji, J. Sun, Y. Yang, Y. Zhang, Z. Liu, Nat. Commun. 2015, 6, 6835. M. Bernardi, M. Palummo, J. C. Grossman, Phys. Rev. Lett. 2012, 108, 226805. J. Sławińska, I. Zasada, Z. Klusek, Phys. Rev. B 2010, 81, 155433. H.-J. Zhai, Y.-F. Zhao, W.-L. Li, Q. Chen, H. Bai, H.-S. Hu, Z. A. Piazza, W.-J. Tian, H.-G. Lu, Y.-B. Wu, Y.-W. Mu, G.-F. Wei, Z.-P. Liu, J. Li, S.-D. Li, L.-S. Wang, Nat. Chem. 2014, 6, 727. G.-H. Lee, Y.-J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, J. Hone, Appl. Phys. Lett. 2011, 99, 243114. G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. van den Brink, Phys. Rev. B 2007, 76, 073103. W. Balmain, J. Prakt. Chem. 1842, 27, 422. J. Xu, Y. Chang, L. Gan, Y. Ma, T. Zhai, Adv. Sci. 2015, 2, 1500023. M. H. Evans, J. D. Joannopoulos, S. T. Pantelides, Phys. Rev. B 2005, 72, 045434. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351. X. Hong, K. Zou, J. Zhu, Phys. Rev. B 2009, 80, 241415. J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568. J. Kotakoski, C. H. Jin, O. Lehtinen, K. Suenaga, A. V. Krasheninnikov, Phys. Rev. B 2010, 82, 113404. T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, W. B. Carter, Science 2011, 334, 962. Y. Dai, W. Guo, Z. Zhang, B. Zhou, C. Tang, J. Phys. D: Appl. Phys. 2009, 42, 085403. L. Wang, B. Wu, J. Chen, H. Liu, P. Hu, Y. Liu, Adv. Mater. 2014, 26, 1559. B. Meng, W. Z. Xiao, L. L. Wang, L. Yue, S. Zhang, H. Y. Zhang, RSC Adv. 2015, 5, 82357. A. Fathalizadeh, T. Pham, W. Mickelson, A. Zettl, Nano Lett. 2014, 14, 4881. Y. Y. Liu, E. S. Penev, B. I. Yakobson, Angew. Chem. Int. Ed. 2013, 52, 3156. M. H. Khan, Z. Huang, F. Xiao, G. Casillas, Z. Chen, P. J. Molino, H. K. Liu, Sci. Rep. 2015, 5, 7743. J. Yin, X. Liu, W. Lu, J. Li, Y. Cao, Y. Li, Y. Xu, X. Li, J. Zhou, C. Jin, W. Guo, Small 2015, 11, 5375. P. Sutter, J. Lahiri, P. Zahl, B. Wang, E. Sutter, Nano Lett. 2013, 13, 276. T. Ashton, A. Moore, J. Mater. Sci. 2015, 50, 6220. D. Liu, W. Lei, S. Qin, Y. Chen, Sci. Rep. 2014, 4, 4453. J. C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, U. Kaiser, Nano Lett. 2009, 9, 2683. V. Barone, J. E. Peralta, Nano Lett. 2008, 8, 2210. H. Wang, X. Zhang, J. Meng, Z. Yin, X. Liu, Y. Zhao, L. Zhang, Small 2015, 11, 1542. F. Oba, A. Togo, I. Tanaka, K. Watanabe, T. Taniguchi, Phys. Rev. B 2010, 81, 075125. A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, A. I. Boldyrev, Acc. Chem. Res. 2014, 47, 1349. Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C. H. Lee, C. Sun, L. Calderin, P. N. Browning, M. S. Bresnehan, M. J. Kim, T. S. Mayer, M. Terrones, J. A. Robinson, ACS Nano 2014, 8, 3715. P. Moon, M. Koshino, Phys. Rev. B 2014, 90, 155406. M. Topsakal, E. Aktürk, S. Ciraci, Phys. Rev. B 2009, 79, 115442. M. Loeblein, R. Y. Tay, S. H. Tsang, W. B. Ng, E. H. T. Teo, Small 2014, 10, 2992. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722. H. Zhao, X. Song, H. Zeng, NPG Asia Mater. 2015, 7, e168. S. Tang, H. Wang, Y. Zhang, A. Li, H. Xie, X. Liu, L. Liu, T. Li, F. Huang, X. Xie, M. Jiang, Sci. Rep. 2013, 3, 2666. Q. Wu, J.-H. Park, S. Park, S. J. Jung, H. Suh, N. Park, W. Wongwiriyapan, S. Lee, Y. H. Lee, Y. J. Song, Sci. Rep. 2015, 5, 16159. S. Schlienger, J. Alauzun, F. Michaux, L. Vidal, J. Parmentier, C. Gervais, F. Babonneau, S. Bernard, P. Miele, J. B. Parra, Chem. Mater. 2012, 24, 88. C. Gautam, C. S. Tiwary, S. Jose, G. Brunetto, S. Ozden, S. Vinod, P. Raghavan, S. Biradar, D. S. Galvao, P. M. Ajayan, ACS Nano 2015, 9, 12088. S. M. Jung, H. Y. Jung, M. S. Dresselhaus, Y. J. Jung, J. Kong, Sci. Rep. 2012, 2, 849. X. Wu, J. Yang, J. G. Hou, Q. Zhu, J. Chem. Phys. 2006, 124, 054706. R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A 2011; 115 2010; 10 2013; 3 2013; 4 2004; 201 2010; 107 2009; 80 2010; 19 2010; 105 2010; 104 2008; 109 2004; 4 2014; 26 2004; 3 2014; 25 2013; 125 2009; 113 2009; 476 2014; 24 1998; 80 2013; 7 2012; 488 2007; 75 2013; 8 2007; 76 2012; 12 2013; 5 2014; 136 2009; 95 2010; 114 2013; 117 2013; 52 2013; 111 2014; 14 2013; 114 2013; 113 2007; 60 2012; 28 2015; 91 2014; 17 2008; 20 2005; 72 2006; 600 2012; 24 2012; 23 2010; 5 2010; 4 2010; 6 2014; 10 2010; 9 1989; 39 2009; 67 1995; 51 2012; 100 2010; 604 2011; 2 2012; 101 2015; 50 2000; 116 2011; 84 2011; 83 2015; 54 2013; 342 2007; 90 2013; 103 2005; 86 2014; 47 2016; 93 2011; 3 2016; 16 2011; 5 2011; 7 2012; 108 2011; 133 2014; 43 2012; 109 2009; 457 2015; 350 2009; 79 2007; 317 2002; 124 2002; 65 2005; 127 2009; 102 2015; 119 2005; 94 2005; 17 2012; 116 2016; 8 2009; 105 1995; 75 2006; 74 2013; 25 2009; 42 2004; 69 2011; 11 2008; 78 2011; 99 2011; 10 2011; 98 2008; 8 2011; 13 2008; 77 2008; 3 2008; 146 1994; 28 2009; 48 2014; 1 1842; 27 1963; 38 2014; 5 2013; 15 2014; 4 1842; 21 2013; 13 2000; 324 2013; 12 2014; 9 2014; 8 2012; 335 2001; 13 2014; 6 2009; 324 2006; 124 2015; 2 2015; 15 2011; 334 2015; 14 2015; 6 2015; 17 2006; 96 2015; 5 2014; 90 2009; 21 2010; 488 2015; 11 1996; 357–358 2015; 10 2010; 484 2006; 18 2006 2009; 131 2010; 81 2015; 9 2008; 92 2015; 8 2015; 7 2008; 93 2014; 89 2011; 331 2014; 112 2010; 82 2014; 113 2012; 2 2011; 109 2015; 27 1976; 13 2003; 545 2011; 106 2004; 16 2004; 15 1997; 79 2013; 497 2003; 68 2010; 132 2013; 499 2009; 9 2013; 135 2015 2011; 47 2012; 6 2009; 3 2012; 4 1981; 52 1957; 26 2012; 86 2014; 104 2014; 343 2012; 8 2003; 67 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_248_1 e_1_2_7_225_1 e_1_2_7_263_1 e_1_2_7_240_1 e_1_2_7_116_1 e_1_2_7_285_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_275_1 e_1_2_7_252_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_249_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 e_1_2_7_241_1 e_1_2_7_264_1 e_1_2_7_117_1 e_1_2_7_284_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_238_1 Balmain W. (e_1_2_7_1_1) 1842; 21 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_253_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_295_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_265_1 e_1_2_7_242_1 e_1_2_7_118_1 e_1_2_7_283_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_239_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_254_1 e_1_2_7_231_1 e_1_2_7_294_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_279_1 Douglas B. E. (e_1_2_7_267_1) 2006 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_266_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_282_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_255_1 e_1_2_7_157_1 e_1_2_7_270_1 e_1_2_7_108_1 e_1_2_7_293_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_278_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_244_1 e_1_2_7_221_1 e_1_2_7_281_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_289_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_256_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_271_1 e_1_2_7_292_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_277_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_245_1 e_1_2_7_268_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_260_1 e_1_2_7_280_1 e_1_2_7_113_1 e_1_2_7_288_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_234_1 e_1_2_7_257_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_272_1 e_1_2_7_291_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_276_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_269_1 e_1_2_7_186_1 e_1_2_7_246_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_261_1 e_1_2_7_114_1 e_1_2_7_287_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_258_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_273_1 e_1_2_7_250_1 e_1_2_7_290_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_247_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_262_1 e_1_2_7_115_1 e_1_2_7_286_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_236_1 e_1_2_7_259_1 e_1_2_7_138_1 e_1_2_7_274_1 e_1_2_7_251_1 |
References_xml | – reference: J. Yang, D. Kim, J. Hong, X. Qian, Surf. Sci. 2010, 604, 1603. – reference: K. J. Erickson, A. L. Gibb, A. Sinitskii, M. Rousseas, N. Alem, J. M. Tour, A. K. Zettl, Nano Lett. 2011, 11, 3221. – reference: Y. Gao, W. Ren, T. Ma, Z. Liu, Y. Zhang, W.-B. Liu, L.-P. Ma, X. Ma, H.-M. Cheng, ACS Nano 2013, 7, 5199. – reference: Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, P. M. Ajayan, Nano Lett. 2011, 11, 2032. – reference: A. Sinitskii, K. J. Erickson, W. Lu, A. L. Gibb, C. Zhi, Y. Bando, D. Golberg, A. Zettl, J. M. Tour, ACS Nano 2014, 8, 9867. – reference: N. Alem, R. Erni, C. Kisielowski, M. D. Rossell, W. Gannett, A. Zettl, Phys. Rev. B 2009, 80, 155425. – reference: S. Wang, Q. Chen, J. Wang, Appl. Phys. Lett. 2011, 99, 063114. – reference: L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, L. A. Ponomarenko, Science 2012, 335, 947. – reference: X. Li, X. Wu, X. C. Zeng, J. Yang, ACS Nano 2012, 6, 4104. – reference: L. A. Ponomarenko, R. Yang, T. M. Mohiuddin, M. I. Katsnelson, K. S. Novoselov, S. V. Morozov, A. A. Zhukov, F. Schedin, E. W. Hill, A. K. Geim, Phys. Rev. Lett. 2009, 102, 206603. – reference: K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351. – reference: M. H. Evans, J. D. Joannopoulos, S. T. Pantelides, Phys. Rev. B 2005, 72, 045434. – reference: F. P. Bundy, R. H. Wentorf, J. Chem. Phys. 1963, 38, 1144. – reference: C.-W. Chen, M.-H. Lee, S. Clark, Nanotechnology 2004, 15, 1837. – reference: X. Li, J. Yin, J. Zhou, W. Guo, Nanotechnology 2014, 25, 105701. – reference: F. Orlando, P. Lacovig, L. Omiciuolo, N. G. Apostol, R. Larciprete, A. Baraldi, S. Lizzit, ACS Nano 2014, 8, 12063. – reference: A. K. Geim, I. V. Grigorieva, Nature 2013, 499, 419. – reference: J. L. He, E. D. Wu, H. T. Wang, R. P. Liu, Y. J. Tian, Phys. Rev. Lett. 2005, 94, 015504. – reference: S. H. Zhang, Y. W. Li, T. S. Zhao, Q. Wang, Sci. Rep. 2014, 4, 5241. – reference: A. L. Gibb, N. Alem, J.-H. Chen, K. J. Erickson, J. Ciston, A. Gautam, M. Linck, A. Zettl, J. Am. Chem. Soc. 2013, 135, 6758. – reference: S. Schlienger, J. Alauzun, F. Michaux, L. Vidal, J. Parmentier, C. Gervais, F. Babonneau, S. Bernard, P. Miele, J. B. Parra, Chem. Mater. 2012, 24, 88. – reference: Z. H. Zhang, Y. Yang, G. Y. Gao, B. I. Yakobson, Angew. Chem. Int. Ed. 2015, 54, 13022. – reference: Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Science 2007, 317, 932. – reference: H. F. Bettinger, T. Dumitrică, G. E. Scuseria, B. I. Yakobson, Phys. Rev. B 2002, 65, 041406. – reference: G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. van den Brink, Phys. Rev. B 2007, 76, 073103. – reference: Z. Zhang, Y. Liu, Y. Yang, B. I. Yakobson, Nano Lett. 2016, 16, 1398. – reference: J. Kunstmann, V. Bezugly, H. Rabbel, M. H. Rummeli, G. Cuniberti, Adv. Funct. Mater. 2014, 24, 4127. – reference: A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Phys. Rev. Lett. 1995, 75, 3918. – reference: C. Feng, Z. Mi, Z. Jian-Xin, Chin. Phys. B 2010, 19, 086105. – reference: Q. Weng, X. Wang, C. Zhi, Y. Bando, D. Golberg, ACS Nano 2013, 7, 1558. – reference: Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y.-W. Zhang, P. Kim, J. Hone, L. Colombo, R. S. Ruoff, Science 2013, 342, 720. – reference: B. Huang, H. Xiang, J. Yu, S. H. Wei, Phys. Rev. Lett. 2012, 108, 206802. – reference: Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Nat. Mater. 2011, 10, 424. – reference: E. Kan, F. Wu, H. Xiang, J. Yang, M.-H. Whangbo, J. Phys. Chem. C 2011, 115, 17252. – reference: S. Roth, F. Matsui, T. Greber, J. Osterwalder, Nano Lett. 2013, 13, 2668. – reference: G. Kim, A. R. Jang, H. Y. Jeong, Z. Lee, D. J. Kang, H. S. Shin, Nano Lett. 2013, 13, 1834. – reference: G. Lu, T. Wu, Q. Yuan, H. Wang, H. Wang, F. Ding, X. Xie, M. Jiang, Nat. Commun. 2015, 6, 6160. – reference: S. Jungthawan, S. Limpijumnong, J.-L. Kuo, Phys. Rev. B 2011, 84, 235424. – reference: M. Rousseas, A. P. Goldstein, W. Mickelson, M. A. Worsley, L. Woo, A. Zettl, ACS Nano 2013, 7, 8540. – reference: N. Marom, J. Bernstein, J. Garel, A. Tkatchenko, E. Joselevich, L. Kronik, O. Hod, Phys. Rev. Lett. 2010, 105, 046801. – reference: B. Albert, H. Hillebrecht, Angew. Chem. Int. Ed. 2009, 48, 8640. – reference: P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, T. Taubner, Nat. Commun. 2015, 6, 7507. – reference: R. Zhao, J. Wang, M. Yang, Z. Liu, Z. Liu, Phys. Chem. Chem. Phys. 2013, 15, 803. – reference: W. Yang, G. Chen, Z. Shi, C.-C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, G. Zhang, Nat. Mater. 2013, 12, 792. – reference: Y. Guo, W. Guo, J. Phys. Chem. C 2015, 119, 873. – reference: M. Yi, Z. Shen, X. Zhao, S. Liang, L. Liu, Appl. Phys. Lett. 2014, 104, 143101. – reference: J. C. Song, A. V. Shytov, L. S. Levitov, Phys. Rev. Lett. 2013, 111, 266801. – reference: M. Topsakal, E. Aktürk, S. Ciraci, Phys. Rev. B 2009, 79, 115442. – reference: L. C. Gomes, S. S. Alexandre, H. Chacham, R. W. Nunes, J. Phys. Chem. C 2013, 117, 11770. – reference: D. Wong, J. VelascoJr, L. Ju, J. Lee, S. Kahn, H.-Z. Tsai, C. Germany, T. Taniguchi, K. Watanabe, A. Zettl, F. Wang, M. F. Crommie, Nat. Nanotechnol. 2015, 10, 949. – reference: S. Zhang, Q. Wang, Y. Kawazoe, P. Jena, J. Am. Chem. Soc. 2013, 135, 18216. – reference: M. Bokdam, T. Amlaki, G. Brocks, P. J. Kelly, Phys. Rev. B 2014, 89, 201404. – reference: P. Sutter, Y. Huang, E. Sutter, Nano Lett. 2014, 14, 4846. – reference: L. Li, L. H. Li, Y. Chen, X. J. Dai, P. R. Lamb, B.-M. Cheng, M.-Y. Lin, X. Liu, Angew. Chemie 2013, 125, 4306. – reference: D. Pacilé, J. C. Meyer, Ç. Ö. Girit, A. Zettl, Appl. Phys. Lett. 2008, 92, 133107. – reference: Z. Zhang, W. Guo, J. Phys. Chem. Lett. 2011, 2, 2168. – reference: R. Balu, X. Zhong, R. Pandey, S. P. Karna, Appl. Phys. Lett. 2012, 100, 052104. – reference: W. Auwärter, H. U. Suter, H. Sachdev, T. Greber, Chem. Mater. 2004, 16, 343. – reference: A. G. F. Garcia, M. Neumann, F. Amet, J. R. Williams, K. Watanabe, T. Taniguchi, D. Goldhaber-Gordon, Nano Lett. 2012, 12, 4449. – reference: G. H. Ryu, H. J. Park, J. Ryou, J. Park, J. Lee, G. Kim, H. S. Shin, C. W. Bielawski, R. S. Ruoff, S. Hong, Z. Lee, Nanoscale 2015, 7, 10600. – reference: J. Sławińska, I. Zasada, Z. Klusek, Phys. Rev. B 2010, 81, 155433. – reference: B. Ouyang, J. Song, Appl. Phys. Lett. 2013, 103, 102401. – reference: Z. Liu, Q. Xue, T. Zhang, Y. Tao, C. Ling, M. Shan, J. Phys. Chem. C 2013, 117, 9332. – reference: K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 2004, 3, 404. – reference: X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, J. Hone, Nat. Nanotech. 2015, 10, 534. – reference: S. Tang, Z. Cao, Chem. Phys. Lett. 2010, 488, 67. – reference: Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C. H. Lee, C. Sun, L. Calderin, P. N. Browning, M. S. Bresnehan, M. J. Kim, T. S. Mayer, M. Terrones, J. A. Robinson, ACS Nano 2014, 8, 3715. – reference: Y. Gao, Y. Zhang, P. Chen, Y. Li, M. Liu, T. Gao, D. Ma, Y. Chen, Z. Cheng, X. Qiu, W. Duan, Z. Liu, Nano Lett. 2013, 13, 3439. – reference: K. H. Lee, H.-J. Shin, J. Lee, I.-y. Lee, G.-H. Kim, J.-Y. Choi, S.-W. Kim, Nano Lett. 2012, 12, 714. – reference: L. Wang, B. Wu, J. Chen, H. Liu, P. Hu, Y. Liu, Adv. Mater. 2014, 26, 1559. – reference: L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 2006, 96, 126104. – reference: J.-H. Park, J. C. Park, S. J. Yun, H. Kim, D. H. Luong, S. M. Kim, S. H. Choi, W. Yang, J. Kong, K. K. Kim, Y. H. Lee, ACS Nano 2014, 8, 8520. – reference: J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, K. S. Novoselov, Nat. Commun. 2014, 5, 5221. – reference: J. Kotakoski, C. H. Jin, O. Lehtinen, K. Suenaga, A. V. Krasheninnikov, Phys. Rev. B 2010, 82, 113404. – reference: J. Xu, Y. Chang, L. Gan, Y. Ma, T. Zhai, Adv. Sci. 2015, 2, 1500023. – reference: S. Azevedo, J. R. Kaschny, C. M. C. de Castilho, F. de Brito Mota, Eur. Phys. J. B 2009, 67, 507. – reference: Y. Y. Liu, E. S. Penev, B. I. Yakobson, Angew. Chem. Int. Ed. 2013, 52, 3156. – reference: N. Alem, O. V. Yazyev, C. Kisielowski, P. Denes, U. Dahmen, P. Hartel, M. Haider, M. Bischoff, B. Jiang, S. G. Louie, A. Zettl, Phys. Rev. Lett. 2011, 106, 126102. – reference: H. Park, A. Wadehra, J. W. Wilkins, A. H. Castro Neto, Appl. Phys. Lett. 2012, 100, 253115. – reference: T. Ishii, T. Sato, Y. Sekikawa, M. Iwata, J. Cryst. Growth 1981, 52, 285. – reference: R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, P. Blake, Small 2011, 7, 465. – reference: P. Sutter, J. Lahiri, P. Albrecht, E. Sutter, ACS Nano 2011, 5, 7303. – reference: J. Jung, A. M. DaSilva, A. H. MacDonald, S. Adam, Nat. Commun. 2015, 6, 6308. – reference: M. Otani, S. Okada, Physi. Rev. B 2011, 83, 073405. – reference: F. Zheng, G. Zhou, Z. Liu, J. Wu, W. Duan, B.-L. Gu, S. B. Zhang, Phys. Rev. B 2008, 78, 205415. – reference: Z. Zhang, W. Guo, J. Am. Chem. Soc. 2009, 131, 6874. – reference: T. Ogitsu, E. Schwegler, G. Galli, Chem. Rev. 2013, 113, 3425. – reference: A. R. Oganov, J. H. Chen, C. Gatti, Y. Z. Ma, Y. M. Ma, C. W. Glass, Z. X. Liu, T. Yu, O. O. Kurakevych, V. L. Solozhenko, Nature 2009, 457, 863. – reference: C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722. – reference: S. Tang, S. Zhang, J. Phys. Chem. C 2013, 117, 17309. – reference: X. Li, X. Hao, M. Zhao, Y. Wu, J. Yang, Y. Tian, G. Qian, Adv. Mater. 2013, 25, 2200. – reference: M. Morscher, M. Corso, T. Greber, J. Osterwalder, Surf. Sci. 2006, 600, 3280. – reference: C. Harrison, S. Weaver, C. Bertelsen, E. Burgett, N. Hertel, E. Grulke, J. Appl. Polym. Sci. 2008, 109, 2529. – reference: F. Liu, J. F. Tian, L. H. Bao, T. Z. Yang, C. M. Shen, X. Y. Lai, Z. M. Xiao, W. G. Xie, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, H. J. Gao, Adv. Mater. 2008, 20, 2609. – reference: A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, R. V. Gorbachev, Nano Lett. 2014, 14, 3270. – reference: G. Kim, H. Lim, K. Y. Ma, A. R. Jang, G. H. Ryu, M. Jung, H.-J. Shin, Z. Lee, H. S. Shin, Nano Lett. 2015, 15, 4769. – reference: P. Moon, M. Koshino, Phys. Rev. B 2014, 90, 155406. – reference: J. Li, V. B. Shenoy, Appl. Phys. Lett. 2011, 98, 013105. – reference: W. Chen, Y. Li, G. Yu, C.-Z. Li, S. B. Zhang, Z. Zhou, Z. Chen, J. Am. Chem. Soc. 2010, 132, 1699. – reference: X. J. Wu, J. Dai, Y. Zhao, Z. W. Zhuo, J. L. Yang, X. C. Zeng, ACS Nano 2012, 6, 7443. – reference: Y. Lin, T. V. Williams, W. Cao, H. E. Elsayed-Ali, J. W. Connell, J. Phys. Chem. C 2010, 114, 17434. – reference: S. Okada, S. Saito, A. Oshiyama, Phys. Rev. B 2002, 65, 165410. – reference: H. Wang, X. Zhang, J. Meng, Z. Yin, X. Liu, Y. Zhao, L. Zhang, Small 2015, 11, 1542. – reference: J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nat. Nanotechnol. 2008, 3, 206. – reference: M. Yi, Z. Shen, L. Liu, S. Liang, RSC Adv 2015, 5, 2983. – reference: H.-J. Zhai, Y.-F. Zhao, W.-L. Li, Q. Chen, H. Bai, H.-S. Hu, Z. A. Piazza, W.-J. Tian, H.-G. Lu, Y.-B. Wu, Y.-W. Mu, G.-F. Wei, Z.-P. Liu, J. Li, S.-D. Li, L.-S. Wang, Nat. Chem. 2014, 6, 727. – reference: C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, P. Kim, Nature 2013, 497, 598. – reference: J. H. Warner, M. H. Rümmeli, A. Bachmatiuk, B. Büchner, ACS Nano 2010, 4, 1299. – reference: C. J. Otten, O. R. Lourie, M. F. Yu, J. M. Cowley, M. J. Dyer, R. S. Ruoff, W. E. Buhro, J. Am. Chem. Soc. 2002, 124, 4564. – reference: Y. Cao, A. Mishchenko, G. L. Yu, E. Khestanova, A. P. Rooney, E. Prestat, A. V. Kretinin, P. Blake, M. B. Shalom, C. Woods, J. Chapman, G. Balakrishnan, I. V. Grigorieva, K. S. Novoselov, B. A. Piot, M. Potemski, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, R. V. Gorbachev, Nano Lett. 2015, 15, 4914. – reference: J. Wu, W.-Q. Han, W. Walukiewicz, J. W. Ager, W. Shan, E. E. Haller, A. Zettl, Nano Lett. 2004, 4, 647. – reference: X. F. Zhou, A. R. Oganov, X. Shao, Q. Zhu, H. T. Wang, Phys. Rev. Lett. 2014, 113, 176101. – reference: E. S. Penev, S. Bhowmick, A. Sadrzadeh, B. I. Yakobson, Nano Lett. 2012, 12, 2441. – reference: K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, M. Taniguchi, Nat. Photonics 2009, 3, 591. – reference: F. Müller, K. Stöwe, H. Sachdev, Chem. Mater. 2005, 17, 3464. – reference: Y. Liu, S. Bhowmick, B. I. Yakobson, Nano Lett. 2011, 11, 3113. – reference: G. Dong, E. B. Fourré, F. C. Tabak, J. W. M. Frenken, Phys. Rev. Lett. 2010, 104, 096102. – reference: E. Hernández, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 1998, 80, 4502. – reference: A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, A. I. Boldyrev, Acc. Chem. Res. 2014, 47, 1349. – reference: J. Miller, Phys. Today 2007, 60, 20. – reference: S. Bernard, P. Miele, Mater. Today 2014, 17, 443. – reference: Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, A. Babakhani, J.-C. Idrobo, R. Vajtai, J. Lou, P. M. Ajayan, Nat. Nanotech. 2013, 8, 119. – reference: B. E. Douglas, S. M. Ho, Structure and Chemistry of Crystalline Solids, Springer, N.Y., 2006. – reference: R. Zhao, J. Gao, Z. Liu, F. Ding, Nanoscale 2015, 7, 9723. – reference: D. Golberg, Y. Bando, K. Kurashima, T. Sato, Solid State Commun. 2000, 116, 1. – reference: Q. Wu, J.-H. Park, S. Park, S. J. Jung, H. Suh, N. Park, W. Wongwiriyapan, S. Lee, Y. H. Lee, Y. J. Song, Sci. Rep. 2015, 5, 16159. – reference: T. Gao, X. Song, H. Du, Y. Nie, Y. Chen, Q. Ji, J. Sun, Y. Yang, Y. Zhang, Z. Liu, Nat. Commun. 2015, 6, 6835. – reference: X. Song, J. Gao, Y. Nie, T. Gao, J. Sun, D. Ma, Q. Li, Y. Chen, C. Jin, A. Bachmatiuk, M. Rümmeli, F. Ding, Y. Zhang, Z. Liu, Nano Res. 2015, 8, 3164. – reference: Y. Ding, Y. Wang, J. Ni, Appl. Phys. Lett. 2009, 95, 123105. – reference: Y. Gong, G. Shi, Z. Zhang, W. Zhou, J. Jung, W. Gao, L. Ma, Y. Yang, S. Yang, G. You, R. Vajtai, Q. Xu, A. H. MacDonald, B. I. Yakobson, J. Lou, Z. Liu, P. M. Ajayan, Nat. Commun. 2014, 5, 3193. – reference: S. Bhowmick, A. K. Singh, B. I. Yakobson, J. Phys. Chem. C 2011, 115, 9889. – reference: S. M. Kim, A. Hsu, M. H. Park, S. H. Chae, S. J. Yun, J. S. Lee, D.-H. Cho, W. Fang, C. Lee, T. Palacios, M. Dresselhaus, K. K. Kim, Y. H. Lee, J. Kong, Nat. Commun. 2015, 6, 8662. – reference: Y. G. Zhou, P. Yang, Z. G. Wang, X. T. Zu, H. Y. Xiao, X. Sun, M. A. Khaleel, F. Gao, Phys. Chem. Chem. Phys. 2011, 13, 7378. – reference: M. Titov, M. I. Katsnelson, Phys. Rev. Lett. 2014, 113, 096801. – reference: M. Yi, Z. Shen, W. Zhang, J. Zhu, L. Liu, S. Liang, X. Zhang, S. Ma, Nanoscale 2013, 5, 10660. – reference: L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, P. M. Ajayan, Nat. Mater. 2010, 9, 430. – reference: M. Kan, J. Zhou, Q. Wang, Q. Sun, P. Jena, Phys. Rev. B 2011, 84, 205412. – reference: Z. Zhang, W. Guo, Y. Dai, J. Appl. Phys. 2009, 105, 084312. – reference: J. Kunstmann, A. Quandt, Phys. Rev. B 2006, 74, 035413. – reference: H. Zhao, X. Song, H. Zeng, NPG Asia Mater. 2015, 7, e168. – reference: Y.-H. Zhang, K.-G. Zhou, X.-C. Gou, K.-F. Xie, H.-L. Zhang, Y. Peng, Chem. Phys. Lett. 2010, 484, 266. – reference: Z. Zhang, X. C. Zeng, W. Guo, J. Am. Chem. Soc. 2011, 133, 14831. – reference: J. da Rocha Martins, H. Chacham, ACS Nano 2010, 5, 385. – reference: Z. Yang, J. Ni, J. Appl. Phys. 2010, 107, 104301. – reference: A. Zunger, A. Katzir, A. Halperin, Phys. Rev. B 1976, 13, 5560. – reference: L. Brown, E. B. Lochocki, J. Avila, C.-J. Kim, Y. Ogawa, R. W. Havener, D.-K. Kim, E. J. Monkman, D. E. Shai, H. I. Wei, M. P. Levendorf, M. Asensio, K. M. Shen, J. Park, Nano Lett. 2014, 14, 5706. – reference: G. B. Grad, P. Blaha, K. Schwarz, W. Auwärter, T. Greber, Phys. Rev. B 2003, 68, 085404. – reference: W. Lei, V. N. Mochalin, D. Liu, S. Qin, Y. Gogotsi, Y. Chen, Nat. Commun. 2015, 6, 8849. – reference: L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, P. M. Ajayan, Nano Lett. 2010, 10, 3209. – reference: M. Kindermann, B. Uchoa, D. L. Miller, Phys. Rev. B 2012, 86, 115415. – reference: S. Tang, J. Yu, L. Liu, Phys. Chem. Chem. Phys. 2013, 15, 5067. – reference: E. Husain, T. N. Narayanan, J. J. Taha-Tijerina, S. Vinod, R. Vajtai, P. M. Ajayan, Acs Appl. Mater. Interfaces 2013, 5, 4129. – reference: X. Zeng, L. Ye, R. Sun, J. Xu, C.-P. Wong, Phys. Chem. Chem. Phys. 2015, 17, 16709. – reference: G. H. Han, J. A. Rodríguez-Manzo, C.-W. Lee, N. J. Kybert, M. B. Lerner, Z. J. Qi, E. N. Dattoli, A. M. Rappe, M. Drndic, A. T. C. Johnson, ACS Nano 2013, 7, 10129. – reference: X. F. Chen, J. S. Lian, Q. Jiang, Phys. Rev. B 2012, 86, 125437. – reference: H. Lim, S. I. Yoon, G. Kim, A. R. Jang, H. S. Shin, Chem. Mater. 2014, 26, 4891. – reference: S. Caneva, R. S. Weatherup, B. C. Bayer, B. Brennan, S. J. Spencer, K. Mingard, A. Cabrero-Vilatela, C. Baehtz, A. J. Pollard, S. Hofmann, Nano Lett. 2015, 15, 1867. – reference: Z. Zhang, X. C. Zeng, W. Guo, Phys. Rev. B 2010, 82, 035412. – reference: X. Hong, K. Zou, J. Zhu, Phys. Rev. B 2009, 80, 241415. – reference: A. Lopez-Bezanilla, J. Huang, H. Terrones, B. G. Sumpter, Nano Lett. 2011, 11, 3267. – reference: M. S. Si, D. S. Xue, Phys. Rev. B 2007, 75, 193409. – reference: X. Zeng, L. Ye, S. Yu, R. Sun, J. Xu, C.-P. Wong, Chem. Mater. 2015, 27, 5849. – reference: S. Tang, H. Wang, Y. Zhang, A. Li, H. Xie, X. Liu, L. Liu, T. Li, F. Huang, X. Xie, M. Jiang, Sci. Rep. 2013, 3, 2666. – reference: A. J. Mannix, X.-F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, N. P. Guisinger, Science 2015, 350, 1513. – reference: A. Fathalizadeh, T. Pham, W. Mickelson, A. Zettl, Nano Lett. 2014, 14, 4881. – reference: H. Wang, X. Zhang, H. Liu, Z. Yin, J. Meng, J. Xia, X. M. Meng, J. Wu, J. You, Adv. Mater. 2015, 27, 8109. – reference: B. Sachs, T. O. Wehling, M. I. Katsnelson, A. I. Lichtenstein, Phys. Rev. B 2011, 84, 195414. – reference: Y. Dai, W. Guo, Z. Zhang, B. Zhou, C. Tang, J. Phys. D: Appl. Phys. 2009, 42, 085403. – reference: Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z.-Y. Juang, M. S. Dresselhaus, L.-J. Li, J. Kong, Nano Lett. 2010, 10, 4134. – reference: L. Ju, J. VelascoJr, E. Huang, S. Kahn, C. Nosiglia, H.-Z. Tsai, W. Yang, T. Taniguchi, K. Watanabe, Y Zhang, G. Zhang, M. Crommie, A. Zettl, F. Wang, Nat. Nanotechnol. 2014, 9, 348. – reference: J. Yin, X. Li, J. Zhou, W. Guo, Nano Lett. 2013, 13, 3232. – reference: J. Li, S. Majety, R. Dahal, W. P. Zhao, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett. 2012, 101, 171112. – reference: P. Sutter, R. Cortes, J. Lahiri, E. Sutter, Nano Lett. 2012, 12, 4869. – reference: L. Liu, Y. P. Feng, Z. X. Shen, Phys. Rev. B 2003, 68, 104102. – reference: R. Mukherjee, S. Bhowmick, J. Chem. Theory Comput. 2011, 7, 720. – reference: Y. Stehle, H. M. Meyer, R. R. Unocic, M. Kidder, G. Polizos, P. G. Datskos, R. Jackson, S. N. Smirnov, I. V. Vlassiouk, Chem. Mater. 2015, 27, 8041. – reference: G. Constantinescu, A. Kuc, T. Heine, Phys. Rev. Lett. 2013, 111, 036104. – reference: Y. Qi, L. G. Hector, Appl. Phys. Lett. 2007, 90, 081922. – reference: Q. Li, X. Zou, M. Liu, J. Sun, Y. Gao, Y. Qi, X. Zhou, B. I. Yakobson, Y. Zhang, Z. Liu, Nano Lett. 2015, 15, 5804. – reference: M. Terauchi, M. Tanaka, K. Suzuki, A. Ogino, K. Kimura, Chem. Phys. Lett. 2000, 324, 359. – reference: Y. Song, B. Li, S. Yang, G. Ding, C. Zhang, X. Xie, Sci. Rep. 2015, 5, 10337. – reference: J. C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, U. Kaiser, Nano Lett. 2009, 9, 2683. – reference: J. Wang, S. N. Li, J. B. Liu, J. Phys. Chem. A 2015, 119, 3621. – reference: O. Cretu, Y.-C. Lin, K. Suenaga, Nano Lett. 2014, 14, 1064. – reference: L. M. Cao, Z. Zhang, L. L. Sun, C. X. Gao, M. He, Y. Q. Wang, Y. C. Li, X. Y. Zhang, G. Li, J. Zhang, W. K. Wang, Adv. Mater. 2001, 13, 1701. – reference: L. Li, G. J. Ye, V. Tran, R. Fei, G. Chen, H. Wang, J. Wang, K. Watanabe, T. Taniguchi, L. Yang, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2015, 10, 608. – reference: M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, J. Park, Nature 2012, 488, 627. – reference: L. Lai, J. Lu, L. Wang, G. Luo, J. Zhou, R. Qin, Z. Gao, W. N. Mei, J. Phys. Chem. C 2009, 113, 2273. – reference: G. Ning, W. Jinquan, F. Lili, J. Yi, L. Dayao, Z. Hongwei, W. Kunlin, W. Dehai, Nanotechnology 2012, 23, 415605. – reference: K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, ACS Nano 2012, 6, 8583. – reference: T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, W. B. Carter, Science 2011, 334, 962. – reference: D. Liu, W. Lei, S. Qin, Y. Chen, Sci. Rep. 2014, 4, 4453. – reference: H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, Nano Lett. 2010, 10, 5049. – reference: R. Y. Tay, H. J. Park, G. H. Ryu, D. Tan, S. H. Tsang, H. Li, W. Liu, E. H. T. Teo, Z. Lee, Y. Lifshitz, R. S. Ruoff, Nanoscale 2016, 8, 2434. – reference: R. Quhe, J. Zheng, G. Luo, Q. Liu, R. Qin, J. Zhou, D. Yu, S. Nagase, W.-N. Mei, Z. Gao, J. Lu, NPG Asia Mater. 2012, 4, e6. – reference: K. H. Michel, B. Verberck, Phys. Rev. B 2011, 83, 115328. – reference: L. Liu, Z. Shen, Y. Zheng, M. Yi, X. Zhang, S. Ma, RSC Advances 2014, 4, 37726. – reference: Z. Zhang, W. Guo, Phys. Rev. B 2008, 77, 075403. – reference: D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 2010, 4, 2979. – reference: S. Tang, H. Wang, H. S. Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, F. Huang, X. Chen, T. Yu, F. Ding, X. Xie, M. Jiang, Nat. Commun. 2015, 6, 6499. – reference: G.-H. Lee, Y.-J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, J. Hone, Appl. Phys. Lett. 2011, 99, 243114. – reference: P. Sutter, J. Lahiri, P. Zahl, B. Wang, E. Sutter, Nano Lett. 2013, 13, 276. – reference: X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312. – reference: L. Liu, J. Park, D. A. Siegel, K. F. McCarty, K. W. Clark, W. Deng, L. Basile, J. C. Idrobo, A.-P. Li, G. Gu, Science 2014, 343, 163. – reference: T. Dumitricˇ, B. I. Yakobson, Phys. Rev. B 2005, 72, 035418. – reference: X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, J. Kong, Nano Lett. 2014, 14, 464. – reference: C. Tang, Y. Bando, Y. Huang, S. Yue, C. Gu, F. Xu, D. Golberg, J. Am. Chem. Soc. 2005, 127, 6552. – reference: J. Yu, Y. Chen, R. G. Elliman, M. Petravic, Adv. Mater. 2006, 18, 2157. – reference: C. Jin, F. Lin, K. Suenaga, S. Iijima, Phys. Rev. Lett. 2009, 102, 195505. – reference: L. Museur, E. Feldbach, A. Kanaev, Phys. Rev. B 2008, 78, 155204. – reference: V. Barone, J. E. Peralta, Nano Lett. 2008, 8, 2210. – reference: E. Rokuta, Y. Hasegawa, K. Suzuki, Y. Gamou, C. Oshima, A. Nagashima, Phys. Rev. Lett. 1997, 79, 4609. – reference: M. H. Khan, Z. Huang, F. Xiao, G. Casillas, Z. Chen, P. J. Molino, H. K. Liu, Sci. Rep. 2015, 5, 7743. – reference: Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li, L. S. Wang, Nat. Commun. 2014, 5, 3113. – reference: Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Chem. Mater. 2008, 20, 1661. – reference: X. Blase, A. Rubio, S. Louie, M. Cohen, Euro. Phys. Lett. 1994, 28, 335. – reference: Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou, P. M. Ajayan, Nat. Commun. 2013, 4, 2541. – reference: X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Sun, J. Xu, C.-P. Wong, Small 2015, 11, 6205. – reference: C. Zhi, Y. Bando, C. Tang, D. Golberg, R. Xie, T. Sekigushi, Appl. Phys. Lett. 2005, 86, 213110. – reference: X. F. Zhou, X. Dong, A. R. Oganov, Q. Zhu, Y. J. Tian, H. T. Wang, Phys. Rev. Lett. 2014, 112, 085502. – reference: M. Wang, M. Kim, D. Odkhuu, N. Park, J. Lee, W.-J. Jang, S.-J. Kahng, R. S. Ruoff, Y. J. Song, S. Lee, ACS Nano 2014, 8, 5478. – reference: T. T. Tran, K. Bray, M. J. Ford, M. Toth, I. Aharonovich, Nat. Nanotechnol. 2015, 11, 37. – reference: M. Wu, X. Wu, Y. Pei, Y. Wang, X. C. Zeng, Chem. Commun. 2011, 47, 4406. – reference: K. H. Khoo, M. S. C. Mazzoni, S. G. Louie, Phys. Rev. B 2004, 69, 201401. – reference: A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Phys. Rev. B 1995, 51, 4606. – reference: F. Oba, A. Togo, I. Tanaka, K. Watanabe, T. Taniguchi, Phys. Rev. B 2010, 81, 075125. – reference: L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, C. R. Dean, Science 2013, 342, 614. – reference: R. V. Gorbachev, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. Tudorovskiy, I. V. Grigorieva, A. H. MacDonald, S. V. Morozov, K. Watanabe, T. Taniguchi, L. A. Ponomarenko, Nat. Phys. 2012, 8, 896. – reference: Y. Liu, X. Zou, B. I. Yakobson, ACS Nano 2012, 6, 7053. – reference: T. Ashton, A. Moore, J. Mater. Sci. 2015, 50, 6220. – reference: T. T. Xu, J.-G. Zheng, Wu, A. W. Nicholls, J. R. Roth, D. A. Dikin, R. S. Ruoff, Nano Lett. 2004, 4, 963. – reference: R. Y. Tay, M. H. Griep, G. Mallick, S. H. Tsang, R. S. Singh, T. Tumlin, E. H. T. Teo, S. P. Karna, Nano Lett. 2014, 14, 839. – reference: M. Loeblein, R. Y. Tay, S. H. Tsang, W. B. Ng, E. H. T. Teo, Small 2014, 10, 2992. – reference: P. Bharadwaj, M. Parzefall, A. Jain, T. Taniguchi, K. Watanabe, L. Novotny, Nat. Nanotechnol. 2015, 10, 1058. – reference: A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 2014, 43, 934. – reference: R. H. Wentorf, J. Chem. Phys. 1957, 26, 956. – reference: A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Surf. Sci. 1996, 357-358, 307. – reference: P. R. Kidambi, R. Blume, J. Kling, J. B. Wagner, C. Baehtz, R. S. Weatherup, R. Schloegl, B. C. Bayer, S. Hofmann, Chem. Mater. 2014, 26, 6380. – reference: M. Son, H. Lim, M. Hong, H. C. Choi, Nanoscale 2011, 3, 3089. – reference: C. Zhang, S. Zhao, C. Jin, A. L. Koh, Y. Zhou, W. Xu, Q. Li, Q. Xiong, H. Peng, Z. Liu, Nat. Commun. 2015, 6, 6519. – reference: C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. Lu, H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. V. Gorbachev, A. V. Kretinin, J. Park, L. A. Ponomarenko, M. I. Katsnelson, Y. N. Gornostyrev, K. Watanabe, T. Taniguchi, C. Casiraghi, H. J. Gao, A. K. Geim, K. S. Novoselov, Nat. Phys. 2014, 10, 451. – reference: Z.-H. Zhang, W.-L. Guo, B. I. Yakobson, Acta Mech. Sinica 2012, 28, 1532. – reference: A. Ismach, H. Chou, D. A. Ferrer, Y. Wu, S. McDonnell, H. C. Floresca, A. Covacevich, C. Pope, R. Piner, M. J. Kim, R. M. Wallace, L. Colombo, R. S. Ruoff, ACS Nano 2012, 6, 6378. – reference: Y. Zhou, Z. Wang, P. Yang, F. Gao, J. Phys. Chem. C 2012, 116, 7581. – reference: K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, J. Kong, Nano Lett. 2012, 12, 161. – reference: A. Y. Liu, R. M. Wentzcovitch, M. L. Cohen, Phys. Rev. B 1989, 39, 1760. – reference: J. Yu, D. Yu, Y. Chen, H. Chen, M.-Y. Lin, B.-M. Cheng, J. Li, W. Duan, Chem. Phys. Lett. 2009, 476, 240. – reference: Z. Zhang, W. Guo, Y. Dai, Appl. Phys. Lett. 2008, 93, 223108. – reference: W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li, L. S. Wang, J. Am. Chem. Soc. 2014, 136, 12257. – reference: W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Nat. Commun. 2013, 4, 1777. – reference: M. L. Hu, J. L. Yin, C. X. Zhang, Z. Yu, L. Z. Sun, J. Appl. Phys. 2011, 109, 073708. – reference: Z. Zhang, W. Guo, B. I. Yakobson, Nanoscale 2013, 5, 6381. – reference: F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, K. S. Novoselov, Nat. Mater. 2015, 14, 301. – reference: X. Du, I. Skachko, A. Barker, E. Y. Andrei, Nat. Nanotechnol. 2008, 3, 491. – reference: F. Müller, S. Hüfner, H. Sachdev, R. Laskowski, P. Blaha, K. Schwarz, Phys. Rev. B 2010, 82, 113406. – reference: O. V. Yazyev, A. Pasquarello, Phys. Rev. B 2009, 80, 035408. – reference: L. Camilli, E. Sutter, P. Sutter, 2D Mater. 2014, 1, 025003. – reference: M. Bernardi, M. Palummo, J. C. Grossman, Phys. Rev. Lett. 2012, 108, 226805. – reference: Z.-X. Xie, L.-M. Tang, C.-N. Pan, Q. Chen, K.-Q. Chen, J. Appl. Phys. 2013, 114, 144311. – reference: N. Alem, Q. M. Ramasse, C. R. Seabourne, O. V. Yazyev, K. Erickson, M. C. Sarahan, C. Kisielowski, A. J. Scott, S. G. Louie, A. Zettl, Phys. Rev. Lett. 2012, 109, 205502. – reference: M. Wang, S. K. Jang, W.-J. Jang, M. Kim, S.-Y. Park, S.-W. Kim, S.-J. Kahng, J.-Y. Choi, R. S. Ruoff, Y. J. Song, S. Lee, Adv. Mater. 2013, 25, 2746. – reference: E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, F. Guinea, Phys. Rev. Lett. 2010, 105, 266601. – reference: Z. Zhang, W. Guo, Nano Lett. 2012, 12, 3650. – reference: S. M. Jung, H. Y. Jung, M. S. Dresselhaus, Y. J. Jung, J. Kong, Sci. Rep. 2012, 2, 849. – reference: K. H. Michel, B. Verberck, Phys. Rev. B 2009, 80, 224301. – reference: J. Qi, X. Qian, L. Qi, J. Feng, D. Shi, J. Li, Nano Lett. 2012, 12, 1224. – reference: C. Gautam, C. S. Tiwary, S. Jose, G. Brunetto, S. Ozden, S. Vinod, P. Raghavan, S. Biradar, D. S. Galvao, P. M. Ajayan, ACS Nano 2015, 9, 12088. – reference: B. Uchoa, V. N. Kotov, M. Kindermann, Phys. Rev. B 2015, 91, 121412. – reference: H. Wang, X. Zhang, H. Liu, Z. Yin, J. Meng, J. Xia, X.-M. Meng, J. Wu, J. You, Adv. Mater. 2015, 27, 8109. – reference: A. Ramasubramaniam, D. Naveh, Phys. Rev. B 2011, 84, 075405. – reference: S. Liu, B. Lu, Q. Zhao, J. Li, T. Gao, Y. Chen, Y. Zhang, Z. Liu, Z. Fan, F. Yang, L. You, D. Yu, Adv. Mater. 2013, 25, 4549. – reference: C. H. Lin, H. Ni, X. N. Wang, M. Chang, Y. J. Chao, J. R. Deka, X. D. Li, Small 2010, 6, 927. – reference: W. J. Yu, W. M. Lau, S. P. Chan, Z. F. Liu, Q. Q. Zheng, Phys. Rev. B 2003, 67, 014108. – reference: L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, ACS Nano 2014, 8, 1457. – reference: J. H. Meng, X. W. Zhang, H. L. Wang, X. B. Ren, C. H. Jin, Z. G. Yin, X. Liu, H. Liu, Nanoscale 2015, 7, 16046. – reference: X.-F. Zhou, O. R. Oganoa, Z. Wang, I. A. Popov, A. I. Boldyrev, H.-T. Wang,Phys. Rev. B 2016, 93, 085406. – reference: B. Arnaud, S. Lebegue, P. Rabiller, M. Alouani, Phys. Rev. Lett. 2006, 96, 026402. – reference: Y. Fan, M. Zhao, Z. Wang, X. Zhang, H. Zhang, Appl. Phys. Lett. 2011, 98, 083103. – reference: W. Balmain, J. Prakt. Chem. 1842, 27, 422. – reference: J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568. – reference: J. Yin, J. Yu, X. Li, J. Li, J. Zhou, Z. Zhang, W. Guo, Small 2015, 11, 4497. – reference: C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Adv. Mater. 2009, 21, 2889. – reference: W. Auwärter, M. Muntwiler, J. Osterwalder, T. Greber, Surf. Sci. 2003, 545, L735. – reference: J. Yin, X. Liu, W. Lu, J. Li, Y. Cao, Y. Li, Y. Xu, X. Li, J. Zhou, C. Jin, W. Guo, Small 2015, 11, 5375. – reference: X. Wu, J. Yang, J. G. Hou, Q. Zhu, J. Chem. Phys. 2006, 124, 054706. – reference: K. Watanabe, T. Taniguchi, H. Kanda, Phys. Status Solidi A 2004, 201, 2561. – reference: B. Meng, W. Z. Xiao, L. L. Wang, L. Yue, S. Zhang, H. Y. Zhang, RSC Adv. 2015, 5, 82357. – reference: G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, W. Mehr, ACS Nano 2015, 9, 4776. – reference: W. Balmain, Philos. Mag. Series 1842, 21, 270. – reference: C. Zhang, L. Fu, S. Zhao, Y. Zhou, H. Peng, Z. Liu, Adv. Mater. 2014, 26, 1776. – volume: 116 start-page: 7581 year: 2012 publication-title: J. Phys. Chem. C – volume: 25 start-page: 2200 year: 2013 publication-title: Adv. Mater. – volume: 342 start-page: 614 year: 2013 publication-title: Science – volume: 7 start-page: 5199 year: 2013 publication-title: ACS Nano – volume: 50 start-page: 6220 year: 2015 publication-title: J. Mater. Sci. – volume: 136 start-page: 12257 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 100 start-page: 253115 year: 2012 publication-title: Appl. Phys. Lett. – volume: 124 start-page: 4564 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 6381 year: 2013 publication-title: Nanoscale – volume: 600 start-page: 3280 year: 2006 publication-title: Surf. Sci. – volume: 12 start-page: 4869 year: 2012 publication-title: Nano Lett. – volume: 109 start-page: 2529 year: 2008 publication-title: J. Appl. Polym. Sci. – volume: 94 start-page: 015504 year: 2005 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 348 year: 2014 publication-title: Nat. Nanotechnol. – volume: 86 start-page: 213110 year: 2005 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 8662 year: 2015 publication-title: Nat. Commun. – volume: 21 start-page: 2889 year: 2009 publication-title: Adv. Mater. – volume: 13 start-page: 5560 year: 1976 publication-title: Phys. Rev. B – volume: 65 start-page: 165410 year: 2002 publication-title: Phys. Rev. B – volume: 43 start-page: 934 year: 2014 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 7743 year: 2015 publication-title: Sci. Rep. – volume: 3 start-page: 591 year: 2009 publication-title: Nat. Photonics – volume: 105 start-page: 084312 year: 2009 publication-title: J. Appl. Phys. – volume: 10 start-page: 451 year: 2014 publication-title: Nat. Phys. – volume: 113 start-page: 3425 year: 2013 publication-title: Chem. Rev. – volume: 7 start-page: 465 year: 2011 publication-title: Small – volume: 6 start-page: 6160 year: 2015 publication-title: Nat. Commun. – volume: 48 start-page: 8640 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 1558 year: 2013 publication-title: ACS Nano – volume: 4 start-page: 1777 year: 2013 publication-title: Nat. Commun. – volume: 117 start-page: 17309 year: 2013 publication-title: J. Phys. Chem. C – volume: 14 start-page: 464 year: 2014 publication-title: Nano Lett. – volume: 12 start-page: 161 year: 2012 publication-title: Nano Lett. – volume: 6 start-page: 6835 year: 2015 publication-title: Nat. Commun. – volume: 96 start-page: 026402 year: 2006 publication-title: Phys. Rev. Lett. – volume: 67 start-page: 507 year: 2009 publication-title: Eur. Phys. J. B – volume: 13 start-page: 3439 year: 2013 publication-title: Nano Lett. – volume: 42 start-page: 085403 year: 2009 publication-title: J. Phys. D: Appl. Phys. – volume: 17 start-page: 3464 year: 2005 publication-title: Chem. Mater. – volume: 108 start-page: 226805 year: 2012 publication-title: Phys. Rev. Lett. – volume: 20 start-page: 2609 year: 2008 publication-title: Adv. Mater. – volume: 13 start-page: 3232 year: 2013 publication-title: Nano Lett. – volume: 28 start-page: 335 year: 1994 publication-title: Euro. Phys. Lett. – volume: 8 start-page: 119 year: 2013 publication-title: Nat. Nanotech. – volume: 109 start-page: 205502 year: 2012 publication-title: Phys. Rev. Lett. – volume: 72 start-page: 035418 year: 2005 publication-title: Phys. Rev. B – volume: 78 start-page: 205415 year: 2008 publication-title: Phys. Rev. B – volume: 12 start-page: 2441 year: 2012 publication-title: Nano Lett. – volume: 15 start-page: 1867 year: 2015 publication-title: Nano Lett. – volume: 115 start-page: 9889 year: 2011 publication-title: J. Phys. Chem. C – volume: 8 start-page: 3164 year: 2015 publication-title: Nano Res. – volume: 80 start-page: 241415 year: 2009 publication-title: Phys. Rev. B – volume: 15 start-page: 803 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 647 year: 2004 publication-title: Nano Lett. – volume: 11 start-page: 1542 year: 2015 publication-title: Small – volume: 7 start-page: 8540 year: 2013 publication-title: ACS Nano – volume: 104 start-page: 096102 year: 2010 publication-title: Phys. Rev. Lett. – volume: 484 start-page: 266 year: 2010 publication-title: Chem. Phys. Lett. – volume: 2 start-page: 2168 year: 2011 publication-title: J. Phys. Chem. Lett. – volume: 343 start-page: 163 year: 2014 publication-title: Science – volume: 8 start-page: 9867 year: 2014 publication-title: ACS Nano – volume: 4 start-page: e6 year: 2012 publication-title: NPG Asia Mater. – volume: 67 start-page: 014108 year: 2003 publication-title: Phys. Rev. B – volume: 331 start-page: 568 year: 2011 publication-title: Science – volume: 10 start-page: 1058 year: 2015 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 4134 year: 2010 publication-title: Nano Lett. – volume: 9 start-page: 4776 year: 2015 publication-title: ACS Nano – volume: 82 start-page: 113404 year: 2010 publication-title: Phys. Rev. B – volume: 4 start-page: 2541 year: 2013 publication-title: Nat. Commun. – volume: 13 start-page: 2668 year: 2013 publication-title: Nano Lett. – volume: 111 start-page: 266801 year: 2013 publication-title: Phys. Rev. Lett. – volume: 83 start-page: 115328 year: 2011 publication-title: Phys. Rev. B – volume: 10 start-page: 608 year: 2015 publication-title: Nat. Nanotechnol. – volume: 350 start-page: 1513 year: 2015 publication-title: Science – volume: 77 start-page: 075403 year: 2008 publication-title: Phys. Rev. B – volume: 10 start-page: 2992 year: 2014 publication-title: Small – volume: 604 start-page: 1603 year: 2010 publication-title: Surf. Sci. – volume: 80 start-page: 4502 year: 1998 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 276 year: 2013 publication-title: Nano Lett. – volume: 20 start-page: 1661 year: 2008 publication-title: Chem. Mater. – volume: 28 start-page: 1532 year: 2012 publication-title: Acta Mech. Sinica – volume: 111 start-page: 036104 year: 2013 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 6308 year: 2015 publication-title: Nat. Commun. – volume: 7 start-page: 10600 year: 2015 publication-title: Nanoscale – volume: 6 start-page: 8583 year: 2012 publication-title: ACS Nano – volume: 114 start-page: 17434 year: 2010 publication-title: J. Phys. Chem. C – volume: 25 start-page: 4549 year: 2013 publication-title: Adv. Mater. – volume: 16 start-page: 1398 year: 2016 publication-title: Nano Lett. – volume: 131 start-page: 6874 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 82357 year: 2015 publication-title: RSC Adv. – volume: 86 start-page: 115415 year: 2012 publication-title: Phys. Rev. B – volume: 90 start-page: 155406 year: 2014 publication-title: Phys. Rev. B – volume: 5 start-page: 2983 year: 2015 publication-title: RSC Adv – volume: 80 start-page: 035408 year: 2009 publication-title: Phys. Rev. B – volume: 4 start-page: 2979 year: 2010 publication-title: ACS Nano – volume: 26 start-page: 1559 year: 2014 publication-title: Adv. Mater. – volume: 79 start-page: 4609 year: 1997 publication-title: Phys. Rev. Lett. – volume: 15 start-page: 5804 year: 2015 publication-title: Nano Lett. – volume: 18 start-page: 2157 year: 2006 publication-title: Adv. Mater. – volume: 69 start-page: 201401 year: 2004 publication-title: Phys. Rev. B – volume: 82 start-page: 113406 year: 2010 publication-title: Phys. Rev. B – volume: 112 start-page: 085502 year: 2014 publication-title: Phys. Rev. Lett. – volume: 91 start-page: 121412 year: 2015 publication-title: Phys. Rev. B – volume: 14 start-page: 5706 year: 2014 publication-title: Nano Lett. – volume: 8 start-page: 12063 year: 2014 publication-title: ACS Nano – volume: 476 start-page: 240 year: 2009 publication-title: Chem. Phys. Lett. – volume: 7 start-page: e168 year: 2015 publication-title: NPG Asia Mater. – volume: 127 start-page: 6552 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 96 start-page: 126104 year: 2006 publication-title: Phys. Rev. Lett. – volume: 499 start-page: 419 year: 2013 publication-title: Nature – volume: 13 start-page: 7378 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 19 start-page: 086105 year: 2010 publication-title: Chin. Phys. B – year: 2015 – volume: 5 start-page: 10337 year: 2015 publication-title: Sci. Rep. – volume: 113 start-page: 176101 year: 2014 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 849 year: 2012 publication-title: Sci. Rep. – volume: 8 start-page: 2210 year: 2008 publication-title: Nano Lett. – volume: 26 start-page: 956 year: 1957 publication-title: J. Chem. Phys. – volume: 335 start-page: 947 year: 2012 publication-title: Science – volume: 2 start-page: 1500023 year: 2015 publication-title: Adv. Sci. – volume: 93 start-page: 085406 year: 2016 publication-title: Phys. Rev. B – volume: 68 start-page: 085404 year: 2003 publication-title: Phys. Rev. B – volume: 324 start-page: 359 year: 2000 publication-title: Chem. Phys. Lett. – volume: 545 start-page: L735 year: 2003 publication-title: Surf. Sci. – volume: 95 start-page: 123105 year: 2009 publication-title: Appl. Phys. Lett. – volume: 317 start-page: 932 year: 2007 publication-title: Science – volume: 357–358 start-page: 307 year: 1996 publication-title: Surf. Sci. – volume: 92 start-page: 133107 year: 2008 publication-title: Appl. Phys. Lett. – volume: 100 start-page: 052104 year: 2012 publication-title: Appl. Phys. Lett. – volume: 109 start-page: 073708 year: 2011 publication-title: J. Appl. Phys. – volume: 4 start-page: 37726 year: 2014 publication-title: RSC Advances – volume: 99 start-page: 063114 year: 2011 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 3267 year: 2011 publication-title: Nano Lett. – volume: 132 start-page: 1699 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 72 start-page: 045434 year: 2005 publication-title: Phys. Rev. B – volume: 54 start-page: 13022 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 5849 year: 2015 publication-title: Chem. Mater. – volume: 5 start-page: 16159 year: 2015 publication-title: Sci. Rep. – volume: 8 start-page: 896 year: 2012 publication-title: Nat. Phys. – volume: 107 start-page: 104301 year: 2010 publication-title: J. Appl. Phys. – volume: 11 start-page: 6205 year: 2015 publication-title: Small – volume: 3 start-page: 3089 year: 2011 publication-title: Nanoscale – volume: 104 start-page: 143101 year: 2014 publication-title: Appl. Phys. Lett. – volume: 119 start-page: 3621 year: 2015 publication-title: J. Phys. Chem. A – volume: 84 start-page: 195414 year: 2011 publication-title: Phys. Rev. B – volume: 83 start-page: 073405 year: 2011 publication-title: Physi. Rev. B – volume: 14 start-page: 4881 year: 2014 publication-title: Nano Lett. – volume: 98 start-page: 083103 year: 2011 publication-title: Appl. Phys. Lett. – volume: 80 start-page: 224301 year: 2009 publication-title: Phys. Rev. B – volume: 24 start-page: 4127 year: 2014 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2434 year: 2016 publication-title: Nanoscale – volume: 14 start-page: 839 year: 2014 publication-title: Nano Lett. – volume: 3 start-page: 404 year: 2004 publication-title: Nat. Mater. – volume: 12 start-page: 3650 year: 2012 publication-title: Nano Lett. – volume: 334 start-page: 962 year: 2011 publication-title: Science – volume: 105 start-page: 266601 year: 2010 publication-title: Phys. Rev. Lett. – volume: 14 start-page: 4846 year: 2014 publication-title: Nano Lett. – volume: 27 start-page: 422 year: 1842 publication-title: J. Prakt. Chem. – volume: 17 start-page: 443 year: 2014 publication-title: Mater. Today – volume: 76 start-page: 073103 year: 2007 publication-title: Phys. Rev. B – volume: 342 start-page: 720 year: 2013 publication-title: Science – volume: 201 start-page: 2561 year: 2004 publication-title: Phys. Status Solidi A – volume: 133 start-page: 14831 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 5049 year: 2010 publication-title: Nano Lett. – volume: 26 start-page: 1776 year: 2014 publication-title: Adv. Mater. – volume: 8 start-page: 5478 year: 2014 publication-title: ACS Nano – volume: 146 start-page: 351 year: 2008 publication-title: Solid State Commun. – volume: 3 start-page: 206 year: 2008 publication-title: Nat. Nanotechnol. – volume: 26 start-page: 6380 year: 2014 publication-title: Chem. Mater. – volume: 5 start-page: 385 year: 2010 publication-title: ACS Nano – volume: 7 start-page: 9723 year: 2015 publication-title: Nanoscale – volume: 488 start-page: 67 year: 2010 publication-title: Chem. Phys. Lett. – volume: 52 start-page: 285 year: 1981 publication-title: J. Cryst. Growth – volume: 5 start-page: 3113 year: 2014 publication-title: Nat. Commun. – volume: 39 start-page: 1760 year: 1989 publication-title: Phys. Rev. B – volume: 74 start-page: 035413 year: 2006 publication-title: Phys. Rev. B – volume: 7 start-page: 10129 year: 2013 publication-title: ACS Nano – volume: 86 start-page: 125437 year: 2012 publication-title: Phys. Rev. B – volume: 38 start-page: 1144 year: 1963 publication-title: J. Chem. Phys. – volume: 68 start-page: 104102 year: 2003 publication-title: Phys. Rev. B – volume: 1 start-page: 025003 year: 2014 publication-title: 2D Mater. – volume: 11 start-page: 3113 year: 2011 publication-title: Nano Lett. – volume: 10 start-page: 534 year: 2015 publication-title: Nat. Nanotech. – volume: 125 start-page: 4306 year: 2013 publication-title: Angew. Chemie – volume: 12 start-page: 714 year: 2012 publication-title: Nano Lett. – volume: 98 start-page: 013105 year: 2011 publication-title: Appl. Phys. Lett. – volume: 135 start-page: 18216 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 20 year: 2007 publication-title: Phys. Today – volume: 324 start-page: 1312 year: 2009 publication-title: Science – volume: 108 start-page: 206802 year: 2012 publication-title: Phys. Rev. Lett. – volume: 78 start-page: 155204 year: 2008 publication-title: Phys. Rev. B – volume: 8 start-page: 3715 year: 2014 publication-title: ACS Nano – volume: 5 start-page: 5221 year: 2014 publication-title: Nat. Commun. – volume: 84 start-page: 075405 year: 2011 publication-title: Phys. Rev. B – volume: 4 start-page: 5241 year: 2014 publication-title: Sci. Rep. – volume: 65 start-page: 041406 year: 2002 publication-title: Phys. Rev. B – volume: 101 start-page: 171112 year: 2012 publication-title: Appl. Phys. Lett. – volume: 17 start-page: 16709 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 792 year: 2013 publication-title: Nat. Mater. – volume: 8 start-page: 8520 year: 2014 publication-title: ACS Nano – volume: 84 start-page: 235424 year: 2011 publication-title: Phys. Rev. B – volume: 14 start-page: 301 year: 2015 publication-title: Nat. Mater. – volume: 11 start-page: 3221 year: 2011 publication-title: Nano Lett. – volume: 81 start-page: 155433 year: 2010 publication-title: Phys. Rev. B – volume: 15 start-page: 4914 year: 2015 publication-title: Nano Lett. – volume: 51 start-page: 4606 year: 1995 publication-title: Phys. Rev. B – volume: 3 start-page: 2666 year: 2013 publication-title: Sci. Rep. – volume: 23 start-page: 415605 year: 2012 publication-title: Nanotechnology – volume: 15 start-page: 4769 year: 2015 publication-title: Nano Lett. – volume: 21 start-page: 270 year: 1842 publication-title: Philos. Mag. Series – volume: 6 start-page: 4104 year: 2012 publication-title: ACS Nano – volume: 26 start-page: 4891 year: 2014 publication-title: Chem. Mater. – volume: 14 start-page: 1064 year: 2014 publication-title: Nano Lett. – volume: 9 start-page: 2683 year: 2009 publication-title: Nano Lett. – volume: 119 start-page: 873 year: 2015 publication-title: J. Phys. Chem. C – volume: 14 start-page: 3270 year: 2014 publication-title: Nano Lett. – volume: 25 start-page: 105701 year: 2014 publication-title: Nanotechnology – volume: 103 start-page: 102401 year: 2013 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 2032 year: 2011 publication-title: Nano Lett. – volume: 16 start-page: 343 year: 2004 publication-title: Chem. Mater. – volume: 52 start-page: 3156 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 4453 year: 2014 publication-title: Sci. Rep. – volume: 7 start-page: 720 year: 2011 publication-title: J. Chem. Theory Comput. – volume: 11 start-page: 4497 year: 2015 publication-title: Small – volume: 5 start-page: 3193 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 927 year: 2010 publication-title: Small – volume: 102 start-page: 195505 year: 2009 publication-title: Phys. Rev. Lett. – volume: 113 start-page: 096801 year: 2014 publication-title: Phys. Rev. Lett. – volume: 75 start-page: 3918 year: 1995 publication-title: Phys. Rev. Lett. – volume: 24 start-page: 88 year: 2012 publication-title: Chem. Mater. – volume: 47 start-page: 1349 year: 2014 publication-title: Acc. Chem. Res. – volume: 497 start-page: 598 year: 2013 publication-title: Nature – volume: 27 start-page: 8041 year: 2015 publication-title: Chem. Mater. – volume: 47 start-page: 4406 year: 2011 publication-title: Chem. Commun. – volume: 15 start-page: 1837 year: 2004 publication-title: Nanotechnology – volume: 79 start-page: 115442 year: 2009 publication-title: Phys. Rev. B – volume: 25 start-page: 2746 year: 2013 publication-title: Adv. Mater. – volume: 6 start-page: 7443 year: 2012 publication-title: ACS Nano – volume: 9 start-page: 12088 year: 2015 publication-title: ACS Nano – volume: 117 start-page: 11770 year: 2013 publication-title: J. Phys. Chem. C – volume: 5 start-page: 4129 year: 2013 publication-title: Acs Appl. Mater. Interfaces – volume: 6 start-page: 6499 year: 2015 publication-title: Nat. Commun. – volume: 124 start-page: 054706 year: 2006 publication-title: J. Chem. Phys. – volume: 135 start-page: 6758 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 8109 year: 2015 publication-title: Adv. Mater. – volume: 105 start-page: 046801 year: 2010 publication-title: Phys. Rev. Lett. – volume: 82 start-page: 035412 year: 2010 publication-title: Phys. Rev. B – volume: 75 start-page: 193409 year: 2007 publication-title: Phys. Rev. B – volume: 8 start-page: 1457 year: 2014 publication-title: ACS Nano – volume: 10 start-page: 424 year: 2011 publication-title: Nat. Mater. – volume: 4 start-page: 1299 year: 2010 publication-title: ACS Nano – volume: 10 start-page: 949 year: 2015 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 1834 year: 2013 publication-title: Nano Lett. – volume: 102 start-page: 206603 year: 2009 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 1701 year: 2001 publication-title: Adv. Mater. – volume: 113 start-page: 2273 year: 2009 publication-title: J. Phys. Chem. C – volume: 115 start-page: 17252 year: 2011 publication-title: J. Phys. Chem. C – volume: 6 start-page: 7507 year: 2015 publication-title: Nat. Commun. – volume: 6 start-page: 7053 year: 2012 publication-title: ACS Nano – volume: 99 start-page: 243114 year: 2011 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 1224 year: 2012 publication-title: Nano Lett. – volume: 114 start-page: 144311 year: 2013 publication-title: J. Appl. Phys. – volume: 9 start-page: 430 year: 2010 publication-title: Nat. Mater. – volume: 15 start-page: 5067 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 6378 year: 2012 publication-title: ACS Nano – volume: 117 start-page: 9332 year: 2013 publication-title: J. Phys. Chem. C – volume: 3 start-page: 491 year: 2008 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 7303 year: 2011 publication-title: ACS Nano – volume: 89 start-page: 201404 year: 2014 publication-title: Phys. Rev. B – volume: 11 start-page: 5375 year: 2015 publication-title: Small – volume: 90 start-page: 081922 year: 2007 publication-title: Appl. Phys. Lett. – volume: 80 start-page: 155425 year: 2009 publication-title: Phys. Rev. B – volume: 488 start-page: 627 year: 2012 publication-title: Nature – volume: 81 start-page: 075125 year: 2010 publication-title: Phys. Rev. B – volume: 6 start-page: 6519 year: 2015 publication-title: Nat. Commun. – volume: 106 start-page: 126102 year: 2011 publication-title: Phys. Rev. Lett. – volume: 93 start-page: 223108 year: 2008 publication-title: Appl. Phys. Lett. – volume: 116 start-page: 1 year: 2000 publication-title: Solid State Commun. – volume: 7 start-page: 16046 year: 2015 publication-title: Nanoscale – volume: 84 start-page: 205412 year: 2011 publication-title: Phys. Rev. B – year: 2006 – volume: 5 start-page: 722 year: 2010 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 8849 year: 2015 publication-title: Nat. Commun. – volume: 12 start-page: 4449 year: 2012 publication-title: Nano Lett. – volume: 5 start-page: 10660 year: 2013 publication-title: Nanoscale – volume: 457 start-page: 863 year: 2009 publication-title: Nature – volume: 4 start-page: 963 year: 2004 publication-title: Nano Lett. – volume: 10 start-page: 3209 year: 2010 publication-title: Nano Lett. – volume: 11 start-page: 37 year: 2015 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 727 year: 2014 publication-title: Nat. Chem. – ident: e_1_2_7_32_1 doi: 10.1021/nn202141k – ident: e_1_2_7_82_1 doi: 10.1021/nl302398m – ident: e_1_2_7_93_1 doi: 10.1007/s10853-015-9180-0 – ident: e_1_2_7_133_1 doi: 10.1039/C5NR01473E – ident: e_1_2_7_128_1 doi: 10.1016/j.cplett.2009.11.051 – ident: e_1_2_7_231_1 doi: 10.1039/c3nr01180a – ident: e_1_2_7_157_1 doi: 10.1063/1.3234374 – ident: e_1_2_7_233_1 doi: 10.1021/jp2015269 – ident: e_1_2_7_202_1 doi: 10.1063/1.3662043 – ident: e_1_2_7_63_1 doi: 10.1126/science.1244358 – ident: e_1_2_7_135_1 doi: 10.1103/PhysRevLett.109.205502 – ident: e_1_2_7_106_1 doi: 10.1021/nn305320v – ident: e_1_2_7_209_1 doi: 10.1002/adma.200600231 – ident: e_1_2_7_271_1 doi: 10.1103/PhysRevB.74.035413 – ident: e_1_2_7_77_1 doi: 10.1038/ncomms7519 – ident: e_1_2_7_220_1 doi: 10.1038/nnano.2015.242 – ident: e_1_2_7_230_1 doi: 10.1063/1.3625922 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201304937 – ident: e_1_2_7_257_1 doi: 10.1016/S0038-1098(00)00281-7 – ident: e_1_2_7_49_1 doi: 10.1103/PhysRevB.82.113406 – ident: e_1_2_7_148_1 doi: 10.1039/c0cp02001j – volume-title: Structure and Chemistry of Crystalline Solids year: 2006 ident: e_1_2_7_267_1 – ident: e_1_2_7_167_1 doi: 10.1103/PhysRevB.76.073103 – ident: e_1_2_7_241_1 doi: 10.1103/PhysRevB.65.041406 – ident: e_1_2_7_205_1 doi: 10.1039/c3nr03714b – ident: e_1_2_7_28_1 doi: 10.1103/PhysRevLett.102.195505 – ident: e_1_2_7_142_1 doi: 10.1021/ja400637n – ident: e_1_2_7_246_1 doi: 10.1021/nl049862e – ident: e_1_2_7_249_1 doi: 10.1016/j.cplett.2009.06.012 – ident: e_1_2_7_84_1 doi: 10.1021/nn404331f – ident: e_1_2_7_99_1 doi: 10.1038/srep00849 – ident: e_1_2_7_153_1 doi: 10.1103/PhysRevB.81.075125 – ident: e_1_2_7_163_1 doi: 10.1103/PhysRevB.86.125437 – ident: e_1_2_7_170_1 doi: 10.1039/c3cp44460k – ident: e_1_2_7_211_1 doi: 10.1038/nphoton.2009.167 – ident: e_1_2_7_222_1 doi: 10.1021/nl103251m – ident: e_1_2_7_210_1 doi: 10.1002/app.27949 – ident: e_1_2_7_180_1 doi: 10.1103/PhysRevB.80.035408 – ident: e_1_2_7_263_1 doi: 10.1039/c0cc05738j – ident: e_1_2_7_124_1 doi: 10.1021/jp405536x – ident: e_1_2_7_150_1 doi: 10.1021/jp5122799 – ident: e_1_2_7_127_1 doi: 10.1021/nl404735w – ident: e_1_2_7_136_1 doi: 10.1021/nn901648q – ident: e_1_2_7_260_1 doi: 10.1063/1.1745964 – ident: e_1_2_7_69_1 doi: 10.1039/c1nr10504c – ident: e_1_2_7_88_1 doi: 10.1021/acs.nanolett.5b01704 – ident: e_1_2_7_214_1 doi: 10.1002/pssa.200405188 – ident: e_1_2_7_7_1 doi: 10.1021/nl400559s – ident: e_1_2_7_295_1 doi: 10.1039/C5RA12615K – ident: e_1_2_7_38_1 doi: 10.1103/PhysRevB.51.4606 – ident: e_1_2_7_87_1 doi: 10.1038/ncomms4193 – ident: e_1_2_7_276_1 doi: 10.1021/nn302696v – ident: e_1_2_7_41_1 doi: 10.1021/cm034805s – ident: e_1_2_7_78_1 doi: 10.1021/nl4033704 – ident: e_1_2_7_218_1 doi: 10.1038/ncomms8507 – ident: e_1_2_7_131_1 doi: 10.1103/PhysRevB.80.155425 – ident: e_1_2_7_112_1 doi: 10.1103/PhysRevB.83.115328 – ident: e_1_2_7_282_1 doi: 10.1002/1521-4095(200111)13:22<1701::AID-ADMA1701>3.0.CO;2-Q – ident: e_1_2_7_68_1 doi: 10.1038/srep02666 – ident: e_1_2_7_200_1 doi: 10.1088/0957-4484/25/10/105701 – ident: e_1_2_7_6_1 doi: 10.1021/nn503140y – ident: e_1_2_7_20_1 doi: 10.1002/smll.201500210 – ident: e_1_2_7_71_1 doi: 10.1021/nl400815w – ident: e_1_2_7_156_1 doi: 10.1103/PhysRevB.84.235424 – ident: e_1_2_7_90_1 doi: 10.1021/nl401308v – ident: e_1_2_7_117_1 doi: 10.1063/1.3373571 – ident: e_1_2_7_145_1 doi: 10.1021/jp400420m – ident: e_1_2_7_155_1 doi: 10.1021/jp200671p – ident: e_1_2_7_36_1 doi: 10.1038/nphys2954 – ident: e_1_2_7_159_1 doi: 10.1039/C2CP42994B – ident: e_1_2_7_189_1 doi: 10.1016/j.ssc.2008.02.024 – ident: e_1_2_7_75_1 doi: 10.1021/nn5003858 – ident: e_1_2_7_248_1 doi: 10.1063/1.3115446 – ident: e_1_2_7_292_1 – ident: e_1_2_7_168_1 doi: 10.1063/1.3556640 – ident: e_1_2_7_39_1 doi: 10.1103/PhysRevLett.79.4609 – ident: e_1_2_7_160_1 doi: 10.1021/jp300593q – ident: e_1_2_7_5_1 doi: 10.1016/j.mattod.2014.07.006 – ident: e_1_2_7_255_1 doi: 10.1021/ja901586k – ident: e_1_2_7_177_1 doi: 10.1103/PhysRevB.84.195414 – ident: e_1_2_7_172_1 doi: 10.1038/ncomms7308 – ident: e_1_2_7_26_1 doi: 10.1126/science.1243879 – ident: e_1_2_7_215_1 doi: 10.1063/1.4764533 – ident: e_1_2_7_287_1 doi: 10.1021/nl3004754 – ident: e_1_2_7_147_1 doi: 10.1021/jp402297n – ident: e_1_2_7_190_1 doi: 10.1038/nnano.2008.58 – ident: e_1_2_7_14_1 doi: 10.1021/nl1023707 – ident: e_1_2_7_57_1 doi: 10.1126/science.1144216 – ident: e_1_2_7_101_1 doi: 10.1039/C5CP02192H – ident: e_1_2_7_219_1 doi: 10.1038/nnano.2014.60 – ident: e_1_2_7_95_1 doi: 10.1038/srep10337 – ident: e_1_2_7_290_1 doi: 10.1103/PhysRevB.93.085406 – ident: e_1_2_7_197_1 doi: 10.1021/nn500059s – ident: e_1_2_7_107_1 doi: 10.1038/am.2015.8 – ident: e_1_2_7_154_1 doi: 10.1021/nl2011142 – ident: e_1_2_7_21_1 doi: 10.1007/s12274-015-0816-9 – ident: e_1_2_7_288_1 doi: 10.1002/anie.201207972 – ident: e_1_2_7_40_1 doi: 10.1103/PhysRevB.68.085404 – ident: e_1_2_7_35_1 doi: 10.1038/nature12186 – ident: e_1_2_7_178_1 doi: 10.1103/PhysRevB.89.201404 – ident: e_1_2_7_143_1 doi: 10.1021/acs.nanolett.5b01852 – ident: e_1_2_7_4_1 doi: 10.1039/C3CS60260E – ident: e_1_2_7_48_1 doi: 10.1016/j.susc.2006.06.016 – ident: e_1_2_7_141_1 doi: 10.1063/1.4819266 – ident: e_1_2_7_111_1 doi: 10.1103/PhysRevB.80.224301 – ident: e_1_2_7_294_1 doi: 10.1038/srep05241 – ident: e_1_2_7_80_1 doi: 10.1038/nature11408 – ident: e_1_2_7_74_1 doi: 10.1021/nl200464j – ident: e_1_2_7_123_1 doi: 10.1021/nn302099q – ident: e_1_2_7_185_1 doi: 10.1021/nl5006542 – ident: e_1_2_7_55_1 doi: 10.1002/smll.201402468 – ident: e_1_2_7_173_1 doi: 10.1103/PhysRevLett.111.266801 – ident: e_1_2_7_102_1 doi: 10.1021/acs.chemmater.5b00505 – ident: e_1_2_7_196_1 doi: 10.1021/cm502170q – ident: e_1_2_7_161_1 doi: 10.1103/PhysRevB.84.205412 – ident: e_1_2_7_83_1 doi: 10.1021/nl4021123 – ident: e_1_2_7_259_1 doi: 10.1007/s10409-012-0163-y – ident: e_1_2_7_104_1 doi: 10.1038/srep04453 – ident: e_1_2_7_108_1 doi: 10.1103/PhysRevB.68.104102 – ident: e_1_2_7_118_1 doi: 10.1103/PhysRevB.83.073405 – ident: e_1_2_7_97_1 doi: 10.1021/nn402452p – ident: e_1_2_7_139_1 doi: 10.1016/j.susc.2010.06.001 – ident: e_1_2_7_43_1 doi: 10.1021/nn5058968 – ident: e_1_2_7_187_1 doi: 10.1038/nnano.2015.91 – ident: e_1_2_7_207_1 doi: 10.1063/1.4870530 – ident: e_1_2_7_240_1 doi: 10.1103/PhysRevLett.80.4502 – ident: e_1_2_7_61_1 doi: 10.1021/nl304080y – ident: e_1_2_7_45_1 doi: 10.1088/2053-1583/1/2/025003 – ident: e_1_2_7_176_1 doi: 10.1103/PhysRevB.90.155406 – ident: e_1_2_7_277_1 doi: 10.1103/PhysRevLett.94.015504 – ident: e_1_2_7_25_1 doi: 10.1021/nl5046632 – ident: e_1_2_7_266_1 doi: 10.1021/ar400310g – ident: e_1_2_7_56_1 doi: 10.1002/adma.201504042 – ident: e_1_2_7_204_1 doi: 10.1021/am400016y – ident: e_1_2_7_199_1 doi: 10.1021/acs.nanolett.5b00648 – ident: e_1_2_7_54_1 doi: 10.1021/cm502603n – ident: e_1_2_7_73_1 doi: 10.1021/nn501837c – ident: e_1_2_7_283_1 doi: 10.1063/1.2812113 – ident: e_1_2_7_11_1 doi: 10.1021/nl203635v – ident: e_1_2_7_192_1 doi: 10.1038/nnano.2008.199 – ident: e_1_2_7_245_1 doi: 10.1063/1.1938002 – ident: e_1_2_7_121_1 doi: 10.1038/nature12385 – ident: e_1_2_7_31_1 doi: 10.1039/C5NR08036C – ident: e_1_2_7_86_1 doi: 10.1021/nl502110q – ident: e_1_2_7_281_1 doi: 10.1002/smll.200902087 – ident: e_1_2_7_216_1 doi: 10.1002/adma.201504042 – ident: e_1_2_7_265_1 doi: 10.1002/anie.200903246 – ident: e_1_2_7_114_1 doi: 10.1103/PhysRevLett.111.036104 – ident: e_1_2_7_51_1 doi: 10.1021/nl502445j – ident: e_1_2_7_236_1 doi: 10.1021/ja908475v – ident: e_1_2_7_201_1 doi: 10.1038/ncomms3541 – ident: e_1_2_7_30_1 doi: 10.1021/acs.chemmater.5b03607 – ident: e_1_2_7_23_1 doi: 10.1021/nl404207f – ident: e_1_2_7_225_1 doi: 10.1002/ange.201209597 – ident: e_1_2_7_64_1 doi: 10.1038/nmat4205 – ident: e_1_2_7_60_1 doi: 10.1002/adma.201304301 – ident: e_1_2_7_146_1 doi: 10.1063/1.4730392 – ident: e_1_2_7_234_1 doi: 10.1021/nl201616h – ident: e_1_2_7_144_1 doi: 10.1021/acs.jpca.5b01308 – ident: e_1_2_7_223_1 doi: 10.1021/nl2014857 – ident: e_1_2_7_92_1 doi: 10.1126/science.1211649 – ident: e_1_2_7_226_1 doi: 10.1021/nl5022915 – ident: e_1_2_7_293_1 – ident: e_1_2_7_46_1 doi: 10.1016/0039-6028(96)00134-3 – ident: e_1_2_7_125_1 doi: 10.1103/PhysRevB.78.155204 – ident: e_1_2_7_183_1 doi: 10.1103/PhysRevB.67.014108 – ident: e_1_2_7_109_1 doi: 10.1103/PhysRevB.13.5560 – ident: e_1_2_7_203_1 doi: 10.1002/adma.200900323 – ident: e_1_2_7_70_1 doi: 10.1038/ncomms7499 – ident: e_1_2_7_164_1 doi: 10.1021/nn101809j – ident: e_1_2_7_151_1 doi: 10.1021/jz2009506 – ident: e_1_2_7_193_1 doi: 10.1103/PhysRevLett.105.266601 – ident: e_1_2_7_286_1 doi: 10.1002/advs.201500023 – ident: e_1_2_7_129_1 doi: 10.1063/1.2162897 – ident: e_1_2_7_119_1 doi: 10.1063/1.3559300 – ident: e_1_2_7_158_1 doi: 10.1063/1.3533804 – ident: e_1_2_7_213_1 doi: 10.1038/nmat1134 – ident: e_1_2_7_258_1 doi: 10.1103/PhysRevB.65.165410 – ident: e_1_2_7_98_1 doi: 10.1038/ncomms2818 – ident: e_1_2_7_279_1 doi: 10.1021/ja017817s – ident: e_1_2_7_208_1 doi: 10.1039/C4RA09156F – ident: e_1_2_7_19_1 doi: 10.1126/science.1194975 – ident: e_1_2_7_162_1 doi: 10.1103/PhysRevB.84.075405 – ident: e_1_2_7_242_1 doi: 10.1103/PhysRevB.72.035418 – ident: e_1_2_7_174_1 doi: 10.1103/PhysRevLett.113.096801 – volume: 21 start-page: 270 year: 1842 ident: e_1_2_7_1_1 publication-title: Philos. Mag. Series – ident: e_1_2_7_122_1 doi: 10.1021/nn300495t – ident: e_1_2_7_140_1 doi: 10.1103/PhysRevB.75.193409 – ident: e_1_2_7_232_1 doi: 10.1021/nl080745j – ident: e_1_2_7_275_1 doi: 10.1103/PhysRevLett.113.176101 – ident: e_1_2_7_264_1 doi: 10.1021/ja410088y – ident: e_1_2_7_166_1 doi: 10.1103/PhysRevLett.108.226805 – ident: e_1_2_7_227_1 doi: 10.1021/ct1006345 – ident: e_1_2_7_228_1 doi: 10.1021/jp8079827 – ident: e_1_2_7_237_1 doi: 10.1021/nl2035749 – ident: e_1_2_7_103_1 doi: 10.1002/smll.201502173 – ident: e_1_2_7_152_1 doi: 10.1016/j.cplett.2010.01.073 – ident: e_1_2_7_184_1 doi: 10.1021/ja206703x – ident: e_1_2_7_42_1 doi: 10.1016/j.susc.2003.08.046 – ident: e_1_2_7_33_1 doi: 10.1021/acs.nanolett.5b04874 – ident: e_1_2_7_194_1 doi: 10.1126/science.1218461 – ident: e_1_2_7_250_1 doi: 10.1063/1.3040007 – ident: e_1_2_7_182_1 doi: 10.1063/1.1733815 – ident: e_1_2_7_224_1 doi: 10.1021/nn504809n – ident: e_1_2_7_120_1 doi: 10.1140/epjb/e2009-00043-5 – ident: e_1_2_7_191_1 doi: 10.1103/PhysRevLett.102.206603 – ident: e_1_2_7_113_1 doi: 10.1063/1.2679007 – ident: e_1_2_7_179_1 doi: 10.1103/PhysRevB.91.121412 – ident: e_1_2_7_50_1 doi: 10.1002/smll.201501439 – ident: e_1_2_7_195_1 doi: 10.1038/nphys2441 – ident: e_1_2_7_10_1 doi: 10.1021/nl1022139 – ident: e_1_2_7_238_1 doi: 10.1088/1674-1056/19/8/086105 – ident: e_1_2_7_284_1 doi: 10.1002/adfm.201304146 – ident: e_1_2_7_29_1 doi: 10.1038/srep16159 – ident: e_1_2_7_188_1 doi: 10.1103/PhysRevB.80.241415 – ident: e_1_2_7_291_1 doi: 10.1126/science.aad1080 – ident: e_1_2_7_91_1 doi: 10.1038/nmat3001 – ident: e_1_2_7_115_1 doi: 10.1103/PhysRevLett.105.046801 – ident: e_1_2_7_206_1 doi: 10.1039/C4RA05753H – ident: e_1_2_7_134_1 doi: 10.1103/PhysRevLett.106.126102 – ident: e_1_2_7_289_1 doi: 10.1002/anie.201505425 – ident: e_1_2_7_72_1 doi: 10.1002/adma.201204904 – ident: e_1_2_7_221_1 doi: 10.1002/adma.201301336 – ident: e_1_2_7_37_1 doi: 10.1103/PhysRevLett.75.3918 – ident: e_1_2_7_62_1 doi: 10.1038/nnano.2010.172 – ident: e_1_2_7_76_1 doi: 10.1039/C5NR04490A – ident: e_1_2_7_96_1 doi: 10.1021/cm201938h – ident: e_1_2_7_13_1 doi: 10.1021/nn301940k – ident: e_1_2_7_94_1 doi: 10.1002/smll.201400292 – ident: e_1_2_7_81_1 doi: 10.1038/nnano.2012.256 – ident: e_1_2_7_243_1 doi: 10.1088/0022-3727/42/8/085403 – ident: e_1_2_7_116_1 doi: 10.1063/1.3679174 – ident: e_1_2_7_198_1 – ident: e_1_2_7_186_1 doi: 10.1038/nnano.2015.70 – ident: e_1_2_7_137_1 doi: 10.1021/nl2011142 – ident: e_1_2_7_175_1 doi: 10.1103/PhysRevB.86.115415 – ident: e_1_2_7_2_1 doi: 10.1002/prac.18420270164 – ident: e_1_2_7_280_1 doi: 10.1002/adma.200800137 – ident: e_1_2_7_130_1 doi: 10.1021/nl9011497 – ident: e_1_2_7_239_1 doi: 10.1063/1.4824750 – ident: e_1_2_7_12_1 doi: 10.1021/nn301675f – ident: e_1_2_7_34_1 doi: 10.1039/C5NR02143J – ident: e_1_2_7_53_1 doi: 10.1038/srep07743 – ident: e_1_2_7_212_1 doi: 10.1038/nnano.2015.203 – ident: e_1_2_7_15_1 doi: 10.1038/ncomms9662 – ident: e_1_2_7_247_1 doi: 10.1016/S0009-2614(00)00637-0 – ident: e_1_2_7_169_1 doi: 10.1103/PhysRevB.81.155433 – ident: e_1_2_7_89_1 doi: 10.1038/ncomms7835 – ident: e_1_2_7_261_1 doi: 10.1016/0022-0248(81)90206-2 – ident: e_1_2_7_274_1 doi: 10.1103/PhysRevLett.112.085502 – ident: e_1_2_7_100_1 doi: 10.1038/ncomms9849 – ident: e_1_2_7_66_1 doi: 10.1021/nl3011726 – ident: e_1_2_7_65_1 doi: 10.1021/acsnano.5b01261 – ident: e_1_2_7_244_1 doi: 10.1209/0295-5075/28/5/007 – ident: e_1_2_7_105_1 doi: 10.1021/acsnano.5b05847 – ident: e_1_2_7_171_1 doi: 10.1038/am.2012.10 – ident: e_1_2_7_138_1 doi: 10.1038/nnano.2015.188 – ident: e_1_2_7_110_1 doi: 10.1103/PhysRevLett.96.026402 – ident: e_1_2_7_149_1 doi: 10.1103/PhysRevLett.108.206802 – ident: e_1_2_7_165_1 doi: 10.1103/PhysRevB.39.1760 – ident: e_1_2_7_9_1 doi: 10.1021/nl203249a – ident: e_1_2_7_217_1 doi: 10.1038/ncomms6221 – ident: e_1_2_7_252_1 doi: 10.1103/PhysRevB.69.201401 – ident: e_1_2_7_278_1 doi: 10.1038/nchem.1999 – ident: e_1_2_7_132_1 doi: 10.1103/PhysRevB.82.113404 – ident: e_1_2_7_47_1 doi: 10.1021/cm048629e – ident: e_1_2_7_235_1 doi: 10.1103/PhysRevB.78.205415 – ident: e_1_2_7_59_1 doi: 10.1021/cm7028382 – ident: e_1_2_7_3_1 doi: 10.1021/nn1006495 – ident: e_1_2_7_52_1 doi: 10.1126/science.1171245 – ident: e_1_2_7_79_1 doi: 10.1038/nmat2711 – ident: e_1_2_7_285_1 doi: 10.1021/nl0498785 – ident: e_1_2_7_58_1 doi: 10.1038/nmat1134 – ident: e_1_2_7_126_1 doi: 10.1021/jp105454w – ident: e_1_2_7_254_1 doi: 10.1021/ja042388u – ident: e_1_2_7_229_1 doi: 10.1103/PhysRevB.77.075403 – ident: e_1_2_7_8_1 doi: 10.1021/nn4009356 – ident: e_1_2_7_272_1 doi: 10.1021/ja507235s – ident: e_1_2_7_253_1 doi: 10.1088/0957-4484/15/12/025 – ident: e_1_2_7_85_1 doi: 10.1126/science.1246137 – ident: e_1_2_7_251_1 doi: 10.1103/PhysRevLett.96.126104 – ident: e_1_2_7_67_1 doi: 10.1038/nmat3695 – ident: e_1_2_7_256_1 doi: 10.1103/PhysRevB.82.035412 – ident: e_1_2_7_273_1 doi: 10.1038/ncomms4113 – ident: e_1_2_7_268_1 doi: 10.1021/cr300356t – ident: e_1_2_7_270_1 doi: 10.1103/PhysRevB.72.045434 – ident: e_1_2_7_181_1 doi: 10.1021/nl301406f – ident: e_1_2_7_262_1 doi: 10.1103/PhysRevB.79.115442 – ident: e_1_2_7_22_1 doi: 10.1088/0957-4484/23/41/415605 – ident: e_1_2_7_44_1 doi: 10.1103/PhysRevLett.104.096102 – ident: e_1_2_7_269_1 doi: 10.1038/nature07736 – ident: e_1_2_7_16_1 doi: 10.1002/smll.201001628 – ident: e_1_2_7_27_1 doi: 10.1038/ncomms7160 – ident: e_1_2_7_17_1 doi: 10.1063/1.2903702 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201204031 |
SSID | ssj0031247 |
Score | 2.5821905 |
SecondaryResourceType | review_article |
Snippet | Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2942 |
SubjectTerms | Boron nitride Electric potential Electronics Magnetic properties Nanostructure Nanotechnology Porous materials Synthesis Two dimensional |
Title | Boron Nitride Nanostructures: Fabrication, Functionalization and Applications |
URI | https://api.istex.fr/ark:/67375/WNG-PG57R8BX-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201600053 https://www.ncbi.nlm.nih.gov/pubmed/27073174 https://www.proquest.com/docview/1793934029 https://www.proquest.com/docview/1825488324 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFICPpvEyHriMywIFZRKCl3lrEjuJeVvR2gm1FSpU65tlO640raSoFwnx6zknTkOLmCaxt1p1bva5-vIZ4J3OY66LKGeYeeWMT5OMGS0S1i6kMJZPpZa0wXkwTC_H_PNETLZ28Xs-RDPgRppR2WtScG2WZ3-gocvvM5o6iNJqPykaYVqwRVHRqOFHJei8qtNV0GcxAm9tqI3t-Gz38h2v9IAa-Oe_Qs7dCLZyQd3HoDcv71ee3JyuV-bU_vqL63ifr3sCj-r4NDz3AvUU9lx5CA-3qIXPYNAh6kE4vF4trgsXon2eewrtGlP3j2FXm0U9EHgSdtFt-tHGer9nqMsiPN-aNX8O4-7Ft0-XrD6VgVmi77E8nvIIk0JrCHCcRVgiZiGX1kSozxi_Oex2I3lqnEiyzHKHVlUQFl-kkifJC9gv56U7glAKaaeJTWXBHZfcEYzOCiPwhhqLJgC26RVla2Q5nZwxUx62HCtqJtU0UwAfmvo_PKzj1prvq05uqunFDS1xy4S6GvbUl57IRnlnokYBtDZSoGrtXioyajLBzFsGcNz8jXpJky26dPM11qHUO0d7yQN46aWneVicoWHFVDCAuJKBO15WfR30-03p1f9c9BoO6Ldf49aCfZQK9wajqZV5W2nMb6IHEuY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9QwHMC_EXgAH1BBZYo6E6IvFtjWbqtvYDxOvbuQAyJvTdv1EgLsyHGXGP96v991m5yBmMBjd91ua78_--NTgC2dx1wXUc4w88oZHyUZM1okbLeQwlg-klrSBuf-IO2e8O-nollNSHthPB-iHXAjzajsNSk4DUjv_KWGXl9e0NxBlFYbShdgiY71rrKqYUuQStB9VeeroNdihN5quI278c78_XN-aYma-NdtQed8DFs5oc4TMM3r-7Un59uzqdm2v_8hOz7o-57Cah2ihntepp7BI1euweMb4MJ16O8T-CAcnE0nZ4UL0USPPYh2htn757CjzaQeC_wUdtBz-gHHestnqMsi3Lsxcf4cTjpfj790WX0wA7ME4GN5POIR5oXWEOM4i7BE2EIurYlQpTGEc9jzRvLUOJFkmeUODasgMr5IJU-SF7BYjku3AaEU0o4Sm8qCOy65Ix6dFUbgAzUWTQCs6RZla2o5HZ5xoTxvOVbUTKptpgA-tvWvPK_jzpofql5uq-nJOa1yy4T6OThQhwciG-b7p2oYwGYjBqpW8GtFdk0mmHzLAN63P6Nq0nyLLt14hnUo-87RZPIAXnrxaf8sztC2YjYYQFwJwX9eVh31e7229Oo-N72D5e5xv6d63wY_XsMKXfdL3jZhESXEvcHgamreVurzB9WOFwE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFICPYJMQPMC4BzYIEoIXvDWJncR72xjZgLaaCtP6ZtmOI00b6dS1EuLXc06cZi0CIcGjUydN7HP15TPAa53HXJdRzjDzyhmvkowZLRLWK6UwlldSS9rgPBimRyf801iMl3bxez5EN-BGmtHYa1Lwy7LauYaGXn27oKmDKG32k96EdZ72cpLrg1EHkErQezXHq6DTYkTeWmAbe_HO6v0rbmmdWvj772LO1RC28UHFPdCLt_dLT8635zOzbX_8Anb8n8_bgLttgBrueYm6Dzdc_QDuLGELH8Jgn7AH4fBsNj0rXYgGeuIxtHPM3XfDQptpOxL4LizQb_rhxnbDZ6jrMtxbmjZ_BCfFh6_vj1h7LAOzhN9jeVzxCLNCa4hwnEVYImghl9ZEqNAYwDnsdyN5apxIssxyh2ZVEBdfpJInyWNYqye1ewqhFNJWiU1lyR2X3BGNzgoj8IEaiyYAtugVZVtmOR2dcaE8bTlW1Eyqa6YA3nb1Lz2t44813zSd3FXT03Na45YJdTo8VMeHIhvl-2M1CmBzIQWqVe8rRVZNJph6ywBedT-jYtJsi67dZI51KPfO0WDyAJ546en-LM7QsmIuGEDcyMBfXlZ9GfT7XenZv9z0Em4dHxSq_3H4-Tncpst-vdsmrKGAuC2MrGbmRaM8PwGMuhW5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boron+Nitride+Nanostructures%3A+Fabrication%2C+Functionalization+and+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yin%2C+Jun&rft.au=Li%2C+Jidong&rft.au=Hang%2C+Yang&rft.au=Yu%2C+Jin&rft.date=2016-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=12&rft.issue=22&rft.spage=2942&rft_id=info:doi/10.1002%2Fsmll.201600053&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4079133941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |