Boron Nitride Nanostructures: Fabrication, Functionalization and Applications

Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostru...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 12; no. 22; pp. 2942 - 2968
Main Authors Yin, Jun, Li, Jidong, Hang, Yang, Yu, Jin, Tai, Guoan, Li, Xuemei, Zhang, Zhuhua, Guo, Wanlin
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.06.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two‐dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN‐involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One‐dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. Boron nitride nanostructures have attracted intense attention for their excellent properties. Controlled synthesis of quality samples and the electrically insulating property largely prevents the realization of the full potential of BN nanostructures. The current status of the synthesis and applications of two dimensional h‐BN are reviewed, as well as versatile strategies in pursuit of tunable electronic and magnetic properties in BN nanostructures.
AbstractList Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced.
Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. Boron nitride nanostructures have attracted intense attention for their excellent properties. Controlled synthesis of quality samples and the electrically insulating property largely prevents the realization of the full potential of BN nanostructures. The current status of the synthesis and applications of two dimensional h-BN are reviewed, as well as versatile strategies in pursuit of tunable electronic and magnetic properties in BN nanostructures.
Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two‐dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN‐involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One‐dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. Boron nitride nanostructures have attracted intense attention for their excellent properties. Controlled synthesis of quality samples and the electrically insulating property largely prevents the realization of the full potential of BN nanostructures. The current status of the synthesis and applications of two dimensional h‐BN are reviewed, as well as versatile strategies in pursuit of tunable electronic and magnetic properties in BN nanostructures.
Author Tai, Guoan
Yu, Jin
Li, Jidong
Yin, Jun
Zhang, Zhuhua
Guo, Wanlin
Hang, Yang
Li, Xuemei
Author_xml – sequence: 1
  givenname: Jun
  surname: Yin
  fullname: Yin, Jun
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China
– sequence: 2
  givenname: Jidong
  surname: Li
  fullname: Li, Jidong
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China
– sequence: 3
  givenname: Yang
  surname: Hang
  fullname: Hang, Yang
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China
– sequence: 4
  givenname: Jin
  surname: Yu
  fullname: Yu, Jin
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China
– sequence: 5
  givenname: Guoan
  surname: Tai
  fullname: Tai, Guoan
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China
– sequence: 6
  givenname: Xuemei
  surname: Li
  fullname: Li, Xuemei
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China
– sequence: 7
  givenname: Zhuhua
  surname: Zhang
  fullname: Zhang, Zhuhua
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China
– sequence: 8
  givenname: Wanlin
  surname: Guo
  fullname: Guo, Wanlin
  email: wlguo@nuaa.edu.cn
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27073174$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEURi3Uij5gyxKNxIYFk97rx3jMrq1IqJQGVECwszyOI7k449SeEW1_PZMmjapKiJWvrXOu9Pk7InttbB0hbxBGCEBP8jKEEQWsAECwF-QQK2RlVVO1t5sRDshRztcADCmXL8kBlSAZSn5ILs9iim0x813yc1fMTBtzl3rb9cnlj8XYNMlb0_nYfijGfWvXkwn-_uGpMO28OF2twhbJr8j-woTsXm_PY_Jj_On7-edy-mVycX46La1AYGVNFxxBcdtUVAqJw01KBVzZBhkqROoU1I3iVeMEk9Jyh4IJNkQUleKMHZP3m72rFG96lzu99Nm6EEzrYp811lTwumaUD-i7Z-h17NOQYaCkYopxoGqg3m6pvlm6uV4lvzTpTj9-1ADwDWBTzDm5hba-ewjdJeODRtDrPvS6D73rY9BGz7THzf8U1Eb444O7-w-tv11Op0_dcuP63LnbnWvSb11JJoX-OZvorxMhr-qzX_qK_QX-oKnL
CitedBy_id crossref_primary_10_1002_cnma_201700148
crossref_primary_10_1016_j_colsurfb_2021_111867
crossref_primary_10_1002_adma_201800865
crossref_primary_10_1016_j_surfin_2024_104699
crossref_primary_10_1039_C9RA10491G
crossref_primary_10_7717_peerj_matsci_27
crossref_primary_10_1140_epjp_s13360_023_04667_x
crossref_primary_10_1007_s10854_017_6637_8
crossref_primary_10_1021_acs_chemmater_8b01091
crossref_primary_10_1063_1_5079655
crossref_primary_10_1002_adfm_201702168
crossref_primary_10_1080_09506608_2017_1322833
crossref_primary_10_1002_slct_202402676
crossref_primary_10_1039_D2NH00353H
crossref_primary_10_1002_adfm_202414042
crossref_primary_10_1016_j_physe_2021_114788
crossref_primary_10_1039_C9TB01006H
crossref_primary_10_1088_1361_6641_ab5ece
crossref_primary_10_1016_j_jpcs_2022_110949
crossref_primary_10_1039_C8CY00163D
crossref_primary_10_1016_j_nanoen_2021_106661
crossref_primary_10_1016_j_compscitech_2021_108995
crossref_primary_10_1016_j_apsusc_2022_154073
crossref_primary_10_1088_2053_1591_ab2de3
crossref_primary_10_1016_j_carbon_2022_01_013
crossref_primary_10_1016_j_matlet_2018_09_031
crossref_primary_10_1088_1361_648X_ab49b0
crossref_primary_10_1142_S1793604722510092
crossref_primary_10_1088_1361_6528_acf6c3
crossref_primary_10_1016_j_cattod_2018_12_028
crossref_primary_10_1039_C9CC08717F
crossref_primary_10_1016_j_molstruc_2022_133968
crossref_primary_10_1002_ange_201904996
crossref_primary_10_1039_C7TC04300G
crossref_primary_10_7498_aps_68_20191036
crossref_primary_10_1088_1402_4896_ac2858
crossref_primary_10_3390_bios13010116
crossref_primary_10_3390_jcs4030116
crossref_primary_10_1002_adfm_201603300
crossref_primary_10_1088_2053_1583_ac5461
crossref_primary_10_1149_1945_7111_abaf29
crossref_primary_10_1002_sus2_239
crossref_primary_10_1016_j_mtadv_2021_100181
crossref_primary_10_1002_app_54598
crossref_primary_10_1002_admi_201901198
crossref_primary_10_1016_j_colsurfb_2021_111765
crossref_primary_10_1002_solr_202100401
crossref_primary_10_1109_TMAG_2023_3294354
crossref_primary_10_1021_acs_jpcc_8b12333
crossref_primary_10_1007_s12274_016_1338_9
crossref_primary_10_1007_s13738_016_0976_x
crossref_primary_10_1088_1674_1056_27_1_016301
crossref_primary_10_1016_j_chemosphere_2018_06_117
crossref_primary_10_1039_D3CP04963A
crossref_primary_10_1016_j_heliyon_2023_e19362
crossref_primary_10_1016_j_apsusc_2024_160851
crossref_primary_10_1007_s11998_019_00261_y
crossref_primary_10_1002_adsu_202100095
crossref_primary_10_3390_nano13091546
crossref_primary_10_1007_s10562_023_04491_z
crossref_primary_10_3389_fbioe_2019_00363
crossref_primary_10_1088_1361_648X_aaa2d7
crossref_primary_10_1007_s10904_023_02594_z
crossref_primary_10_3390_nano14020154
crossref_primary_10_1088_2053_1583_ac0c2a
crossref_primary_10_1002_admi_202200610
crossref_primary_10_1140_epjb_s10051_020_00012_8
crossref_primary_10_1021_acscatal_4c04463
crossref_primary_10_1016_j_commatsci_2018_09_040
crossref_primary_10_1016_j_compositesb_2021_109168
crossref_primary_10_1016_j_compscitech_2021_109131
crossref_primary_10_1063_1_4966554
crossref_primary_10_1088_1361_665X_ad1fa8
crossref_primary_10_1016_j_nwnano_2023_100008
crossref_primary_10_1021_acs_iecr_3c00985
crossref_primary_10_1063_1_5039823
crossref_primary_10_1021_acsnano_8b02970
crossref_primary_10_1021_acs_jpclett_1c02626
crossref_primary_10_1016_j_vacuum_2023_112126
crossref_primary_10_1039_C6NR09312D
crossref_primary_10_1039_C8NR00857D
crossref_primary_10_1039_D1NJ01610E
crossref_primary_10_1039_D2NH00451H
crossref_primary_10_3390_nano7050115
crossref_primary_10_1002_smll_201604179
crossref_primary_10_1016_j_ces_2024_120821
crossref_primary_10_1016_j_rinp_2022_105208
crossref_primary_10_1021_acsnano_7b08977
crossref_primary_10_1016_j_ceramint_2024_03_082
crossref_primary_10_1038_s41598_025_92888_8
crossref_primary_10_1021_acs_jpclett_2c01431
crossref_primary_10_1002_advs_201801501
crossref_primary_10_1557_s43578_022_00607_0
crossref_primary_10_1007_s11224_021_01842_7
crossref_primary_10_1111_jace_19126
crossref_primary_10_1002_pssr_202300479
crossref_primary_10_1021_acs_jpcc_1c01756
crossref_primary_10_1016_j_jallcom_2020_158153
crossref_primary_10_1016_j_comptc_2025_115195
crossref_primary_10_1063_5_0202909
crossref_primary_10_1016_j_apsusc_2017_01_066
crossref_primary_10_1002_cphc_202100645
crossref_primary_10_1007_s12274_018_2076_y
crossref_primary_10_1007_s11709_020_0616_5
crossref_primary_10_1039_C9TA06599G
crossref_primary_10_1088_1674_4926_40_12_121801
crossref_primary_10_1080_10408347_2021_1919987
crossref_primary_10_1021_acs_chemmater_0c03549
crossref_primary_10_1021_acs_jpcc_0c10881
crossref_primary_10_1039_C8TB01649F
crossref_primary_10_1016_j_diamond_2023_110736
crossref_primary_10_1103_PhysRevMaterials_1_045001
crossref_primary_10_1016_j_comptc_2024_114806
crossref_primary_10_1016_j_memsci_2018_07_003
crossref_primary_10_1016_j_nantod_2019_100799
crossref_primary_10_1039_D3VA00239J
crossref_primary_10_26599_JAC_2023_9220810
crossref_primary_10_1002_anie_201904996
crossref_primary_10_1002_smll_202405404
crossref_primary_10_1021_jacs_8b08165
crossref_primary_10_1039_C7CS00261K
crossref_primary_10_1007_s40843_022_2112_y
crossref_primary_10_1088_2053_1591_aa9a7f
crossref_primary_10_3390_inorganics12070193
crossref_primary_10_1021_acsomega_7b00061
crossref_primary_10_1186_s11671_024_03967_0
crossref_primary_10_1038_s41467_019_09016_0
crossref_primary_10_1088_2053_1583_adb6bb
crossref_primary_10_1039_D1CC03011F
crossref_primary_10_1021_acsami_1c10919
crossref_primary_10_1088_1361_6528_ad0052
crossref_primary_10_1016_j_apsusc_2019_02_203
crossref_primary_10_1016_j_cej_2018_05_053
crossref_primary_10_1039_D4CP02137A
crossref_primary_10_1021_acsabm_8b00145
crossref_primary_10_1016_j_nantod_2019_02_006
crossref_primary_10_1016_j_compositesb_2022_110378
crossref_primary_10_1002_ange_202106161
crossref_primary_10_1021_acs_cgd_8b01542
crossref_primary_10_1016_j_comptc_2024_114836
crossref_primary_10_1039_D0CP01990A
crossref_primary_10_1088_2053_1583_ad27e8
crossref_primary_10_1038_s41699_019_0115_5
crossref_primary_10_1039_C9NA00702D
crossref_primary_10_1002_ange_202317256
crossref_primary_10_1016_j_apsusc_2020_147513
crossref_primary_10_1002_anie_202106161
crossref_primary_10_1016_j_physb_2023_415178
crossref_primary_10_1016_j_jmat_2022_05_007
crossref_primary_10_1007_s12274_023_5515_3
crossref_primary_10_1021_acs_iecr_1c02102
crossref_primary_10_1002_tcr_202000079
crossref_primary_10_1016_j_mseb_2021_115118
crossref_primary_10_1021_acsami_8b07332
crossref_primary_10_1007_s12274_016_1393_2
crossref_primary_10_1016_j_orgel_2021_106322
crossref_primary_10_1016_j_compositesa_2017_12_031
crossref_primary_10_1016_j_colsurfb_2020_110964
crossref_primary_10_1371_journal_pone_0305555
crossref_primary_10_1021_acscentsci_0c00822
crossref_primary_10_1016_j_diamond_2024_111463
crossref_primary_10_1021_acs_jpcc_8b07660
crossref_primary_10_1016_j_cej_2018_04_196
crossref_primary_10_1088_1361_6463_abdb6b
crossref_primary_10_1021_acsami_2c21545
crossref_primary_10_1016_j_ensm_2020_10_004
crossref_primary_10_1021_acssuschemeng_8b04241
crossref_primary_10_1016_j_orgel_2020_105742
crossref_primary_10_1016_j_isci_2021_102251
crossref_primary_10_1021_acsaelm_2c00013
crossref_primary_10_1002_aenm_201903921
crossref_primary_10_1002_chem_201802958
crossref_primary_10_1016_j_compositesa_2023_107598
crossref_primary_10_7498_aps_66_217304
crossref_primary_10_1016_j_mattod_2017_09_001
crossref_primary_10_1016_j_surfrep_2018_10_001
crossref_primary_10_1002_anie_202317256
crossref_primary_10_1039_D1RA05727H
crossref_primary_10_1016_j_physb_2023_415078
crossref_primary_10_2147_IJN_S266948
crossref_primary_10_1016_j_chroma_2018_07_008
crossref_primary_10_1002_adfm_201603181
crossref_primary_10_1088_1674_4926_38_3_031004
crossref_primary_10_1016_j_jmst_2021_03_084
crossref_primary_10_1021_acs_accounts_2c00564
crossref_primary_10_1021_acs_iecr_4c02418
crossref_primary_10_1088_1674_4926_38_3_031003
crossref_primary_10_7498_aps_71_20220407
crossref_primary_10_1021_acsphotonics_7b00977
crossref_primary_10_1016_j_apsusc_2019_144860
crossref_primary_10_3390_nano14151259
crossref_primary_10_1016_j_surfin_2023_102925
crossref_primary_10_1039_D0TA05008C
crossref_primary_10_1007_s42823_022_00423_w
crossref_primary_10_1088_1361_6528_abe155
crossref_primary_10_3390_analytica5040040
crossref_primary_10_1002_adfm_201906284
crossref_primary_10_1016_j_ica_2023_121838
crossref_primary_10_1038_s41598_023_38106_9
Cites_doi 10.1021/nn202141k
10.1021/nl302398m
10.1007/s10853-015-9180-0
10.1039/C5NR01473E
10.1016/j.cplett.2009.11.051
10.1039/c3nr01180a
10.1063/1.3234374
10.1021/jp2015269
10.1063/1.3662043
10.1126/science.1244358
10.1103/PhysRevLett.109.205502
10.1021/nn305320v
10.1002/adma.200600231
10.1103/PhysRevB.74.035413
10.1038/ncomms7519
10.1038/nnano.2015.242
10.1063/1.3625922
10.1002/adma.201304937
10.1016/S0038-1098(00)00281-7
10.1103/PhysRevB.82.113406
10.1039/c0cp02001j
10.1103/PhysRevB.76.073103
10.1103/PhysRevB.65.041406
10.1039/c3nr03714b
10.1103/PhysRevLett.102.195505
10.1021/ja400637n
10.1021/nl049862e
10.1016/j.cplett.2009.06.012
10.1021/nn404331f
10.1038/srep00849
10.1103/PhysRevB.81.075125
10.1103/PhysRevB.86.125437
10.1039/c3cp44460k
10.1038/nphoton.2009.167
10.1021/nl103251m
10.1002/app.27949
10.1103/PhysRevB.80.035408
10.1039/c0cc05738j
10.1021/jp405536x
10.1021/jp5122799
10.1021/nl404735w
10.1021/nn901648q
10.1063/1.1745964
10.1039/c1nr10504c
10.1021/acs.nanolett.5b01704
10.1002/pssa.200405188
10.1021/nl400559s
10.1039/C5RA12615K
10.1103/PhysRevB.51.4606
10.1038/ncomms4193
10.1021/nn302696v
10.1021/cm034805s
10.1021/nl4033704
10.1038/ncomms8507
10.1103/PhysRevB.80.155425
10.1103/PhysRevB.83.115328
10.1002/1521-4095(200111)13:22<1701::AID-ADMA1701>3.0.CO;2-Q
10.1038/srep02666
10.1088/0957-4484/25/10/105701
10.1021/nn503140y
10.1002/smll.201500210
10.1021/nl400815w
10.1103/PhysRevB.84.235424
10.1021/nl401308v
10.1063/1.3373571
10.1021/jp400420m
10.1021/jp200671p
10.1038/nphys2954
10.1039/C2CP42994B
10.1016/j.ssc.2008.02.024
10.1021/nn5003858
10.1063/1.3115446
10.1063/1.3556640
10.1103/PhysRevLett.79.4609
10.1021/jp300593q
10.1016/j.mattod.2014.07.006
10.1021/ja901586k
10.1103/PhysRevB.84.195414
10.1038/ncomms7308
10.1126/science.1243879
10.1063/1.4764533
10.1021/nl3004754
10.1021/jp402297n
10.1038/nnano.2008.58
10.1021/nl1023707
10.1126/science.1144216
10.1039/C5CP02192H
10.1038/nnano.2014.60
10.1038/srep10337
10.1103/PhysRevB.93.085406
10.1021/nn500059s
10.1038/am.2015.8
10.1021/nl2011142
10.1007/s12274-015-0816-9
10.1002/anie.201207972
10.1103/PhysRevB.68.085404
10.1038/nature12186
10.1103/PhysRevB.89.201404
10.1021/acs.nanolett.5b01852
10.1039/C3CS60260E
10.1016/j.susc.2006.06.016
10.1063/1.4819266
10.1103/PhysRevB.80.224301
10.1038/srep05241
10.1038/nature11408
10.1021/nl200464j
10.1021/nn302099q
10.1021/nl5006542
10.1002/smll.201402468
10.1103/PhysRevLett.111.266801
10.1021/acs.chemmater.5b00505
10.1021/cm502170q
10.1103/PhysRevB.84.205412
10.1021/nl4021123
10.1007/s10409-012-0163-y
10.1038/srep04453
10.1103/PhysRevB.68.104102
10.1103/PhysRevB.83.073405
10.1021/nn402452p
10.1016/j.susc.2010.06.001
10.1021/nn5058968
10.1038/nnano.2015.91
10.1063/1.4870530
10.1103/PhysRevLett.80.4502
10.1021/nl304080y
10.1088/2053-1583/1/2/025003
10.1103/PhysRevB.90.155406
10.1103/PhysRevLett.94.015504
10.1021/nl5046632
10.1021/ar400310g
10.1002/adma.201504042
10.1021/am400016y
10.1021/acs.nanolett.5b00648
10.1021/cm502603n
10.1021/nn501837c
10.1063/1.2812113
10.1021/nl203635v
10.1038/nnano.2008.199
10.1063/1.1938002
10.1038/nature12385
10.1039/C5NR08036C
10.1021/nl502110q
10.1002/smll.200902087
10.1002/anie.200903246
10.1103/PhysRevLett.111.036104
10.1021/nl502445j
10.1021/ja908475v
10.1038/ncomms3541
10.1021/acs.chemmater.5b03607
10.1021/nl404207f
10.1002/ange.201209597
10.1038/nmat4205
10.1002/adma.201304301
10.1063/1.4730392
10.1021/nl201616h
10.1021/acs.jpca.5b01308
10.1021/nl2014857
10.1126/science.1211649
10.1021/nl5022915
10.1016/0039-6028(96)00134-3
10.1103/PhysRevB.78.155204
10.1103/PhysRevB.67.014108
10.1103/PhysRevB.13.5560
10.1002/adma.200900323
10.1038/ncomms7499
10.1021/nn101809j
10.1021/jz2009506
10.1103/PhysRevLett.105.266601
10.1002/advs.201500023
10.1063/1.2162897
10.1063/1.3559300
10.1063/1.3533804
10.1038/nmat1134
10.1103/PhysRevB.65.165410
10.1038/ncomms2818
10.1021/ja017817s
10.1039/C4RA09156F
10.1126/science.1194975
10.1103/PhysRevB.84.075405
10.1103/PhysRevB.72.035418
10.1103/PhysRevLett.113.096801
10.1021/nn300495t
10.1103/PhysRevB.75.193409
10.1021/nl080745j
10.1103/PhysRevLett.113.176101
10.1021/ja410088y
10.1103/PhysRevLett.108.226805
10.1021/ct1006345
10.1021/jp8079827
10.1021/nl2035749
10.1002/smll.201502173
10.1016/j.cplett.2010.01.073
10.1021/ja206703x
10.1016/j.susc.2003.08.046
10.1021/acs.nanolett.5b04874
10.1126/science.1218461
10.1063/1.3040007
10.1063/1.1733815
10.1021/nn504809n
10.1140/epjb/e2009-00043-5
10.1103/PhysRevLett.102.206603
10.1063/1.2679007
10.1103/PhysRevB.91.121412
10.1002/smll.201501439
10.1038/nphys2441
10.1021/nl1022139
10.1088/1674-1056/19/8/086105
10.1002/adfm.201304146
10.1038/srep16159
10.1103/PhysRevB.80.241415
10.1126/science.aad1080
10.1038/nmat3001
10.1103/PhysRevLett.105.046801
10.1039/C4RA05753H
10.1103/PhysRevLett.106.126102
10.1002/anie.201505425
10.1002/adma.201204904
10.1002/adma.201301336
10.1103/PhysRevLett.75.3918
10.1038/nnano.2010.172
10.1039/C5NR04490A
10.1021/cm201938h
10.1021/nn301940k
10.1002/smll.201400292
10.1038/nnano.2012.256
10.1088/0022-3727/42/8/085403
10.1063/1.3679174
10.1038/nnano.2015.70
10.1103/PhysRevB.86.115415
10.1002/prac.18420270164
10.1002/adma.200800137
10.1021/nl9011497
10.1063/1.4824750
10.1021/nn301675f
10.1039/C5NR02143J
10.1038/srep07743
10.1038/nnano.2015.203
10.1038/ncomms9662
10.1016/S0009-2614(00)00637-0
10.1103/PhysRevB.81.155433
10.1038/ncomms7835
10.1016/0022-0248(81)90206-2
10.1103/PhysRevLett.112.085502
10.1038/ncomms9849
10.1021/nl3011726
10.1021/acsnano.5b01261
10.1209/0295-5075/28/5/007
10.1021/acsnano.5b05847
10.1038/am.2012.10
10.1038/nnano.2015.188
10.1103/PhysRevLett.96.026402
10.1103/PhysRevLett.108.206802
10.1103/PhysRevB.39.1760
10.1021/nl203249a
10.1038/ncomms6221
10.1103/PhysRevB.69.201401
10.1038/nchem.1999
10.1103/PhysRevB.82.113404
10.1021/cm048629e
10.1103/PhysRevB.78.205415
10.1021/cm7028382
10.1021/nn1006495
10.1126/science.1171245
10.1038/nmat2711
10.1021/nl0498785
10.1021/jp105454w
10.1021/ja042388u
10.1103/PhysRevB.77.075403
10.1021/nn4009356
10.1021/ja507235s
10.1088/0957-4484/15/12/025
10.1126/science.1246137
10.1103/PhysRevLett.96.126104
10.1038/nmat3695
10.1103/PhysRevB.82.035412
10.1038/ncomms4113
10.1021/cr300356t
10.1103/PhysRevB.72.045434
10.1021/nl301406f
10.1103/PhysRevB.79.115442
10.1088/0957-4484/23/41/415605
10.1103/PhysRevLett.104.096102
10.1038/nature07736
10.1002/smll.201001628
10.1038/ncomms7160
10.1063/1.2903702
10.1002/adma.201204031
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
F28
FR3
DOI 10.1002/smll.201600053
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList PubMed
Materials Research Database
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 2968
ExternalDocumentID 4079133941
27073174
10_1002_smll_201600053
SMLL201600053
ark_67375_WNG_PG57R8BX_R
Genre article
Journal Article
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
AFWVQ
ALVPJ
AAYXX
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
F28
FR3
ID FETCH-LOGICAL-c5103-82f41094cb627571f41779049cb1319112e908b946be5377c4e15353005569433
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Jul 11 04:01:41 EDT 2025
Sun Jul 13 04:54:15 EDT 2025
Mon Jul 21 05:18:30 EDT 2025
Tue Jul 01 02:10:22 EDT 2025
Thu Apr 24 23:05:11 EDT 2025
Wed Jan 22 17:04:41 EST 2025
Wed Oct 30 09:56:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5103-82f41094cb627571f41779049cb1319112e908b946be5377c4e15353005569433
Notes ArticleID:SMLL201600053
ark:/67375/WNG-PG57R8BX-R
istex:DF390CB944E7F5BF9A3C05DA5B74F64D63110BD5
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27073174
PQID 1793934029
PQPubID 1046358
PageCount 27
ParticipantIDs proquest_miscellaneous_1825488324
proquest_journals_1793934029
pubmed_primary_27073174
crossref_citationtrail_10_1002_smll_201600053
crossref_primary_10_1002_smll_201600053
wiley_primary_10_1002_smll_201600053_SMLL201600053
istex_primary_ark_67375_WNG_PG57R8BX_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jun
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-Jun
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References M. Titov, M. I. Katsnelson, Phys. Rev. Lett. 2014, 113, 096801.
Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou, P. M. Ajayan, Nat. Commun. 2013, 4, 2541.
E. Hernández, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 1998, 80, 4502.
A. Zunger, A. Katzir, A. Halperin, Phys. Rev. B 1976, 13, 5560.
R. Balu, X. Zhong, R. Pandey, S. P. Karna, Appl. Phys. Lett. 2012, 100, 052104.
Y. G. Zhou, P. Yang, Z. G. Wang, X. T. Zu, H. Y. Xiao, X. Sun, M. A. Khaleel, F. Gao, Phys. Chem. Chem. Phys. 2011, 13, 7378.
Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Chem. Mater. 2008, 20, 1661.
R. Mukherjee, S. Bhowmick, J. Chem. Theory Comput. 2011, 7, 720.
G. H. Ryu, H. J. Park, J. Ryou, J. Park, J. Lee, G. Kim, H. S. Shin, C. W. Bielawski, R. S. Ruoff, S. Hong, Z. Lee, Nanoscale 2015, 7, 10600.
C. Zhang, L. Fu, S. Zhao, Y. Zhou, H. Peng, Z. Liu, Adv. Mater. 2014, 26, 1776.
J. Kunstmann, A. Quandt, Phys. Rev. B 2006, 74, 035413.
E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, F. Guinea, Phys. Rev. Lett. 2010, 105, 266601.
F. Zheng, G. Zhou, Z. Liu, J. Wu, W. Duan, B.-L. Gu, S. B. Zhang, Phys. Rev. B 2008, 78, 205415.
L. Li, L. H. Li, Y. Chen, X. J. Dai, P. R. Lamb, B.-M. Cheng, M.-Y. Lin, X. Liu, Angew. Chemie 2013, 125, 4306.
B. E. Douglas, S. M. Ho, Structure and Chemistry of Crystalline Solids, Springer, N.Y., 2006.
K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, ACS Nano 2012, 6, 8583.
M. Terauchi, M. Tanaka, K. Suzuki, A. Ogino, K. Kimura, Chem. Phys. Lett. 2000, 324, 359.
X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, J. Hone, Nat. Nanotech. 2015, 10, 534.
B. Arnaud, S. Lebegue, P. Rabiller, M. Alouani, Phys. Rev. Lett. 2006, 96, 026402.
Z. Zhang, W. Guo, Phys. Rev. B 2008, 77, 075403.
P. R. Kidambi, R. Blume, J. Kling, J. B. Wagner, C. Baehtz, R. S. Weatherup, R. Schloegl, B. C. Bayer, S. Hofmann, Chem. Mater. 2014, 26, 6380.
N. Marom, J. Bernstein, J. Garel, A. Tkatchenko, E. Joselevich, L. Kronik, O. Hod, Phys. Rev. Lett. 2010, 105, 046801.
A. R. Oganov, J. H. Chen, C. Gatti, Y. Z. Ma, Y. M. Ma, C. W. Glass, Z. X. Liu, T. Yu, O. O. Kurakevych, V. L. Solozhenko, Nature 2009, 457, 863.
J. L. He, E. D. Wu, H. T. Wang, R. P. Liu, Y. J. Tian, Phys. Rev. Lett. 2005, 94, 015504.
T. T. Tran, K. Bray, M. J. Ford, M. Toth, I. Aharonovich, Nat. Nanotechnol. 2015, 11, 37.
X. Blase, A. Rubio, S. Louie, M. Cohen, Euro. Phys. Lett. 1994, 28, 335.
Y. Gao, W. Ren, T. Ma, Z. Liu, Y. Zhang, W.-B. Liu, L.-P. Ma, X. Ma, H.-M. Cheng, ACS Nano 2013, 7, 5199.
T. Ishii, T. Sato, Y. Sekikawa, M. Iwata, J. Cryst. Growth 1981, 52, 285.
A. Sinitskii, K. J. Erickson, W. Lu, A. L. Gibb, C. Zhi, Y. Bando, D. Golberg, A. Zettl, J. M. Tour, ACS Nano 2014, 8, 9867.
M. Kan, J. Zhou, Q. Wang, Q. Sun, P. Jena, Phys. Rev. B 2011, 84, 205412.
J. H. Meng, X. W. Zhang, H. L. Wang, X. B. Ren, C. H. Jin, Z. G. Yin, X. Liu, H. Liu, Nanoscale 2015, 7, 16046.
L. Liu, Y. P. Feng, Z. X. Shen, Phys. Rev. B 2003, 68, 104102.
E. Husain, T. N. Narayanan, J. J. Taha-Tijerina, S. Vinod, R. Vajtai, P. M. Ajayan, Acs Appl. Mater. Interfaces 2013, 5, 4129.
A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Phys. Rev. Lett. 1995, 75, 3918.
S. H. Zhang, Y. W. Li, T. S. Zhao, Q. Wang, Sci. Rep. 2014, 4, 5241.
K. H. Michel, B. Verberck, Phys. Rev. B 2009, 80, 224301.
J. Miller, Phys. Today 2007, 60, 20.
Z.-X. Xie, L.-M. Tang, C.-N. Pan, Q. Chen, K.-Q. Chen, J. Appl. Phys. 2013, 114, 144311.
A. L. Gibb, N. Alem, J.-H. Chen, K. J. Erickson, J. Ciston, A. Gautam, M. Linck, A. Zettl, J. Am. Chem. Soc. 2013, 135, 6758.
Z.-H. Zhang, W.-L. Guo, B. I. Yakobson, Acta Mech. Sinica 2012, 28, 1532.
A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, R. V. Gorbachev, Nano Lett. 2014, 14, 3270.
A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 2014, 43, 934.
Q. Weng, X. Wang, C. Zhi, Y. Bando, D. Golberg, ACS Nano 2013, 7, 1558.
F. Müller, K. Stöwe, H. Sachdev, Chem. Mater. 2005, 17, 3464.
W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Nat. Commun. 2013, 4, 1777.
J. Yang, D. Kim, J. Hong, X. Qian, Surf. Sci. 2010, 604, 1603.
L. C. Gomes, S. S. Alexandre, H. Chacham, R. W. Nunes, J. Phys. Chem. C 2013, 117, 11770.
W. Auwärter, H. U. Suter, H. Sachdev, T. Greber, Chem. Mater. 2004, 16, 343.
G. Kim, H. Lim, K. Y. Ma, A. R. Jang, G. H. Ryu, M. Jung, H.-J. Shin, Z. Lee, H. S. Shin, Nano Lett. 2015, 15, 4769.
M. Yi, Z. Shen, L. Liu, S. Liang, RSC Adv 2015, 5, 2983.
P. Bharadwaj, M. Parzefall, A. Jain, T. Taniguchi, K. Watanabe, L. Novotny, Nat. Nanotechnol. 2015, 10, 1058.
L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 2006, 96, 126104.
M. Morscher, M. Corso, T. Greber, J. Osterwalder, Surf. Sci. 2006, 600, 3280.
Z. Zhang, W. Guo, Y. Dai, Appl. Phys. Lett. 2008, 93, 223108.
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Nat. Mater. 2011, 10, 424.
E. S. Penev, S. Bhowmick, A. Sadrzadeh, B. I. Yakobson, Nano Lett. 2012, 12, 2441.
F. P. Bundy, R. H. Wentorf, J. Chem. Phys. 1963, 38, 1144.
Y. Fan, M. Zhao, Z. Wang, X. Zhang, H. Zhang, Appl. Phys. Lett. 2011, 98, 083103.
E. Kan, F. Wu, H. Xiang, J. Yang, M.-H. Whangbo, J. Phys. Chem. C 2011, 115, 17252.
T. T. Xu, J.-G. Zheng, Wu, A. W. Nicholls, J. R. Roth, D. A. Dikin, R. S. Ruoff, Nano Lett. 2004, 4, 963.
S. Wang, Q. Chen, J. Wang, Appl. Phys. Lett. 2011, 99, 063114.
T. Gao, X. Song, H. Du, Y. Nie, Y. Chen, Q. Ji, J. Sun, Y. Yang, Y. Zhang, Z. Liu, Nat. Commun. 2015, 6, 6835.
M. Bernardi, M. Palummo, J. C. Grossman, Phys. Rev. Lett. 2012, 108, 226805.
J. Sławińska, I. Zasada, Z. Klusek, Phys. Rev. B 2010, 81, 155433.
H.-J. Zhai, Y.-F. Zhao, W.-L. Li, Q. Chen, H. Bai, H.-S. Hu, Z. A. Piazza, W.-J. Tian, H.-G. Lu, Y.-B. Wu, Y.-W. Mu, G.-F. Wei, Z.-P. Liu, J. Li, S.-D. Li, L.-S. Wang, Nat. Chem. 2014, 6, 727.
G.-H. Lee, Y.-J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, J. Hone, Appl. Phys. Lett. 2011, 99, 243114.
G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. van den Brink, Phys. Rev. B 2007, 76, 073103.
W. Balmain, J. Prakt. Chem. 1842, 27, 422.
J. Xu, Y. Chang, L. Gan, Y. Ma, T. Zhai, Adv. Sci. 2015, 2, 1500023.
M. H. Evans, J. D. Joannopoulos, S. T. Pantelides, Phys. Rev. B 2005, 72, 045434.
K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351.
X. Hong, K. Zou, J. Zhu, Phys. Rev. B 2009, 80, 241415.
J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568.
J. Kotakoski, C. H. Jin, O. Lehtinen, K. Suenaga, A. V. Krasheninnikov, Phys. Rev. B 2010, 82, 113404.
T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, W. B. Carter, Science 2011, 334, 962.
Y. Dai, W. Guo, Z. Zhang, B. Zhou, C. Tang, J. Phys. D: Appl. Phys. 2009, 42, 085403.
L. Wang, B. Wu, J. Chen, H. Liu, P. Hu, Y. Liu, Adv. Mater. 2014, 26, 1559.
B. Meng, W. Z. Xiao, L. L. Wang, L. Yue, S. Zhang, H. Y. Zhang, RSC Adv. 2015, 5, 82357.
A. Fathalizadeh, T. Pham, W. Mickelson, A. Zettl, Nano Lett. 2014, 14, 4881.
Y. Y. Liu, E. S. Penev, B. I. Yakobson, Angew. Chem. Int. Ed. 2013, 52, 3156.
M. H. Khan, Z. Huang, F. Xiao, G. Casillas, Z. Chen, P. J. Molino, H. K. Liu, Sci. Rep. 2015, 5, 7743.
J. Yin, X. Liu, W. Lu, J. Li, Y. Cao, Y. Li, Y. Xu, X. Li, J. Zhou, C. Jin, W. Guo, Small 2015, 11, 5375.
P. Sutter, J. Lahiri, P. Zahl, B. Wang, E. Sutter, Nano Lett. 2013, 13, 276.
T. Ashton, A. Moore, J. Mater. Sci. 2015, 50, 6220.
D. Liu, W. Lei, S. Qin, Y. Chen, Sci. Rep. 2014, 4, 4453.
J. C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, U. Kaiser, Nano Lett. 2009, 9, 2683.
V. Barone, J. E. Peralta, Nano Lett. 2008, 8, 2210.
H. Wang, X. Zhang, J. Meng, Z. Yin, X. Liu, Y. Zhao, L. Zhang, Small 2015, 11, 1542.
F. Oba, A. Togo, I. Tanaka, K. Watanabe, T. Taniguchi, Phys. Rev. B 2010, 81, 075125.
A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, A. I. Boldyrev, Acc. Chem. Res. 2014, 47, 1349.
Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C. H. Lee, C. Sun, L. Calderin, P. N. Browning, M. S. Bresnehan, M. J. Kim, T. S. Mayer, M. Terrones, J. A. Robinson, ACS Nano 2014, 8, 3715.
P. Moon, M. Koshino, Phys. Rev. B 2014, 90, 155406.
M. Topsakal, E. Aktürk, S. Ciraci, Phys. Rev. B 2009, 79, 115442.
M. Loeblein, R. Y. Tay, S. H. Tsang, W. B. Ng, E. H. T. Teo, Small 2014, 10, 2992.
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.
H. Zhao, X. Song, H. Zeng, NPG Asia Mater. 2015, 7, e168.
S. Tang, H. Wang, Y. Zhang, A. Li, H. Xie, X. Liu, L. Liu, T. Li, F. Huang, X. Xie, M. Jiang, Sci. Rep. 2013, 3, 2666.
Q. Wu, J.-H. Park, S. Park, S. J. Jung, H. Suh, N. Park, W. Wongwiriyapan, S. Lee, Y. H. Lee, Y. J. Song, Sci. Rep. 2015, 5, 16159.
S. Schlienger, J. Alauzun, F. Michaux, L. Vidal, J. Parmentier, C. Gervais, F. Babonneau, S. Bernard, P. Miele, J. B. Parra, Chem. Mater. 2012, 24, 88.
C. Gautam, C. S. Tiwary, S. Jose, G. Brunetto, S. Ozden, S. Vinod, P. Raghavan, S. Biradar, D. S. Galvao, P. M. Ajayan, ACS Nano 2015, 9, 12088.
S. M. Jung, H. Y. Jung, M. S. Dresselhaus, Y. J. Jung, J. Kong, Sci. Rep. 2012, 2, 849.
X. Wu, J. Yang, J. G. Hou, Q. Zhu, J. Chem. Phys. 2006, 124, 054706.
R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A
2011; 115
2010; 10
2013; 3
2013; 4
2004; 201
2010; 107
2009; 80
2010; 19
2010; 105
2010; 104
2008; 109
2004; 4
2014; 26
2004; 3
2014; 25
2013; 125
2009; 113
2009; 476
2014; 24
1998; 80
2013; 7
2012; 488
2007; 75
2013; 8
2007; 76
2012; 12
2013; 5
2014; 136
2009; 95
2010; 114
2013; 117
2013; 52
2013; 111
2014; 14
2013; 114
2013; 113
2007; 60
2012; 28
2015; 91
2014; 17
2008; 20
2005; 72
2006; 600
2012; 24
2012; 23
2010; 5
2010; 4
2010; 6
2014; 10
2010; 9
1989; 39
2009; 67
1995; 51
2012; 100
2010; 604
2011; 2
2012; 101
2015; 50
2000; 116
2011; 84
2011; 83
2015; 54
2013; 342
2007; 90
2013; 103
2005; 86
2014; 47
2016; 93
2011; 3
2016; 16
2011; 5
2011; 7
2012; 108
2011; 133
2014; 43
2012; 109
2009; 457
2015; 350
2009; 79
2007; 317
2002; 124
2002; 65
2005; 127
2009; 102
2015; 119
2005; 94
2005; 17
2012; 116
2016; 8
2009; 105
1995; 75
2006; 74
2013; 25
2009; 42
2004; 69
2011; 11
2008; 78
2011; 99
2011; 10
2011; 98
2008; 8
2011; 13
2008; 77
2008; 3
2008; 146
1994; 28
2009; 48
2014; 1
1842; 27
1963; 38
2014; 5
2013; 15
2014; 4
1842; 21
2013; 13
2000; 324
2013; 12
2014; 9
2014; 8
2012; 335
2001; 13
2014; 6
2009; 324
2006; 124
2015; 2
2015; 15
2011; 334
2015; 14
2015; 6
2015; 17
2006; 96
2015; 5
2014; 90
2009; 21
2010; 488
2015; 11
1996; 357–358
2015; 10
2010; 484
2006; 18
2006
2009; 131
2010; 81
2015; 9
2008; 92
2015; 8
2015; 7
2008; 93
2014; 89
2011; 331
2014; 112
2010; 82
2014; 113
2012; 2
2011; 109
2015; 27
1976; 13
2003; 545
2011; 106
2004; 16
2004; 15
1997; 79
2013; 497
2003; 68
2010; 132
2013; 499
2009; 9
2013; 135
2015
2011; 47
2012; 6
2009; 3
2012; 4
1981; 52
1957; 26
2012; 86
2014; 104
2014; 343
2012; 8
2003; 67
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_248_1
e_1_2_7_225_1
e_1_2_7_263_1
e_1_2_7_240_1
e_1_2_7_116_1
e_1_2_7_285_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_275_1
e_1_2_7_252_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_249_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_226_1
e_1_2_7_166_1
e_1_2_7_241_1
e_1_2_7_264_1
e_1_2_7_117_1
e_1_2_7_284_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_238_1
Balmain W. (e_1_2_7_1_1) 1842; 21
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_253_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_295_1
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_265_1
e_1_2_7_242_1
e_1_2_7_118_1
e_1_2_7_283_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_216_1
e_1_2_7_194_1
e_1_2_7_239_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_254_1
e_1_2_7_231_1
e_1_2_7_294_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_279_1
Douglas B. E. (e_1_2_7_267_1) 2006
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_243_1
e_1_2_7_266_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_282_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_232_1
e_1_2_7_255_1
e_1_2_7_157_1
e_1_2_7_270_1
e_1_2_7_108_1
e_1_2_7_293_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_278_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_244_1
e_1_2_7_221_1
e_1_2_7_281_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_289_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
e_1_2_7_256_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
e_1_2_7_271_1
e_1_2_7_292_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_277_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_245_1
e_1_2_7_268_1
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_260_1
e_1_2_7_280_1
e_1_2_7_113_1
e_1_2_7_288_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
e_1_2_7_197_1
e_1_2_7_234_1
e_1_2_7_257_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_272_1
e_1_2_7_291_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_276_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
e_1_2_7_269_1
e_1_2_7_186_1
e_1_2_7_246_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_261_1
e_1_2_7_114_1
e_1_2_7_287_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_258_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_273_1
e_1_2_7_250_1
e_1_2_7_290_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_247_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_262_1
e_1_2_7_115_1
e_1_2_7_286_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_236_1
e_1_2_7_259_1
e_1_2_7_138_1
e_1_2_7_274_1
e_1_2_7_251_1
References_xml – reference: J. Yang, D. Kim, J. Hong, X. Qian, Surf. Sci. 2010, 604, 1603.
– reference: K. J. Erickson, A. L. Gibb, A. Sinitskii, M. Rousseas, N. Alem, J. M. Tour, A. K. Zettl, Nano Lett. 2011, 11, 3221.
– reference: Y. Gao, W. Ren, T. Ma, Z. Liu, Y. Zhang, W.-B. Liu, L.-P. Ma, X. Ma, H.-M. Cheng, ACS Nano 2013, 7, 5199.
– reference: Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, P. M. Ajayan, Nano Lett. 2011, 11, 2032.
– reference: A. Sinitskii, K. J. Erickson, W. Lu, A. L. Gibb, C. Zhi, Y. Bando, D. Golberg, A. Zettl, J. M. Tour, ACS Nano 2014, 8, 9867.
– reference: N. Alem, R. Erni, C. Kisielowski, M. D. Rossell, W. Gannett, A. Zettl, Phys. Rev. B 2009, 80, 155425.
– reference: S. Wang, Q. Chen, J. Wang, Appl. Phys. Lett. 2011, 99, 063114.
– reference: L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, L. A. Ponomarenko, Science 2012, 335, 947.
– reference: X. Li, X. Wu, X. C. Zeng, J. Yang, ACS Nano 2012, 6, 4104.
– reference: L. A. Ponomarenko, R. Yang, T. M. Mohiuddin, M. I. Katsnelson, K. S. Novoselov, S. V. Morozov, A. A. Zhukov, F. Schedin, E. W. Hill, A. K. Geim, Phys. Rev. Lett. 2009, 102, 206603.
– reference: K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351.
– reference: M. H. Evans, J. D. Joannopoulos, S. T. Pantelides, Phys. Rev. B 2005, 72, 045434.
– reference: F. P. Bundy, R. H. Wentorf, J. Chem. Phys. 1963, 38, 1144.
– reference: C.-W. Chen, M.-H. Lee, S. Clark, Nanotechnology 2004, 15, 1837.
– reference: X. Li, J. Yin, J. Zhou, W. Guo, Nanotechnology 2014, 25, 105701.
– reference: F. Orlando, P. Lacovig, L. Omiciuolo, N. G. Apostol, R. Larciprete, A. Baraldi, S. Lizzit, ACS Nano 2014, 8, 12063.
– reference: A. K. Geim, I. V. Grigorieva, Nature 2013, 499, 419.
– reference: J. L. He, E. D. Wu, H. T. Wang, R. P. Liu, Y. J. Tian, Phys. Rev. Lett. 2005, 94, 015504.
– reference: S. H. Zhang, Y. W. Li, T. S. Zhao, Q. Wang, Sci. Rep. 2014, 4, 5241.
– reference: A. L. Gibb, N. Alem, J.-H. Chen, K. J. Erickson, J. Ciston, A. Gautam, M. Linck, A. Zettl, J. Am. Chem. Soc. 2013, 135, 6758.
– reference: S. Schlienger, J. Alauzun, F. Michaux, L. Vidal, J. Parmentier, C. Gervais, F. Babonneau, S. Bernard, P. Miele, J. B. Parra, Chem. Mater. 2012, 24, 88.
– reference: Z. H. Zhang, Y. Yang, G. Y. Gao, B. I. Yakobson, Angew. Chem. Int. Ed. 2015, 54, 13022.
– reference: Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Science 2007, 317, 932.
– reference: H. F. Bettinger, T. Dumitrică, G. E. Scuseria, B. I. Yakobson, Phys. Rev. B 2002, 65, 041406.
– reference: G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. van den Brink, Phys. Rev. B 2007, 76, 073103.
– reference: Z. Zhang, Y. Liu, Y. Yang, B. I. Yakobson, Nano Lett. 2016, 16, 1398.
– reference: J. Kunstmann, V. Bezugly, H. Rabbel, M. H. Rummeli, G. Cuniberti, Adv. Funct. Mater. 2014, 24, 4127.
– reference: A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Phys. Rev. Lett. 1995, 75, 3918.
– reference: C. Feng, Z. Mi, Z. Jian-Xin, Chin. Phys. B 2010, 19, 086105.
– reference: Q. Weng, X. Wang, C. Zhi, Y. Bando, D. Golberg, ACS Nano 2013, 7, 1558.
– reference: Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y.-W. Zhang, P. Kim, J. Hone, L. Colombo, R. S. Ruoff, Science 2013, 342, 720.
– reference: B. Huang, H. Xiang, J. Yu, S. H. Wei, Phys. Rev. Lett. 2012, 108, 206802.
– reference: Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Nat. Mater. 2011, 10, 424.
– reference: E. Kan, F. Wu, H. Xiang, J. Yang, M.-H. Whangbo, J. Phys. Chem. C 2011, 115, 17252.
– reference: S. Roth, F. Matsui, T. Greber, J. Osterwalder, Nano Lett. 2013, 13, 2668.
– reference: G. Kim, A. R. Jang, H. Y. Jeong, Z. Lee, D. J. Kang, H. S. Shin, Nano Lett. 2013, 13, 1834.
– reference: G. Lu, T. Wu, Q. Yuan, H. Wang, H. Wang, F. Ding, X. Xie, M. Jiang, Nat. Commun. 2015, 6, 6160.
– reference: S. Jungthawan, S. Limpijumnong, J.-L. Kuo, Phys. Rev. B 2011, 84, 235424.
– reference: M. Rousseas, A. P. Goldstein, W. Mickelson, M. A. Worsley, L. Woo, A. Zettl, ACS Nano 2013, 7, 8540.
– reference: N. Marom, J. Bernstein, J. Garel, A. Tkatchenko, E. Joselevich, L. Kronik, O. Hod, Phys. Rev. Lett. 2010, 105, 046801.
– reference: B. Albert, H. Hillebrecht, Angew. Chem. Int. Ed. 2009, 48, 8640.
– reference: P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, T. Taubner, Nat. Commun. 2015, 6, 7507.
– reference: R. Zhao, J. Wang, M. Yang, Z. Liu, Z. Liu, Phys. Chem. Chem. Phys. 2013, 15, 803.
– reference: W. Yang, G. Chen, Z. Shi, C.-C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, G. Zhang, Nat. Mater. 2013, 12, 792.
– reference: Y. Guo, W. Guo, J. Phys. Chem. C 2015, 119, 873.
– reference: M. Yi, Z. Shen, X. Zhao, S. Liang, L. Liu, Appl. Phys. Lett. 2014, 104, 143101.
– reference: J. C. Song, A. V. Shytov, L. S. Levitov, Phys. Rev. Lett. 2013, 111, 266801.
– reference: M. Topsakal, E. Aktürk, S. Ciraci, Phys. Rev. B 2009, 79, 115442.
– reference: L. C. Gomes, S. S. Alexandre, H. Chacham, R. W. Nunes, J. Phys. Chem. C 2013, 117, 11770.
– reference: D. Wong, J. VelascoJr, L. Ju, J. Lee, S. Kahn, H.-Z. Tsai, C. Germany, T. Taniguchi, K. Watanabe, A. Zettl, F. Wang, M. F. Crommie, Nat. Nanotechnol. 2015, 10, 949.
– reference: S. Zhang, Q. Wang, Y. Kawazoe, P. Jena, J. Am. Chem. Soc. 2013, 135, 18216.
– reference: M. Bokdam, T. Amlaki, G. Brocks, P. J. Kelly, Phys. Rev. B 2014, 89, 201404.
– reference: P. Sutter, Y. Huang, E. Sutter, Nano Lett. 2014, 14, 4846.
– reference: L. Li, L. H. Li, Y. Chen, X. J. Dai, P. R. Lamb, B.-M. Cheng, M.-Y. Lin, X. Liu, Angew. Chemie 2013, 125, 4306.
– reference: D. Pacilé, J. C. Meyer, Ç. Ö. Girit, A. Zettl, Appl. Phys. Lett. 2008, 92, 133107.
– reference: Z. Zhang, W. Guo, J. Phys. Chem. Lett. 2011, 2, 2168.
– reference: R. Balu, X. Zhong, R. Pandey, S. P. Karna, Appl. Phys. Lett. 2012, 100, 052104.
– reference: W. Auwärter, H. U. Suter, H. Sachdev, T. Greber, Chem. Mater. 2004, 16, 343.
– reference: A. G. F. Garcia, M. Neumann, F. Amet, J. R. Williams, K. Watanabe, T. Taniguchi, D. Goldhaber-Gordon, Nano Lett. 2012, 12, 4449.
– reference: G. H. Ryu, H. J. Park, J. Ryou, J. Park, J. Lee, G. Kim, H. S. Shin, C. W. Bielawski, R. S. Ruoff, S. Hong, Z. Lee, Nanoscale 2015, 7, 10600.
– reference: J. Sławińska, I. Zasada, Z. Klusek, Phys. Rev. B 2010, 81, 155433.
– reference: B. Ouyang, J. Song, Appl. Phys. Lett. 2013, 103, 102401.
– reference: Z. Liu, Q. Xue, T. Zhang, Y. Tao, C. Ling, M. Shan, J. Phys. Chem. C 2013, 117, 9332.
– reference: K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 2004, 3, 404.
– reference: X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, J. Hone, Nat. Nanotech. 2015, 10, 534.
– reference: S. Tang, Z. Cao, Chem. Phys. Lett. 2010, 488, 67.
– reference: Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C. H. Lee, C. Sun, L. Calderin, P. N. Browning, M. S. Bresnehan, M. J. Kim, T. S. Mayer, M. Terrones, J. A. Robinson, ACS Nano 2014, 8, 3715.
– reference: Y. Gao, Y. Zhang, P. Chen, Y. Li, M. Liu, T. Gao, D. Ma, Y. Chen, Z. Cheng, X. Qiu, W. Duan, Z. Liu, Nano Lett. 2013, 13, 3439.
– reference: K. H. Lee, H.-J. Shin, J. Lee, I.-y. Lee, G.-H. Kim, J.-Y. Choi, S.-W. Kim, Nano Lett. 2012, 12, 714.
– reference: L. Wang, B. Wu, J. Chen, H. Liu, P. Hu, Y. Liu, Adv. Mater. 2014, 26, 1559.
– reference: L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 2006, 96, 126104.
– reference: J.-H. Park, J. C. Park, S. J. Yun, H. Kim, D. H. Luong, S. M. Kim, S. H. Choi, W. Yang, J. Kong, K. K. Kim, Y. H. Lee, ACS Nano 2014, 8, 8520.
– reference: J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, K. S. Novoselov, Nat. Commun. 2014, 5, 5221.
– reference: J. Kotakoski, C. H. Jin, O. Lehtinen, K. Suenaga, A. V. Krasheninnikov, Phys. Rev. B 2010, 82, 113404.
– reference: J. Xu, Y. Chang, L. Gan, Y. Ma, T. Zhai, Adv. Sci. 2015, 2, 1500023.
– reference: S. Azevedo, J. R. Kaschny, C. M. C. de Castilho, F. de Brito Mota, Eur. Phys. J. B 2009, 67, 507.
– reference: Y. Y. Liu, E. S. Penev, B. I. Yakobson, Angew. Chem. Int. Ed. 2013, 52, 3156.
– reference: N. Alem, O. V. Yazyev, C. Kisielowski, P. Denes, U. Dahmen, P. Hartel, M. Haider, M. Bischoff, B. Jiang, S. G. Louie, A. Zettl, Phys. Rev. Lett. 2011, 106, 126102.
– reference: H. Park, A. Wadehra, J. W. Wilkins, A. H. Castro Neto, Appl. Phys. Lett. 2012, 100, 253115.
– reference: T. Ishii, T. Sato, Y. Sekikawa, M. Iwata, J. Cryst. Growth 1981, 52, 285.
– reference: R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, P. Blake, Small 2011, 7, 465.
– reference: P. Sutter, J. Lahiri, P. Albrecht, E. Sutter, ACS Nano 2011, 5, 7303.
– reference: J. Jung, A. M. DaSilva, A. H. MacDonald, S. Adam, Nat. Commun. 2015, 6, 6308.
– reference: M. Otani, S. Okada, Physi. Rev. B 2011, 83, 073405.
– reference: F. Zheng, G. Zhou, Z. Liu, J. Wu, W. Duan, B.-L. Gu, S. B. Zhang, Phys. Rev. B 2008, 78, 205415.
– reference: Z. Zhang, W. Guo, J. Am. Chem. Soc. 2009, 131, 6874.
– reference: T. Ogitsu, E. Schwegler, G. Galli, Chem. Rev. 2013, 113, 3425.
– reference: A. R. Oganov, J. H. Chen, C. Gatti, Y. Z. Ma, Y. M. Ma, C. W. Glass, Z. X. Liu, T. Yu, O. O. Kurakevych, V. L. Solozhenko, Nature 2009, 457, 863.
– reference: C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.
– reference: S. Tang, S. Zhang, J. Phys. Chem. C 2013, 117, 17309.
– reference: X. Li, X. Hao, M. Zhao, Y. Wu, J. Yang, Y. Tian, G. Qian, Adv. Mater. 2013, 25, 2200.
– reference: M. Morscher, M. Corso, T. Greber, J. Osterwalder, Surf. Sci. 2006, 600, 3280.
– reference: C. Harrison, S. Weaver, C. Bertelsen, E. Burgett, N. Hertel, E. Grulke, J. Appl. Polym. Sci. 2008, 109, 2529.
– reference: F. Liu, J. F. Tian, L. H. Bao, T. Z. Yang, C. M. Shen, X. Y. Lai, Z. M. Xiao, W. G. Xie, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, H. J. Gao, Adv. Mater. 2008, 20, 2609.
– reference: A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A. K. Geim, R. V. Gorbachev, Nano Lett. 2014, 14, 3270.
– reference: G. Kim, H. Lim, K. Y. Ma, A. R. Jang, G. H. Ryu, M. Jung, H.-J. Shin, Z. Lee, H. S. Shin, Nano Lett. 2015, 15, 4769.
– reference: P. Moon, M. Koshino, Phys. Rev. B 2014, 90, 155406.
– reference: J. Li, V. B. Shenoy, Appl. Phys. Lett. 2011, 98, 013105.
– reference: W. Chen, Y. Li, G. Yu, C.-Z. Li, S. B. Zhang, Z. Zhou, Z. Chen, J. Am. Chem. Soc. 2010, 132, 1699.
– reference: X. J. Wu, J. Dai, Y. Zhao, Z. W. Zhuo, J. L. Yang, X. C. Zeng, ACS Nano 2012, 6, 7443.
– reference: Y. Lin, T. V. Williams, W. Cao, H. E. Elsayed-Ali, J. W. Connell, J. Phys. Chem. C 2010, 114, 17434.
– reference: S. Okada, S. Saito, A. Oshiyama, Phys. Rev. B 2002, 65, 165410.
– reference: H. Wang, X. Zhang, J. Meng, Z. Yin, X. Liu, Y. Zhao, L. Zhang, Small 2015, 11, 1542.
– reference: J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nat. Nanotechnol. 2008, 3, 206.
– reference: M. Yi, Z. Shen, L. Liu, S. Liang, RSC Adv 2015, 5, 2983.
– reference: H.-J. Zhai, Y.-F. Zhao, W.-L. Li, Q. Chen, H. Bai, H.-S. Hu, Z. A. Piazza, W.-J. Tian, H.-G. Lu, Y.-B. Wu, Y.-W. Mu, G.-F. Wei, Z.-P. Liu, J. Li, S.-D. Li, L.-S. Wang, Nat. Chem. 2014, 6, 727.
– reference: C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, P. Kim, Nature 2013, 497, 598.
– reference: J. H. Warner, M. H. Rümmeli, A. Bachmatiuk, B. Büchner, ACS Nano 2010, 4, 1299.
– reference: C. J. Otten, O. R. Lourie, M. F. Yu, J. M. Cowley, M. J. Dyer, R. S. Ruoff, W. E. Buhro, J. Am. Chem. Soc. 2002, 124, 4564.
– reference: Y. Cao, A. Mishchenko, G. L. Yu, E. Khestanova, A. P. Rooney, E. Prestat, A. V. Kretinin, P. Blake, M. B. Shalom, C. Woods, J. Chapman, G. Balakrishnan, I. V. Grigorieva, K. S. Novoselov, B. A. Piot, M. Potemski, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, R. V. Gorbachev, Nano Lett. 2015, 15, 4914.
– reference: J. Wu, W.-Q. Han, W. Walukiewicz, J. W. Ager, W. Shan, E. E. Haller, A. Zettl, Nano Lett. 2004, 4, 647.
– reference: X. F. Zhou, A. R. Oganov, X. Shao, Q. Zhu, H. T. Wang, Phys. Rev. Lett. 2014, 113, 176101.
– reference: E. S. Penev, S. Bhowmick, A. Sadrzadeh, B. I. Yakobson, Nano Lett. 2012, 12, 2441.
– reference: K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, M. Taniguchi, Nat. Photonics 2009, 3, 591.
– reference: F. Müller, K. Stöwe, H. Sachdev, Chem. Mater. 2005, 17, 3464.
– reference: Y. Liu, S. Bhowmick, B. I. Yakobson, Nano Lett. 2011, 11, 3113.
– reference: G. Dong, E. B. Fourré, F. C. Tabak, J. W. M. Frenken, Phys. Rev. Lett. 2010, 104, 096102.
– reference: E. Hernández, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 1998, 80, 4502.
– reference: A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, A. I. Boldyrev, Acc. Chem. Res. 2014, 47, 1349.
– reference: J. Miller, Phys. Today 2007, 60, 20.
– reference: S. Bernard, P. Miele, Mater. Today 2014, 17, 443.
– reference: Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, A. Babakhani, J.-C. Idrobo, R. Vajtai, J. Lou, P. M. Ajayan, Nat. Nanotech. 2013, 8, 119.
– reference: B. E. Douglas, S. M. Ho, Structure and Chemistry of Crystalline Solids, Springer, N.Y., 2006.
– reference: R. Zhao, J. Gao, Z. Liu, F. Ding, Nanoscale 2015, 7, 9723.
– reference: D. Golberg, Y. Bando, K. Kurashima, T. Sato, Solid State Commun. 2000, 116, 1.
– reference: Q. Wu, J.-H. Park, S. Park, S. J. Jung, H. Suh, N. Park, W. Wongwiriyapan, S. Lee, Y. H. Lee, Y. J. Song, Sci. Rep. 2015, 5, 16159.
– reference: T. Gao, X. Song, H. Du, Y. Nie, Y. Chen, Q. Ji, J. Sun, Y. Yang, Y. Zhang, Z. Liu, Nat. Commun. 2015, 6, 6835.
– reference: X. Song, J. Gao, Y. Nie, T. Gao, J. Sun, D. Ma, Q. Li, Y. Chen, C. Jin, A. Bachmatiuk, M. Rümmeli, F. Ding, Y. Zhang, Z. Liu, Nano Res. 2015, 8, 3164.
– reference: Y. Ding, Y. Wang, J. Ni, Appl. Phys. Lett. 2009, 95, 123105.
– reference: Y. Gong, G. Shi, Z. Zhang, W. Zhou, J. Jung, W. Gao, L. Ma, Y. Yang, S. Yang, G. You, R. Vajtai, Q. Xu, A. H. MacDonald, B. I. Yakobson, J. Lou, Z. Liu, P. M. Ajayan, Nat. Commun. 2014, 5, 3193.
– reference: S. Bhowmick, A. K. Singh, B. I. Yakobson, J. Phys. Chem. C 2011, 115, 9889.
– reference: S. M. Kim, A. Hsu, M. H. Park, S. H. Chae, S. J. Yun, J. S. Lee, D.-H. Cho, W. Fang, C. Lee, T. Palacios, M. Dresselhaus, K. K. Kim, Y. H. Lee, J. Kong, Nat. Commun. 2015, 6, 8662.
– reference: Y. G. Zhou, P. Yang, Z. G. Wang, X. T. Zu, H. Y. Xiao, X. Sun, M. A. Khaleel, F. Gao, Phys. Chem. Chem. Phys. 2011, 13, 7378.
– reference: M. Titov, M. I. Katsnelson, Phys. Rev. Lett. 2014, 113, 096801.
– reference: M. Yi, Z. Shen, W. Zhang, J. Zhu, L. Liu, S. Liang, X. Zhang, S. Ma, Nanoscale 2013, 5, 10660.
– reference: L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, P. M. Ajayan, Nat. Mater. 2010, 9, 430.
– reference: M. Kan, J. Zhou, Q. Wang, Q. Sun, P. Jena, Phys. Rev. B 2011, 84, 205412.
– reference: Z. Zhang, W. Guo, Y. Dai, J. Appl. Phys. 2009, 105, 084312.
– reference: J. Kunstmann, A. Quandt, Phys. Rev. B 2006, 74, 035413.
– reference: H. Zhao, X. Song, H. Zeng, NPG Asia Mater. 2015, 7, e168.
– reference: Y.-H. Zhang, K.-G. Zhou, X.-C. Gou, K.-F. Xie, H.-L. Zhang, Y. Peng, Chem. Phys. Lett. 2010, 484, 266.
– reference: Z. Zhang, X. C. Zeng, W. Guo, J. Am. Chem. Soc. 2011, 133, 14831.
– reference: J. da Rocha Martins, H. Chacham, ACS Nano 2010, 5, 385.
– reference: Z. Yang, J. Ni, J. Appl. Phys. 2010, 107, 104301.
– reference: A. Zunger, A. Katzir, A. Halperin, Phys. Rev. B 1976, 13, 5560.
– reference: L. Brown, E. B. Lochocki, J. Avila, C.-J. Kim, Y. Ogawa, R. W. Havener, D.-K. Kim, E. J. Monkman, D. E. Shai, H. I. Wei, M. P. Levendorf, M. Asensio, K. M. Shen, J. Park, Nano Lett. 2014, 14, 5706.
– reference: G. B. Grad, P. Blaha, K. Schwarz, W. Auwärter, T. Greber, Phys. Rev. B 2003, 68, 085404.
– reference: W. Lei, V. N. Mochalin, D. Liu, S. Qin, Y. Gogotsi, Y. Chen, Nat. Commun. 2015, 6, 8849.
– reference: L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, P. M. Ajayan, Nano Lett. 2010, 10, 3209.
– reference: M. Kindermann, B. Uchoa, D. L. Miller, Phys. Rev. B 2012, 86, 115415.
– reference: S. Tang, J. Yu, L. Liu, Phys. Chem. Chem. Phys. 2013, 15, 5067.
– reference: E. Husain, T. N. Narayanan, J. J. Taha-Tijerina, S. Vinod, R. Vajtai, P. M. Ajayan, Acs Appl. Mater. Interfaces 2013, 5, 4129.
– reference: X. Zeng, L. Ye, R. Sun, J. Xu, C.-P. Wong, Phys. Chem. Chem. Phys. 2015, 17, 16709.
– reference: G. H. Han, J. A. Rodríguez-Manzo, C.-W. Lee, N. J. Kybert, M. B. Lerner, Z. J. Qi, E. N. Dattoli, A. M. Rappe, M. Drndic, A. T. C. Johnson, ACS Nano 2013, 7, 10129.
– reference: X. F. Chen, J. S. Lian, Q. Jiang, Phys. Rev. B 2012, 86, 125437.
– reference: H. Lim, S. I. Yoon, G. Kim, A. R. Jang, H. S. Shin, Chem. Mater. 2014, 26, 4891.
– reference: S. Caneva, R. S. Weatherup, B. C. Bayer, B. Brennan, S. J. Spencer, K. Mingard, A. Cabrero-Vilatela, C. Baehtz, A. J. Pollard, S. Hofmann, Nano Lett. 2015, 15, 1867.
– reference: Z. Zhang, X. C. Zeng, W. Guo, Phys. Rev. B 2010, 82, 035412.
– reference: X. Hong, K. Zou, J. Zhu, Phys. Rev. B 2009, 80, 241415.
– reference: A. Lopez-Bezanilla, J. Huang, H. Terrones, B. G. Sumpter, Nano Lett. 2011, 11, 3267.
– reference: M. S. Si, D. S. Xue, Phys. Rev. B 2007, 75, 193409.
– reference: X. Zeng, L. Ye, S. Yu, R. Sun, J. Xu, C.-P. Wong, Chem. Mater. 2015, 27, 5849.
– reference: S. Tang, H. Wang, Y. Zhang, A. Li, H. Xie, X. Liu, L. Liu, T. Li, F. Huang, X. Xie, M. Jiang, Sci. Rep. 2013, 3, 2666.
– reference: A. J. Mannix, X.-F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, N. P. Guisinger, Science 2015, 350, 1513.
– reference: A. Fathalizadeh, T. Pham, W. Mickelson, A. Zettl, Nano Lett. 2014, 14, 4881.
– reference: H. Wang, X. Zhang, H. Liu, Z. Yin, J. Meng, J. Xia, X. M. Meng, J. Wu, J. You, Adv. Mater. 2015, 27, 8109.
– reference: B. Sachs, T. O. Wehling, M. I. Katsnelson, A. I. Lichtenstein, Phys. Rev. B 2011, 84, 195414.
– reference: Y. Dai, W. Guo, Z. Zhang, B. Zhou, C. Tang, J. Phys. D: Appl. Phys. 2009, 42, 085403.
– reference: Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z.-Y. Juang, M. S. Dresselhaus, L.-J. Li, J. Kong, Nano Lett. 2010, 10, 4134.
– reference: L. Ju, J. VelascoJr, E. Huang, S. Kahn, C. Nosiglia, H.-Z. Tsai, W. Yang, T. Taniguchi, K. Watanabe, Y Zhang, G. Zhang, M. Crommie, A. Zettl, F. Wang, Nat. Nanotechnol. 2014, 9, 348.
– reference: J. Yin, X. Li, J. Zhou, W. Guo, Nano Lett. 2013, 13, 3232.
– reference: J. Li, S. Majety, R. Dahal, W. P. Zhao, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett. 2012, 101, 171112.
– reference: P. Sutter, R. Cortes, J. Lahiri, E. Sutter, Nano Lett. 2012, 12, 4869.
– reference: L. Liu, Y. P. Feng, Z. X. Shen, Phys. Rev. B 2003, 68, 104102.
– reference: R. Mukherjee, S. Bhowmick, J. Chem. Theory Comput. 2011, 7, 720.
– reference: Y. Stehle, H. M. Meyer, R. R. Unocic, M. Kidder, G. Polizos, P. G. Datskos, R. Jackson, S. N. Smirnov, I. V. Vlassiouk, Chem. Mater. 2015, 27, 8041.
– reference: G. Constantinescu, A. Kuc, T. Heine, Phys. Rev. Lett. 2013, 111, 036104.
– reference: Y. Qi, L. G. Hector, Appl. Phys. Lett. 2007, 90, 081922.
– reference: Q. Li, X. Zou, M. Liu, J. Sun, Y. Gao, Y. Qi, X. Zhou, B. I. Yakobson, Y. Zhang, Z. Liu, Nano Lett. 2015, 15, 5804.
– reference: M. Terauchi, M. Tanaka, K. Suzuki, A. Ogino, K. Kimura, Chem. Phys. Lett. 2000, 324, 359.
– reference: Y. Song, B. Li, S. Yang, G. Ding, C. Zhang, X. Xie, Sci. Rep. 2015, 5, 10337.
– reference: J. C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, U. Kaiser, Nano Lett. 2009, 9, 2683.
– reference: J. Wang, S. N. Li, J. B. Liu, J. Phys. Chem. A 2015, 119, 3621.
– reference: O. Cretu, Y.-C. Lin, K. Suenaga, Nano Lett. 2014, 14, 1064.
– reference: L. M. Cao, Z. Zhang, L. L. Sun, C. X. Gao, M. He, Y. Q. Wang, Y. C. Li, X. Y. Zhang, G. Li, J. Zhang, W. K. Wang, Adv. Mater. 2001, 13, 1701.
– reference: L. Li, G. J. Ye, V. Tran, R. Fei, G. Chen, H. Wang, J. Wang, K. Watanabe, T. Taniguchi, L. Yang, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2015, 10, 608.
– reference: M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, J. Park, Nature 2012, 488, 627.
– reference: L. Lai, J. Lu, L. Wang, G. Luo, J. Zhou, R. Qin, Z. Gao, W. N. Mei, J. Phys. Chem. C 2009, 113, 2273.
– reference: G. Ning, W. Jinquan, F. Lili, J. Yi, L. Dayao, Z. Hongwei, W. Kunlin, W. Dehai, Nanotechnology 2012, 23, 415605.
– reference: K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, ACS Nano 2012, 6, 8583.
– reference: T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, W. B. Carter, Science 2011, 334, 962.
– reference: D. Liu, W. Lei, S. Qin, Y. Chen, Sci. Rep. 2014, 4, 4453.
– reference: H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, Nano Lett. 2010, 10, 5049.
– reference: R. Y. Tay, H. J. Park, G. H. Ryu, D. Tan, S. H. Tsang, H. Li, W. Liu, E. H. T. Teo, Z. Lee, Y. Lifshitz, R. S. Ruoff, Nanoscale 2016, 8, 2434.
– reference: R. Quhe, J. Zheng, G. Luo, Q. Liu, R. Qin, J. Zhou, D. Yu, S. Nagase, W.-N. Mei, Z. Gao, J. Lu, NPG Asia Mater. 2012, 4, e6.
– reference: K. H. Michel, B. Verberck, Phys. Rev. B 2011, 83, 115328.
– reference: L. Liu, Z. Shen, Y. Zheng, M. Yi, X. Zhang, S. Ma, RSC Advances 2014, 4, 37726.
– reference: Z. Zhang, W. Guo, Phys. Rev. B 2008, 77, 075403.
– reference: D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 2010, 4, 2979.
– reference: S. Tang, H. Wang, H. S. Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, F. Huang, X. Chen, T. Yu, F. Ding, X. Xie, M. Jiang, Nat. Commun. 2015, 6, 6499.
– reference: G.-H. Lee, Y.-J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, J. Hone, Appl. Phys. Lett. 2011, 99, 243114.
– reference: P. Sutter, J. Lahiri, P. Zahl, B. Wang, E. Sutter, Nano Lett. 2013, 13, 276.
– reference: X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312.
– reference: L. Liu, J. Park, D. A. Siegel, K. F. McCarty, K. W. Clark, W. Deng, L. Basile, J. C. Idrobo, A.-P. Li, G. Gu, Science 2014, 343, 163.
– reference: T. Dumitricˇ, B. I. Yakobson, Phys. Rev. B 2005, 72, 035418.
– reference: X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, J. Kong, Nano Lett. 2014, 14, 464.
– reference: C. Tang, Y. Bando, Y. Huang, S. Yue, C. Gu, F. Xu, D. Golberg, J. Am. Chem. Soc. 2005, 127, 6552.
– reference: J. Yu, Y. Chen, R. G. Elliman, M. Petravic, Adv. Mater. 2006, 18, 2157.
– reference: C. Jin, F. Lin, K. Suenaga, S. Iijima, Phys. Rev. Lett. 2009, 102, 195505.
– reference: L. Museur, E. Feldbach, A. Kanaev, Phys. Rev. B 2008, 78, 155204.
– reference: V. Barone, J. E. Peralta, Nano Lett. 2008, 8, 2210.
– reference: E. Rokuta, Y. Hasegawa, K. Suzuki, Y. Gamou, C. Oshima, A. Nagashima, Phys. Rev. Lett. 1997, 79, 4609.
– reference: M. H. Khan, Z. Huang, F. Xiao, G. Casillas, Z. Chen, P. J. Molino, H. K. Liu, Sci. Rep. 2015, 5, 7743.
– reference: Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li, L. S. Wang, Nat. Commun. 2014, 5, 3113.
– reference: Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Chem. Mater. 2008, 20, 1661.
– reference: X. Blase, A. Rubio, S. Louie, M. Cohen, Euro. Phys. Lett. 1994, 28, 335.
– reference: Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou, P. M. Ajayan, Nat. Commun. 2013, 4, 2541.
– reference: X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Sun, J. Xu, C.-P. Wong, Small 2015, 11, 6205.
– reference: C. Zhi, Y. Bando, C. Tang, D. Golberg, R. Xie, T. Sekigushi, Appl. Phys. Lett. 2005, 86, 213110.
– reference: X. F. Zhou, X. Dong, A. R. Oganov, Q. Zhu, Y. J. Tian, H. T. Wang, Phys. Rev. Lett. 2014, 112, 085502.
– reference: M. Wang, M. Kim, D. Odkhuu, N. Park, J. Lee, W.-J. Jang, S.-J. Kahng, R. S. Ruoff, Y. J. Song, S. Lee, ACS Nano 2014, 8, 5478.
– reference: T. T. Tran, K. Bray, M. J. Ford, M. Toth, I. Aharonovich, Nat. Nanotechnol. 2015, 11, 37.
– reference: M. Wu, X. Wu, Y. Pei, Y. Wang, X. C. Zeng, Chem. Commun. 2011, 47, 4406.
– reference: K. H. Khoo, M. S. C. Mazzoni, S. G. Louie, Phys. Rev. B 2004, 69, 201401.
– reference: A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Phys. Rev. B 1995, 51, 4606.
– reference: F. Oba, A. Togo, I. Tanaka, K. Watanabe, T. Taniguchi, Phys. Rev. B 2010, 81, 075125.
– reference: L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, C. R. Dean, Science 2013, 342, 614.
– reference: R. V. Gorbachev, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. Tudorovskiy, I. V. Grigorieva, A. H. MacDonald, S. V. Morozov, K. Watanabe, T. Taniguchi, L. A. Ponomarenko, Nat. Phys. 2012, 8, 896.
– reference: Y. Liu, X. Zou, B. I. Yakobson, ACS Nano 2012, 6, 7053.
– reference: T. Ashton, A. Moore, J. Mater. Sci. 2015, 50, 6220.
– reference: T. T. Xu, J.-G. Zheng, Wu, A. W. Nicholls, J. R. Roth, D. A. Dikin, R. S. Ruoff, Nano Lett. 2004, 4, 963.
– reference: R. Y. Tay, M. H. Griep, G. Mallick, S. H. Tsang, R. S. Singh, T. Tumlin, E. H. T. Teo, S. P. Karna, Nano Lett. 2014, 14, 839.
– reference: M. Loeblein, R. Y. Tay, S. H. Tsang, W. B. Ng, E. H. T. Teo, Small 2014, 10, 2992.
– reference: P. Bharadwaj, M. Parzefall, A. Jain, T. Taniguchi, K. Watanabe, L. Novotny, Nat. Nanotechnol. 2015, 10, 1058.
– reference: A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 2014, 43, 934.
– reference: R. H. Wentorf, J. Chem. Phys. 1957, 26, 956.
– reference: A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Surf. Sci. 1996, 357-358, 307.
– reference: P. R. Kidambi, R. Blume, J. Kling, J. B. Wagner, C. Baehtz, R. S. Weatherup, R. Schloegl, B. C. Bayer, S. Hofmann, Chem. Mater. 2014, 26, 6380.
– reference: M. Son, H. Lim, M. Hong, H. C. Choi, Nanoscale 2011, 3, 3089.
– reference: C. Zhang, S. Zhao, C. Jin, A. L. Koh, Y. Zhou, W. Xu, Q. Li, Q. Xiong, H. Peng, Z. Liu, Nat. Commun. 2015, 6, 6519.
– reference: C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. Lu, H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. V. Gorbachev, A. V. Kretinin, J. Park, L. A. Ponomarenko, M. I. Katsnelson, Y. N. Gornostyrev, K. Watanabe, T. Taniguchi, C. Casiraghi, H. J. Gao, A. K. Geim, K. S. Novoselov, Nat. Phys. 2014, 10, 451.
– reference: Z.-H. Zhang, W.-L. Guo, B. I. Yakobson, Acta Mech. Sinica 2012, 28, 1532.
– reference: A. Ismach, H. Chou, D. A. Ferrer, Y. Wu, S. McDonnell, H. C. Floresca, A. Covacevich, C. Pope, R. Piner, M. J. Kim, R. M. Wallace, L. Colombo, R. S. Ruoff, ACS Nano 2012, 6, 6378.
– reference: Y. Zhou, Z. Wang, P. Yang, F. Gao, J. Phys. Chem. C 2012, 116, 7581.
– reference: K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, J. Kong, Nano Lett. 2012, 12, 161.
– reference: A. Y. Liu, R. M. Wentzcovitch, M. L. Cohen, Phys. Rev. B 1989, 39, 1760.
– reference: J. Yu, D. Yu, Y. Chen, H. Chen, M.-Y. Lin, B.-M. Cheng, J. Li, W. Duan, Chem. Phys. Lett. 2009, 476, 240.
– reference: Z. Zhang, W. Guo, Y. Dai, Appl. Phys. Lett. 2008, 93, 223108.
– reference: W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li, L. S. Wang, J. Am. Chem. Soc. 2014, 136, 12257.
– reference: W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Nat. Commun. 2013, 4, 1777.
– reference: M. L. Hu, J. L. Yin, C. X. Zhang, Z. Yu, L. Z. Sun, J. Appl. Phys. 2011, 109, 073708.
– reference: Z. Zhang, W. Guo, B. I. Yakobson, Nanoscale 2013, 5, 6381.
– reference: F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, K. S. Novoselov, Nat. Mater. 2015, 14, 301.
– reference: X. Du, I. Skachko, A. Barker, E. Y. Andrei, Nat. Nanotechnol. 2008, 3, 491.
– reference: F. Müller, S. Hüfner, H. Sachdev, R. Laskowski, P. Blaha, K. Schwarz, Phys. Rev. B 2010, 82, 113406.
– reference: O. V. Yazyev, A. Pasquarello, Phys. Rev. B 2009, 80, 035408.
– reference: L. Camilli, E. Sutter, P. Sutter, 2D Mater. 2014, 1, 025003.
– reference: M. Bernardi, M. Palummo, J. C. Grossman, Phys. Rev. Lett. 2012, 108, 226805.
– reference: Z.-X. Xie, L.-M. Tang, C.-N. Pan, Q. Chen, K.-Q. Chen, J. Appl. Phys. 2013, 114, 144311.
– reference: N. Alem, Q. M. Ramasse, C. R. Seabourne, O. V. Yazyev, K. Erickson, M. C. Sarahan, C. Kisielowski, A. J. Scott, S. G. Louie, A. Zettl, Phys. Rev. Lett. 2012, 109, 205502.
– reference: M. Wang, S. K. Jang, W.-J. Jang, M. Kim, S.-Y. Park, S.-W. Kim, S.-J. Kahng, J.-Y. Choi, R. S. Ruoff, Y. J. Song, S. Lee, Adv. Mater. 2013, 25, 2746.
– reference: E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, F. Guinea, Phys. Rev. Lett. 2010, 105, 266601.
– reference: Z. Zhang, W. Guo, Nano Lett. 2012, 12, 3650.
– reference: S. M. Jung, H. Y. Jung, M. S. Dresselhaus, Y. J. Jung, J. Kong, Sci. Rep. 2012, 2, 849.
– reference: K. H. Michel, B. Verberck, Phys. Rev. B 2009, 80, 224301.
– reference: J. Qi, X. Qian, L. Qi, J. Feng, D. Shi, J. Li, Nano Lett. 2012, 12, 1224.
– reference: C. Gautam, C. S. Tiwary, S. Jose, G. Brunetto, S. Ozden, S. Vinod, P. Raghavan, S. Biradar, D. S. Galvao, P. M. Ajayan, ACS Nano 2015, 9, 12088.
– reference: B. Uchoa, V. N. Kotov, M. Kindermann, Phys. Rev. B 2015, 91, 121412.
– reference: H. Wang, X. Zhang, H. Liu, Z. Yin, J. Meng, J. Xia, X.-M. Meng, J. Wu, J. You, Adv. Mater. 2015, 27, 8109.
– reference: A. Ramasubramaniam, D. Naveh, Phys. Rev. B 2011, 84, 075405.
– reference: S. Liu, B. Lu, Q. Zhao, J. Li, T. Gao, Y. Chen, Y. Zhang, Z. Liu, Z. Fan, F. Yang, L. You, D. Yu, Adv. Mater. 2013, 25, 4549.
– reference: C. H. Lin, H. Ni, X. N. Wang, M. Chang, Y. J. Chao, J. R. Deka, X. D. Li, Small 2010, 6, 927.
– reference: W. J. Yu, W. M. Lau, S. P. Chan, Z. F. Liu, Q. Q. Zheng, Phys. Rev. B 2003, 67, 014108.
– reference: L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, ACS Nano 2014, 8, 1457.
– reference: J. H. Meng, X. W. Zhang, H. L. Wang, X. B. Ren, C. H. Jin, Z. G. Yin, X. Liu, H. Liu, Nanoscale 2015, 7, 16046.
– reference: X.-F. Zhou, O. R. Oganoa, Z. Wang, I. A. Popov, A. I. Boldyrev, H.-T. Wang,Phys. Rev. B 2016, 93, 085406.
– reference: B. Arnaud, S. Lebegue, P. Rabiller, M. Alouani, Phys. Rev. Lett. 2006, 96, 026402.
– reference: Y. Fan, M. Zhao, Z. Wang, X. Zhang, H. Zhang, Appl. Phys. Lett. 2011, 98, 083103.
– reference: W. Balmain, J. Prakt. Chem. 1842, 27, 422.
– reference: J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568.
– reference: J. Yin, J. Yu, X. Li, J. Li, J. Zhou, Z. Zhang, W. Guo, Small 2015, 11, 4497.
– reference: C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Adv. Mater. 2009, 21, 2889.
– reference: W. Auwärter, M. Muntwiler, J. Osterwalder, T. Greber, Surf. Sci. 2003, 545, L735.
– reference: J. Yin, X. Liu, W. Lu, J. Li, Y. Cao, Y. Li, Y. Xu, X. Li, J. Zhou, C. Jin, W. Guo, Small 2015, 11, 5375.
– reference: X. Wu, J. Yang, J. G. Hou, Q. Zhu, J. Chem. Phys. 2006, 124, 054706.
– reference: K. Watanabe, T. Taniguchi, H. Kanda, Phys. Status Solidi A 2004, 201, 2561.
– reference: B. Meng, W. Z. Xiao, L. L. Wang, L. Yue, S. Zhang, H. Y. Zhang, RSC Adv. 2015, 5, 82357.
– reference: G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M. C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, W. Mehr, ACS Nano 2015, 9, 4776.
– reference: W. Balmain, Philos. Mag. Series 1842, 21, 270.
– reference: C. Zhang, L. Fu, S. Zhao, Y. Zhou, H. Peng, Z. Liu, Adv. Mater. 2014, 26, 1776.
– volume: 116
  start-page: 7581
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 25
  start-page: 2200
  year: 2013
  publication-title: Adv. Mater.
– volume: 342
  start-page: 614
  year: 2013
  publication-title: Science
– volume: 7
  start-page: 5199
  year: 2013
  publication-title: ACS Nano
– volume: 50
  start-page: 6220
  year: 2015
  publication-title: J. Mater. Sci.
– volume: 136
  start-page: 12257
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 100
  start-page: 253115
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 124
  start-page: 4564
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 6381
  year: 2013
  publication-title: Nanoscale
– volume: 600
  start-page: 3280
  year: 2006
  publication-title: Surf. Sci.
– volume: 12
  start-page: 4869
  year: 2012
  publication-title: Nano Lett.
– volume: 109
  start-page: 2529
  year: 2008
  publication-title: J. Appl. Polym. Sci.
– volume: 94
  start-page: 015504
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 348
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 86
  start-page: 213110
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 8662
  year: 2015
  publication-title: Nat. Commun.
– volume: 21
  start-page: 2889
  year: 2009
  publication-title: Adv. Mater.
– volume: 13
  start-page: 5560
  year: 1976
  publication-title: Phys. Rev. B
– volume: 65
  start-page: 165410
  year: 2002
  publication-title: Phys. Rev. B
– volume: 43
  start-page: 934
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 7743
  year: 2015
  publication-title: Sci. Rep.
– volume: 3
  start-page: 591
  year: 2009
  publication-title: Nat. Photonics
– volume: 105
  start-page: 084312
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 10
  start-page: 451
  year: 2014
  publication-title: Nat. Phys.
– volume: 113
  start-page: 3425
  year: 2013
  publication-title: Chem. Rev.
– volume: 7
  start-page: 465
  year: 2011
  publication-title: Small
– volume: 6
  start-page: 6160
  year: 2015
  publication-title: Nat. Commun.
– volume: 48
  start-page: 8640
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 1558
  year: 2013
  publication-title: ACS Nano
– volume: 4
  start-page: 1777
  year: 2013
  publication-title: Nat. Commun.
– volume: 117
  start-page: 17309
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 464
  year: 2014
  publication-title: Nano Lett.
– volume: 12
  start-page: 161
  year: 2012
  publication-title: Nano Lett.
– volume: 6
  start-page: 6835
  year: 2015
  publication-title: Nat. Commun.
– volume: 96
  start-page: 026402
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 67
  start-page: 507
  year: 2009
  publication-title: Eur. Phys. J. B
– volume: 13
  start-page: 3439
  year: 2013
  publication-title: Nano Lett.
– volume: 42
  start-page: 085403
  year: 2009
  publication-title: J. Phys. D: Appl. Phys.
– volume: 17
  start-page: 3464
  year: 2005
  publication-title: Chem. Mater.
– volume: 108
  start-page: 226805
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 20
  start-page: 2609
  year: 2008
  publication-title: Adv. Mater.
– volume: 13
  start-page: 3232
  year: 2013
  publication-title: Nano Lett.
– volume: 28
  start-page: 335
  year: 1994
  publication-title: Euro. Phys. Lett.
– volume: 8
  start-page: 119
  year: 2013
  publication-title: Nat. Nanotech.
– volume: 109
  start-page: 205502
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 72
  start-page: 035418
  year: 2005
  publication-title: Phys. Rev. B
– volume: 78
  start-page: 205415
  year: 2008
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 2441
  year: 2012
  publication-title: Nano Lett.
– volume: 15
  start-page: 1867
  year: 2015
  publication-title: Nano Lett.
– volume: 115
  start-page: 9889
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 3164
  year: 2015
  publication-title: Nano Res.
– volume: 80
  start-page: 241415
  year: 2009
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 803
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 647
  year: 2004
  publication-title: Nano Lett.
– volume: 11
  start-page: 1542
  year: 2015
  publication-title: Small
– volume: 7
  start-page: 8540
  year: 2013
  publication-title: ACS Nano
– volume: 104
  start-page: 096102
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 484
  start-page: 266
  year: 2010
  publication-title: Chem. Phys. Lett.
– volume: 2
  start-page: 2168
  year: 2011
  publication-title: J. Phys. Chem. Lett.
– volume: 343
  start-page: 163
  year: 2014
  publication-title: Science
– volume: 8
  start-page: 9867
  year: 2014
  publication-title: ACS Nano
– volume: 4
  start-page: e6
  year: 2012
  publication-title: NPG Asia Mater.
– volume: 67
  start-page: 014108
  year: 2003
  publication-title: Phys. Rev. B
– volume: 331
  start-page: 568
  year: 2011
  publication-title: Science
– volume: 10
  start-page: 1058
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 4134
  year: 2010
  publication-title: Nano Lett.
– volume: 9
  start-page: 4776
  year: 2015
  publication-title: ACS Nano
– volume: 82
  start-page: 113404
  year: 2010
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 2541
  year: 2013
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2668
  year: 2013
  publication-title: Nano Lett.
– volume: 111
  start-page: 266801
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 83
  start-page: 115328
  year: 2011
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 608
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 350
  start-page: 1513
  year: 2015
  publication-title: Science
– volume: 77
  start-page: 075403
  year: 2008
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 2992
  year: 2014
  publication-title: Small
– volume: 604
  start-page: 1603
  year: 2010
  publication-title: Surf. Sci.
– volume: 80
  start-page: 4502
  year: 1998
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 276
  year: 2013
  publication-title: Nano Lett.
– volume: 20
  start-page: 1661
  year: 2008
  publication-title: Chem. Mater.
– volume: 28
  start-page: 1532
  year: 2012
  publication-title: Acta Mech. Sinica
– volume: 111
  start-page: 036104
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 6308
  year: 2015
  publication-title: Nat. Commun.
– volume: 7
  start-page: 10600
  year: 2015
  publication-title: Nanoscale
– volume: 6
  start-page: 8583
  year: 2012
  publication-title: ACS Nano
– volume: 114
  start-page: 17434
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 25
  start-page: 4549
  year: 2013
  publication-title: Adv. Mater.
– volume: 16
  start-page: 1398
  year: 2016
  publication-title: Nano Lett.
– volume: 131
  start-page: 6874
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 82357
  year: 2015
  publication-title: RSC Adv.
– volume: 86
  start-page: 115415
  year: 2012
  publication-title: Phys. Rev. B
– volume: 90
  start-page: 155406
  year: 2014
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 2983
  year: 2015
  publication-title: RSC Adv
– volume: 80
  start-page: 035408
  year: 2009
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 2979
  year: 2010
  publication-title: ACS Nano
– volume: 26
  start-page: 1559
  year: 2014
  publication-title: Adv. Mater.
– volume: 79
  start-page: 4609
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 5804
  year: 2015
  publication-title: Nano Lett.
– volume: 18
  start-page: 2157
  year: 2006
  publication-title: Adv. Mater.
– volume: 69
  start-page: 201401
  year: 2004
  publication-title: Phys. Rev. B
– volume: 82
  start-page: 113406
  year: 2010
  publication-title: Phys. Rev. B
– volume: 112
  start-page: 085502
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 91
  start-page: 121412
  year: 2015
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 5706
  year: 2014
  publication-title: Nano Lett.
– volume: 8
  start-page: 12063
  year: 2014
  publication-title: ACS Nano
– volume: 476
  start-page: 240
  year: 2009
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: e168
  year: 2015
  publication-title: NPG Asia Mater.
– volume: 127
  start-page: 6552
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 96
  start-page: 126104
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 499
  start-page: 419
  year: 2013
  publication-title: Nature
– volume: 13
  start-page: 7378
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 19
  start-page: 086105
  year: 2010
  publication-title: Chin. Phys. B
– year: 2015
– volume: 5
  start-page: 10337
  year: 2015
  publication-title: Sci. Rep.
– volume: 113
  start-page: 176101
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 849
  year: 2012
  publication-title: Sci. Rep.
– volume: 8
  start-page: 2210
  year: 2008
  publication-title: Nano Lett.
– volume: 26
  start-page: 956
  year: 1957
  publication-title: J. Chem. Phys.
– volume: 335
  start-page: 947
  year: 2012
  publication-title: Science
– volume: 2
  start-page: 1500023
  year: 2015
  publication-title: Adv. Sci.
– volume: 93
  start-page: 085406
  year: 2016
  publication-title: Phys. Rev. B
– volume: 68
  start-page: 085404
  year: 2003
  publication-title: Phys. Rev. B
– volume: 324
  start-page: 359
  year: 2000
  publication-title: Chem. Phys. Lett.
– volume: 545
  start-page: L735
  year: 2003
  publication-title: Surf. Sci.
– volume: 95
  start-page: 123105
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 317
  start-page: 932
  year: 2007
  publication-title: Science
– volume: 357–358
  start-page: 307
  year: 1996
  publication-title: Surf. Sci.
– volume: 92
  start-page: 133107
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 100
  start-page: 052104
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 109
  start-page: 073708
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 37726
  year: 2014
  publication-title: RSC Advances
– volume: 99
  start-page: 063114
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 3267
  year: 2011
  publication-title: Nano Lett.
– volume: 132
  start-page: 1699
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 72
  start-page: 045434
  year: 2005
  publication-title: Phys. Rev. B
– volume: 54
  start-page: 13022
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 5849
  year: 2015
  publication-title: Chem. Mater.
– volume: 5
  start-page: 16159
  year: 2015
  publication-title: Sci. Rep.
– volume: 8
  start-page: 896
  year: 2012
  publication-title: Nat. Phys.
– volume: 107
  start-page: 104301
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 6205
  year: 2015
  publication-title: Small
– volume: 3
  start-page: 3089
  year: 2011
  publication-title: Nanoscale
– volume: 104
  start-page: 143101
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 119
  start-page: 3621
  year: 2015
  publication-title: J. Phys. Chem. A
– volume: 84
  start-page: 195414
  year: 2011
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 073405
  year: 2011
  publication-title: Physi. Rev. B
– volume: 14
  start-page: 4881
  year: 2014
  publication-title: Nano Lett.
– volume: 98
  start-page: 083103
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 80
  start-page: 224301
  year: 2009
  publication-title: Phys. Rev. B
– volume: 24
  start-page: 4127
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2434
  year: 2016
  publication-title: Nanoscale
– volume: 14
  start-page: 839
  year: 2014
  publication-title: Nano Lett.
– volume: 3
  start-page: 404
  year: 2004
  publication-title: Nat. Mater.
– volume: 12
  start-page: 3650
  year: 2012
  publication-title: Nano Lett.
– volume: 334
  start-page: 962
  year: 2011
  publication-title: Science
– volume: 105
  start-page: 266601
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 4846
  year: 2014
  publication-title: Nano Lett.
– volume: 27
  start-page: 422
  year: 1842
  publication-title: J. Prakt. Chem.
– volume: 17
  start-page: 443
  year: 2014
  publication-title: Mater. Today
– volume: 76
  start-page: 073103
  year: 2007
  publication-title: Phys. Rev. B
– volume: 342
  start-page: 720
  year: 2013
  publication-title: Science
– volume: 201
  start-page: 2561
  year: 2004
  publication-title: Phys. Status Solidi A
– volume: 133
  start-page: 14831
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 5049
  year: 2010
  publication-title: Nano Lett.
– volume: 26
  start-page: 1776
  year: 2014
  publication-title: Adv. Mater.
– volume: 8
  start-page: 5478
  year: 2014
  publication-title: ACS Nano
– volume: 146
  start-page: 351
  year: 2008
  publication-title: Solid State Commun.
– volume: 3
  start-page: 206
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 26
  start-page: 6380
  year: 2014
  publication-title: Chem. Mater.
– volume: 5
  start-page: 385
  year: 2010
  publication-title: ACS Nano
– volume: 7
  start-page: 9723
  year: 2015
  publication-title: Nanoscale
– volume: 488
  start-page: 67
  year: 2010
  publication-title: Chem. Phys. Lett.
– volume: 52
  start-page: 285
  year: 1981
  publication-title: J. Cryst. Growth
– volume: 5
  start-page: 3113
  year: 2014
  publication-title: Nat. Commun.
– volume: 39
  start-page: 1760
  year: 1989
  publication-title: Phys. Rev. B
– volume: 74
  start-page: 035413
  year: 2006
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 10129
  year: 2013
  publication-title: ACS Nano
– volume: 86
  start-page: 125437
  year: 2012
  publication-title: Phys. Rev. B
– volume: 38
  start-page: 1144
  year: 1963
  publication-title: J. Chem. Phys.
– volume: 68
  start-page: 104102
  year: 2003
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 025003
  year: 2014
  publication-title: 2D Mater.
– volume: 11
  start-page: 3113
  year: 2011
  publication-title: Nano Lett.
– volume: 10
  start-page: 534
  year: 2015
  publication-title: Nat. Nanotech.
– volume: 125
  start-page: 4306
  year: 2013
  publication-title: Angew. Chemie
– volume: 12
  start-page: 714
  year: 2012
  publication-title: Nano Lett.
– volume: 98
  start-page: 013105
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 135
  start-page: 18216
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 20
  year: 2007
  publication-title: Phys. Today
– volume: 324
  start-page: 1312
  year: 2009
  publication-title: Science
– volume: 108
  start-page: 206802
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 78
  start-page: 155204
  year: 2008
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 3715
  year: 2014
  publication-title: ACS Nano
– volume: 5
  start-page: 5221
  year: 2014
  publication-title: Nat. Commun.
– volume: 84
  start-page: 075405
  year: 2011
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 5241
  year: 2014
  publication-title: Sci. Rep.
– volume: 65
  start-page: 041406
  year: 2002
  publication-title: Phys. Rev. B
– volume: 101
  start-page: 171112
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 16709
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 792
  year: 2013
  publication-title: Nat. Mater.
– volume: 8
  start-page: 8520
  year: 2014
  publication-title: ACS Nano
– volume: 84
  start-page: 235424
  year: 2011
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 301
  year: 2015
  publication-title: Nat. Mater.
– volume: 11
  start-page: 3221
  year: 2011
  publication-title: Nano Lett.
– volume: 81
  start-page: 155433
  year: 2010
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 4914
  year: 2015
  publication-title: Nano Lett.
– volume: 51
  start-page: 4606
  year: 1995
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 2666
  year: 2013
  publication-title: Sci. Rep.
– volume: 23
  start-page: 415605
  year: 2012
  publication-title: Nanotechnology
– volume: 15
  start-page: 4769
  year: 2015
  publication-title: Nano Lett.
– volume: 21
  start-page: 270
  year: 1842
  publication-title: Philos. Mag. Series
– volume: 6
  start-page: 4104
  year: 2012
  publication-title: ACS Nano
– volume: 26
  start-page: 4891
  year: 2014
  publication-title: Chem. Mater.
– volume: 14
  start-page: 1064
  year: 2014
  publication-title: Nano Lett.
– volume: 9
  start-page: 2683
  year: 2009
  publication-title: Nano Lett.
– volume: 119
  start-page: 873
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 3270
  year: 2014
  publication-title: Nano Lett.
– volume: 25
  start-page: 105701
  year: 2014
  publication-title: Nanotechnology
– volume: 103
  start-page: 102401
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 2032
  year: 2011
  publication-title: Nano Lett.
– volume: 16
  start-page: 343
  year: 2004
  publication-title: Chem. Mater.
– volume: 52
  start-page: 3156
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 4453
  year: 2014
  publication-title: Sci. Rep.
– volume: 7
  start-page: 720
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 11
  start-page: 4497
  year: 2015
  publication-title: Small
– volume: 5
  start-page: 3193
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 927
  year: 2010
  publication-title: Small
– volume: 102
  start-page: 195505
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 113
  start-page: 096801
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 75
  start-page: 3918
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 88
  year: 2012
  publication-title: Chem. Mater.
– volume: 47
  start-page: 1349
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 497
  start-page: 598
  year: 2013
  publication-title: Nature
– volume: 27
  start-page: 8041
  year: 2015
  publication-title: Chem. Mater.
– volume: 47
  start-page: 4406
  year: 2011
  publication-title: Chem. Commun.
– volume: 15
  start-page: 1837
  year: 2004
  publication-title: Nanotechnology
– volume: 79
  start-page: 115442
  year: 2009
  publication-title: Phys. Rev. B
– volume: 25
  start-page: 2746
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7443
  year: 2012
  publication-title: ACS Nano
– volume: 9
  start-page: 12088
  year: 2015
  publication-title: ACS Nano
– volume: 117
  start-page: 11770
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 4129
  year: 2013
  publication-title: Acs Appl. Mater. Interfaces
– volume: 6
  start-page: 6499
  year: 2015
  publication-title: Nat. Commun.
– volume: 124
  start-page: 054706
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 135
  start-page: 6758
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 8109
  year: 2015
  publication-title: Adv. Mater.
– volume: 105
  start-page: 046801
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 82
  start-page: 035412
  year: 2010
  publication-title: Phys. Rev. B
– volume: 75
  start-page: 193409
  year: 2007
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 1457
  year: 2014
  publication-title: ACS Nano
– volume: 10
  start-page: 424
  year: 2011
  publication-title: Nat. Mater.
– volume: 4
  start-page: 1299
  year: 2010
  publication-title: ACS Nano
– volume: 10
  start-page: 949
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 1834
  year: 2013
  publication-title: Nano Lett.
– volume: 102
  start-page: 206603
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 1701
  year: 2001
  publication-title: Adv. Mater.
– volume: 113
  start-page: 2273
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 115
  start-page: 17252
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 7507
  year: 2015
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7053
  year: 2012
  publication-title: ACS Nano
– volume: 99
  start-page: 243114
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 1224
  year: 2012
  publication-title: Nano Lett.
– volume: 114
  start-page: 144311
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 430
  year: 2010
  publication-title: Nat. Mater.
– volume: 15
  start-page: 5067
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 6378
  year: 2012
  publication-title: ACS Nano
– volume: 117
  start-page: 9332
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 491
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 7303
  year: 2011
  publication-title: ACS Nano
– volume: 89
  start-page: 201404
  year: 2014
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 5375
  year: 2015
  publication-title: Small
– volume: 90
  start-page: 081922
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 80
  start-page: 155425
  year: 2009
  publication-title: Phys. Rev. B
– volume: 488
  start-page: 627
  year: 2012
  publication-title: Nature
– volume: 81
  start-page: 075125
  year: 2010
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 6519
  year: 2015
  publication-title: Nat. Commun.
– volume: 106
  start-page: 126102
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 93
  start-page: 223108
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 116
  start-page: 1
  year: 2000
  publication-title: Solid State Commun.
– volume: 7
  start-page: 16046
  year: 2015
  publication-title: Nanoscale
– volume: 84
  start-page: 205412
  year: 2011
  publication-title: Phys. Rev. B
– year: 2006
– volume: 5
  start-page: 722
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 8849
  year: 2015
  publication-title: Nat. Commun.
– volume: 12
  start-page: 4449
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  start-page: 10660
  year: 2013
  publication-title: Nanoscale
– volume: 457
  start-page: 863
  year: 2009
  publication-title: Nature
– volume: 4
  start-page: 963
  year: 2004
  publication-title: Nano Lett.
– volume: 10
  start-page: 3209
  year: 2010
  publication-title: Nano Lett.
– volume: 11
  start-page: 37
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 727
  year: 2014
  publication-title: Nat. Chem.
– ident: e_1_2_7_32_1
  doi: 10.1021/nn202141k
– ident: e_1_2_7_82_1
  doi: 10.1021/nl302398m
– ident: e_1_2_7_93_1
  doi: 10.1007/s10853-015-9180-0
– ident: e_1_2_7_133_1
  doi: 10.1039/C5NR01473E
– ident: e_1_2_7_128_1
  doi: 10.1016/j.cplett.2009.11.051
– ident: e_1_2_7_231_1
  doi: 10.1039/c3nr01180a
– ident: e_1_2_7_157_1
  doi: 10.1063/1.3234374
– ident: e_1_2_7_233_1
  doi: 10.1021/jp2015269
– ident: e_1_2_7_202_1
  doi: 10.1063/1.3662043
– ident: e_1_2_7_63_1
  doi: 10.1126/science.1244358
– ident: e_1_2_7_135_1
  doi: 10.1103/PhysRevLett.109.205502
– ident: e_1_2_7_106_1
  doi: 10.1021/nn305320v
– ident: e_1_2_7_209_1
  doi: 10.1002/adma.200600231
– ident: e_1_2_7_271_1
  doi: 10.1103/PhysRevB.74.035413
– ident: e_1_2_7_77_1
  doi: 10.1038/ncomms7519
– ident: e_1_2_7_220_1
  doi: 10.1038/nnano.2015.242
– ident: e_1_2_7_230_1
  doi: 10.1063/1.3625922
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201304937
– ident: e_1_2_7_257_1
  doi: 10.1016/S0038-1098(00)00281-7
– ident: e_1_2_7_49_1
  doi: 10.1103/PhysRevB.82.113406
– ident: e_1_2_7_148_1
  doi: 10.1039/c0cp02001j
– volume-title: Structure and Chemistry of Crystalline Solids
  year: 2006
  ident: e_1_2_7_267_1
– ident: e_1_2_7_167_1
  doi: 10.1103/PhysRevB.76.073103
– ident: e_1_2_7_241_1
  doi: 10.1103/PhysRevB.65.041406
– ident: e_1_2_7_205_1
  doi: 10.1039/c3nr03714b
– ident: e_1_2_7_28_1
  doi: 10.1103/PhysRevLett.102.195505
– ident: e_1_2_7_142_1
  doi: 10.1021/ja400637n
– ident: e_1_2_7_246_1
  doi: 10.1021/nl049862e
– ident: e_1_2_7_249_1
  doi: 10.1016/j.cplett.2009.06.012
– ident: e_1_2_7_84_1
  doi: 10.1021/nn404331f
– ident: e_1_2_7_99_1
  doi: 10.1038/srep00849
– ident: e_1_2_7_153_1
  doi: 10.1103/PhysRevB.81.075125
– ident: e_1_2_7_163_1
  doi: 10.1103/PhysRevB.86.125437
– ident: e_1_2_7_170_1
  doi: 10.1039/c3cp44460k
– ident: e_1_2_7_211_1
  doi: 10.1038/nphoton.2009.167
– ident: e_1_2_7_222_1
  doi: 10.1021/nl103251m
– ident: e_1_2_7_210_1
  doi: 10.1002/app.27949
– ident: e_1_2_7_180_1
  doi: 10.1103/PhysRevB.80.035408
– ident: e_1_2_7_263_1
  doi: 10.1039/c0cc05738j
– ident: e_1_2_7_124_1
  doi: 10.1021/jp405536x
– ident: e_1_2_7_150_1
  doi: 10.1021/jp5122799
– ident: e_1_2_7_127_1
  doi: 10.1021/nl404735w
– ident: e_1_2_7_136_1
  doi: 10.1021/nn901648q
– ident: e_1_2_7_260_1
  doi: 10.1063/1.1745964
– ident: e_1_2_7_69_1
  doi: 10.1039/c1nr10504c
– ident: e_1_2_7_88_1
  doi: 10.1021/acs.nanolett.5b01704
– ident: e_1_2_7_214_1
  doi: 10.1002/pssa.200405188
– ident: e_1_2_7_7_1
  doi: 10.1021/nl400559s
– ident: e_1_2_7_295_1
  doi: 10.1039/C5RA12615K
– ident: e_1_2_7_38_1
  doi: 10.1103/PhysRevB.51.4606
– ident: e_1_2_7_87_1
  doi: 10.1038/ncomms4193
– ident: e_1_2_7_276_1
  doi: 10.1021/nn302696v
– ident: e_1_2_7_41_1
  doi: 10.1021/cm034805s
– ident: e_1_2_7_78_1
  doi: 10.1021/nl4033704
– ident: e_1_2_7_218_1
  doi: 10.1038/ncomms8507
– ident: e_1_2_7_131_1
  doi: 10.1103/PhysRevB.80.155425
– ident: e_1_2_7_112_1
  doi: 10.1103/PhysRevB.83.115328
– ident: e_1_2_7_282_1
  doi: 10.1002/1521-4095(200111)13:22<1701::AID-ADMA1701>3.0.CO;2-Q
– ident: e_1_2_7_68_1
  doi: 10.1038/srep02666
– ident: e_1_2_7_200_1
  doi: 10.1088/0957-4484/25/10/105701
– ident: e_1_2_7_6_1
  doi: 10.1021/nn503140y
– ident: e_1_2_7_20_1
  doi: 10.1002/smll.201500210
– ident: e_1_2_7_71_1
  doi: 10.1021/nl400815w
– ident: e_1_2_7_156_1
  doi: 10.1103/PhysRevB.84.235424
– ident: e_1_2_7_90_1
  doi: 10.1021/nl401308v
– ident: e_1_2_7_117_1
  doi: 10.1063/1.3373571
– ident: e_1_2_7_145_1
  doi: 10.1021/jp400420m
– ident: e_1_2_7_155_1
  doi: 10.1021/jp200671p
– ident: e_1_2_7_36_1
  doi: 10.1038/nphys2954
– ident: e_1_2_7_159_1
  doi: 10.1039/C2CP42994B
– ident: e_1_2_7_189_1
  doi: 10.1016/j.ssc.2008.02.024
– ident: e_1_2_7_75_1
  doi: 10.1021/nn5003858
– ident: e_1_2_7_248_1
  doi: 10.1063/1.3115446
– ident: e_1_2_7_292_1
– ident: e_1_2_7_168_1
  doi: 10.1063/1.3556640
– ident: e_1_2_7_39_1
  doi: 10.1103/PhysRevLett.79.4609
– ident: e_1_2_7_160_1
  doi: 10.1021/jp300593q
– ident: e_1_2_7_5_1
  doi: 10.1016/j.mattod.2014.07.006
– ident: e_1_2_7_255_1
  doi: 10.1021/ja901586k
– ident: e_1_2_7_177_1
  doi: 10.1103/PhysRevB.84.195414
– ident: e_1_2_7_172_1
  doi: 10.1038/ncomms7308
– ident: e_1_2_7_26_1
  doi: 10.1126/science.1243879
– ident: e_1_2_7_215_1
  doi: 10.1063/1.4764533
– ident: e_1_2_7_287_1
  doi: 10.1021/nl3004754
– ident: e_1_2_7_147_1
  doi: 10.1021/jp402297n
– ident: e_1_2_7_190_1
  doi: 10.1038/nnano.2008.58
– ident: e_1_2_7_14_1
  doi: 10.1021/nl1023707
– ident: e_1_2_7_57_1
  doi: 10.1126/science.1144216
– ident: e_1_2_7_101_1
  doi: 10.1039/C5CP02192H
– ident: e_1_2_7_219_1
  doi: 10.1038/nnano.2014.60
– ident: e_1_2_7_95_1
  doi: 10.1038/srep10337
– ident: e_1_2_7_290_1
  doi: 10.1103/PhysRevB.93.085406
– ident: e_1_2_7_197_1
  doi: 10.1021/nn500059s
– ident: e_1_2_7_107_1
  doi: 10.1038/am.2015.8
– ident: e_1_2_7_154_1
  doi: 10.1021/nl2011142
– ident: e_1_2_7_21_1
  doi: 10.1007/s12274-015-0816-9
– ident: e_1_2_7_288_1
  doi: 10.1002/anie.201207972
– ident: e_1_2_7_40_1
  doi: 10.1103/PhysRevB.68.085404
– ident: e_1_2_7_35_1
  doi: 10.1038/nature12186
– ident: e_1_2_7_178_1
  doi: 10.1103/PhysRevB.89.201404
– ident: e_1_2_7_143_1
  doi: 10.1021/acs.nanolett.5b01852
– ident: e_1_2_7_4_1
  doi: 10.1039/C3CS60260E
– ident: e_1_2_7_48_1
  doi: 10.1016/j.susc.2006.06.016
– ident: e_1_2_7_141_1
  doi: 10.1063/1.4819266
– ident: e_1_2_7_111_1
  doi: 10.1103/PhysRevB.80.224301
– ident: e_1_2_7_294_1
  doi: 10.1038/srep05241
– ident: e_1_2_7_80_1
  doi: 10.1038/nature11408
– ident: e_1_2_7_74_1
  doi: 10.1021/nl200464j
– ident: e_1_2_7_123_1
  doi: 10.1021/nn302099q
– ident: e_1_2_7_185_1
  doi: 10.1021/nl5006542
– ident: e_1_2_7_55_1
  doi: 10.1002/smll.201402468
– ident: e_1_2_7_173_1
  doi: 10.1103/PhysRevLett.111.266801
– ident: e_1_2_7_102_1
  doi: 10.1021/acs.chemmater.5b00505
– ident: e_1_2_7_196_1
  doi: 10.1021/cm502170q
– ident: e_1_2_7_161_1
  doi: 10.1103/PhysRevB.84.205412
– ident: e_1_2_7_83_1
  doi: 10.1021/nl4021123
– ident: e_1_2_7_259_1
  doi: 10.1007/s10409-012-0163-y
– ident: e_1_2_7_104_1
  doi: 10.1038/srep04453
– ident: e_1_2_7_108_1
  doi: 10.1103/PhysRevB.68.104102
– ident: e_1_2_7_118_1
  doi: 10.1103/PhysRevB.83.073405
– ident: e_1_2_7_97_1
  doi: 10.1021/nn402452p
– ident: e_1_2_7_139_1
  doi: 10.1016/j.susc.2010.06.001
– ident: e_1_2_7_43_1
  doi: 10.1021/nn5058968
– ident: e_1_2_7_187_1
  doi: 10.1038/nnano.2015.91
– ident: e_1_2_7_207_1
  doi: 10.1063/1.4870530
– ident: e_1_2_7_240_1
  doi: 10.1103/PhysRevLett.80.4502
– ident: e_1_2_7_61_1
  doi: 10.1021/nl304080y
– ident: e_1_2_7_45_1
  doi: 10.1088/2053-1583/1/2/025003
– ident: e_1_2_7_176_1
  doi: 10.1103/PhysRevB.90.155406
– ident: e_1_2_7_277_1
  doi: 10.1103/PhysRevLett.94.015504
– ident: e_1_2_7_25_1
  doi: 10.1021/nl5046632
– ident: e_1_2_7_266_1
  doi: 10.1021/ar400310g
– ident: e_1_2_7_56_1
  doi: 10.1002/adma.201504042
– ident: e_1_2_7_204_1
  doi: 10.1021/am400016y
– ident: e_1_2_7_199_1
  doi: 10.1021/acs.nanolett.5b00648
– ident: e_1_2_7_54_1
  doi: 10.1021/cm502603n
– ident: e_1_2_7_73_1
  doi: 10.1021/nn501837c
– ident: e_1_2_7_283_1
  doi: 10.1063/1.2812113
– ident: e_1_2_7_11_1
  doi: 10.1021/nl203635v
– ident: e_1_2_7_192_1
  doi: 10.1038/nnano.2008.199
– ident: e_1_2_7_245_1
  doi: 10.1063/1.1938002
– ident: e_1_2_7_121_1
  doi: 10.1038/nature12385
– ident: e_1_2_7_31_1
  doi: 10.1039/C5NR08036C
– ident: e_1_2_7_86_1
  doi: 10.1021/nl502110q
– ident: e_1_2_7_281_1
  doi: 10.1002/smll.200902087
– ident: e_1_2_7_216_1
  doi: 10.1002/adma.201504042
– ident: e_1_2_7_265_1
  doi: 10.1002/anie.200903246
– ident: e_1_2_7_114_1
  doi: 10.1103/PhysRevLett.111.036104
– ident: e_1_2_7_51_1
  doi: 10.1021/nl502445j
– ident: e_1_2_7_236_1
  doi: 10.1021/ja908475v
– ident: e_1_2_7_201_1
  doi: 10.1038/ncomms3541
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.chemmater.5b03607
– ident: e_1_2_7_23_1
  doi: 10.1021/nl404207f
– ident: e_1_2_7_225_1
  doi: 10.1002/ange.201209597
– ident: e_1_2_7_64_1
  doi: 10.1038/nmat4205
– ident: e_1_2_7_60_1
  doi: 10.1002/adma.201304301
– ident: e_1_2_7_146_1
  doi: 10.1063/1.4730392
– ident: e_1_2_7_234_1
  doi: 10.1021/nl201616h
– ident: e_1_2_7_144_1
  doi: 10.1021/acs.jpca.5b01308
– ident: e_1_2_7_223_1
  doi: 10.1021/nl2014857
– ident: e_1_2_7_92_1
  doi: 10.1126/science.1211649
– ident: e_1_2_7_226_1
  doi: 10.1021/nl5022915
– ident: e_1_2_7_293_1
– ident: e_1_2_7_46_1
  doi: 10.1016/0039-6028(96)00134-3
– ident: e_1_2_7_125_1
  doi: 10.1103/PhysRevB.78.155204
– ident: e_1_2_7_183_1
  doi: 10.1103/PhysRevB.67.014108
– ident: e_1_2_7_109_1
  doi: 10.1103/PhysRevB.13.5560
– ident: e_1_2_7_203_1
  doi: 10.1002/adma.200900323
– ident: e_1_2_7_70_1
  doi: 10.1038/ncomms7499
– ident: e_1_2_7_164_1
  doi: 10.1021/nn101809j
– ident: e_1_2_7_151_1
  doi: 10.1021/jz2009506
– ident: e_1_2_7_193_1
  doi: 10.1103/PhysRevLett.105.266601
– ident: e_1_2_7_286_1
  doi: 10.1002/advs.201500023
– ident: e_1_2_7_129_1
  doi: 10.1063/1.2162897
– ident: e_1_2_7_119_1
  doi: 10.1063/1.3559300
– ident: e_1_2_7_158_1
  doi: 10.1063/1.3533804
– ident: e_1_2_7_213_1
  doi: 10.1038/nmat1134
– ident: e_1_2_7_258_1
  doi: 10.1103/PhysRevB.65.165410
– ident: e_1_2_7_98_1
  doi: 10.1038/ncomms2818
– ident: e_1_2_7_279_1
  doi: 10.1021/ja017817s
– ident: e_1_2_7_208_1
  doi: 10.1039/C4RA09156F
– ident: e_1_2_7_19_1
  doi: 10.1126/science.1194975
– ident: e_1_2_7_162_1
  doi: 10.1103/PhysRevB.84.075405
– ident: e_1_2_7_242_1
  doi: 10.1103/PhysRevB.72.035418
– ident: e_1_2_7_174_1
  doi: 10.1103/PhysRevLett.113.096801
– volume: 21
  start-page: 270
  year: 1842
  ident: e_1_2_7_1_1
  publication-title: Philos. Mag. Series
– ident: e_1_2_7_122_1
  doi: 10.1021/nn300495t
– ident: e_1_2_7_140_1
  doi: 10.1103/PhysRevB.75.193409
– ident: e_1_2_7_232_1
  doi: 10.1021/nl080745j
– ident: e_1_2_7_275_1
  doi: 10.1103/PhysRevLett.113.176101
– ident: e_1_2_7_264_1
  doi: 10.1021/ja410088y
– ident: e_1_2_7_166_1
  doi: 10.1103/PhysRevLett.108.226805
– ident: e_1_2_7_227_1
  doi: 10.1021/ct1006345
– ident: e_1_2_7_228_1
  doi: 10.1021/jp8079827
– ident: e_1_2_7_237_1
  doi: 10.1021/nl2035749
– ident: e_1_2_7_103_1
  doi: 10.1002/smll.201502173
– ident: e_1_2_7_152_1
  doi: 10.1016/j.cplett.2010.01.073
– ident: e_1_2_7_184_1
  doi: 10.1021/ja206703x
– ident: e_1_2_7_42_1
  doi: 10.1016/j.susc.2003.08.046
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.nanolett.5b04874
– ident: e_1_2_7_194_1
  doi: 10.1126/science.1218461
– ident: e_1_2_7_250_1
  doi: 10.1063/1.3040007
– ident: e_1_2_7_182_1
  doi: 10.1063/1.1733815
– ident: e_1_2_7_224_1
  doi: 10.1021/nn504809n
– ident: e_1_2_7_120_1
  doi: 10.1140/epjb/e2009-00043-5
– ident: e_1_2_7_191_1
  doi: 10.1103/PhysRevLett.102.206603
– ident: e_1_2_7_113_1
  doi: 10.1063/1.2679007
– ident: e_1_2_7_179_1
  doi: 10.1103/PhysRevB.91.121412
– ident: e_1_2_7_50_1
  doi: 10.1002/smll.201501439
– ident: e_1_2_7_195_1
  doi: 10.1038/nphys2441
– ident: e_1_2_7_10_1
  doi: 10.1021/nl1022139
– ident: e_1_2_7_238_1
  doi: 10.1088/1674-1056/19/8/086105
– ident: e_1_2_7_284_1
  doi: 10.1002/adfm.201304146
– ident: e_1_2_7_29_1
  doi: 10.1038/srep16159
– ident: e_1_2_7_188_1
  doi: 10.1103/PhysRevB.80.241415
– ident: e_1_2_7_291_1
  doi: 10.1126/science.aad1080
– ident: e_1_2_7_91_1
  doi: 10.1038/nmat3001
– ident: e_1_2_7_115_1
  doi: 10.1103/PhysRevLett.105.046801
– ident: e_1_2_7_206_1
  doi: 10.1039/C4RA05753H
– ident: e_1_2_7_134_1
  doi: 10.1103/PhysRevLett.106.126102
– ident: e_1_2_7_289_1
  doi: 10.1002/anie.201505425
– ident: e_1_2_7_72_1
  doi: 10.1002/adma.201204904
– ident: e_1_2_7_221_1
  doi: 10.1002/adma.201301336
– ident: e_1_2_7_37_1
  doi: 10.1103/PhysRevLett.75.3918
– ident: e_1_2_7_62_1
  doi: 10.1038/nnano.2010.172
– ident: e_1_2_7_76_1
  doi: 10.1039/C5NR04490A
– ident: e_1_2_7_96_1
  doi: 10.1021/cm201938h
– ident: e_1_2_7_13_1
  doi: 10.1021/nn301940k
– ident: e_1_2_7_94_1
  doi: 10.1002/smll.201400292
– ident: e_1_2_7_81_1
  doi: 10.1038/nnano.2012.256
– ident: e_1_2_7_243_1
  doi: 10.1088/0022-3727/42/8/085403
– ident: e_1_2_7_116_1
  doi: 10.1063/1.3679174
– ident: e_1_2_7_198_1
– ident: e_1_2_7_186_1
  doi: 10.1038/nnano.2015.70
– ident: e_1_2_7_137_1
  doi: 10.1021/nl2011142
– ident: e_1_2_7_175_1
  doi: 10.1103/PhysRevB.86.115415
– ident: e_1_2_7_2_1
  doi: 10.1002/prac.18420270164
– ident: e_1_2_7_280_1
  doi: 10.1002/adma.200800137
– ident: e_1_2_7_130_1
  doi: 10.1021/nl9011497
– ident: e_1_2_7_239_1
  doi: 10.1063/1.4824750
– ident: e_1_2_7_12_1
  doi: 10.1021/nn301675f
– ident: e_1_2_7_34_1
  doi: 10.1039/C5NR02143J
– ident: e_1_2_7_53_1
  doi: 10.1038/srep07743
– ident: e_1_2_7_212_1
  doi: 10.1038/nnano.2015.203
– ident: e_1_2_7_15_1
  doi: 10.1038/ncomms9662
– ident: e_1_2_7_247_1
  doi: 10.1016/S0009-2614(00)00637-0
– ident: e_1_2_7_169_1
  doi: 10.1103/PhysRevB.81.155433
– ident: e_1_2_7_89_1
  doi: 10.1038/ncomms7835
– ident: e_1_2_7_261_1
  doi: 10.1016/0022-0248(81)90206-2
– ident: e_1_2_7_274_1
  doi: 10.1103/PhysRevLett.112.085502
– ident: e_1_2_7_100_1
  doi: 10.1038/ncomms9849
– ident: e_1_2_7_66_1
  doi: 10.1021/nl3011726
– ident: e_1_2_7_65_1
  doi: 10.1021/acsnano.5b01261
– ident: e_1_2_7_244_1
  doi: 10.1209/0295-5075/28/5/007
– ident: e_1_2_7_105_1
  doi: 10.1021/acsnano.5b05847
– ident: e_1_2_7_171_1
  doi: 10.1038/am.2012.10
– ident: e_1_2_7_138_1
  doi: 10.1038/nnano.2015.188
– ident: e_1_2_7_110_1
  doi: 10.1103/PhysRevLett.96.026402
– ident: e_1_2_7_149_1
  doi: 10.1103/PhysRevLett.108.206802
– ident: e_1_2_7_165_1
  doi: 10.1103/PhysRevB.39.1760
– ident: e_1_2_7_9_1
  doi: 10.1021/nl203249a
– ident: e_1_2_7_217_1
  doi: 10.1038/ncomms6221
– ident: e_1_2_7_252_1
  doi: 10.1103/PhysRevB.69.201401
– ident: e_1_2_7_278_1
  doi: 10.1038/nchem.1999
– ident: e_1_2_7_132_1
  doi: 10.1103/PhysRevB.82.113404
– ident: e_1_2_7_47_1
  doi: 10.1021/cm048629e
– ident: e_1_2_7_235_1
  doi: 10.1103/PhysRevB.78.205415
– ident: e_1_2_7_59_1
  doi: 10.1021/cm7028382
– ident: e_1_2_7_3_1
  doi: 10.1021/nn1006495
– ident: e_1_2_7_52_1
  doi: 10.1126/science.1171245
– ident: e_1_2_7_79_1
  doi: 10.1038/nmat2711
– ident: e_1_2_7_285_1
  doi: 10.1021/nl0498785
– ident: e_1_2_7_58_1
  doi: 10.1038/nmat1134
– ident: e_1_2_7_126_1
  doi: 10.1021/jp105454w
– ident: e_1_2_7_254_1
  doi: 10.1021/ja042388u
– ident: e_1_2_7_229_1
  doi: 10.1103/PhysRevB.77.075403
– ident: e_1_2_7_8_1
  doi: 10.1021/nn4009356
– ident: e_1_2_7_272_1
  doi: 10.1021/ja507235s
– ident: e_1_2_7_253_1
  doi: 10.1088/0957-4484/15/12/025
– ident: e_1_2_7_85_1
  doi: 10.1126/science.1246137
– ident: e_1_2_7_251_1
  doi: 10.1103/PhysRevLett.96.126104
– ident: e_1_2_7_67_1
  doi: 10.1038/nmat3695
– ident: e_1_2_7_256_1
  doi: 10.1103/PhysRevB.82.035412
– ident: e_1_2_7_273_1
  doi: 10.1038/ncomms4113
– ident: e_1_2_7_268_1
  doi: 10.1021/cr300356t
– ident: e_1_2_7_270_1
  doi: 10.1103/PhysRevB.72.045434
– ident: e_1_2_7_181_1
  doi: 10.1021/nl301406f
– ident: e_1_2_7_262_1
  doi: 10.1103/PhysRevB.79.115442
– ident: e_1_2_7_22_1
  doi: 10.1088/0957-4484/23/41/415605
– ident: e_1_2_7_44_1
  doi: 10.1103/PhysRevLett.104.096102
– ident: e_1_2_7_269_1
  doi: 10.1038/nature07736
– ident: e_1_2_7_16_1
  doi: 10.1002/smll.201001628
– ident: e_1_2_7_27_1
  doi: 10.1038/ncomms7160
– ident: e_1_2_7_17_1
  doi: 10.1063/1.2903702
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201204031
SSID ssj0031247
Score 2.5821905
SecondaryResourceType review_article
Snippet Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2942
SubjectTerms Boron nitride
Electric potential
Electronics
Magnetic properties
Nanostructure
Nanotechnology
Porous materials
Synthesis
Two dimensional
Title Boron Nitride Nanostructures: Fabrication, Functionalization and Applications
URI https://api.istex.fr/ark:/67375/WNG-PG57R8BX-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201600053
https://www.ncbi.nlm.nih.gov/pubmed/27073174
https://www.proquest.com/docview/1793934029
https://www.proquest.com/docview/1825488324
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFICPpvEyHriMywIFZRKCl3lrEjuJeVvR2gm1FSpU65tlO640raSoFwnx6zknTkOLmCaxt1p1bva5-vIZ4J3OY66LKGeYeeWMT5OMGS0S1i6kMJZPpZa0wXkwTC_H_PNETLZ28Xs-RDPgRppR2WtScG2WZ3-gocvvM5o6iNJqPykaYVqwRVHRqOFHJei8qtNV0GcxAm9tqI3t-Gz38h2v9IAa-Oe_Qs7dCLZyQd3HoDcv71ee3JyuV-bU_vqL63ifr3sCj-r4NDz3AvUU9lx5CA-3qIXPYNAh6kE4vF4trgsXon2eewrtGlP3j2FXm0U9EHgSdtFt-tHGer9nqMsiPN-aNX8O4-7Ft0-XrD6VgVmi77E8nvIIk0JrCHCcRVgiZiGX1kSozxi_Oex2I3lqnEiyzHKHVlUQFl-kkifJC9gv56U7glAKaaeJTWXBHZfcEYzOCiPwhhqLJgC26RVla2Q5nZwxUx62HCtqJtU0UwAfmvo_PKzj1prvq05uqunFDS1xy4S6GvbUl57IRnlnokYBtDZSoGrtXioyajLBzFsGcNz8jXpJky26dPM11qHUO0d7yQN46aWneVicoWHFVDCAuJKBO15WfR30-03p1f9c9BoO6Ldf49aCfZQK9wajqZV5W2nMb6IHEuY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9QwHMC_EXgAH1BBZYo6E6IvFtjWbqtvYDxOvbuQAyJvTdv1EgLsyHGXGP96v991m5yBmMBjd91ua78_--NTgC2dx1wXUc4w88oZHyUZM1okbLeQwlg-klrSBuf-IO2e8O-nollNSHthPB-iHXAjzajsNSk4DUjv_KWGXl9e0NxBlFYbShdgiY71rrKqYUuQStB9VeeroNdihN5quI278c78_XN-aYma-NdtQed8DFs5oc4TMM3r-7Un59uzqdm2v_8hOz7o-57Cah2ihntepp7BI1euweMb4MJ16O8T-CAcnE0nZ4UL0USPPYh2htn757CjzaQeC_wUdtBz-gHHestnqMsi3Lsxcf4cTjpfj790WX0wA7ME4GN5POIR5oXWEOM4i7BE2EIurYlQpTGEc9jzRvLUOJFkmeUODasgMr5IJU-SF7BYjku3AaEU0o4Sm8qCOy65Ix6dFUbgAzUWTQCs6RZla2o5HZ5xoTxvOVbUTKptpgA-tvWvPK_jzpofql5uq-nJOa1yy4T6OThQhwciG-b7p2oYwGYjBqpW8GtFdk0mmHzLAN63P6Nq0nyLLt14hnUo-87RZPIAXnrxaf8sztC2YjYYQFwJwX9eVh31e7229Oo-N72D5e5xv6d63wY_XsMKXfdL3jZhESXEvcHgamreVurzB9WOFwE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFICPYJMQPMC4BzYIEoIXvDWJncR72xjZgLaaCtP6ZtmOI00b6dS1EuLXc06cZi0CIcGjUydN7HP15TPAa53HXJdRzjDzyhmvkowZLRLWK6UwlldSS9rgPBimRyf801iMl3bxez5EN-BGmtHYa1Lwy7LauYaGXn27oKmDKG32k96EdZ72cpLrg1EHkErQezXHq6DTYkTeWmAbe_HO6v0rbmmdWvj772LO1RC28UHFPdCLt_dLT8635zOzbX_8Anb8n8_bgLttgBrueYm6Dzdc_QDuLGELH8Jgn7AH4fBsNj0rXYgGeuIxtHPM3XfDQptpOxL4LizQb_rhxnbDZ6jrMtxbmjZ_BCfFh6_vj1h7LAOzhN9jeVzxCLNCa4hwnEVYImghl9ZEqNAYwDnsdyN5apxIssxyh2ZVEBdfpJInyWNYqye1ewqhFNJWiU1lyR2X3BGNzgoj8IEaiyYAtugVZVtmOR2dcaE8bTlW1Eyqa6YA3nb1Lz2t44813zSd3FXT03Na45YJdTo8VMeHIhvl-2M1CmBzIQWqVe8rRVZNJph6ywBedT-jYtJsi67dZI51KPfO0WDyAJ546en-LM7QsmIuGEDcyMBfXlZ9GfT7XenZv9z0Em4dHxSq_3H4-Tncpst-vdsmrKGAuC2MrGbmRaM8PwGMuhW5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boron+Nitride+Nanostructures%3A+Fabrication%2C+Functionalization+and+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yin%2C+Jun&rft.au=Li%2C+Jidong&rft.au=Hang%2C+Yang&rft.au=Yu%2C+Jin&rft.date=2016-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=12&rft.issue=22&rft.spage=2942&rft_id=info:doi/10.1002%2Fsmll.201600053&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4079133941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon