5‐Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes

Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be int...

Full description

Saved in:
Bibliographic Details
Published inCancer science Vol. 111; no. 9; pp. 3142 - 3154
Main Authors Blondy, Sabrina, David, Valentin, Verdier, Mireille, Mathonnet, Muriel, Perraud, Aurélie, Christou, Niki
Format Journal Article
LanguageEnglish
Published Tokyo John Wiley & Sons, Inc 01.09.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5‐fluorouracil (5‐FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5‐FU resistance. Some are disease‐specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5‐FU. In this review, we construct a global outline of different mechanisms from disruption of 5‐FU‐metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial‐mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future. Colorectal cancer is the third most common cancer worldwide. 5‐Fluorouracil (5‐FU), a synthetic fluorinated pyrimidine analog requiring intracellular conversion into active metabolites, is the main chemotherapy used when colorectal cancer is at an advanced stage or at high risk of recurrence. However, resistance to this treatment exists, explaining a low 5‐year survival rate. We review the main mechanisms of 5‐FU resistance, especially those linked to tumor microenvironment and genetic alterations.
AbstractList Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5‐fluorouracil (5‐FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5‐FU resistance. Some are disease‐specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5‐FU. In this review, we construct a global outline of different mechanisms from disruption of 5‐FU‐metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial‐mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future.
Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5‐fluorouracil (5‐FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5‐FU resistance. Some are disease‐specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5‐FU. In this review, we construct a global outline of different mechanisms from disruption of 5‐FU‐metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial‐mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future. Colorectal cancer is the third most common cancer worldwide. 5‐Fluorouracil (5‐FU), a synthetic fluorinated pyrimidine analog requiring intracellular conversion into active metabolites, is the main chemotherapy used when colorectal cancer is at an advanced stage or at high risk of recurrence. However, resistance to this treatment exists, explaining a low 5‐year survival rate. We review the main mechanisms of 5‐FU resistance, especially those linked to tumor microenvironment and genetic alterations.
Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5-fluorouracil (5-FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5-FU resistance. Some are disease-specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5-FU. In this review, we construct a global outline of different mechanisms from disruption of 5-FU-metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial-mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future.Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5-fluorouracil (5-FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5-FU resistance. Some are disease-specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5-FU. In this review, we construct a global outline of different mechanisms from disruption of 5-FU-metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial-mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future.
Author Christou, Niki
David, Valentin
Perraud, Aurélie
Verdier, Mireille
Blondy, Sabrina
Mathonnet, Muriel
AuthorAffiliation 1 Faculty of Medicine Laboratoire EA3842 CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance” Limoges cedex France
3 Service de Chirurgie Digestive Department of Digestive, General and Endocrine Surgery University Hospital of Limoges Limoges France
2 Department of pharmacy University Hospital of Limoges Limoges France
AuthorAffiliation_xml – name: 3 Service de Chirurgie Digestive Department of Digestive, General and Endocrine Surgery University Hospital of Limoges Limoges France
– name: 2 Department of pharmacy University Hospital of Limoges Limoges France
– name: 1 Faculty of Medicine Laboratoire EA3842 CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance” Limoges cedex France
Author_xml – sequence: 1
  givenname: Sabrina
  surname: Blondy
  fullname: Blondy, Sabrina
  organization: Laboratoire EA3842 CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance”
– sequence: 2
  givenname: Valentin
  orcidid: 0000-0002-2260-6690
  surname: David
  fullname: David, Valentin
  organization: University Hospital of Limoges
– sequence: 3
  givenname: Mireille
  orcidid: 0000-0002-8162-4856
  surname: Verdier
  fullname: Verdier, Mireille
  organization: Laboratoire EA3842 CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance”
– sequence: 4
  givenname: Muriel
  orcidid: 0000-0002-9127-3068
  surname: Mathonnet
  fullname: Mathonnet, Muriel
  organization: University Hospital of Limoges
– sequence: 5
  givenname: Aurélie
  orcidid: 0000-0001-7882-0613
  surname: Perraud
  fullname: Perraud, Aurélie
  organization: University Hospital of Limoges
– sequence: 6
  givenname: Niki
  orcidid: 0000-0003-2125-0503
  surname: Christou
  fullname: Christou, Niki
  email: christou.niki19@gmail.com
  organization: University Hospital of Limoges
BookMark eNp9kc2KFDEQx4OsuB968A0avOihd_PZPfEgLIOjwoIH9RySmvRO1nQyprpd5uYj-Iw-iZmdRXBBc0lR9as_9a86JUcpJ0_Ic0bPWX0XYPGcSSX4I3LChNRtT2l3dBf3raaCH5NTxBtKRSe1fEKOBVeio4yfkK_q14-fqzjnkudiIcSmeAw42QS-GT1sbAo4YhNSAznm4mGysYF9ubxuViWPDUSLGKCmt3ba3NodNlNutrUUMKTrfQQe0eNT8niwEf2z-_-MfFm9_bx83159fPdheXnVgmKUt946q4QbQFG66GGtpXXDAqQQlHnlmHOOge4GNSgNjoNe97wXa9Yp2uvOKXFG3hx0t7Mb_Rp8moqNZlvCaMvOZBvM35UUNuY6fze97HS_6KrAy3uBkr_NHidTrYCP0SafZzRcMlmXKTmv6IsH6E1dZKr2KiV0R6sHVqlXBwpKRix--DMMo2Z_QlNPaO5OWNmLByyEyU4h72cN8X8dtyH63b-lzfLy06HjN3XCsQA
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_125794
crossref_primary_10_1039_D4SM01222D
crossref_primary_10_2147_OTT_S429128
crossref_primary_10_1007_s12668_025_01857_y
crossref_primary_10_1515_med_2022_0474
crossref_primary_10_1038_s41418_022_01007_x
crossref_primary_10_1016_j_prp_2024_155476
crossref_primary_10_3390_cancers14030695
crossref_primary_10_3389_fbioe_2021_755563
crossref_primary_10_1186_s43042_024_00625_z
crossref_primary_10_1007_s13577_022_00775_5
crossref_primary_10_2147_CCID_S426851
crossref_primary_10_1007_s12010_024_05072_5
crossref_primary_10_1016_j_bbcan_2025_189261
crossref_primary_10_1016_j_bbcan_2022_188699
crossref_primary_10_1007_s12032_023_02105_7
crossref_primary_10_1080_14728222_2023_2266572
crossref_primary_10_3390_ijms242316621
crossref_primary_10_3390_microorganisms10091692
crossref_primary_10_1021_acsbiomaterials_4c00445
crossref_primary_10_3390_cancers14051281
crossref_primary_10_3390_ijms25179463
crossref_primary_10_1016_j_biopha_2023_114373
crossref_primary_10_1038_s41598_024_71421_3
crossref_primary_10_1016_j_biopha_2022_113465
crossref_primary_10_3389_fonc_2022_913669
crossref_primary_10_1002_ptr_8095
crossref_primary_10_3389_fonc_2022_966089
crossref_primary_10_1002_2211_5463_13611
crossref_primary_10_3389_fonc_2022_949715
crossref_primary_10_3390_biom14040473
crossref_primary_10_1002_tox_23978
crossref_primary_10_1016_j_bcp_2023_115741
crossref_primary_10_3389_fbioe_2022_1013541
crossref_primary_10_2217_nnm_2024_0007
crossref_primary_10_1134_S2635167624600482
crossref_primary_10_1021_acsomega_1c06394
crossref_primary_10_2147_IJN_S439392
crossref_primary_10_1002_jcla_24825
crossref_primary_10_1038_s41388_021_02029_4
crossref_primary_10_7554_eLife_69182
crossref_primary_10_1016_j_jare_2024_07_022
crossref_primary_10_1016_j_drup_2024_101193
crossref_primary_10_1016_j_drudis_2025_104335
crossref_primary_10_1007_s10555_023_10126_x
crossref_primary_10_3390_ijms24065252
crossref_primary_10_4103_IRJCM_IRJCM_34_24
crossref_primary_10_1016_j_biopha_2022_113237
crossref_primary_10_1038_s41420_024_01929_0
crossref_primary_10_3390_biomedicines10061267
crossref_primary_10_1007_s10142_024_01322_1
crossref_primary_10_3390_md21020080
crossref_primary_10_1186_s10020_022_00516_2
crossref_primary_10_3390_pharmaceutics17040409
crossref_primary_10_1177_15353702221139203
crossref_primary_10_1080_15376516_2023_2294083
crossref_primary_10_1002_med4_9
crossref_primary_10_3390_cancers15194724
crossref_primary_10_1016_j_esmoop_2021_100125
crossref_primary_10_1049_mna2_70004
crossref_primary_10_1080_87559129_2024_2446366
crossref_primary_10_1016_j_jsps_2022_09_011
crossref_primary_10_3389_fonc_2022_855674
crossref_primary_10_3390_cimb45040191
crossref_primary_10_26508_lsa_202201413
crossref_primary_10_3390_ijms23020930
crossref_primary_10_1177_09636897251314645
crossref_primary_10_30621_jbachs_869310
crossref_primary_10_3390_ijms232416098
crossref_primary_10_1038_s41556_024_01473_0
crossref_primary_10_1016_j_bbrc_2024_150348
crossref_primary_10_3390_ijms23073544
crossref_primary_10_4062_biomolther_2022_017
crossref_primary_10_3389_fonc_2023_1087644
crossref_primary_10_1186_s12885_022_09666_2
crossref_primary_10_3390_biom15030326
crossref_primary_10_1016_j_heliyon_2024_e34362
crossref_primary_10_1016_j_molstruc_2022_133942
crossref_primary_10_1002_cpt_2833
crossref_primary_10_1016_j_biopha_2024_117176
crossref_primary_10_1016_j_clinsp_2025_100606
crossref_primary_10_1038_s41598_025_90532_z
crossref_primary_10_1089_adt_2024_007
crossref_primary_10_3389_fimmu_2023_1237764
crossref_primary_10_3390_molecules28010243
crossref_primary_10_3389_fimmu_2023_1200111
crossref_primary_10_3390_cancers15143541
crossref_primary_10_1016_j_jconrel_2024_03_036
crossref_primary_10_1016_j_jddst_2022_103663
crossref_primary_10_3390_cancers16142544
crossref_primary_10_1016_j_mrfmmm_2024_111874
crossref_primary_10_3390_molecules26071856
crossref_primary_10_1007_s12011_023_03803_z
crossref_primary_10_1096_fba_2022_00099
crossref_primary_10_1007_s11033_024_09431_7
crossref_primary_10_3389_frlct_2024_1289437
crossref_primary_10_3390_biomedicines11092530
crossref_primary_10_3390_genes13050815
crossref_primary_10_1016_j_bioelechem_2021_107844
crossref_primary_10_1177_11769351211065979
crossref_primary_10_3390_cimb46010010
crossref_primary_10_1080_15592294_2023_2298058
crossref_primary_10_1016_j_celrep_2024_115061
crossref_primary_10_3390_nu16244332
crossref_primary_10_1016_j_adcanc_2025_100136
crossref_primary_10_1007_s12012_024_09953_3
crossref_primary_10_1016_j_jep_2022_115933
crossref_primary_10_1099_jmm_0_001692
crossref_primary_10_1186_s12951_023_02126_4
crossref_primary_10_1007_s12672_024_01019_8
crossref_primary_10_1007_s12672_024_01510_2
crossref_primary_10_1007_s00005_021_00629_2
crossref_primary_10_1016_j_apsb_2024_07_018
crossref_primary_10_1021_acsami_3c02883
crossref_primary_10_1016_j_jsps_2021_12_009
crossref_primary_10_1186_s12967_022_03423_6
crossref_primary_10_1186_s12885_022_09853_1
crossref_primary_10_3390_life12040605
crossref_primary_10_1007_s13577_023_00938_y
crossref_primary_10_1620_tjem_2023_J042
crossref_primary_10_3390_cancers16172980
crossref_primary_10_3390_ijms22062916
crossref_primary_10_32604_biocell_2024_052625
crossref_primary_10_3390_ncrna7020024
crossref_primary_10_1016_j_biopha_2022_113426
crossref_primary_10_1007_s12032_023_02204_5
crossref_primary_10_1016_j_ijbiomac_2025_140204
crossref_primary_10_1007_s11033_022_07227_1
crossref_primary_10_1007_s10495_025_02084_2
crossref_primary_10_1088_1758_5090_acc279
crossref_primary_10_1016_j_sajb_2024_10_020
crossref_primary_10_1002_advs_202417022
crossref_primary_10_3389_fonc_2023_1213426
crossref_primary_10_1016_j_comptc_2025_115181
crossref_primary_10_1016_j_yexcr_2024_114269
crossref_primary_10_1158_2767_9764_CRC_22_0271
crossref_primary_10_1016_j_molliq_2024_125407
crossref_primary_10_1111_jcmm_70185
crossref_primary_10_3390_ijms232416179
crossref_primary_10_1007_s10528_025_11041_2
crossref_primary_10_1016_j_tice_2025_102771
crossref_primary_10_1038_s41419_024_06848_7
crossref_primary_10_1016_j_bbrc_2024_150665
crossref_primary_10_3892_or_2024_8720
crossref_primary_10_2174_1871520621666210708130703
crossref_primary_10_1007_s40199_024_00545_8
crossref_primary_10_3390_ijms25137470
crossref_primary_10_2174_1871520621666210412113944
crossref_primary_10_3390_jpm12060952
crossref_primary_10_1016_j_drup_2025_101211
crossref_primary_10_3389_fgene_2022_977902
crossref_primary_10_3389_fphar_2023_1252805
crossref_primary_10_3390_curroncol30070460
crossref_primary_10_4103_jcrt_jcrt_1299_22
crossref_primary_10_3389_fcell_2022_838332
crossref_primary_10_7759_cureus_66393
crossref_primary_10_3390_molecules28114353
crossref_primary_10_20517_cdr_2024_167
crossref_primary_10_3389_fonc_2021_771528
crossref_primary_10_3390_cancers15082268
crossref_primary_10_1186_s13008_023_00091_w
crossref_primary_10_1371_journal_pone_0270970
crossref_primary_10_3390_molecules26020506
crossref_primary_10_1016_j_foodchem_2023_136684
crossref_primary_10_3389_fonc_2021_768918
crossref_primary_10_1016_j_bbadis_2023_166922
crossref_primary_10_3389_fimmu_2022_724139
crossref_primary_10_3389_fphar_2022_964793
crossref_primary_10_1016_j_ijpharm_2024_124503
crossref_primary_10_3389_fonc_2022_1008027
crossref_primary_10_1186_s12935_024_03328_y
crossref_primary_10_1186_s12964_024_02016_8
crossref_primary_10_1038_s41419_024_06451_w
crossref_primary_10_1080_07357907_2021_1923727
crossref_primary_10_3390_pharmaceutics16070966
crossref_primary_10_3892_mco_2022_2505
crossref_primary_10_1016_j_lfs_2024_122870
crossref_primary_10_3390_cancers13205106
crossref_primary_10_3390_ijms24021364
crossref_primary_10_1016_j_phymed_2025_156599
crossref_primary_10_3389_fphar_2022_851401
crossref_primary_10_3390_cancers13122979
crossref_primary_10_3389_fonc_2021_748730
crossref_primary_10_1007_s00432_023_04670_w
crossref_primary_10_1080_15257770_2024_2332414
crossref_primary_10_1002_cjoc_202400061
crossref_primary_10_3390_ijms25158252
crossref_primary_10_1016_j_chmed_2023_01_004
crossref_primary_10_3748_wjg_v30_i13_1815
crossref_primary_10_1038_s41388_021_02148_y
crossref_primary_10_1186_s40170_022_00299_4
crossref_primary_10_1097_ot9_0000000000000018
crossref_primary_10_1002_adtp_202400221
crossref_primary_10_1016_S1470_2045_21_00343_0
crossref_primary_10_3390_pharmaceutics14102119
crossref_primary_10_1007_s11033_022_07680_y
crossref_primary_10_1002_ptr_8363
crossref_primary_10_1016_j_abb_2024_110176
crossref_primary_10_3892_or_2022_8289
crossref_primary_10_3390_cancers13020299
crossref_primary_10_1371_journal_pone_0254392
crossref_primary_10_3390_molecules29020550
crossref_primary_10_1016_j_heliyon_2023_e16798
crossref_primary_10_1016_j_ejphar_2025_177294
crossref_primary_10_3389_fonc_2022_1007509
crossref_primary_10_4251_wjgo_v14_i6_1115
crossref_primary_10_3390_cells13211776
crossref_primary_10_1155_2021_4759821
crossref_primary_10_3892_etm_2021_10585
crossref_primary_10_1016_S1875_5364_22_60174_2
crossref_primary_10_1038_s41420_023_01704_7
crossref_primary_10_3389_fphar_2025_1542204
crossref_primary_10_3390_cells13040325
crossref_primary_10_1186_s12935_023_03072_9
crossref_primary_10_1155_2021_6635874
crossref_primary_10_3390_pharmaceutics14102109
crossref_primary_10_3390_ijms24032983
crossref_primary_10_1016_j_phrs_2023_106924
crossref_primary_10_1007_s11094_023_02998_8
crossref_primary_10_1016_j_sjbs_2022_103392
crossref_primary_10_1016_j_biopha_2024_117576
crossref_primary_10_1016_j_prp_2023_154986
crossref_primary_10_1002_onco_13778
crossref_primary_10_1089_cmb_2024_0587
crossref_primary_10_1080_13102818_2023_2249560
crossref_primary_10_17816_PAVLOVJ112525
crossref_primary_10_1002_jbt_23297
crossref_primary_10_1016_j_arcmed_2024_102966
crossref_primary_10_3390_biomedicines11092361
crossref_primary_10_1016_j_eurpolymj_2021_110646
crossref_primary_10_1007_s11696_023_02927_9
crossref_primary_10_1016_j_foodchem_2024_138423
crossref_primary_10_1016_j_critrevonc_2023_104196
crossref_primary_10_1186_s10020_024_01032_1
crossref_primary_10_1016_j_ejphar_2024_176979
crossref_primary_10_18632_aging_204656
crossref_primary_10_3748_wjg_v29_i9_1395
crossref_primary_10_1007_s12032_023_02201_8
crossref_primary_10_1002_jhbp_12071
crossref_primary_10_3390_biomedicines9030241
crossref_primary_10_1097_CAD_0000000000001478
crossref_primary_10_3390_antiox13081012
crossref_primary_10_1016_j_bbrep_2025_101957
crossref_primary_10_3389_fonc_2022_847299
crossref_primary_10_1021_acs_molpharmaceut_2c00876
crossref_primary_10_12677_ACM_2023_134917
crossref_primary_10_52711_0974_360X_2024_00340
crossref_primary_10_3892_ol_2021_13043
crossref_primary_10_3390_cells12111475
crossref_primary_10_3390_cells13040342
crossref_primary_10_1111_jcmm_18261
crossref_primary_10_3389_fphar_2023_1287505
crossref_primary_10_1002_adhm_202303692
crossref_primary_10_3389_fphar_2022_909331
crossref_primary_10_1021_acsomega_2c03635
crossref_primary_10_1016_j_ajg_2024_09_003
crossref_primary_10_1016_j_critrevonc_2024_104360
crossref_primary_10_3390_ijms22105406
crossref_primary_10_3389_fphar_2022_1005915
crossref_primary_10_1007_s11426_023_1920_0
crossref_primary_10_1111_cas_15761
crossref_primary_10_1038_s41401_023_01136_0
crossref_primary_10_1002_cnr2_1709
crossref_primary_10_1016_j_jddst_2024_105730
crossref_primary_10_1089_ars_2023_0298
crossref_primary_10_1186_s12885_022_09417_3
crossref_primary_10_3389_fonc_2023_1208140
crossref_primary_10_1002_mabi_202300193
crossref_primary_10_1007_s12672_024_01036_7
crossref_primary_10_1016_j_heliyon_2024_e34535
crossref_primary_10_3390_cancers14122928
crossref_primary_10_3390_molecules27072089
crossref_primary_10_3390_cancers13174449
crossref_primary_10_1007_s11418_024_01849_4
crossref_primary_10_1016_j_carpta_2025_100775
crossref_primary_10_1038_s41419_024_06690_x
crossref_primary_10_1111_jcmm_70470
crossref_primary_10_2147_DDDT_S466470
crossref_primary_10_1016_j_heliyon_2024_e27207
crossref_primary_10_1021_acs_jafc_4c03761
crossref_primary_10_1208_s12249_024_02858_y
crossref_primary_10_3389_fcell_2023_1231416
crossref_primary_10_1007_s10495_024_02060_2
crossref_primary_10_1186_s12967_023_04036_3
crossref_primary_10_3390_ijms241311094
crossref_primary_10_3390_cancers15235623
crossref_primary_10_3390_ijms25031572
crossref_primary_10_1016_j_ejphar_2022_175253
crossref_primary_10_1016_j_foodchem_2024_141371
crossref_primary_10_3389_fonc_2022_1101823
crossref_primary_10_3390_biomedicines11010208
crossref_primary_10_1139_bcb_2023_0101
crossref_primary_10_3390_ijms22179286
crossref_primary_10_52420_2071_5943_2022_21_6_119_127
crossref_primary_10_3389_fonc_2021_637470
crossref_primary_10_1002_ange_202117075
crossref_primary_10_3390_antiox11112158
crossref_primary_10_3390_life11121371
crossref_primary_10_1016_j_jep_2024_117988
crossref_primary_10_1186_s12951_024_02467_8
crossref_primary_10_3390_medsci10040062
crossref_primary_10_3390_metabo12050410
crossref_primary_10_1007_s13105_022_00894_5
crossref_primary_10_3748_wjg_v27_i44_7582
crossref_primary_10_1016_j_bbrc_2024_150262
crossref_primary_10_1007_s11033_024_09562_x
crossref_primary_10_3892_or_2021_8169
crossref_primary_10_1021_acs_jmedchem_4c01077
crossref_primary_10_3390_bioengineering10050570
crossref_primary_10_1186_s13046_023_02901_z
crossref_primary_10_3748_wjg_v29_i13_1911
crossref_primary_10_2174_1389557523666230825144150
crossref_primary_10_1002_anie_202117075
crossref_primary_10_1093_narcan_zcab032
Cites_doi 10.1073/pnas.1202989109
10.1002/path.1706
10.1007/s00432-017-2382-x
10.1097/MD.0000000000002636
10.6004/jnccn.2018.0061
10.1016/j.biocel.2016.07.024
10.1158/1535-7163.MCT-04-0291
10.1016/j.yexcr.2017.09.023
10.1245/s10434-012-2246-1
10.3892/mmr.2016.5812
10.4143/crt.2017.356
10.18632/oncotarget.14351
10.1007/s101470300013
10.1158/0008-5472.CAN-12-4718
10.1038/tpj.2011.65
10.1007/BF03401856
10.1002/jcb.24721
10.1002/ijc.11176
10.1186/s12935-019-0812-3
10.2174/138920371604150429153309
10.1093/abbs/gmq125
10.1007/s12013-014-0062-x
10.1038/srep27157
10.3389/fphar.2017.00047
10.1074/jbc.275.10.7087
10.3389/fonc.2013.00090
10.1139/O07-009
10.1186/s13578-017-0145-7
10.1158/0008-5472.CAN-04-3300
10.3892/or.2015.4479
10.1016/j.cellimm.2012.06.014
10.3322/caac.21492
10.1073/pnas.0308716101
10.1038/nm730
10.1016/j.bbrc.2013.11.064
10.1016/j.freeradbiomed.2017.01.033
10.1158/1078-0432.CCR-03-0362
10.1158/0008-5472.CAN-07-0085
10.1016/j.molcel.2013.04.029
10.1111/jcmm.12742
10.18632/oncotarget.11121
10.1038/bjc.2015.101
10.1016/j.drup.2011.08.001
10.7150/jca.19142
10.1242/bio.015008
10.1055/s-0037-1602238
10.1016/j.canlet.2012.10.004
10.1038/onc.2011.321
10.3390/molecules13081551
10.3892/ol.2017.5895
10.18632/oncotarget.5541
10.1007/s13277-015-4755-6
10.1038/srep42226
10.1016/j.ejps.2005.10.010
10.1111/j.1742-4658.2009.07383.x
10.1093/jjco/hyh113
10.1038/bjc.2017.38
10.1080/1120009X.1990.11738999
10.1593/neo.04307
10.1038/cddis.2014.10
10.1016/j.phymed.2015.03.010
10.1016/j.ccr.2010.10.031
10.15252/emmm.201505492
10.1002/iub.1361
10.1016/j.bbamcr.2012.08.017
10.1084/jem.20131195
10.1007/s12032-015-0703-y
10.1074/jbc.M412105200
10.2174/157436206777012048
10.1038/cddis.2015.200
10.1016/j.freeradbiomed.2016.03.014
10.3892/mmr.2014.2726
10.1158/1078-0432.CCR-13-1854
10.1093/glycob/11.7.587
10.1186/s12935-017-0483-x
10.1371/journal.pone.0015366
10.1016/j.yexcr.2015.09.011
10.1038/onc.2012.268
10.4161/cc.26034
10.1016/S0002-9440(10)62570-9
10.18632/oncotarget.7895
10.1016/j.canlet.2016.08.004
10.1101/gad.276568.115
10.1016/j.bbaexp.2006.05.001
10.18632/oncotarget.24338
10.3892/ijo.2014.2696
10.1038/tpj.2016.91
10.1158/1535-7163.MCT-10-0061
10.1158/1535-7163.MCT-13-0878
10.1155/2016/5874127
10.1002/ijc.24403
10.1016/0006-2952(95)00067-A
10.1016/j.canlet.2014.10.029
10.1056/NEJMoa1500596
10.3892/ol.2015.3468
10.1158/1535-7163.MCT-08-0716
10.1158/0008-5472.CAN-08-1569
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
DBID 24P
AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1111/cas.14532
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
DocumentTitleAlternate BLONDY et al
EISSN 1349-7006
EndPage 3154
ExternalDocumentID PMC7469786
10_1111_cas_14532
CAS14532
Genre reviewArticle
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29B
2WC
31~
36B
3O-
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABEML
ACCFJ
ACCMX
ACSCC
ACXQS
ADBBV
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFEBI
AFFNX
AFKRA
AFPKN
AFZJQ
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
DU5
E3Z
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
HCIFZ
HF~
HOLLA
HYE
HZI
HZ~
IAO
IHR
IPNFZ
ITC
IX1
J0M
K.9
K48
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
MK4
N04
N05
N9A
O9-
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
PROAC
Q11
ROL
RPM
RX1
SJN
SUPJJ
SV3
TEORI
UB1
W8V
WIN
WOW
WQJ
WRC
WXI
X7M
XG1
ZXP
~IA
~WT
7X7
88E
8FI
8FJ
AAFWJ
AAYXX
ABUWG
CITATION
FYUFA
HMCUK
M1P
PHGZM
PHGZT
PSQYO
UKHRP
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c5102-eaba53bfc50087cd94abf8c43301e5b1bbb1c96f5f59cb2c9d7273d1650796b53
IEDL.DBID 7X7
ISSN 1347-9032
1349-7006
IngestDate Thu Aug 21 18:26:50 EDT 2025
Thu Jul 10 19:28:16 EDT 2025
Wed Aug 13 08:40:31 EDT 2025
Thu Apr 24 22:59:14 EDT 2025
Tue Jul 01 01:31:09 EDT 2025
Wed Jan 22 16:34:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution-NonCommercial-NoDerivs
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5102-eaba53bfc50087cd94abf8c43301e5b1bbb1c96f5f59cb2c9d7273d1650796b53
Notes Aurélie Perraud and Niki Christou equally contributed to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2125-0503
0000-0001-7882-0613
0000-0002-2260-6690
0000-0002-8162-4856
0000-0002-9127-3068
OpenAccessLink https://www.proquest.com/docview/2439600081?pq-origsite=%requestingapplication%
PMID 32536012
PQID 2439600081
PQPubID 4378882
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469786
proquest_miscellaneous_2414003422
proquest_journals_2439600081
crossref_primary_10_1111_cas_14532
crossref_citationtrail_10_1111_cas_14532
wiley_primary_10_1111_cas_14532_CAS14532
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
– name: Hoboken
PublicationTitle Cancer science
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2013; 3
2019; 19
2016; 30
2004; 6
2005; 65
2012; 19
2016; 2016
2016; 37
2016; 35
2014; 20
2016; 381
2015; 372
2010; 23
2018; 9
1998; 18
2006; 27
2013; 50
2004; 34
2008; 28
2014; 13
2018; 31
2007; 67
2009; 125
2010; 9
2002; 8
2016; 95
2014; 46
2011; 6
2016; 14
2012; 31
2012; 109
1990; 2
2017; 50
2015; 67
2016; 5
2018; 18
2016; 6
2016; 7
2003; 106
1995; 49
2015; 356
2002; 62
2013; 73
2015; 112
2005; 4
2013; 210
2016; 20
2017; 143
2007; 85
1998; 4
2018; 16
2016; 8
2017; 7
2017; 8
2014; 70
2010; 57
2013; 328
2015; 32
2009; 276
2011; 14
2011; 19
2017; 116
2016; 78
2014; 5
2013; 13
2013; 12
2003; 8
2006; 1759
2001; 19
2008; 68
2017; 360
2015; 338
2001; 11
2014; 443
2004; 101
2015; 6
2015; 16
2012; 1823
2015; 11
2015; 10
2008; 13
2000; 275
2006; 1
2015; 7
2014; 115
2018; 68
2004; 10
2005; 280
2002; 160
2012; 278
2001; 7
2013; 32
2017; 17
2015; 22
2017; 13
2005; 205
2019
2009; 8
2011; 43
2017; 104
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
Guo X (e_1_2_9_40_1) 2008; 28
e_1_2_9_94_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
Shibata J (e_1_2_9_7_1) 1998; 18
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
Zhou J (e_1_2_9_78_1) 2010; 23
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
Zheng Z (e_1_2_9_18_1) 2010; 57
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
Cuezva JM (e_1_2_9_36_1) 2002; 62
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
Marsh S (e_1_2_9_10_1) 2001; 19
e_1_2_9_100_1
e_1_2_9_17_1
e_1_2_9_59_1
Lenz HJ (e_1_2_9_104_1) 1998; 4
e_1_2_9_63_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
Chen J (e_1_2_9_16_1) 2019
e_1_2_9_29_1
References_xml – volume: 112
  start-page: 1501
  issue: 9
  year: 2015
  end-page: 1509
  article-title: IFN‐γ from lymphocytes induces PD‐L1 expression and promotes progression of ovarian cancer
  publication-title: Br J Cancer
– volume: 13
  start-page: 742
  issue: 3
  year: 2014
  end-page: 751
  article-title: microRNAs miR‐27a and miR‐27b directly regulate liver dihydropyrimidine dehydrogenase expression through two conserved binding sites
  publication-title: Mol Cancer Ther
– volume: 32
  start-page: 258
  issue: 12
  year: 2015
  article-title: The role of interleukin‐8 (CXCL8) and CXCR2 in acquired chemoresistance of human colorectal carcinoma cells HCT116
  publication-title: Med Oncol
– volume: 37
  start-page: 8811
  issue: 7
  year: 2016
  end-page: 8824
  article-title: Upregulation of CD44v6 contributes to acquired chemoresistance via the modulation of autophagy in colon cancer SW480 cells
  publication-title: Tumor Biol
– volume: 14
  start-page: 4893
  issue: 5
  year: 2016
  end-page: 4900
  article-title: Gap junction composed of connexin43 modulates 5‐fluorouracil, oxaliplatin and irinotecan resistance on colorectal cancers
  publication-title: Molecular Medicine Reports
– volume: 7
  year: 2017
  article-title: CXCL12/CXCR4 axis induced miR‐125b promotes invasion and confers 5‐fluorouracil resistance through enhancing autophagy in colorectal cancer
  publication-title: Sci Rep
– volume: 8
  start-page: 1037
  issue: 5
  year: 2009
  end-page: 1044
  article-title: Decreased levels of UMP kinase as a mechanism of fluoropyrimidine resistance
  publication-title: Mol Cancer Ther
– volume: 18
  start-page: 23
  issue: 1
  year: 2018
  end-page: 28
  article-title: Epigenomics alternations and dynamic transcriptional changes in responses to 5‐fluorouracil stimulation reveal mechanisms of acquired drug resistance of colorectal cancer cells
  publication-title: Pharmacogenomics J
– volume: 10
  start-page: 2158
  issue: 6
  year: 2004
  end-page: 2167
  article-title: Characterization of p53 Wild‐type and null isogenic colorectal cancer cell lines resistant to 5‐fluorouracil, oxaliplatin, and irinotecan
  publication-title: Clin Cancer Res
– volume: 115
  start-page: 772
  issue: 4
  year: 2014
  end-page: 784
  article-title: MicroRNA‐23a antisense enhances 5‐fluorouracil chemosensitivity through APAF‐1/caspase‐9 apoptotic pathway in colorectal cancer cells
  publication-title: J Cell Biochem
– volume: 278
  start-page: 21
  issue: 1–2
  year: 2012
  end-page: 26
  article-title: Anti‐tumor immunity: Myeloid leukocytes control the immune landscape
  publication-title: Cell Immunol
– volume: 7
  start-page: 17
  issue: 1
  year: 2017
  article-title: The role of GLI1 for 5‐Fu resistance in colorectal cancer
  publication-title: Cell Biosci
– volume: 360
  start-page: 328
  issue: 2
  year: 2017
  end-page: 336
  article-title: miR‐338‐3p confers 5‐fluorouracil resistance in p53 mutant colon cancer cells by targeting the mammalian target of rapamycin
  publication-title: Exp Cell Res
– volume: 3
  start-page: 90
  year: 2013
  article-title: The tumor microenvironment: a pitch for multiple players
  publication-title: Front Oncol
– volume: 73
  start-page: 5926
  issue: 19
  year: 2013
  end-page: 5935
  article-title: FGFR4 promotes stroma‐induced epithelial‐to‐mesenchymal transition in colorectal cancer
  publication-title: Cancer Res
– volume: 20
  start-page: 360
  issue: 2
  year: 2016
  end-page: 369
  article-title: MicroRNA‐425‐5p regulates chemoresistance in colorectal cancer cells via regulation of Programmed Cell Death 10
  publication-title: J Cell Mol Med
– volume: 6
  year: 2015
  article-title: MicroRNA‐587 antagonizes 5‐FU‐induced apoptosis and confers drug resistance by regulating PPP2R1B expression in colorectal cancer
  publication-title: Cell Death Dis
– volume: 6
  issue: 1
  year: 2011
  article-title: The inflammatory microenvironment in colorectal neoplasia
  publication-title: PLoS One
– volume: 116
  start-page: 930
  year: 2017
  end-page: 936
  article-title: Oncogenic role of PDK4 in human colon cancer cells
  publication-title: Br J Cancer
– volume: 50
  start-page: 552
  issue: 4
  year: 2013
  end-page: 564
  article-title: Coordinate transcriptional and translational repression of p53 by TGFβ1 impairs the stress response
  publication-title: Mol Cell
– volume: 9
  start-page: 2265
  issue: 8
  year: 2010
  end-page: 2275
  article-title: miR‐192/miR‐215 influence 5‐fluorouracil resistance through cell cycle‐mediated mechanisms complementary to its post‐transcriptional thymidilate synthase regulation
  publication-title: Mol Cancer Ther
– volume: 49
  start-page: 1419
  issue: 10
  year: 1995
  end-page: 1426
  article-title: Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5‐fluorouracil
  publication-title: Biochem Pharmacol
– volume: 22
  start-page: 536
  issue: 5
  year: 2015
  end-page: 544
  article-title: Sensitivity of apoptosis‐resistant colon cancer cells to tanshinones is mediated by autophagic cell death and p53‐independent cytotoxicity
  publication-title: Phytomedicine
– volume: 13
  start-page: 3387
  issue: 5
  year: 2017
  end-page: 3394
  article-title: MicroRNA‐330 inhibited cell proliferation and enhanced chemosensitivity to 5‐fluorouracil in colorectal cancer by directly targeting thymidylate synthase
  publication-title: Oncol Lett
– volume: 7
  start-page: 59766
  issue: 37
  year: 2016
  end-page: 59780
  article-title: Carcinoma‐associated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells
  publication-title: Oncotarget
– volume: 12
  start-page: 2960
  issue: 18
  year: 2013
  end-page: 2968
  article-title: TGF‐β
  publication-title: Cell Cycle
– volume: 8
  start-page: 2802
  issue: 14
  year: 2017
  end-page: 2808
  article-title: HES1 promotes colorectal cancer cell resistance To 5‐Fu by inducing Of EMT and ABC transporter proteins
  publication-title: J Cancer
– volume: 19
  start-page: 97
  issue: 1
  year: 2019
  article-title: Large tumor suppressor kinase 2 overexpression attenuates 5‐FU‐resistance in colorectal cancer via activating the JNK‐MIEF1‐mitochondrial division pathway
  publication-title: Cancer Cell Int
– volume: 19
  start-page: 383
  issue: 2
  year: 2001
  end-page: 386
  article-title: Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer
  publication-title: Int J Oncol
– volume: 68
  start-page: 10094
  issue: 24
  year: 2008
  end-page: 10104
  article-title: p53‐Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest
  publication-title: Cancer Res
– volume: 8
  start-page: 793
  issue: 8
  year: 2002
  end-page: 800
  article-title: Tumor‐associated B7–H1 promotes T‐cell apoptosis: A potential mechanism of immune evasion
  publication-title: Nat Med
– volume: 78
  start-page: 268
  year: 2016
  end-page: 278
  article-title: Suppression of TWIST1 enhances the sensitivity of colon cancer cells to 5‐fluorouracil
  publication-title: Int J Biochem Cell Biol
– volume: 143
  start-page: 1177
  issue: 7
  year: 2017
  end-page: 1190
  article-title: The extracellular domain of E cadherin linked to invasiveness in colorectal cancer: a new resistance and relapses monitoring serum‐bio marker?
  publication-title: J Cancer Res Clin Oncol
– volume: 27
  start-page: 392
  issue: 5
  year: 2006
  end-page: 400
  article-title: The power of the pump: Mechanisms of action of P‐glycoprotein (ABCB1)
  publication-title: Eur J Pharm Sci
– volume: 2
  start-page: 12
  issue: Suppl 1
  year: 1990
  end-page: 16
  article-title: Resistance to 5‐fluorouracil and 5‐fluoro‐2’‐deoxyuridine mechanisms and clinical implications
  publication-title: J Chemother
– volume: 67
  start-page: 191
  issue: 3
  year: 2015
  end-page: 201
  article-title: MicroRNA‐494 sensitizes colon cancer cells to fluorouracil through regulation of DPYD
  publication-title: IUBMB Life
– volume: 275
  start-page: 7087
  issue: 10
  year: 2000
  end-page: 7094
  article-title: Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl‐xL in osteosarcoma cells
  publication-title: J Biol Chem
– volume: 7
  start-page: 509
  issue: 8
  year: 2001
  end-page: 516
  article-title: MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer
  publication-title: Mol Med
– volume: 7
  start-page: 22077
  issue: 16
  year: 2016
  end-page: 22091
  article-title: The TGF‐β pathway is activated by 5‐fluorouracil treatment in drug resistant colorectal carcinoma cells
  publication-title: Oncotarget
– volume: 2016
  start-page: 5874127
  year: 2016
  article-title: CCL21 facilitates chemoresistance and cancer stem cell‐like properties of colorectal cancer cells through AKT/GSK‐3β/Snail signals
  publication-title: Oxid Med Cell Longev
– volume: 62
  start-page: 6674
  issue: 22
  year: 2002
  end-page: 6681
  article-title: The bioenergetic signature of cancer: a marker of tumor progression
  publication-title: Cancer Res
– volume: 109
  start-page: 16282
  issue: 40
  year: 2012
  end-page: 16287
  article-title: Transient receptor potential channel TRPC5 is essential for P‐glycoprotein induction in drug‐resistant cancer cells
  publication-title: Proc Natl Acad Sci USA
– volume: 160
  start-page: 1445
  issue: 4
  year: 2002
  end-page: 1455
  article-title: Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal‐associated lymphoid tissue in chronic inflammatory liver disease
  publication-title: Am J Pathol
– volume: 11
  start-page: 577
  issue: 1
  year: 2015
  end-page: 582
  article-title: Inhibition of lactate dehydrogenase A by microRNA‐34a resensitizes colon cancer cells to 5‐fluorouracil
  publication-title: Mol Med Rep
– volume: 95
  issue: 6
  year: 2016
  article-title: High infiltration of tumor‐associated macrophages influences poor prognosis in human gastric cancer patients, associates with the phenomenon of EMT
  publication-title: Medicine
– volume: 4
  start-page: 1243
  issue: 5
  year: 1998
  end-page: 1250
  article-title: p53 point mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival
  publication-title: Clin Cancer Res
– volume: 46
  start-page: 37
  issue: 1
  year: 2014
  end-page: 46
  article-title: Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‐fluorouracil on the HT‐29 colon cancer cell line
  publication-title: Int J Oncol
– volume: 125
  start-page: 463
  issue: 2
  year: 2009
  end-page: 473
  article-title: Histone deacetylase inhibitors suppress thymidylate synthase gene expression and synergize with the fluoropyrimidines in colon cancer cells
  publication-title: Int J Cancer
– volume: 210
  start-page: 2851
  issue: 13
  year: 2013
  end-page: 2872
  article-title: Chemotherapy activates cancer‐associated fibroblasts to maintain colorectal cancer‐initiating cells by IL‐17A
  publication-title: J Exp Med
– volume: 5
  start-page: 563
  issue: 5
  year: 2016
  end-page: 570
  article-title: MicroRNA‐204 modulates colorectal cancer cell sensitivity in response to 5‐fluorouracil‐based treatment by targeting high mobility group protein A2
  publication-title: Biol Open
– volume: 372
  start-page: 2509
  issue: 26
  year: 2015
  end-page: 2520
  article-title: PD‐1 blockade in tumors with mismatch‐repair deficiency
  publication-title: N Engl J Med
– volume: 65
  start-page: 3162
  issue: 8
  year: 2005
  end-page: 3170
  article-title: Down‐regulation of mitochondrial F1F0‐ATP synthase in human colon cancer cells with induced 5‐fluorouracil resistance
  publication-title: Cancer Res
– volume: 5
  issue: 2
  year: 2014
  article-title: Fibroblast growth factor receptor 4 (FGFR4): a targetable regulator of drug resistance in colorectal cancer
  publication-title: Cell Death Dis
– volume: 30
  start-page: 733
  issue: 7
  year: 2016
  end-page: 750
  article-title: Role of TET enzymes in DNA methylation, development, and cancer
  publication-title: Genes Dev
– volume: 8
  start-page: 47
  year: 2017
  article-title: Identification of predictive DNA methylation biomarkers for chemotherapy response in colorectal cancer
  publication-title: Front Pharmacol
– volume: 11
  start-page: 587
  issue: 7
  year: 2001
  end-page: 592
  article-title: Cell surface‐expressed Thomsen‐Friedenreich antigen in colon cancer is predominantly carried on high molecular weight splice variants of CD44
  publication-title: Glycobiology
– volume: 6
  start-page: 36441
  issue: 34
  year: 2015
  end-page: 36455
  article-title: Metformin prevents cancer metastasis by inhibiting M2‐like polarization of tumor associated macrophages
  publication-title: Oncotarget
– volume: 14
  start-page: 280
  issue: 6
  year: 2011
  end-page: 296
  article-title: Epigenetics and chemoresistance in colorectal cancer: an opportunity for treatment tailoring and novel therapeutic strategies
  publication-title: Drug Resist Updat
– volume: 6
  start-page: 813
  issue: 6
  year: 2004
  end-page: 820
  article-title: STRAP is a strong predictive marker of adjuvant chemotherapy benefit in colorectal cancer
  publication-title: Neoplasia
– volume: 1
  start-page: 227
  issue: 2
  year: 2006
  end-page: 237
  article-title: Integrin‐mediated drug resistance
  publication-title: Curr Signal Transduct Ther
– volume: 70
  start-page: 1343
  issue: 2
  year: 2014
  end-page: 1350
  article-title: Overexpression of microRNA‐122 re‐sensitizes 5‐FU‐resistant colon cancer cells to 5‐FU through the inhibition of PKM2 in vitro and in vivo
  publication-title: Cell Biochem Biophys
– volume: 19
  start-page: 3065
  issue: 9
  year: 2012
  end-page: 3071
  article-title: MicroRNA‐10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5‐fluorouracil in colorectal cancer cells
  publication-title: Ann Surg Oncol
– volume: 328
  start-page: 325
  issue: 2
  year: 2013
  end-page: 334
  article-title: The β6‐integrin‐ERK/MAP kinase pathway contributes to chemo resistance in colon cancer
  publication-title: Cancer Lett
– volume: 23
  start-page: 121
  issue: 1
  year: 2010
  end-page: 128
  article-title: 5‐Fluorouracil and oxaliplatin modify the expression profiles of microRNAs in human colon cancer cells in vitro
  publication-title: Oncol Rep
– volume: 1823
  start-page: 2168
  issue: 12
  year: 2012
  end-page: 2178
  article-title: The emerging multiple roles of nuclear Akt
  publication-title: Biochim Biophys Acta
– volume: 16
  start-page: 301
  issue: 4
  year: 2015
  end-page: 309
  article-title: Elevated microRNA‐23a expression enhances the chemoresistance of colorectal cancer cells with microsatellite instability to 5‐fluorouracil by directly targeting ABCF1
  publication-title: Curr Protein Pept Sci
– volume: 43
  start-page: 217
  issue: 3
  year: 2011
  end-page: 225
  article-title: miR‐20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines
  publication-title: Acta Biochim Biophys Sin
– volume: 10
  start-page: 1287
  issue: 3
  year: 2015
  end-page: 1292
  article-title: Promoter demethylation of nuclear factor‐erythroid 2‐related factor 2 gene in drug‐resistant colon cancer cells
  publication-title: Oncol Lett
– volume: 356
  start-page: 781
  issue: 2
  year: 2015
  end-page: 790
  article-title: MiR‐22 regulates 5‐FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells
  publication-title: Cancer Lett
– volume: 280
  start-page: 5516
  issue: 7
  year: 2005
  end-page: 5526
  article-title: DNA mismatch repair‐dependent response to fluoropyrimidine‐generated damage
  publication-title: J Biol Chem
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  end-page: 424
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
– volume: 8
  start-page: 72
  issue: 2
  year: 2003
  end-page: 78
  article-title: Relationships between the expression of thymidylate synthase, dihydropyrimidine dehydrogenase, and orotate phosphoribosyltransferase and cell proliferative activity and 5‐fluorouracil sensitivity in colorectal carcinoma
  publication-title: Int J Clin Oncol
– volume: 106
  start-page: 66
  issue: 1
  year: 2003
  end-page: 73
  article-title: Role of hMLH1 promoter hypermethylation in drug resistance to 5‐fluorouracil in colorectal cancer cell lines
  publication-title: Int J Cancer
– volume: 13
  start-page: 1551
  issue: 8
  year: 2008
  end-page: 1569
  article-title: 5‐Fluorouracil: mechanisms of resistance and reversal strategies
  publication-title: Molecules
– volume: 31
  start-page: 179
  issue: 3
  year: 2018
  end-page: 191
  article-title: Emerging systemic therapies for colorectal cancer
  publication-title: Clin Colon Rectal Surg
– volume: 17
  start-page: 111
  issue: 1
  year: 2017
  article-title: RAC3 influences the chemoresistance of colon cancer cells through autophagy and apoptosis inhibition
  publication-title: Cancer Cell Int
– volume: 9
  start-page: 11559
  issue: 14
  year: 2018
  end-page: 11571
  article-title: 5‐FU therapeutic drug monitoring as a valuable option to reduce toxicity in patients with gastrointestinal cancer
  publication-title: Oncotarget
– volume: 85
  start-page: 337
  issue: 3
  year: 2007
  end-page: 346
  article-title: Suppression of DPYD expression in RKO cells via DNA methylation in the regulatory region of the DPYD promoter: a potentially important epigenetic mechanism regulating DPYD expression
  publication-title: Biochem Cell Biol
– volume: 28
  start-page: 9
  issue: 1A
  year: 2008
  end-page: 14
  article-title: Cell cycle perturbation and acquired 5‐fluorouracil chemoresistance
  publication-title: Anticancer Res
– volume: 443
  start-page: 789
  issue: 3
  year: 2014
  end-page: 795
  article-title: Targeting miR‐21 enhances the sensitivity of human colon cancer HT‐29 cells to chemoradiotherapy in vitro
  publication-title: Biochem Biophys Res Comm
– volume: 338
  start-page: 222
  issue: 2
  year: 2015
  end-page: 231
  article-title: Exploiting a novel miR‐519c‐HuR‐ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer
  publication-title: Exp Cell Res
– volume: 4
  start-page: 855
  issue: 5
  year: 2005
  end-page: 863
  article-title: The multidrug resistance protein 5 (ABCC5) confers resistance to 5‐fluorouracil and transports its monophosphorylated metabolites
  publication-title: Mol Cancer Ther
– start-page: 680892
  year: 2019
  article-title: Loss of SHMT2 mediates 5‐FU chemoresistance by inducing autophagy in colorectal cancer
  publication-title: bioRxiv
– volume: 19
  start-page: 58
  issue: 1
  year: 2011
  end-page: 71
  article-title: AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity
  publication-title: Cancer Cell
– volume: 16
  start-page: 874
  issue: 7
  year: 2018
  end-page: 901
  article-title: Version 2.2018, NCCN clinical practice guidelines in oncology
  publication-title: J Natl Compr Canc Netw
– volume: 7
  year: 2015
  article-title: PHD1 regulates p53‐mediated colorectal cancer chemoresistance
  publication-title: EMBO Mol Med
– volume: 101
  start-page: 3089
  issue: 9
  year: 2004
  end-page: 3094
  article-title: Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5‐fluorouracil in metastatic colorectal cancer patients
  publication-title: Proc Natl Acad Sci USA
– volume: 67
  start-page: 6612
  issue: 14
  year: 2007
  end-page: 6618
  article-title: SIRT1 is significantly elevated in mouse and human prostate cancer
  publication-title: Cancer Res
– volume: 31
  start-page: 1073
  issue: 9
  year: 2012
  end-page: 1085
  article-title: P38MAPK is a major determinant of the balance between apoptosis and autophagy triggered by 5‐fluorouracil: implication in resistance
  publication-title: Oncogene
– volume: 1759
  start-page: 247
  issue: 5
  year: 2006
  end-page: 256
  article-title: Diasio RB. The role of Sp1 and Sp3 in the constitutive DPYD gene expression. Biochimica et Biophysica
  publication-title: Biochim Biophys Acta
– volume: 35
  start-page: 1807
  issue: 3
  year: 2016
  end-page: 1815
  article-title: Smad4 sensitizes colorectal cancer to 5‐fluorouracil through cell cycle arrest by inhibiting the PI3K/Akt/CDC2/survivin cascade
  publication-title: Oncol Rep
– volume: 104
  start-page: 280
  year: 2017
  end-page: 297
  article-title: CQ synergistically sensitizes human colorectal cancer cells to SN‐38/CPT‐11 through lysosomal and mitochondrial apoptotic pathway via p53‐ROS cross‐talk
  publication-title: Free Radic Biol Med
– volume: 18
  start-page: 1457
  issue: 3A
  year: 1998
  end-page: 1463
  article-title: Detection and quantitation of thymidylate synthase mRNA in human colon adenocarcinoma cell line resistant to 5‐fluorouracil by competitive PCR
  publication-title: Anticancer Res
– volume: 381
  start-page: 305
  issue: 2
  year: 2016
  end-page: 313
  article-title: Macrophages induce resistance to 5‐fluorouracil chemotherapy in colorectal cancer through the release of putrescine
  publication-title: Cancer Lett
– volume: 6
  year: 2016
  article-title: miR‐139‐5p inhibits the epithelial‐mesenchymal transition and enhances the chemotherapeutic sensitivity of colorectal cancer cells by downregulating BCL2
  publication-title: Sci Rep
– volume: 20
  start-page: 837
  issue: 4
  year: 2014
  end-page: 846
  article-title: Colon cancer cells escape 5FU chemotherapy‐induced cell death by entering stemness and quiescence associated with the c‐Yes/YAP axis
  publication-title: Clin Cancer Res
– volume: 13
  start-page: 148
  issue: 2
  year: 2013
  end-page: 158
  article-title: Novel mRNA isoforms and mutations of uridine monophosphate synthetase and 5‐fluorouracil resistance in colorectal cancer
  publication-title: Pharmacogenomics J
– volume: 57
  start-page: 1106
  issue: 102–103
  year: 2010
  end-page: 1112
  article-title: Involvement of RhoGDI2 in the resistance of colon cancer cells to 5‐fluorouracil
  publication-title: Hepatogastroenterology
– volume: 276
  start-page: 6689
  issue: 22
  year: 2009
  end-page: 6700
  article-title: MicroRNA‐143 reduces viability and increases sensitivity to 5‐fluorouracil in HCT116 human colorectal cancer cells
  publication-title: FEBS J
– volume: 34
  start-page: 594
  issue: 10
  year: 2004
  end-page: 601
  article-title: Immunohistochemical evaluation of thymidylate synthase (TS) and p16INK4a in advanced colorectal cancer: implication of TS expression in 5‐FU‐based adjuvant chemotherapy
  publication-title: Jpn J Clin Oncol
– volume: 50
  start-page: 894
  issue: 3
  year: 2017
  end-page: 907
  article-title: Participation of CCL1 in snail‐positive fibroblasts in colorectal cancer contribute to 5‐Fluorouracil/Paclitaxel chemoresistance
  publication-title: Can Res Treat
– volume: 95
  start-page: 121
  year: 2016
  end-page: 132
  article-title: Cytoplasmic localization of Nrf2 promotes colorectal cancer with more aggressive tumors via upregulation of PSMD4
  publication-title: Free Radic Biol Med
– volume: 8
  start-page: 8574
  issue: 5
  year: 2016
  end-page: 8589
  article-title: FOXM1 evokes 5‐fluorouracil resistance in colorectal cancer depending on ABCC10
  publication-title: Oncotarget
– volume: 32
  start-page: 2649
  issue: 21
  year: 2013
  end-page: 2660
  article-title: Cell fusion promotes chemoresistance in metastatic colon carcinoma
  publication-title: Oncogene
– volume: 205
  start-page: 275
  issue: 2
  year: 2005
  end-page: 292
  article-title: Molecular mechanisms of drug resistance
  publication-title: J Pathol
– ident: e_1_2_9_46_1
  doi: 10.1073/pnas.1202989109
– ident: e_1_2_9_6_1
  doi: 10.1002/path.1706
– ident: e_1_2_9_28_1
  doi: 10.1007/s00432-017-2382-x
– ident: e_1_2_9_52_1
  doi: 10.1097/MD.0000000000002636
– ident: e_1_2_9_3_1
  doi: 10.6004/jnccn.2018.0061
– ident: e_1_2_9_24_1
  doi: 10.1016/j.biocel.2016.07.024
– ident: e_1_2_9_44_1
  doi: 10.1158/1535-7163.MCT-04-0291
– ident: e_1_2_9_100_1
  doi: 10.1016/j.yexcr.2017.09.023
– ident: e_1_2_9_85_1
  doi: 10.1245/s10434-012-2246-1
– ident: e_1_2_9_27_1
  doi: 10.3892/mmr.2016.5812
– ident: e_1_2_9_59_1
  doi: 10.4143/crt.2017.356
– ident: e_1_2_9_45_1
  doi: 10.18632/oncotarget.14351
– volume: 57
  start-page: 1106
  issue: 102
  year: 2010
  ident: e_1_2_9_18_1
  article-title: Involvement of RhoGDI2 in the resistance of colon cancer cells to 5‐fluorouracil
  publication-title: Hepatogastroenterology
– ident: e_1_2_9_13_1
  doi: 10.1007/s101470300013
– start-page: 680892
  year: 2019
  ident: e_1_2_9_16_1
  article-title: Loss of SHMT2 mediates 5‐FU chemoresistance by inducing autophagy in colorectal cancer
  publication-title: bioRxiv
– ident: e_1_2_9_54_1
  doi: 10.1158/0008-5472.CAN-12-4718
– ident: e_1_2_9_15_1
  doi: 10.1038/tpj.2011.65
– ident: e_1_2_9_43_1
  doi: 10.1007/BF03401856
– ident: e_1_2_9_84_1
  doi: 10.1002/jcb.24721
– ident: e_1_2_9_69_1
  doi: 10.1002/ijc.11176
– ident: e_1_2_9_39_1
  doi: 10.1186/s12935-019-0812-3
– ident: e_1_2_9_88_1
  doi: 10.2174/138920371604150429153309
– ident: e_1_2_9_94_1
  doi: 10.1093/abbs/gmq125
– ident: e_1_2_9_96_1
  doi: 10.1007/s12013-014-0062-x
– ident: e_1_2_9_103_1
  doi: 10.1038/srep27157
– ident: e_1_2_9_72_1
  doi: 10.3389/fphar.2017.00047
– ident: e_1_2_9_37_1
  doi: 10.1074/jbc.275.10.7087
– ident: e_1_2_9_47_1
  doi: 10.3389/fonc.2013.00090
– volume: 28
  start-page: 9
  issue: 1
  year: 2008
  ident: e_1_2_9_40_1
  article-title: Cell cycle perturbation and acquired 5‐fluorouracil chemoresistance
  publication-title: Anticancer Res
– ident: e_1_2_9_71_1
  doi: 10.1139/O07-009
– ident: e_1_2_9_32_1
  doi: 10.1186/s13578-017-0145-7
– ident: e_1_2_9_38_1
  doi: 10.1158/0008-5472.CAN-04-3300
– ident: e_1_2_9_42_1
  doi: 10.3892/or.2015.4479
– ident: e_1_2_9_48_1
  doi: 10.1016/j.cellimm.2012.06.014
– ident: e_1_2_9_2_1
  doi: 10.3322/caac.21492
– ident: e_1_2_9_12_1
  doi: 10.1073/pnas.0308716101
– ident: e_1_2_9_65_1
  doi: 10.1038/nm730
– ident: e_1_2_9_81_1
  doi: 10.1016/j.bbrc.2013.11.064
– ident: e_1_2_9_95_1
  doi: 10.1016/j.freeradbiomed.2017.01.033
– ident: e_1_2_9_17_1
  doi: 10.1158/1078-0432.CCR-03-0362
– ident: e_1_2_9_97_1
  doi: 10.1158/0008-5472.CAN-07-0085
– ident: e_1_2_9_64_1
  doi: 10.1016/j.molcel.2013.04.029
– ident: e_1_2_9_86_1
  doi: 10.1111/jcmm.12742
– ident: e_1_2_9_57_1
  doi: 10.18632/oncotarget.11121
– ident: e_1_2_9_66_1
  doi: 10.1038/bjc.2015.101
– ident: e_1_2_9_75_1
  doi: 10.1016/j.drup.2011.08.001
– ident: e_1_2_9_29_1
  doi: 10.7150/jca.19142
– ident: e_1_2_9_102_1
  doi: 10.1242/bio.015008
– ident: e_1_2_9_5_1
  doi: 10.1055/s-0037-1602238
– ident: e_1_2_9_26_1
  doi: 10.1016/j.canlet.2012.10.004
– ident: e_1_2_9_19_1
  doi: 10.1038/onc.2011.321
– ident: e_1_2_9_11_1
  doi: 10.3390/molecules13081551
– ident: e_1_2_9_91_1
  doi: 10.3892/ol.2017.5895
– ident: e_1_2_9_50_1
  doi: 10.18632/oncotarget.5541
– ident: e_1_2_9_22_1
  doi: 10.1007/s13277-015-4755-6
– ident: e_1_2_9_83_1
  doi: 10.1038/srep42226
– ident: e_1_2_9_79_1
  doi: 10.1016/j.ejps.2005.10.010
– ident: e_1_2_9_101_1
  doi: 10.1111/j.1742-4658.2009.07383.x
– ident: e_1_2_9_9_1
  doi: 10.1093/jjco/hyh113
– ident: e_1_2_9_33_1
  doi: 10.1038/bjc.2017.38
– ident: e_1_2_9_8_1
  doi: 10.1080/1120009X.1990.11738999
– ident: e_1_2_9_76_1
  doi: 10.1593/neo.04307
– ident: e_1_2_9_55_1
  doi: 10.1038/cddis.2014.10
– ident: e_1_2_9_20_1
  doi: 10.1016/j.phymed.2015.03.010
– ident: e_1_2_9_58_1
  doi: 10.1016/j.ccr.2010.10.031
– ident: e_1_2_9_34_1
  doi: 10.15252/emmm.201505492
– ident: e_1_2_9_92_1
  doi: 10.1002/iub.1361
– ident: e_1_2_9_56_1
  doi: 10.1016/j.bbamcr.2012.08.017
– volume: 19
  start-page: 383
  issue: 2
  year: 2001
  ident: e_1_2_9_10_1
  article-title: Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer
  publication-title: Int J Oncol
– ident: e_1_2_9_80_1
  doi: 10.1084/jem.20131195
– ident: e_1_2_9_62_1
  doi: 10.1007/s12032-015-0703-y
– ident: e_1_2_9_82_1
  doi: 10.1074/jbc.M412105200
– volume: 4
  start-page: 1243
  issue: 5
  year: 1998
  ident: e_1_2_9_104_1
  article-title: p53 point mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival
  publication-title: Clin Cancer Res
– ident: e_1_2_9_25_1
  doi: 10.2174/157436206777012048
– volume: 62
  start-page: 6674
  issue: 22
  year: 2002
  ident: e_1_2_9_36_1
  article-title: The bioenergetic signature of cancer: a marker of tumor progression
  publication-title: Cancer Res
– ident: e_1_2_9_87_1
  doi: 10.1038/cddis.2015.200
– ident: e_1_2_9_30_1
  doi: 10.1016/j.freeradbiomed.2016.03.014
– ident: e_1_2_9_98_1
  doi: 10.3892/mmr.2014.2726
– ident: e_1_2_9_41_1
  doi: 10.1158/1078-0432.CCR-13-1854
– ident: e_1_2_9_35_1
  doi: 10.1093/glycob/11.7.587
– ident: e_1_2_9_21_1
  doi: 10.1186/s12935-017-0483-x
– ident: e_1_2_9_51_1
  doi: 10.1371/journal.pone.0015366
– ident: e_1_2_9_99_1
  doi: 10.1016/j.yexcr.2015.09.011
– ident: e_1_2_9_31_1
  doi: 10.1038/onc.2012.268
– ident: e_1_2_9_63_1
  doi: 10.4161/cc.26034
– ident: e_1_2_9_60_1
  doi: 10.1016/S0002-9440(10)62570-9
– ident: e_1_2_9_23_1
  doi: 10.18632/oncotarget.7895
– ident: e_1_2_9_53_1
  doi: 10.1016/j.canlet.2016.08.004
– ident: e_1_2_9_73_1
  doi: 10.1101/gad.276568.115
– ident: e_1_2_9_70_1
  doi: 10.1016/j.bbaexp.2006.05.001
– ident: e_1_2_9_4_1
  doi: 10.18632/oncotarget.24338
– volume: 18
  start-page: 1457
  issue: 3
  year: 1998
  ident: e_1_2_9_7_1
  article-title: Detection and quantitation of thymidylate synthase mRNA in human colon adenocarcinoma cell line resistant to 5‐fluorouracil by competitive PCR
  publication-title: Anticancer Res
– ident: e_1_2_9_49_1
  doi: 10.3892/ijo.2014.2696
– ident: e_1_2_9_68_1
  doi: 10.1038/tpj.2016.91
– ident: e_1_2_9_90_1
  doi: 10.1158/1535-7163.MCT-10-0061
– ident: e_1_2_9_93_1
  doi: 10.1158/1535-7163.MCT-13-0878
– ident: e_1_2_9_61_1
  doi: 10.1155/2016/5874127
– ident: e_1_2_9_77_1
  doi: 10.1002/ijc.24403
– volume: 23
  start-page: 121
  issue: 1
  year: 2010
  ident: e_1_2_9_78_1
  article-title: 5‐Fluorouracil and oxaliplatin modify the expression profiles of microRNAs in human colon cancer cells in vitro
  publication-title: Oncol Rep
– ident: e_1_2_9_105_1
  doi: 10.1016/0006-2952(95)00067-A
– ident: e_1_2_9_106_1
  doi: 10.1016/j.canlet.2014.10.029
– ident: e_1_2_9_67_1
  doi: 10.1056/NEJMoa1500596
– ident: e_1_2_9_74_1
  doi: 10.3892/ol.2015.3468
– ident: e_1_2_9_14_1
  doi: 10.1158/1535-7163.MCT-08-0716
– ident: e_1_2_9_89_1
  doi: 10.1158/0008-5472.CAN-08-1569
SSID ssj0036494
Score 2.6860728
SecondaryResourceType review_article
Snippet Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The...
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3142
SubjectTerms 5-Fluorouracil
Apoptosis
Autophagy
Cancer
Cancer therapies
Cell cycle
Chemotherapy
Colorectal cancer
Colorectal carcinoma
Cytotoxicity
Disease resistance
Enzymes
Gene amplification
Gene expression
Glucose metabolism
Kinases
Mesenchyme
Metabolism
Metabolites
Metastasis
miRNA
Mutation
Oxidative metabolism
Oxidative stress
Phagocytosis
Public health
resistance mechanism
Review
Surgery
Tumors
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhh5BLf9KUbpsGpfTQi8OuJMur9hRClhBID2kDOQSMRpbokl07rHcp7amP0Gfsk3RG_kk2tFB6M2gsW9KM9I00-oaxt-AKIQNAYpVBByVQNkCZDZPCh_HYCROCi1G-H_XppTq7Sq822IfuLkzDD9FvuJFlxPmaDNxCfc_IKSXYSKWS5l-K1SJAdNFTR0mtTJPQVmWJGUrRsgpRFE__5vpadAcwH4ZH3oetcd2ZPGbX3R834SY3h6slHLrvD8gc_7NJT9ijFo_yo0aBnrINX-6wrfP2xP0Zu0l__fg5ma2qBUpaN51x9M8Jc6Ky8Lmne8PTel7zacmJ_5rmT6zOUfHiPZ8sqjl3BNBJFzilP_5qv9V8WXFsEKoYLpz8trmr4Otddjk5-Xx8mrQJGhKHpiwSb8GmEnA4idnOFUZZCGOnJM4aPoURAIyc0SENqXEgnCkILRUjRIWZ0ZDK52yzrEr_gnEJ4PUY0HkqQLkAVgjjbKat9E7qYjhg77qhyl3LXk5JNGZ558Vg5-Wx8wbsTS9621B2_ElorxvvvLXaOheIznRESQN20BdjZ9Ahii19tSIZdEmJNxGryNb0pP8YMXavl5TTL5G5O1MavXaNjYlq8Pffy4-PPsWHl_8u-optC9oMiAFwe2xzuVj514iYlrAfTeM3WEMXtw
  priority: 102
  providerName: Wiley-Blackwell
Title 5‐Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14532
https://www.proquest.com/docview/2439600081
https://www.proquest.com/docview/2414003422
https://pubmed.ncbi.nlm.nih.gov/PMC7469786
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RixMxEA7eHYggoqdi9SxRfPBlsU2y2cYXOY8rh-BxnB70bclkEyy2u7XbIr75E_yN_hJnsmnPivqyLCS7m81MMvMlk28YewGuEjIAZFYZBCiBsgHKYpBVPoxGTpgQXIzyPddnV-rdJJ-kBbc2hVVu5sQ4UVeNozXyVwItp44W7M3iS0ZZo2h3NaXQ2GMHRF1GWl1MtoBLamW6pLaqyMxAisQsRJE8lFBsqHIpdu3RtZP5Z4jk765rtD3ju-xOchr5cSfle-yGrw_ZzfdpW_yQ3e4W33h3pug--5z__P5jPFs3S3zSuumMI6gmRxElzOeeDvtO23nLpzUn0mqa9PD1joqXr_l42cy5I6-aBMgpZ_FX-63lq4Zjw1Ev0NrxRXfAwLcP2NX49OPJWZayKmQOx5_IvAWbS0AZEB2dq4yyEEZOSRzqPochAAyd0SEPuXEgnKnIxamG6MoVRkMuH7L9uqn9I8YlgNcjQMRTgXIBrBDG2UJb6Z3U1aDHXm76tnSJcpwyX8zKDfRAMZRRDD32fFt10fFs_K3S0UZAZRpqbXmtGD32bFuMnUE7H7b2zZrqII4kskN8RbEj2O3HiGZ7t6Sefop024XSCLU1_kxUgX83rzw5_hBvHv-_nU_YLUGoPUaqHbH91XLtn6Jrs4I-2xPqoh-1uM8O3p6eX1z24zIBXS_FLwCOAQY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamIQESQmOA6BhgEEjcRDS249STEJoGVcd-btik3gXbsUVFm3RNq2l3PMKehIfiSXaOk3QUAXe7q2Q3dX2--JzPPj4fIa-NzRn3xkRaKCAoHtUAedqNcud7PcuU9zZk-R7Lwan4PEyGa-RnexcG0yrbNTEs1HlpcY_8HQPPKYMH-zA9i1A1Ck9XWwmNGhYH7uIcKFv1fv8j2PcNY_1PJ3uDqFEViCzgj0VOG51wA2PAcmw2V0Ib37MCiH3sEhMbY2KrpE98oqxhVuXo4vMYQplUSYMqEbDk3wLH20Wylw6XBI9LoWoRXZFGqstZU8kIM4dQwCwWCWer_u86qP0zJfP3UDn4uv4Gud8EqXS3RtUDsuaKTXL7qDmG3yT36s0-Wt9heki-J79-XPbHi3IG39R2NKZA4jEwBUTRicPLxaNqUtFRQbFINi6y8HiLzbMd2p-VE2oxikfAUNRIPtcXFZ2XFAYOOATvSqf1hQZXPSKnNzLfj8l6URbuCaHcGCd7BhhWboT1RjOmrE6l5s5ymXc75G07t5ltSpyj0sY4a6kOmCELZuiQV8uu07qux986bbcGyppXu8qugdghL5fNMBl40qILVy6wD_BWLK4Ij0hXDLv8MSzrvdpSjL6F8t6pkEDtJfyZAIF_Dy_b2_0SPmz9f5wvyJ3BydFhdrh_fPCU3GW4YxCy5LbJ-ny2cM8grJqb5wHLlHy96ZfnCmUOOdo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9NnTQhIcQGiMIYBoHES7TGSZwaCU1jW7QxqCZg0t4y27FFRZuUptW0Nz4Cn2cfh0_CXf50FAFve4tkx3F8P_vu7PP9AF5ok_HAae2pUKKD4ogNMIh7XmZdv2-4dM5UUb4DcXgavjuLzlbgqr0LQ2GV7ZpYLdRZYWiPfJuj5hSVBtt2TVjEyX6yM_nmEYMUnbS2dBo1RI7t5QW6b-Wbo32U9UvOk4PPe4dewzDgGcQi96zSKgo09odSs5lMhkq7vgnRyfdtpH2ttW-kcJGLpNHcyIzUfeajWRNLoYkxApf_1Zi8og6svj0YnHxs9UAgQllT6oaxJ3sBb_IaURwR0Zn5YRTwZW14beL-GaD5u-Fcab7kLtxpTFa2W2NsHVZsvgFrH5pD-Q24XW_9sfpG0z34Gv38_iMZzYspvqnMcMTQpSczFfHFxpauGg_LccmGOaOU2bTkYvOGiqevWTItxsyQTU_wYcSYfKEuSzYrGHYcUYm6lk3q6w22vA-nNzLiD6CTF7l9CCzQ2oq-Rn8r06FxWnEujYqFCqwJRNbrwqt2bFPTJDwn3o1R2jo-KIa0EkMXni-qTuosH3-rtNkKKG0meplew7ILzxbFOBh07qJyW8ypDnqxlGoRm4iXBLv4GCX5Xi7Jh1-qZN9xKNDRF_gzFQT-3b10b_dT9fDo__18Cms4cdL3R4Pjx3CL0_ZBFTK3CZ3ZdG6foI0101sNmBmc3_T8-QUKCD91
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=5-Fluorouracil+resistance+mechanisms+in+colorectal+cancer%3A+From+classical+pathways+to+promising+processes&rft.jtitle=Cancer+science&rft.au=Blondy%2C+Sabrina&rft.au=David%2C+Valentin&rft.au=Verdier%2C+Mireille&rft.au=Mathonnet%2C+Muriel&rft.date=2020-09-01&rft.issn=1349-7006&rft.eissn=1349-7006&rft.volume=111&rft.issue=9&rft.spage=3142&rft_id=info:doi/10.1111%2Fcas.14532&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon