5‐Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes
Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be int...
Saved in:
Published in | Cancer science Vol. 111; no. 9; pp. 3142 - 3154 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
John Wiley & Sons, Inc
01.09.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5‐fluorouracil (5‐FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5‐FU resistance. Some are disease‐specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5‐FU. In this review, we construct a global outline of different mechanisms from disruption of 5‐FU‐metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial‐mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future.
Colorectal cancer is the third most common cancer worldwide. 5‐Fluorouracil (5‐FU), a synthetic fluorinated pyrimidine analog requiring intracellular conversion into active metabolites, is the main chemotherapy used when colorectal cancer is at an advanced stage or at high risk of recurrence. However, resistance to this treatment exists, explaining a low 5‐year survival rate. We review the main mechanisms of 5‐FU resistance, especially those linked to tumor microenvironment and genetic alterations. |
---|---|
AbstractList | Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5‐fluorouracil (5‐FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5‐FU resistance. Some are disease‐specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5‐FU. In this review, we construct a global outline of different mechanisms from disruption of 5‐FU‐metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial‐mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future. Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5‐fluorouracil (5‐FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5‐FU resistance. Some are disease‐specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5‐FU. In this review, we construct a global outline of different mechanisms from disruption of 5‐FU‐metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial‐mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future. Colorectal cancer is the third most common cancer worldwide. 5‐Fluorouracil (5‐FU), a synthetic fluorinated pyrimidine analog requiring intracellular conversion into active metabolites, is the main chemotherapy used when colorectal cancer is at an advanced stage or at high risk of recurrence. However, resistance to this treatment exists, explaining a low 5‐year survival rate. We review the main mechanisms of 5‐FU resistance, especially those linked to tumor microenvironment and genetic alterations. Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5-fluorouracil (5-FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5-FU resistance. Some are disease-specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5-FU. In this review, we construct a global outline of different mechanisms from disruption of 5-FU-metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial-mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future.Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5-fluorouracil (5-FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5-FU resistance. Some are disease-specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5-FU. In this review, we construct a global outline of different mechanisms from disruption of 5-FU-metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial-mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future. |
Author | Christou, Niki David, Valentin Perraud, Aurélie Verdier, Mireille Blondy, Sabrina Mathonnet, Muriel |
AuthorAffiliation | 1 Faculty of Medicine Laboratoire EA3842 CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance” Limoges cedex France 3 Service de Chirurgie Digestive Department of Digestive, General and Endocrine Surgery University Hospital of Limoges Limoges France 2 Department of pharmacy University Hospital of Limoges Limoges France |
AuthorAffiliation_xml | – name: 3 Service de Chirurgie Digestive Department of Digestive, General and Endocrine Surgery University Hospital of Limoges Limoges France – name: 2 Department of pharmacy University Hospital of Limoges Limoges France – name: 1 Faculty of Medicine Laboratoire EA3842 CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance” Limoges cedex France |
Author_xml | – sequence: 1 givenname: Sabrina surname: Blondy fullname: Blondy, Sabrina organization: Laboratoire EA3842 CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance” – sequence: 2 givenname: Valentin orcidid: 0000-0002-2260-6690 surname: David fullname: David, Valentin organization: University Hospital of Limoges – sequence: 3 givenname: Mireille orcidid: 0000-0002-8162-4856 surname: Verdier fullname: Verdier, Mireille organization: Laboratoire EA3842 CAPTuR “Control of cell activation, Tumor progression and Therapeutic resistance” – sequence: 4 givenname: Muriel orcidid: 0000-0002-9127-3068 surname: Mathonnet fullname: Mathonnet, Muriel organization: University Hospital of Limoges – sequence: 5 givenname: Aurélie orcidid: 0000-0001-7882-0613 surname: Perraud fullname: Perraud, Aurélie organization: University Hospital of Limoges – sequence: 6 givenname: Niki orcidid: 0000-0003-2125-0503 surname: Christou fullname: Christou, Niki email: christou.niki19@gmail.com organization: University Hospital of Limoges |
BookMark | eNp9kc2KFDEQx4OsuB968A0avOihd_PZPfEgLIOjwoIH9RySmvRO1nQyprpd5uYj-Iw-iZmdRXBBc0lR9as_9a86JUcpJ0_Ic0bPWX0XYPGcSSX4I3LChNRtT2l3dBf3raaCH5NTxBtKRSe1fEKOBVeio4yfkK_q14-fqzjnkudiIcSmeAw42QS-GT1sbAo4YhNSAznm4mGysYF9ubxuViWPDUSLGKCmt3ba3NodNlNutrUUMKTrfQQe0eNT8niwEf2z-_-MfFm9_bx83159fPdheXnVgmKUt946q4QbQFG66GGtpXXDAqQQlHnlmHOOge4GNSgNjoNe97wXa9Yp2uvOKXFG3hx0t7Mb_Rp8moqNZlvCaMvOZBvM35UUNuY6fze97HS_6KrAy3uBkr_NHidTrYCP0SafZzRcMlmXKTmv6IsH6E1dZKr2KiV0R6sHVqlXBwpKRix--DMMo2Z_QlNPaO5OWNmLByyEyU4h72cN8X8dtyH63b-lzfLy06HjN3XCsQA |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_125794 crossref_primary_10_1039_D4SM01222D crossref_primary_10_2147_OTT_S429128 crossref_primary_10_1007_s12668_025_01857_y crossref_primary_10_1515_med_2022_0474 crossref_primary_10_1038_s41418_022_01007_x crossref_primary_10_1016_j_prp_2024_155476 crossref_primary_10_3390_cancers14030695 crossref_primary_10_3389_fbioe_2021_755563 crossref_primary_10_1186_s43042_024_00625_z crossref_primary_10_1007_s13577_022_00775_5 crossref_primary_10_2147_CCID_S426851 crossref_primary_10_1007_s12010_024_05072_5 crossref_primary_10_1016_j_bbcan_2025_189261 crossref_primary_10_1016_j_bbcan_2022_188699 crossref_primary_10_1007_s12032_023_02105_7 crossref_primary_10_1080_14728222_2023_2266572 crossref_primary_10_3390_ijms242316621 crossref_primary_10_3390_microorganisms10091692 crossref_primary_10_1021_acsbiomaterials_4c00445 crossref_primary_10_3390_cancers14051281 crossref_primary_10_3390_ijms25179463 crossref_primary_10_1016_j_biopha_2023_114373 crossref_primary_10_1038_s41598_024_71421_3 crossref_primary_10_1016_j_biopha_2022_113465 crossref_primary_10_3389_fonc_2022_913669 crossref_primary_10_1002_ptr_8095 crossref_primary_10_3389_fonc_2022_966089 crossref_primary_10_1002_2211_5463_13611 crossref_primary_10_3389_fonc_2022_949715 crossref_primary_10_3390_biom14040473 crossref_primary_10_1002_tox_23978 crossref_primary_10_1016_j_bcp_2023_115741 crossref_primary_10_3389_fbioe_2022_1013541 crossref_primary_10_2217_nnm_2024_0007 crossref_primary_10_1134_S2635167624600482 crossref_primary_10_1021_acsomega_1c06394 crossref_primary_10_2147_IJN_S439392 crossref_primary_10_1002_jcla_24825 crossref_primary_10_1038_s41388_021_02029_4 crossref_primary_10_7554_eLife_69182 crossref_primary_10_1016_j_jare_2024_07_022 crossref_primary_10_1016_j_drup_2024_101193 crossref_primary_10_1016_j_drudis_2025_104335 crossref_primary_10_1007_s10555_023_10126_x crossref_primary_10_3390_ijms24065252 crossref_primary_10_4103_IRJCM_IRJCM_34_24 crossref_primary_10_1016_j_biopha_2022_113237 crossref_primary_10_1038_s41420_024_01929_0 crossref_primary_10_3390_biomedicines10061267 crossref_primary_10_1007_s10142_024_01322_1 crossref_primary_10_3390_md21020080 crossref_primary_10_1186_s10020_022_00516_2 crossref_primary_10_3390_pharmaceutics17040409 crossref_primary_10_1177_15353702221139203 crossref_primary_10_1080_15376516_2023_2294083 crossref_primary_10_1002_med4_9 crossref_primary_10_3390_cancers15194724 crossref_primary_10_1016_j_esmoop_2021_100125 crossref_primary_10_1049_mna2_70004 crossref_primary_10_1080_87559129_2024_2446366 crossref_primary_10_1016_j_jsps_2022_09_011 crossref_primary_10_3389_fonc_2022_855674 crossref_primary_10_3390_cimb45040191 crossref_primary_10_26508_lsa_202201413 crossref_primary_10_3390_ijms23020930 crossref_primary_10_1177_09636897251314645 crossref_primary_10_30621_jbachs_869310 crossref_primary_10_3390_ijms232416098 crossref_primary_10_1038_s41556_024_01473_0 crossref_primary_10_1016_j_bbrc_2024_150348 crossref_primary_10_3390_ijms23073544 crossref_primary_10_4062_biomolther_2022_017 crossref_primary_10_3389_fonc_2023_1087644 crossref_primary_10_1186_s12885_022_09666_2 crossref_primary_10_3390_biom15030326 crossref_primary_10_1016_j_heliyon_2024_e34362 crossref_primary_10_1016_j_molstruc_2022_133942 crossref_primary_10_1002_cpt_2833 crossref_primary_10_1016_j_biopha_2024_117176 crossref_primary_10_1016_j_clinsp_2025_100606 crossref_primary_10_1038_s41598_025_90532_z crossref_primary_10_1089_adt_2024_007 crossref_primary_10_3389_fimmu_2023_1237764 crossref_primary_10_3390_molecules28010243 crossref_primary_10_3389_fimmu_2023_1200111 crossref_primary_10_3390_cancers15143541 crossref_primary_10_1016_j_jconrel_2024_03_036 crossref_primary_10_1016_j_jddst_2022_103663 crossref_primary_10_3390_cancers16142544 crossref_primary_10_1016_j_mrfmmm_2024_111874 crossref_primary_10_3390_molecules26071856 crossref_primary_10_1007_s12011_023_03803_z crossref_primary_10_1096_fba_2022_00099 crossref_primary_10_1007_s11033_024_09431_7 crossref_primary_10_3389_frlct_2024_1289437 crossref_primary_10_3390_biomedicines11092530 crossref_primary_10_3390_genes13050815 crossref_primary_10_1016_j_bioelechem_2021_107844 crossref_primary_10_1177_11769351211065979 crossref_primary_10_3390_cimb46010010 crossref_primary_10_1080_15592294_2023_2298058 crossref_primary_10_1016_j_celrep_2024_115061 crossref_primary_10_3390_nu16244332 crossref_primary_10_1016_j_adcanc_2025_100136 crossref_primary_10_1007_s12012_024_09953_3 crossref_primary_10_1016_j_jep_2022_115933 crossref_primary_10_1099_jmm_0_001692 crossref_primary_10_1186_s12951_023_02126_4 crossref_primary_10_1007_s12672_024_01019_8 crossref_primary_10_1007_s12672_024_01510_2 crossref_primary_10_1007_s00005_021_00629_2 crossref_primary_10_1016_j_apsb_2024_07_018 crossref_primary_10_1021_acsami_3c02883 crossref_primary_10_1016_j_jsps_2021_12_009 crossref_primary_10_1186_s12967_022_03423_6 crossref_primary_10_1186_s12885_022_09853_1 crossref_primary_10_3390_life12040605 crossref_primary_10_1007_s13577_023_00938_y crossref_primary_10_1620_tjem_2023_J042 crossref_primary_10_3390_cancers16172980 crossref_primary_10_3390_ijms22062916 crossref_primary_10_32604_biocell_2024_052625 crossref_primary_10_3390_ncrna7020024 crossref_primary_10_1016_j_biopha_2022_113426 crossref_primary_10_1007_s12032_023_02204_5 crossref_primary_10_1016_j_ijbiomac_2025_140204 crossref_primary_10_1007_s11033_022_07227_1 crossref_primary_10_1007_s10495_025_02084_2 crossref_primary_10_1088_1758_5090_acc279 crossref_primary_10_1016_j_sajb_2024_10_020 crossref_primary_10_1002_advs_202417022 crossref_primary_10_3389_fonc_2023_1213426 crossref_primary_10_1016_j_comptc_2025_115181 crossref_primary_10_1016_j_yexcr_2024_114269 crossref_primary_10_1158_2767_9764_CRC_22_0271 crossref_primary_10_1016_j_molliq_2024_125407 crossref_primary_10_1111_jcmm_70185 crossref_primary_10_3390_ijms232416179 crossref_primary_10_1007_s10528_025_11041_2 crossref_primary_10_1016_j_tice_2025_102771 crossref_primary_10_1038_s41419_024_06848_7 crossref_primary_10_1016_j_bbrc_2024_150665 crossref_primary_10_3892_or_2024_8720 crossref_primary_10_2174_1871520621666210708130703 crossref_primary_10_1007_s40199_024_00545_8 crossref_primary_10_3390_ijms25137470 crossref_primary_10_2174_1871520621666210412113944 crossref_primary_10_3390_jpm12060952 crossref_primary_10_1016_j_drup_2025_101211 crossref_primary_10_3389_fgene_2022_977902 crossref_primary_10_3389_fphar_2023_1252805 crossref_primary_10_3390_curroncol30070460 crossref_primary_10_4103_jcrt_jcrt_1299_22 crossref_primary_10_3389_fcell_2022_838332 crossref_primary_10_7759_cureus_66393 crossref_primary_10_3390_molecules28114353 crossref_primary_10_20517_cdr_2024_167 crossref_primary_10_3389_fonc_2021_771528 crossref_primary_10_3390_cancers15082268 crossref_primary_10_1186_s13008_023_00091_w crossref_primary_10_1371_journal_pone_0270970 crossref_primary_10_3390_molecules26020506 crossref_primary_10_1016_j_foodchem_2023_136684 crossref_primary_10_3389_fonc_2021_768918 crossref_primary_10_1016_j_bbadis_2023_166922 crossref_primary_10_3389_fimmu_2022_724139 crossref_primary_10_3389_fphar_2022_964793 crossref_primary_10_1016_j_ijpharm_2024_124503 crossref_primary_10_3389_fonc_2022_1008027 crossref_primary_10_1186_s12935_024_03328_y crossref_primary_10_1186_s12964_024_02016_8 crossref_primary_10_1038_s41419_024_06451_w crossref_primary_10_1080_07357907_2021_1923727 crossref_primary_10_3390_pharmaceutics16070966 crossref_primary_10_3892_mco_2022_2505 crossref_primary_10_1016_j_lfs_2024_122870 crossref_primary_10_3390_cancers13205106 crossref_primary_10_3390_ijms24021364 crossref_primary_10_1016_j_phymed_2025_156599 crossref_primary_10_3389_fphar_2022_851401 crossref_primary_10_3390_cancers13122979 crossref_primary_10_3389_fonc_2021_748730 crossref_primary_10_1007_s00432_023_04670_w crossref_primary_10_1080_15257770_2024_2332414 crossref_primary_10_1002_cjoc_202400061 crossref_primary_10_3390_ijms25158252 crossref_primary_10_1016_j_chmed_2023_01_004 crossref_primary_10_3748_wjg_v30_i13_1815 crossref_primary_10_1038_s41388_021_02148_y crossref_primary_10_1186_s40170_022_00299_4 crossref_primary_10_1097_ot9_0000000000000018 crossref_primary_10_1002_adtp_202400221 crossref_primary_10_1016_S1470_2045_21_00343_0 crossref_primary_10_3390_pharmaceutics14102119 crossref_primary_10_1007_s11033_022_07680_y crossref_primary_10_1002_ptr_8363 crossref_primary_10_1016_j_abb_2024_110176 crossref_primary_10_3892_or_2022_8289 crossref_primary_10_3390_cancers13020299 crossref_primary_10_1371_journal_pone_0254392 crossref_primary_10_3390_molecules29020550 crossref_primary_10_1016_j_heliyon_2023_e16798 crossref_primary_10_1016_j_ejphar_2025_177294 crossref_primary_10_3389_fonc_2022_1007509 crossref_primary_10_4251_wjgo_v14_i6_1115 crossref_primary_10_3390_cells13211776 crossref_primary_10_1155_2021_4759821 crossref_primary_10_3892_etm_2021_10585 crossref_primary_10_1016_S1875_5364_22_60174_2 crossref_primary_10_1038_s41420_023_01704_7 crossref_primary_10_3389_fphar_2025_1542204 crossref_primary_10_3390_cells13040325 crossref_primary_10_1186_s12935_023_03072_9 crossref_primary_10_1155_2021_6635874 crossref_primary_10_3390_pharmaceutics14102109 crossref_primary_10_3390_ijms24032983 crossref_primary_10_1016_j_phrs_2023_106924 crossref_primary_10_1007_s11094_023_02998_8 crossref_primary_10_1016_j_sjbs_2022_103392 crossref_primary_10_1016_j_biopha_2024_117576 crossref_primary_10_1016_j_prp_2023_154986 crossref_primary_10_1002_onco_13778 crossref_primary_10_1089_cmb_2024_0587 crossref_primary_10_1080_13102818_2023_2249560 crossref_primary_10_17816_PAVLOVJ112525 crossref_primary_10_1002_jbt_23297 crossref_primary_10_1016_j_arcmed_2024_102966 crossref_primary_10_3390_biomedicines11092361 crossref_primary_10_1016_j_eurpolymj_2021_110646 crossref_primary_10_1007_s11696_023_02927_9 crossref_primary_10_1016_j_foodchem_2024_138423 crossref_primary_10_1016_j_critrevonc_2023_104196 crossref_primary_10_1186_s10020_024_01032_1 crossref_primary_10_1016_j_ejphar_2024_176979 crossref_primary_10_18632_aging_204656 crossref_primary_10_3748_wjg_v29_i9_1395 crossref_primary_10_1007_s12032_023_02201_8 crossref_primary_10_1002_jhbp_12071 crossref_primary_10_3390_biomedicines9030241 crossref_primary_10_1097_CAD_0000000000001478 crossref_primary_10_3390_antiox13081012 crossref_primary_10_1016_j_bbrep_2025_101957 crossref_primary_10_3389_fonc_2022_847299 crossref_primary_10_1021_acs_molpharmaceut_2c00876 crossref_primary_10_12677_ACM_2023_134917 crossref_primary_10_52711_0974_360X_2024_00340 crossref_primary_10_3892_ol_2021_13043 crossref_primary_10_3390_cells12111475 crossref_primary_10_3390_cells13040342 crossref_primary_10_1111_jcmm_18261 crossref_primary_10_3389_fphar_2023_1287505 crossref_primary_10_1002_adhm_202303692 crossref_primary_10_3389_fphar_2022_909331 crossref_primary_10_1021_acsomega_2c03635 crossref_primary_10_1016_j_ajg_2024_09_003 crossref_primary_10_1016_j_critrevonc_2024_104360 crossref_primary_10_3390_ijms22105406 crossref_primary_10_3389_fphar_2022_1005915 crossref_primary_10_1007_s11426_023_1920_0 crossref_primary_10_1111_cas_15761 crossref_primary_10_1038_s41401_023_01136_0 crossref_primary_10_1002_cnr2_1709 crossref_primary_10_1016_j_jddst_2024_105730 crossref_primary_10_1089_ars_2023_0298 crossref_primary_10_1186_s12885_022_09417_3 crossref_primary_10_3389_fonc_2023_1208140 crossref_primary_10_1002_mabi_202300193 crossref_primary_10_1007_s12672_024_01036_7 crossref_primary_10_1016_j_heliyon_2024_e34535 crossref_primary_10_3390_cancers14122928 crossref_primary_10_3390_molecules27072089 crossref_primary_10_3390_cancers13174449 crossref_primary_10_1007_s11418_024_01849_4 crossref_primary_10_1016_j_carpta_2025_100775 crossref_primary_10_1038_s41419_024_06690_x crossref_primary_10_1111_jcmm_70470 crossref_primary_10_2147_DDDT_S466470 crossref_primary_10_1016_j_heliyon_2024_e27207 crossref_primary_10_1021_acs_jafc_4c03761 crossref_primary_10_1208_s12249_024_02858_y crossref_primary_10_3389_fcell_2023_1231416 crossref_primary_10_1007_s10495_024_02060_2 crossref_primary_10_1186_s12967_023_04036_3 crossref_primary_10_3390_ijms241311094 crossref_primary_10_3390_cancers15235623 crossref_primary_10_3390_ijms25031572 crossref_primary_10_1016_j_ejphar_2022_175253 crossref_primary_10_1016_j_foodchem_2024_141371 crossref_primary_10_3389_fonc_2022_1101823 crossref_primary_10_3390_biomedicines11010208 crossref_primary_10_1139_bcb_2023_0101 crossref_primary_10_3390_ijms22179286 crossref_primary_10_52420_2071_5943_2022_21_6_119_127 crossref_primary_10_3389_fonc_2021_637470 crossref_primary_10_1002_ange_202117075 crossref_primary_10_3390_antiox11112158 crossref_primary_10_3390_life11121371 crossref_primary_10_1016_j_jep_2024_117988 crossref_primary_10_1186_s12951_024_02467_8 crossref_primary_10_3390_medsci10040062 crossref_primary_10_3390_metabo12050410 crossref_primary_10_1007_s13105_022_00894_5 crossref_primary_10_3748_wjg_v27_i44_7582 crossref_primary_10_1016_j_bbrc_2024_150262 crossref_primary_10_1007_s11033_024_09562_x crossref_primary_10_3892_or_2021_8169 crossref_primary_10_1021_acs_jmedchem_4c01077 crossref_primary_10_3390_bioengineering10050570 crossref_primary_10_1186_s13046_023_02901_z crossref_primary_10_3748_wjg_v29_i13_1911 crossref_primary_10_2174_1389557523666230825144150 crossref_primary_10_1002_anie_202117075 crossref_primary_10_1093_narcan_zcab032 |
Cites_doi | 10.1073/pnas.1202989109 10.1002/path.1706 10.1007/s00432-017-2382-x 10.1097/MD.0000000000002636 10.6004/jnccn.2018.0061 10.1016/j.biocel.2016.07.024 10.1158/1535-7163.MCT-04-0291 10.1016/j.yexcr.2017.09.023 10.1245/s10434-012-2246-1 10.3892/mmr.2016.5812 10.4143/crt.2017.356 10.18632/oncotarget.14351 10.1007/s101470300013 10.1158/0008-5472.CAN-12-4718 10.1038/tpj.2011.65 10.1007/BF03401856 10.1002/jcb.24721 10.1002/ijc.11176 10.1186/s12935-019-0812-3 10.2174/138920371604150429153309 10.1093/abbs/gmq125 10.1007/s12013-014-0062-x 10.1038/srep27157 10.3389/fphar.2017.00047 10.1074/jbc.275.10.7087 10.3389/fonc.2013.00090 10.1139/O07-009 10.1186/s13578-017-0145-7 10.1158/0008-5472.CAN-04-3300 10.3892/or.2015.4479 10.1016/j.cellimm.2012.06.014 10.3322/caac.21492 10.1073/pnas.0308716101 10.1038/nm730 10.1016/j.bbrc.2013.11.064 10.1016/j.freeradbiomed.2017.01.033 10.1158/1078-0432.CCR-03-0362 10.1158/0008-5472.CAN-07-0085 10.1016/j.molcel.2013.04.029 10.1111/jcmm.12742 10.18632/oncotarget.11121 10.1038/bjc.2015.101 10.1016/j.drup.2011.08.001 10.7150/jca.19142 10.1242/bio.015008 10.1055/s-0037-1602238 10.1016/j.canlet.2012.10.004 10.1038/onc.2011.321 10.3390/molecules13081551 10.3892/ol.2017.5895 10.18632/oncotarget.5541 10.1007/s13277-015-4755-6 10.1038/srep42226 10.1016/j.ejps.2005.10.010 10.1111/j.1742-4658.2009.07383.x 10.1093/jjco/hyh113 10.1038/bjc.2017.38 10.1080/1120009X.1990.11738999 10.1593/neo.04307 10.1038/cddis.2014.10 10.1016/j.phymed.2015.03.010 10.1016/j.ccr.2010.10.031 10.15252/emmm.201505492 10.1002/iub.1361 10.1016/j.bbamcr.2012.08.017 10.1084/jem.20131195 10.1007/s12032-015-0703-y 10.1074/jbc.M412105200 10.2174/157436206777012048 10.1038/cddis.2015.200 10.1016/j.freeradbiomed.2016.03.014 10.3892/mmr.2014.2726 10.1158/1078-0432.CCR-13-1854 10.1093/glycob/11.7.587 10.1186/s12935-017-0483-x 10.1371/journal.pone.0015366 10.1016/j.yexcr.2015.09.011 10.1038/onc.2012.268 10.4161/cc.26034 10.1016/S0002-9440(10)62570-9 10.18632/oncotarget.7895 10.1016/j.canlet.2016.08.004 10.1101/gad.276568.115 10.1016/j.bbaexp.2006.05.001 10.18632/oncotarget.24338 10.3892/ijo.2014.2696 10.1038/tpj.2016.91 10.1158/1535-7163.MCT-10-0061 10.1158/1535-7163.MCT-13-0878 10.1155/2016/5874127 10.1002/ijc.24403 10.1016/0006-2952(95)00067-A 10.1016/j.canlet.2014.10.029 10.1056/NEJMoa1500596 10.3892/ol.2015.3468 10.1158/1535-7163.MCT-08-0716 10.1158/0008-5472.CAN-08-1569 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. |
DBID | 24P AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/cas.14532 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
DocumentTitleAlternate | BLONDY et al |
EISSN | 1349-7006 |
EndPage | 3154 |
ExternalDocumentID | PMC7469786 10_1111_cas_14532 CAS14532 |
Genre | reviewArticle |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 36B 3O- 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABEML ACCFJ ACCMX ACSCC ACXQS ADBBV ADKYN ADPDF ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFEBI AFFNX AFKRA AFPKN AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 DU5 E3Z EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ HCIFZ HF~ HOLLA HYE HZI HZ~ IAO IHR IPNFZ ITC IX1 J0M K.9 K48 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P MK4 N04 N05 N9A O9- OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY PROAC Q11 ROL RPM RX1 SJN SUPJJ SV3 TEORI UB1 W8V WIN WOW WQJ WRC WXI X7M XG1 ZXP ~IA ~WT 7X7 88E 8FI 8FJ AAFWJ AAYXX ABUWG CITATION FYUFA HMCUK M1P PHGZM PHGZT PSQYO UKHRP 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c5102-eaba53bfc50087cd94abf8c43301e5b1bbb1c96f5f59cb2c9d7273d1650796b53 |
IEDL.DBID | 7X7 |
ISSN | 1347-9032 1349-7006 |
IngestDate | Thu Aug 21 18:26:50 EDT 2025 Thu Jul 10 19:28:16 EDT 2025 Wed Aug 13 08:40:31 EDT 2025 Thu Apr 24 22:59:14 EDT 2025 Tue Jul 01 01:31:09 EDT 2025 Wed Jan 22 16:34:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution-NonCommercial-NoDerivs This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5102-eaba53bfc50087cd94abf8c43301e5b1bbb1c96f5f59cb2c9d7273d1650796b53 |
Notes | Aurélie Perraud and Niki Christou equally contributed to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2125-0503 0000-0001-7882-0613 0000-0002-2260-6690 0000-0002-8162-4856 0000-0002-9127-3068 |
OpenAccessLink | https://www.proquest.com/docview/2439600081?pq-origsite=%requestingapplication% |
PMID | 32536012 |
PQID | 2439600081 |
PQPubID | 4378882 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469786 proquest_miscellaneous_2414003422 proquest_journals_2439600081 crossref_primary_10_1111_cas_14532 crossref_citationtrail_10_1111_cas_14532 wiley_primary_10_1111_cas_14532_CAS14532 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo – name: Hoboken |
PublicationTitle | Cancer science |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2013; 3 2019; 19 2016; 30 2004; 6 2005; 65 2012; 19 2016; 2016 2016; 37 2016; 35 2014; 20 2016; 381 2015; 372 2010; 23 2018; 9 1998; 18 2006; 27 2013; 50 2004; 34 2008; 28 2014; 13 2018; 31 2007; 67 2009; 125 2010; 9 2002; 8 2016; 95 2014; 46 2011; 6 2016; 14 2012; 31 2012; 109 1990; 2 2017; 50 2015; 67 2016; 5 2018; 18 2016; 6 2016; 7 2003; 106 1995; 49 2015; 356 2002; 62 2013; 73 2015; 112 2005; 4 2013; 210 2016; 20 2017; 143 2007; 85 1998; 4 2018; 16 2016; 8 2017; 7 2017; 8 2014; 70 2010; 57 2013; 328 2015; 32 2009; 276 2011; 14 2011; 19 2017; 116 2016; 78 2014; 5 2013; 13 2013; 12 2003; 8 2006; 1759 2001; 19 2008; 68 2017; 360 2015; 338 2001; 11 2014; 443 2004; 101 2015; 6 2015; 16 2012; 1823 2015; 11 2015; 10 2008; 13 2000; 275 2006; 1 2015; 7 2014; 115 2018; 68 2004; 10 2005; 280 2002; 160 2012; 278 2001; 7 2013; 32 2017; 17 2015; 22 2017; 13 2005; 205 2019 2009; 8 2011; 43 2017; 104 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 Guo X (e_1_2_9_40_1) 2008; 28 e_1_2_9_94_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 Shibata J (e_1_2_9_7_1) 1998; 18 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Zhou J (e_1_2_9_78_1) 2010; 23 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 Zheng Z (e_1_2_9_18_1) 2010; 57 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 Cuezva JM (e_1_2_9_36_1) 2002; 62 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 Marsh S (e_1_2_9_10_1) 2001; 19 e_1_2_9_100_1 e_1_2_9_17_1 e_1_2_9_59_1 Lenz HJ (e_1_2_9_104_1) 1998; 4 e_1_2_9_63_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 Chen J (e_1_2_9_16_1) 2019 e_1_2_9_29_1 |
References_xml | – volume: 112 start-page: 1501 issue: 9 year: 2015 end-page: 1509 article-title: IFN‐γ from lymphocytes induces PD‐L1 expression and promotes progression of ovarian cancer publication-title: Br J Cancer – volume: 13 start-page: 742 issue: 3 year: 2014 end-page: 751 article-title: microRNAs miR‐27a and miR‐27b directly regulate liver dihydropyrimidine dehydrogenase expression through two conserved binding sites publication-title: Mol Cancer Ther – volume: 32 start-page: 258 issue: 12 year: 2015 article-title: The role of interleukin‐8 (CXCL8) and CXCR2 in acquired chemoresistance of human colorectal carcinoma cells HCT116 publication-title: Med Oncol – volume: 37 start-page: 8811 issue: 7 year: 2016 end-page: 8824 article-title: Upregulation of CD44v6 contributes to acquired chemoresistance via the modulation of autophagy in colon cancer SW480 cells publication-title: Tumor Biol – volume: 14 start-page: 4893 issue: 5 year: 2016 end-page: 4900 article-title: Gap junction composed of connexin43 modulates 5‐fluorouracil, oxaliplatin and irinotecan resistance on colorectal cancers publication-title: Molecular Medicine Reports – volume: 7 year: 2017 article-title: CXCL12/CXCR4 axis induced miR‐125b promotes invasion and confers 5‐fluorouracil resistance through enhancing autophagy in colorectal cancer publication-title: Sci Rep – volume: 8 start-page: 1037 issue: 5 year: 2009 end-page: 1044 article-title: Decreased levels of UMP kinase as a mechanism of fluoropyrimidine resistance publication-title: Mol Cancer Ther – volume: 18 start-page: 23 issue: 1 year: 2018 end-page: 28 article-title: Epigenomics alternations and dynamic transcriptional changes in responses to 5‐fluorouracil stimulation reveal mechanisms of acquired drug resistance of colorectal cancer cells publication-title: Pharmacogenomics J – volume: 10 start-page: 2158 issue: 6 year: 2004 end-page: 2167 article-title: Characterization of p53 Wild‐type and null isogenic colorectal cancer cell lines resistant to 5‐fluorouracil, oxaliplatin, and irinotecan publication-title: Clin Cancer Res – volume: 115 start-page: 772 issue: 4 year: 2014 end-page: 784 article-title: MicroRNA‐23a antisense enhances 5‐fluorouracil chemosensitivity through APAF‐1/caspase‐9 apoptotic pathway in colorectal cancer cells publication-title: J Cell Biochem – volume: 278 start-page: 21 issue: 1–2 year: 2012 end-page: 26 article-title: Anti‐tumor immunity: Myeloid leukocytes control the immune landscape publication-title: Cell Immunol – volume: 7 start-page: 17 issue: 1 year: 2017 article-title: The role of GLI1 for 5‐Fu resistance in colorectal cancer publication-title: Cell Biosci – volume: 360 start-page: 328 issue: 2 year: 2017 end-page: 336 article-title: miR‐338‐3p confers 5‐fluorouracil resistance in p53 mutant colon cancer cells by targeting the mammalian target of rapamycin publication-title: Exp Cell Res – volume: 3 start-page: 90 year: 2013 article-title: The tumor microenvironment: a pitch for multiple players publication-title: Front Oncol – volume: 73 start-page: 5926 issue: 19 year: 2013 end-page: 5935 article-title: FGFR4 promotes stroma‐induced epithelial‐to‐mesenchymal transition in colorectal cancer publication-title: Cancer Res – volume: 20 start-page: 360 issue: 2 year: 2016 end-page: 369 article-title: MicroRNA‐425‐5p regulates chemoresistance in colorectal cancer cells via regulation of Programmed Cell Death 10 publication-title: J Cell Mol Med – volume: 6 year: 2015 article-title: MicroRNA‐587 antagonizes 5‐FU‐induced apoptosis and confers drug resistance by regulating PPP2R1B expression in colorectal cancer publication-title: Cell Death Dis – volume: 6 issue: 1 year: 2011 article-title: The inflammatory microenvironment in colorectal neoplasia publication-title: PLoS One – volume: 116 start-page: 930 year: 2017 end-page: 936 article-title: Oncogenic role of PDK4 in human colon cancer cells publication-title: Br J Cancer – volume: 50 start-page: 552 issue: 4 year: 2013 end-page: 564 article-title: Coordinate transcriptional and translational repression of p53 by TGFβ1 impairs the stress response publication-title: Mol Cell – volume: 9 start-page: 2265 issue: 8 year: 2010 end-page: 2275 article-title: miR‐192/miR‐215 influence 5‐fluorouracil resistance through cell cycle‐mediated mechanisms complementary to its post‐transcriptional thymidilate synthase regulation publication-title: Mol Cancer Ther – volume: 49 start-page: 1419 issue: 10 year: 1995 end-page: 1426 article-title: Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5‐fluorouracil publication-title: Biochem Pharmacol – volume: 22 start-page: 536 issue: 5 year: 2015 end-page: 544 article-title: Sensitivity of apoptosis‐resistant colon cancer cells to tanshinones is mediated by autophagic cell death and p53‐independent cytotoxicity publication-title: Phytomedicine – volume: 13 start-page: 3387 issue: 5 year: 2017 end-page: 3394 article-title: MicroRNA‐330 inhibited cell proliferation and enhanced chemosensitivity to 5‐fluorouracil in colorectal cancer by directly targeting thymidylate synthase publication-title: Oncol Lett – volume: 7 start-page: 59766 issue: 37 year: 2016 end-page: 59780 article-title: Carcinoma‐associated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells publication-title: Oncotarget – volume: 12 start-page: 2960 issue: 18 year: 2013 end-page: 2968 article-title: TGF‐β publication-title: Cell Cycle – volume: 8 start-page: 2802 issue: 14 year: 2017 end-page: 2808 article-title: HES1 promotes colorectal cancer cell resistance To 5‐Fu by inducing Of EMT and ABC transporter proteins publication-title: J Cancer – volume: 19 start-page: 97 issue: 1 year: 2019 article-title: Large tumor suppressor kinase 2 overexpression attenuates 5‐FU‐resistance in colorectal cancer via activating the JNK‐MIEF1‐mitochondrial division pathway publication-title: Cancer Cell Int – volume: 19 start-page: 383 issue: 2 year: 2001 end-page: 386 article-title: Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer publication-title: Int J Oncol – volume: 68 start-page: 10094 issue: 24 year: 2008 end-page: 10104 article-title: p53‐Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest publication-title: Cancer Res – volume: 8 start-page: 793 issue: 8 year: 2002 end-page: 800 article-title: Tumor‐associated B7–H1 promotes T‐cell apoptosis: A potential mechanism of immune evasion publication-title: Nat Med – volume: 78 start-page: 268 year: 2016 end-page: 278 article-title: Suppression of TWIST1 enhances the sensitivity of colon cancer cells to 5‐fluorouracil publication-title: Int J Biochem Cell Biol – volume: 143 start-page: 1177 issue: 7 year: 2017 end-page: 1190 article-title: The extracellular domain of E cadherin linked to invasiveness in colorectal cancer: a new resistance and relapses monitoring serum‐bio marker? publication-title: J Cancer Res Clin Oncol – volume: 27 start-page: 392 issue: 5 year: 2006 end-page: 400 article-title: The power of the pump: Mechanisms of action of P‐glycoprotein (ABCB1) publication-title: Eur J Pharm Sci – volume: 2 start-page: 12 issue: Suppl 1 year: 1990 end-page: 16 article-title: Resistance to 5‐fluorouracil and 5‐fluoro‐2’‐deoxyuridine mechanisms and clinical implications publication-title: J Chemother – volume: 67 start-page: 191 issue: 3 year: 2015 end-page: 201 article-title: MicroRNA‐494 sensitizes colon cancer cells to fluorouracil through regulation of DPYD publication-title: IUBMB Life – volume: 275 start-page: 7087 issue: 10 year: 2000 end-page: 7094 article-title: Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl‐xL in osteosarcoma cells publication-title: J Biol Chem – volume: 7 start-page: 509 issue: 8 year: 2001 end-page: 516 article-title: MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer publication-title: Mol Med – volume: 7 start-page: 22077 issue: 16 year: 2016 end-page: 22091 article-title: The TGF‐β pathway is activated by 5‐fluorouracil treatment in drug resistant colorectal carcinoma cells publication-title: Oncotarget – volume: 2016 start-page: 5874127 year: 2016 article-title: CCL21 facilitates chemoresistance and cancer stem cell‐like properties of colorectal cancer cells through AKT/GSK‐3β/Snail signals publication-title: Oxid Med Cell Longev – volume: 62 start-page: 6674 issue: 22 year: 2002 end-page: 6681 article-title: The bioenergetic signature of cancer: a marker of tumor progression publication-title: Cancer Res – volume: 109 start-page: 16282 issue: 40 year: 2012 end-page: 16287 article-title: Transient receptor potential channel TRPC5 is essential for P‐glycoprotein induction in drug‐resistant cancer cells publication-title: Proc Natl Acad Sci USA – volume: 160 start-page: 1445 issue: 4 year: 2002 end-page: 1455 article-title: Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal‐associated lymphoid tissue in chronic inflammatory liver disease publication-title: Am J Pathol – volume: 11 start-page: 577 issue: 1 year: 2015 end-page: 582 article-title: Inhibition of lactate dehydrogenase A by microRNA‐34a resensitizes colon cancer cells to 5‐fluorouracil publication-title: Mol Med Rep – volume: 95 issue: 6 year: 2016 article-title: High infiltration of tumor‐associated macrophages influences poor prognosis in human gastric cancer patients, associates with the phenomenon of EMT publication-title: Medicine – volume: 4 start-page: 1243 issue: 5 year: 1998 end-page: 1250 article-title: p53 point mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival publication-title: Clin Cancer Res – volume: 46 start-page: 37 issue: 1 year: 2014 end-page: 46 article-title: Conditioned media from human macrophages of M1 phenotype attenuate the cytotoxic effect of 5‐fluorouracil on the HT‐29 colon cancer cell line publication-title: Int J Oncol – volume: 125 start-page: 463 issue: 2 year: 2009 end-page: 473 article-title: Histone deacetylase inhibitors suppress thymidylate synthase gene expression and synergize with the fluoropyrimidines in colon cancer cells publication-title: Int J Cancer – volume: 210 start-page: 2851 issue: 13 year: 2013 end-page: 2872 article-title: Chemotherapy activates cancer‐associated fibroblasts to maintain colorectal cancer‐initiating cells by IL‐17A publication-title: J Exp Med – volume: 5 start-page: 563 issue: 5 year: 2016 end-page: 570 article-title: MicroRNA‐204 modulates colorectal cancer cell sensitivity in response to 5‐fluorouracil‐based treatment by targeting high mobility group protein A2 publication-title: Biol Open – volume: 372 start-page: 2509 issue: 26 year: 2015 end-page: 2520 article-title: PD‐1 blockade in tumors with mismatch‐repair deficiency publication-title: N Engl J Med – volume: 65 start-page: 3162 issue: 8 year: 2005 end-page: 3170 article-title: Down‐regulation of mitochondrial F1F0‐ATP synthase in human colon cancer cells with induced 5‐fluorouracil resistance publication-title: Cancer Res – volume: 5 issue: 2 year: 2014 article-title: Fibroblast growth factor receptor 4 (FGFR4): a targetable regulator of drug resistance in colorectal cancer publication-title: Cell Death Dis – volume: 30 start-page: 733 issue: 7 year: 2016 end-page: 750 article-title: Role of TET enzymes in DNA methylation, development, and cancer publication-title: Genes Dev – volume: 8 start-page: 47 year: 2017 article-title: Identification of predictive DNA methylation biomarkers for chemotherapy response in colorectal cancer publication-title: Front Pharmacol – volume: 11 start-page: 587 issue: 7 year: 2001 end-page: 592 article-title: Cell surface‐expressed Thomsen‐Friedenreich antigen in colon cancer is predominantly carried on high molecular weight splice variants of CD44 publication-title: Glycobiology – volume: 6 start-page: 36441 issue: 34 year: 2015 end-page: 36455 article-title: Metformin prevents cancer metastasis by inhibiting M2‐like polarization of tumor associated macrophages publication-title: Oncotarget – volume: 14 start-page: 280 issue: 6 year: 2011 end-page: 296 article-title: Epigenetics and chemoresistance in colorectal cancer: an opportunity for treatment tailoring and novel therapeutic strategies publication-title: Drug Resist Updat – volume: 6 start-page: 813 issue: 6 year: 2004 end-page: 820 article-title: STRAP is a strong predictive marker of adjuvant chemotherapy benefit in colorectal cancer publication-title: Neoplasia – volume: 1 start-page: 227 issue: 2 year: 2006 end-page: 237 article-title: Integrin‐mediated drug resistance publication-title: Curr Signal Transduct Ther – volume: 70 start-page: 1343 issue: 2 year: 2014 end-page: 1350 article-title: Overexpression of microRNA‐122 re‐sensitizes 5‐FU‐resistant colon cancer cells to 5‐FU through the inhibition of PKM2 in vitro and in vivo publication-title: Cell Biochem Biophys – volume: 19 start-page: 3065 issue: 9 year: 2012 end-page: 3071 article-title: MicroRNA‐10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5‐fluorouracil in colorectal cancer cells publication-title: Ann Surg Oncol – volume: 328 start-page: 325 issue: 2 year: 2013 end-page: 334 article-title: The β6‐integrin‐ERK/MAP kinase pathway contributes to chemo resistance in colon cancer publication-title: Cancer Lett – volume: 23 start-page: 121 issue: 1 year: 2010 end-page: 128 article-title: 5‐Fluorouracil and oxaliplatin modify the expression profiles of microRNAs in human colon cancer cells in vitro publication-title: Oncol Rep – volume: 1823 start-page: 2168 issue: 12 year: 2012 end-page: 2178 article-title: The emerging multiple roles of nuclear Akt publication-title: Biochim Biophys Acta – volume: 16 start-page: 301 issue: 4 year: 2015 end-page: 309 article-title: Elevated microRNA‐23a expression enhances the chemoresistance of colorectal cancer cells with microsatellite instability to 5‐fluorouracil by directly targeting ABCF1 publication-title: Curr Protein Pept Sci – volume: 43 start-page: 217 issue: 3 year: 2011 end-page: 225 article-title: miR‐20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines publication-title: Acta Biochim Biophys Sin – volume: 10 start-page: 1287 issue: 3 year: 2015 end-page: 1292 article-title: Promoter demethylation of nuclear factor‐erythroid 2‐related factor 2 gene in drug‐resistant colon cancer cells publication-title: Oncol Lett – volume: 356 start-page: 781 issue: 2 year: 2015 end-page: 790 article-title: MiR‐22 regulates 5‐FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells publication-title: Cancer Lett – volume: 280 start-page: 5516 issue: 7 year: 2005 end-page: 5526 article-title: DNA mismatch repair‐dependent response to fluoropyrimidine‐generated damage publication-title: J Biol Chem – volume: 68 start-page: 394 issue: 6 year: 2018 end-page: 424 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin – volume: 8 start-page: 72 issue: 2 year: 2003 end-page: 78 article-title: Relationships between the expression of thymidylate synthase, dihydropyrimidine dehydrogenase, and orotate phosphoribosyltransferase and cell proliferative activity and 5‐fluorouracil sensitivity in colorectal carcinoma publication-title: Int J Clin Oncol – volume: 106 start-page: 66 issue: 1 year: 2003 end-page: 73 article-title: Role of hMLH1 promoter hypermethylation in drug resistance to 5‐fluorouracil in colorectal cancer cell lines publication-title: Int J Cancer – volume: 13 start-page: 1551 issue: 8 year: 2008 end-page: 1569 article-title: 5‐Fluorouracil: mechanisms of resistance and reversal strategies publication-title: Molecules – volume: 31 start-page: 179 issue: 3 year: 2018 end-page: 191 article-title: Emerging systemic therapies for colorectal cancer publication-title: Clin Colon Rectal Surg – volume: 17 start-page: 111 issue: 1 year: 2017 article-title: RAC3 influences the chemoresistance of colon cancer cells through autophagy and apoptosis inhibition publication-title: Cancer Cell Int – volume: 9 start-page: 11559 issue: 14 year: 2018 end-page: 11571 article-title: 5‐FU therapeutic drug monitoring as a valuable option to reduce toxicity in patients with gastrointestinal cancer publication-title: Oncotarget – volume: 85 start-page: 337 issue: 3 year: 2007 end-page: 346 article-title: Suppression of DPYD expression in RKO cells via DNA methylation in the regulatory region of the DPYD promoter: a potentially important epigenetic mechanism regulating DPYD expression publication-title: Biochem Cell Biol – volume: 28 start-page: 9 issue: 1A year: 2008 end-page: 14 article-title: Cell cycle perturbation and acquired 5‐fluorouracil chemoresistance publication-title: Anticancer Res – volume: 443 start-page: 789 issue: 3 year: 2014 end-page: 795 article-title: Targeting miR‐21 enhances the sensitivity of human colon cancer HT‐29 cells to chemoradiotherapy in vitro publication-title: Biochem Biophys Res Comm – volume: 338 start-page: 222 issue: 2 year: 2015 end-page: 231 article-title: Exploiting a novel miR‐519c‐HuR‐ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer publication-title: Exp Cell Res – volume: 4 start-page: 855 issue: 5 year: 2005 end-page: 863 article-title: The multidrug resistance protein 5 (ABCC5) confers resistance to 5‐fluorouracil and transports its monophosphorylated metabolites publication-title: Mol Cancer Ther – start-page: 680892 year: 2019 article-title: Loss of SHMT2 mediates 5‐FU chemoresistance by inducing autophagy in colorectal cancer publication-title: bioRxiv – volume: 19 start-page: 58 issue: 1 year: 2011 end-page: 71 article-title: AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity publication-title: Cancer Cell – volume: 16 start-page: 874 issue: 7 year: 2018 end-page: 901 article-title: Version 2.2018, NCCN clinical practice guidelines in oncology publication-title: J Natl Compr Canc Netw – volume: 7 year: 2015 article-title: PHD1 regulates p53‐mediated colorectal cancer chemoresistance publication-title: EMBO Mol Med – volume: 101 start-page: 3089 issue: 9 year: 2004 end-page: 3094 article-title: Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5‐fluorouracil in metastatic colorectal cancer patients publication-title: Proc Natl Acad Sci USA – volume: 67 start-page: 6612 issue: 14 year: 2007 end-page: 6618 article-title: SIRT1 is significantly elevated in mouse and human prostate cancer publication-title: Cancer Res – volume: 31 start-page: 1073 issue: 9 year: 2012 end-page: 1085 article-title: P38MAPK is a major determinant of the balance between apoptosis and autophagy triggered by 5‐fluorouracil: implication in resistance publication-title: Oncogene – volume: 1759 start-page: 247 issue: 5 year: 2006 end-page: 256 article-title: Diasio RB. The role of Sp1 and Sp3 in the constitutive DPYD gene expression. Biochimica et Biophysica publication-title: Biochim Biophys Acta – volume: 35 start-page: 1807 issue: 3 year: 2016 end-page: 1815 article-title: Smad4 sensitizes colorectal cancer to 5‐fluorouracil through cell cycle arrest by inhibiting the PI3K/Akt/CDC2/survivin cascade publication-title: Oncol Rep – volume: 104 start-page: 280 year: 2017 end-page: 297 article-title: CQ synergistically sensitizes human colorectal cancer cells to SN‐38/CPT‐11 through lysosomal and mitochondrial apoptotic pathway via p53‐ROS cross‐talk publication-title: Free Radic Biol Med – volume: 18 start-page: 1457 issue: 3A year: 1998 end-page: 1463 article-title: Detection and quantitation of thymidylate synthase mRNA in human colon adenocarcinoma cell line resistant to 5‐fluorouracil by competitive PCR publication-title: Anticancer Res – volume: 381 start-page: 305 issue: 2 year: 2016 end-page: 313 article-title: Macrophages induce resistance to 5‐fluorouracil chemotherapy in colorectal cancer through the release of putrescine publication-title: Cancer Lett – volume: 6 year: 2016 article-title: miR‐139‐5p inhibits the epithelial‐mesenchymal transition and enhances the chemotherapeutic sensitivity of colorectal cancer cells by downregulating BCL2 publication-title: Sci Rep – volume: 20 start-page: 837 issue: 4 year: 2014 end-page: 846 article-title: Colon cancer cells escape 5FU chemotherapy‐induced cell death by entering stemness and quiescence associated with the c‐Yes/YAP axis publication-title: Clin Cancer Res – volume: 13 start-page: 148 issue: 2 year: 2013 end-page: 158 article-title: Novel mRNA isoforms and mutations of uridine monophosphate synthetase and 5‐fluorouracil resistance in colorectal cancer publication-title: Pharmacogenomics J – volume: 57 start-page: 1106 issue: 102–103 year: 2010 end-page: 1112 article-title: Involvement of RhoGDI2 in the resistance of colon cancer cells to 5‐fluorouracil publication-title: Hepatogastroenterology – volume: 276 start-page: 6689 issue: 22 year: 2009 end-page: 6700 article-title: MicroRNA‐143 reduces viability and increases sensitivity to 5‐fluorouracil in HCT116 human colorectal cancer cells publication-title: FEBS J – volume: 34 start-page: 594 issue: 10 year: 2004 end-page: 601 article-title: Immunohistochemical evaluation of thymidylate synthase (TS) and p16INK4a in advanced colorectal cancer: implication of TS expression in 5‐FU‐based adjuvant chemotherapy publication-title: Jpn J Clin Oncol – volume: 50 start-page: 894 issue: 3 year: 2017 end-page: 907 article-title: Participation of CCL1 in snail‐positive fibroblasts in colorectal cancer contribute to 5‐Fluorouracil/Paclitaxel chemoresistance publication-title: Can Res Treat – volume: 95 start-page: 121 year: 2016 end-page: 132 article-title: Cytoplasmic localization of Nrf2 promotes colorectal cancer with more aggressive tumors via upregulation of PSMD4 publication-title: Free Radic Biol Med – volume: 8 start-page: 8574 issue: 5 year: 2016 end-page: 8589 article-title: FOXM1 evokes 5‐fluorouracil resistance in colorectal cancer depending on ABCC10 publication-title: Oncotarget – volume: 32 start-page: 2649 issue: 21 year: 2013 end-page: 2660 article-title: Cell fusion promotes chemoresistance in metastatic colon carcinoma publication-title: Oncogene – volume: 205 start-page: 275 issue: 2 year: 2005 end-page: 292 article-title: Molecular mechanisms of drug resistance publication-title: J Pathol – ident: e_1_2_9_46_1 doi: 10.1073/pnas.1202989109 – ident: e_1_2_9_6_1 doi: 10.1002/path.1706 – ident: e_1_2_9_28_1 doi: 10.1007/s00432-017-2382-x – ident: e_1_2_9_52_1 doi: 10.1097/MD.0000000000002636 – ident: e_1_2_9_3_1 doi: 10.6004/jnccn.2018.0061 – ident: e_1_2_9_24_1 doi: 10.1016/j.biocel.2016.07.024 – ident: e_1_2_9_44_1 doi: 10.1158/1535-7163.MCT-04-0291 – ident: e_1_2_9_100_1 doi: 10.1016/j.yexcr.2017.09.023 – ident: e_1_2_9_85_1 doi: 10.1245/s10434-012-2246-1 – ident: e_1_2_9_27_1 doi: 10.3892/mmr.2016.5812 – ident: e_1_2_9_59_1 doi: 10.4143/crt.2017.356 – ident: e_1_2_9_45_1 doi: 10.18632/oncotarget.14351 – volume: 57 start-page: 1106 issue: 102 year: 2010 ident: e_1_2_9_18_1 article-title: Involvement of RhoGDI2 in the resistance of colon cancer cells to 5‐fluorouracil publication-title: Hepatogastroenterology – ident: e_1_2_9_13_1 doi: 10.1007/s101470300013 – start-page: 680892 year: 2019 ident: e_1_2_9_16_1 article-title: Loss of SHMT2 mediates 5‐FU chemoresistance by inducing autophagy in colorectal cancer publication-title: bioRxiv – ident: e_1_2_9_54_1 doi: 10.1158/0008-5472.CAN-12-4718 – ident: e_1_2_9_15_1 doi: 10.1038/tpj.2011.65 – ident: e_1_2_9_43_1 doi: 10.1007/BF03401856 – ident: e_1_2_9_84_1 doi: 10.1002/jcb.24721 – ident: e_1_2_9_69_1 doi: 10.1002/ijc.11176 – ident: e_1_2_9_39_1 doi: 10.1186/s12935-019-0812-3 – ident: e_1_2_9_88_1 doi: 10.2174/138920371604150429153309 – ident: e_1_2_9_94_1 doi: 10.1093/abbs/gmq125 – ident: e_1_2_9_96_1 doi: 10.1007/s12013-014-0062-x – ident: e_1_2_9_103_1 doi: 10.1038/srep27157 – ident: e_1_2_9_72_1 doi: 10.3389/fphar.2017.00047 – ident: e_1_2_9_37_1 doi: 10.1074/jbc.275.10.7087 – ident: e_1_2_9_47_1 doi: 10.3389/fonc.2013.00090 – volume: 28 start-page: 9 issue: 1 year: 2008 ident: e_1_2_9_40_1 article-title: Cell cycle perturbation and acquired 5‐fluorouracil chemoresistance publication-title: Anticancer Res – ident: e_1_2_9_71_1 doi: 10.1139/O07-009 – ident: e_1_2_9_32_1 doi: 10.1186/s13578-017-0145-7 – ident: e_1_2_9_38_1 doi: 10.1158/0008-5472.CAN-04-3300 – ident: e_1_2_9_42_1 doi: 10.3892/or.2015.4479 – ident: e_1_2_9_48_1 doi: 10.1016/j.cellimm.2012.06.014 – ident: e_1_2_9_2_1 doi: 10.3322/caac.21492 – ident: e_1_2_9_12_1 doi: 10.1073/pnas.0308716101 – ident: e_1_2_9_65_1 doi: 10.1038/nm730 – ident: e_1_2_9_81_1 doi: 10.1016/j.bbrc.2013.11.064 – ident: e_1_2_9_95_1 doi: 10.1016/j.freeradbiomed.2017.01.033 – ident: e_1_2_9_17_1 doi: 10.1158/1078-0432.CCR-03-0362 – ident: e_1_2_9_97_1 doi: 10.1158/0008-5472.CAN-07-0085 – ident: e_1_2_9_64_1 doi: 10.1016/j.molcel.2013.04.029 – ident: e_1_2_9_86_1 doi: 10.1111/jcmm.12742 – ident: e_1_2_9_57_1 doi: 10.18632/oncotarget.11121 – ident: e_1_2_9_66_1 doi: 10.1038/bjc.2015.101 – ident: e_1_2_9_75_1 doi: 10.1016/j.drup.2011.08.001 – ident: e_1_2_9_29_1 doi: 10.7150/jca.19142 – ident: e_1_2_9_102_1 doi: 10.1242/bio.015008 – ident: e_1_2_9_5_1 doi: 10.1055/s-0037-1602238 – ident: e_1_2_9_26_1 doi: 10.1016/j.canlet.2012.10.004 – ident: e_1_2_9_19_1 doi: 10.1038/onc.2011.321 – ident: e_1_2_9_11_1 doi: 10.3390/molecules13081551 – ident: e_1_2_9_91_1 doi: 10.3892/ol.2017.5895 – ident: e_1_2_9_50_1 doi: 10.18632/oncotarget.5541 – ident: e_1_2_9_22_1 doi: 10.1007/s13277-015-4755-6 – ident: e_1_2_9_83_1 doi: 10.1038/srep42226 – ident: e_1_2_9_79_1 doi: 10.1016/j.ejps.2005.10.010 – ident: e_1_2_9_101_1 doi: 10.1111/j.1742-4658.2009.07383.x – ident: e_1_2_9_9_1 doi: 10.1093/jjco/hyh113 – ident: e_1_2_9_33_1 doi: 10.1038/bjc.2017.38 – ident: e_1_2_9_8_1 doi: 10.1080/1120009X.1990.11738999 – ident: e_1_2_9_76_1 doi: 10.1593/neo.04307 – ident: e_1_2_9_55_1 doi: 10.1038/cddis.2014.10 – ident: e_1_2_9_20_1 doi: 10.1016/j.phymed.2015.03.010 – ident: e_1_2_9_58_1 doi: 10.1016/j.ccr.2010.10.031 – ident: e_1_2_9_34_1 doi: 10.15252/emmm.201505492 – ident: e_1_2_9_92_1 doi: 10.1002/iub.1361 – ident: e_1_2_9_56_1 doi: 10.1016/j.bbamcr.2012.08.017 – volume: 19 start-page: 383 issue: 2 year: 2001 ident: e_1_2_9_10_1 article-title: Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer publication-title: Int J Oncol – ident: e_1_2_9_80_1 doi: 10.1084/jem.20131195 – ident: e_1_2_9_62_1 doi: 10.1007/s12032-015-0703-y – ident: e_1_2_9_82_1 doi: 10.1074/jbc.M412105200 – volume: 4 start-page: 1243 issue: 5 year: 1998 ident: e_1_2_9_104_1 article-title: p53 point mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival publication-title: Clin Cancer Res – ident: e_1_2_9_25_1 doi: 10.2174/157436206777012048 – volume: 62 start-page: 6674 issue: 22 year: 2002 ident: e_1_2_9_36_1 article-title: The bioenergetic signature of cancer: a marker of tumor progression publication-title: Cancer Res – ident: e_1_2_9_87_1 doi: 10.1038/cddis.2015.200 – ident: e_1_2_9_30_1 doi: 10.1016/j.freeradbiomed.2016.03.014 – ident: e_1_2_9_98_1 doi: 10.3892/mmr.2014.2726 – ident: e_1_2_9_41_1 doi: 10.1158/1078-0432.CCR-13-1854 – ident: e_1_2_9_35_1 doi: 10.1093/glycob/11.7.587 – ident: e_1_2_9_21_1 doi: 10.1186/s12935-017-0483-x – ident: e_1_2_9_51_1 doi: 10.1371/journal.pone.0015366 – ident: e_1_2_9_99_1 doi: 10.1016/j.yexcr.2015.09.011 – ident: e_1_2_9_31_1 doi: 10.1038/onc.2012.268 – ident: e_1_2_9_63_1 doi: 10.4161/cc.26034 – ident: e_1_2_9_60_1 doi: 10.1016/S0002-9440(10)62570-9 – ident: e_1_2_9_23_1 doi: 10.18632/oncotarget.7895 – ident: e_1_2_9_53_1 doi: 10.1016/j.canlet.2016.08.004 – ident: e_1_2_9_73_1 doi: 10.1101/gad.276568.115 – ident: e_1_2_9_70_1 doi: 10.1016/j.bbaexp.2006.05.001 – ident: e_1_2_9_4_1 doi: 10.18632/oncotarget.24338 – volume: 18 start-page: 1457 issue: 3 year: 1998 ident: e_1_2_9_7_1 article-title: Detection and quantitation of thymidylate synthase mRNA in human colon adenocarcinoma cell line resistant to 5‐fluorouracil by competitive PCR publication-title: Anticancer Res – ident: e_1_2_9_49_1 doi: 10.3892/ijo.2014.2696 – ident: e_1_2_9_68_1 doi: 10.1038/tpj.2016.91 – ident: e_1_2_9_90_1 doi: 10.1158/1535-7163.MCT-10-0061 – ident: e_1_2_9_93_1 doi: 10.1158/1535-7163.MCT-13-0878 – ident: e_1_2_9_61_1 doi: 10.1155/2016/5874127 – ident: e_1_2_9_77_1 doi: 10.1002/ijc.24403 – volume: 23 start-page: 121 issue: 1 year: 2010 ident: e_1_2_9_78_1 article-title: 5‐Fluorouracil and oxaliplatin modify the expression profiles of microRNAs in human colon cancer cells in vitro publication-title: Oncol Rep – ident: e_1_2_9_105_1 doi: 10.1016/0006-2952(95)00067-A – ident: e_1_2_9_106_1 doi: 10.1016/j.canlet.2014.10.029 – ident: e_1_2_9_67_1 doi: 10.1056/NEJMoa1500596 – ident: e_1_2_9_74_1 doi: 10.3892/ol.2015.3468 – ident: e_1_2_9_14_1 doi: 10.1158/1535-7163.MCT-08-0716 – ident: e_1_2_9_89_1 doi: 10.1158/0008-5472.CAN-08-1569 |
SSID | ssj0036494 |
Score | 2.6860728 |
SecondaryResourceType | review_article |
Snippet | Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The... |
SourceID | pubmedcentral proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3142 |
SubjectTerms | 5-Fluorouracil Apoptosis Autophagy Cancer Cancer therapies Cell cycle Chemotherapy Colorectal cancer Colorectal carcinoma Cytotoxicity Disease resistance Enzymes Gene amplification Gene expression Glucose metabolism Kinases Mesenchyme Metabolism Metabolites Metastasis miRNA Mutation Oxidative metabolism Oxidative stress Phagocytosis Public health resistance mechanism Review Surgery Tumors |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhh5BLf9KUbpsGpfTQi8OuJMur9hRClhBID2kDOQSMRpbokl07rHcp7amP0Gfsk3RG_kk2tFB6M2gsW9KM9I00-oaxt-AKIQNAYpVBByVQNkCZDZPCh_HYCROCi1G-H_XppTq7Sq822IfuLkzDD9FvuJFlxPmaDNxCfc_IKSXYSKWS5l-K1SJAdNFTR0mtTJPQVmWJGUrRsgpRFE__5vpadAcwH4ZH3oetcd2ZPGbX3R834SY3h6slHLrvD8gc_7NJT9ijFo_yo0aBnrINX-6wrfP2xP0Zu0l__fg5ma2qBUpaN51x9M8Jc6Ky8Lmne8PTel7zacmJ_5rmT6zOUfHiPZ8sqjl3BNBJFzilP_5qv9V8WXFsEKoYLpz8trmr4Otddjk5-Xx8mrQJGhKHpiwSb8GmEnA4idnOFUZZCGOnJM4aPoURAIyc0SENqXEgnCkILRUjRIWZ0ZDK52yzrEr_gnEJ4PUY0HkqQLkAVgjjbKat9E7qYjhg77qhyl3LXk5JNGZ558Vg5-Wx8wbsTS9621B2_ElorxvvvLXaOheIznRESQN20BdjZ9Ahii19tSIZdEmJNxGryNb0pP8YMXavl5TTL5G5O1MavXaNjYlq8Pffy4-PPsWHl_8u-optC9oMiAFwe2xzuVj514iYlrAfTeM3WEMXtw priority: 102 providerName: Wiley-Blackwell |
Title | 5‐Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14532 https://www.proquest.com/docview/2439600081 https://www.proquest.com/docview/2414003422 https://pubmed.ncbi.nlm.nih.gov/PMC7469786 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RixMxEA7eHYggoqdi9SxRfPBlsU2y2cYXOY8rh-BxnB70bclkEyy2u7XbIr75E_yN_hJnsmnPivqyLCS7m81MMvMlk28YewGuEjIAZFYZBCiBsgHKYpBVPoxGTpgQXIzyPddnV-rdJJ-kBbc2hVVu5sQ4UVeNozXyVwItp44W7M3iS0ZZo2h3NaXQ2GMHRF1GWl1MtoBLamW6pLaqyMxAisQsRJE8lFBsqHIpdu3RtZP5Z4jk765rtD3ju-xOchr5cSfle-yGrw_ZzfdpW_yQ3e4W33h3pug--5z__P5jPFs3S3zSuumMI6gmRxElzOeeDvtO23nLpzUn0mqa9PD1joqXr_l42cy5I6-aBMgpZ_FX-63lq4Zjw1Ev0NrxRXfAwLcP2NX49OPJWZayKmQOx5_IvAWbS0AZEB2dq4yyEEZOSRzqPochAAyd0SEPuXEgnKnIxamG6MoVRkMuH7L9uqn9I8YlgNcjQMRTgXIBrBDG2UJb6Z3U1aDHXm76tnSJcpwyX8zKDfRAMZRRDD32fFt10fFs_K3S0UZAZRpqbXmtGD32bFuMnUE7H7b2zZrqII4kskN8RbEj2O3HiGZ7t6Sefop024XSCLU1_kxUgX83rzw5_hBvHv-_nU_YLUGoPUaqHbH91XLtn6Jrs4I-2xPqoh-1uM8O3p6eX1z24zIBXS_FLwCOAQY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamIQESQmOA6BhgEEjcRDS249STEJoGVcd-btik3gXbsUVFm3RNq2l3PMKehIfiSXaOk3QUAXe7q2Q3dX2--JzPPj4fIa-NzRn3xkRaKCAoHtUAedqNcud7PcuU9zZk-R7Lwan4PEyGa-RnexcG0yrbNTEs1HlpcY_8HQPPKYMH-zA9i1A1Ck9XWwmNGhYH7uIcKFv1fv8j2PcNY_1PJ3uDqFEViCzgj0VOG51wA2PAcmw2V0Ib37MCiH3sEhMbY2KrpE98oqxhVuXo4vMYQplUSYMqEbDk3wLH20Wylw6XBI9LoWoRXZFGqstZU8kIM4dQwCwWCWer_u86qP0zJfP3UDn4uv4Gud8EqXS3RtUDsuaKTXL7qDmG3yT36s0-Wt9heki-J79-XPbHi3IG39R2NKZA4jEwBUTRicPLxaNqUtFRQbFINi6y8HiLzbMd2p-VE2oxikfAUNRIPtcXFZ2XFAYOOATvSqf1hQZXPSKnNzLfj8l6URbuCaHcGCd7BhhWboT1RjOmrE6l5s5ymXc75G07t5ltSpyj0sY4a6kOmCELZuiQV8uu07qux986bbcGyppXu8qugdghL5fNMBl40qILVy6wD_BWLK4Ij0hXDLv8MSzrvdpSjL6F8t6pkEDtJfyZAIF_Dy_b2_0SPmz9f5wvyJ3BydFhdrh_fPCU3GW4YxCy5LbJ-ny2cM8grJqb5wHLlHy96ZfnCmUOOdo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9NnTQhIcQGiMIYBoHES7TGSZwaCU1jW7QxqCZg0t4y27FFRZuUptW0Nz4Cn2cfh0_CXf50FAFve4tkx3F8P_vu7PP9AF5ok_HAae2pUKKD4ogNMIh7XmZdv2-4dM5UUb4DcXgavjuLzlbgqr0LQ2GV7ZpYLdRZYWiPfJuj5hSVBtt2TVjEyX6yM_nmEYMUnbS2dBo1RI7t5QW6b-Wbo32U9UvOk4PPe4dewzDgGcQi96zSKgo09odSs5lMhkq7vgnRyfdtpH2ttW-kcJGLpNHcyIzUfeajWRNLoYkxApf_1Zi8og6svj0YnHxs9UAgQllT6oaxJ3sBb_IaURwR0Zn5YRTwZW14beL-GaD5u-Fcab7kLtxpTFa2W2NsHVZsvgFrH5pD-Q24XW_9sfpG0z34Gv38_iMZzYspvqnMcMTQpSczFfHFxpauGg_LccmGOaOU2bTkYvOGiqevWTItxsyQTU_wYcSYfKEuSzYrGHYcUYm6lk3q6w22vA-nNzLiD6CTF7l9CCzQ2oq-Rn8r06FxWnEujYqFCqwJRNbrwqt2bFPTJDwn3o1R2jo-KIa0EkMXni-qTuosH3-rtNkKKG0meplew7ILzxbFOBh07qJyW8ypDnqxlGoRm4iXBLv4GCX5Xi7Jh1-qZN9xKNDRF_gzFQT-3b10b_dT9fDo__18Cms4cdL3R4Pjx3CL0_ZBFTK3CZ3ZdG6foI0101sNmBmc3_T8-QUKCD91 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=5-Fluorouracil+resistance+mechanisms+in+colorectal+cancer%3A+From+classical+pathways+to+promising+processes&rft.jtitle=Cancer+science&rft.au=Blondy%2C+Sabrina&rft.au=David%2C+Valentin&rft.au=Verdier%2C+Mireille&rft.au=Mathonnet%2C+Muriel&rft.date=2020-09-01&rft.issn=1349-7006&rft.eissn=1349-7006&rft.volume=111&rft.issue=9&rft.spage=3142&rft_id=info:doi/10.1111%2Fcas.14532&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon |