Regression‐based machine‐learning approaches to predict task activation using resting‐state fMRI

Resting‐state fMRI has shown the ability to predict task activation on an individual basis by using a general linear model (GLM) to map resting‐state network features to activation z‐scores. The question remains whether the relatively simplistic GLM is the best approach to accomplish this prediction...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 41; no. 3; pp. 815 - 826
Main Authors Cohen, Alexander D., Chen, Ziyi, Parker Jones, Oiwi, Niu, Chen, Wang, Yang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.02.2020
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.24841

Cover

Loading…
Abstract Resting‐state fMRI has shown the ability to predict task activation on an individual basis by using a general linear model (GLM) to map resting‐state network features to activation z‐scores. The question remains whether the relatively simplistic GLM is the best approach to accomplish this prediction. In this study, several regression‐based machine‐learning approaches were compared, including GLMs, feed‐forward neural networks, and random forest bootstrap aggregation (bagging). Resting‐state and task data from 350 Human Connectome Project subjects were analyzed. First, the effect of the number of training subjects on the prediction accuracy was evaluated. In addition, the prediction accuracy and Dice coefficient were compared across models. Prediction accuracy increased with the training number up to 200 subjects; however, an elbow in the prediction curve occurred around 30–40 training subjects. All models performed well with correlation matrices, which displayed correlation between actual and predicted task activation for all subjects, exhibiting a strong diagonal trend for all tasks. Overall, the neural network and random forest bagging techniques outperformed the GLM. These approaches, however, require additional computing power and processing time. These results show that, while the GLM performs well, resting‐state fMRI prediction of task activation could benefit from more complex machine learning approaches.
AbstractList Resting‐state fMRI has shown the ability to predict task activation on an individual basis by using a general linear model (GLM) to map resting‐state network features to activation z ‐scores. The question remains whether the relatively simplistic GLM is the best approach to accomplish this prediction. In this study, several regression‐based machine‐learning approaches were compared, including GLMs, feed‐forward neural networks, and random forest bootstrap aggregation (bagging). Resting‐state and task data from 350 Human Connectome Project subjects were analyzed. First, the effect of the number of training subjects on the prediction accuracy was evaluated. In addition, the prediction accuracy and Dice coefficient were compared across models. Prediction accuracy increased with the training number up to 200 subjects; however, an elbow in the prediction curve occurred around 30–40 training subjects. All models performed well with correlation matrices, which displayed correlation between actual and predicted task activation for all subjects, exhibiting a strong diagonal trend for all tasks. Overall, the neural network and random forest bagging techniques outperformed the GLM. These approaches, however, require additional computing power and processing time. These results show that, while the GLM performs well, resting‐state fMRI prediction of task activation could benefit from more complex machine learning approaches.
Resting-state fMRI has shown the ability to predict task activation on an individual basis by using a general linear model (GLM) to map resting-state network features to activation z-scores. The question remains whether the relatively simplistic GLM is the best approach to accomplish this prediction. In this study, several regression-based machine-learning approaches were compared, including GLMs, feed-forward neural networks, and random forest bootstrap aggregation (bagging). Resting-state and task data from 350 Human Connectome Project subjects were analyzed. First, the effect of the number of training subjects on the prediction accuracy was evaluated. In addition, the prediction accuracy and Dice coefficient were compared across models. Prediction accuracy increased with the training number up to 200 subjects; however, an elbow in the prediction curve occurred around 30-40 training subjects. All models performed well with correlation matrices, which displayed correlation between actual and predicted task activation for all subjects, exhibiting a strong diagonal trend for all tasks. Overall, the neural network and random forest bagging techniques outperformed the GLM. These approaches, however, require additional computing power and processing time. These results show that, while the GLM performs well, resting-state fMRI prediction of task activation could benefit from more complex machine learning approaches.
Resting-state fMRI has shown the ability to predict task activation on an individual basis by using a general linear model (GLM) to map resting-state network features to activation z-scores. The question remains whether the relatively simplistic GLM is the best approach to accomplish this prediction. In this study, several regression-based machine-learning approaches were compared, including GLMs, feed-forward neural networks, and random forest bootstrap aggregation (bagging). Resting-state and task data from 350 Human Connectome Project subjects were analyzed. First, the effect of the number of training subjects on the prediction accuracy was evaluated. In addition, the prediction accuracy and Dice coefficient were compared across models. Prediction accuracy increased with the training number up to 200 subjects; however, an elbow in the prediction curve occurred around 30-40 training subjects. All models performed well with correlation matrices, which displayed correlation between actual and predicted task activation for all subjects, exhibiting a strong diagonal trend for all tasks. Overall, the neural network and random forest bagging techniques outperformed the GLM. These approaches, however, require additional computing power and processing time. These results show that, while the GLM performs well, resting-state fMRI prediction of task activation could benefit from more complex machine learning approaches.Resting-state fMRI has shown the ability to predict task activation on an individual basis by using a general linear model (GLM) to map resting-state network features to activation z-scores. The question remains whether the relatively simplistic GLM is the best approach to accomplish this prediction. In this study, several regression-based machine-learning approaches were compared, including GLMs, feed-forward neural networks, and random forest bootstrap aggregation (bagging). Resting-state and task data from 350 Human Connectome Project subjects were analyzed. First, the effect of the number of training subjects on the prediction accuracy was evaluated. In addition, the prediction accuracy and Dice coefficient were compared across models. Prediction accuracy increased with the training number up to 200 subjects; however, an elbow in the prediction curve occurred around 30-40 training subjects. All models performed well with correlation matrices, which displayed correlation between actual and predicted task activation for all subjects, exhibiting a strong diagonal trend for all tasks. Overall, the neural network and random forest bagging techniques outperformed the GLM. These approaches, however, require additional computing power and processing time. These results show that, while the GLM performs well, resting-state fMRI prediction of task activation could benefit from more complex machine learning approaches.
Audience Academic
Author Wang, Yang
Niu, Chen
Chen, Ziyi
Parker Jones, Oiwi
Cohen, Alexander D.
AuthorAffiliation 3 Department of Medical Imaging First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
1 Department of Radiology Medical College of Wisconsin Milwaukee Wisconsin
2 John Radcliffe Hospital, FMRIB Centre University of Oxford Headington Oxford
AuthorAffiliation_xml – name: 2 John Radcliffe Hospital, FMRIB Centre University of Oxford Headington Oxford
– name: 3 Department of Medical Imaging First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi China
– name: 1 Department of Radiology Medical College of Wisconsin Milwaukee Wisconsin
Author_xml – sequence: 1
  givenname: Alexander D.
  orcidid: 0000-0002-8312-4046
  surname: Cohen
  fullname: Cohen, Alexander D.
  organization: Medical College of Wisconsin
– sequence: 2
  givenname: Ziyi
  orcidid: 0000-0001-6450-6957
  surname: Chen
  fullname: Chen, Ziyi
  organization: Medical College of Wisconsin
– sequence: 3
  givenname: Oiwi
  surname: Parker Jones
  fullname: Parker Jones, Oiwi
  organization: University of Oxford
– sequence: 4
  givenname: Chen
  orcidid: 0000-0003-0567-3143
  surname: Niu
  fullname: Niu, Chen
  organization: First Affiliated Hospital of Xi'an Jiaotong University
– sequence: 5
  givenname: Yang
  orcidid: 0000-0002-6319-117X
  surname: Wang
  fullname: Wang, Yang
  email: yangwang@mcw.edu
  organization: Medical College of Wisconsin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31638304$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAQxy1URNuFAy-AInGBQ7b-SOLkgtRWQCu1QqrgbDnOeNclsYOdFPXGI_CMPAmz3VK1FSAfxh7_5u8Zz-yTHR88EPKS0SWjlB-s22HJi7pgT8geo43MKWvEzmZflXlTSLZL9lO6pJSxkrJnZFewStSCFnvEXsAqQkou-F8_frY6QZcN2qydBzz3oKN3fpXpcYwB3ZCyKWRjhM6ZKZt0-pppM7krPaFANqcNi3ITWgxPk54gs-cXp8_JU6v7BC9u7YJ8-fD-8_FJfvbp4-nx4VluSkZZrm3dYVot1JZ2dWEpMOBd01hetFTqStDK1IxbrYuya0pZdaZugHLgpTFVa8WCvNvqjnM7QGfAT1H3aoxu0PFaBe3Uwxvv1moVrpTklWzwVxbkza1ADN9mrEQNLhnoe-0hzElxQaUUshINoq8foZdhjh7LQ6pgTUVFcY9a6R6U8zbgu2Yjqg4lNogLWXCkln-hcHUwOIPdtg79DwJe3S_0rsI_nUXg7RYwMaQUwd4hjKrN1CicGnUzNcgePGKNm25ailm4_n8R3zGv639Lq5Oj823Eb1ED1gI
CitedBy_id crossref_primary_10_1523_JNEUROSCI_0856_23_2024
crossref_primary_10_1002_hbm_26683
crossref_primary_10_1038_s41598_024_62098_9
crossref_primary_10_1016_j_neuroimage_2023_120213
crossref_primary_10_1016_j_neuroimage_2022_119359
crossref_primary_10_1177_10738584221130974
crossref_primary_10_1007_s00330_021_07975_x
crossref_primary_10_1007_s11682_019_00239_9
crossref_primary_10_1016_j_neuroimage_2025_121096
crossref_primary_10_1016_j_neuroimage_2022_119418
crossref_primary_10_1016_j_neuroscience_2023_08_017
crossref_primary_10_1007_s00429_021_02388_4
crossref_primary_10_1162_netn_a_00383
crossref_primary_10_3389_fnhum_2022_875201
crossref_primary_10_1109_ACCESS_2024_3387702
crossref_primary_10_3389_fnins_2022_1038514
crossref_primary_10_1016_j_neuroimage_2021_117893
crossref_primary_10_1016_j_bbr_2025_115443
crossref_primary_10_1089_brain_2020_0878
crossref_primary_10_1038_s41598_021_82681_8
crossref_primary_10_1162_imag_a_00440
crossref_primary_10_3389_fnins_2021_742102
crossref_primary_10_1007_s00330_021_07825_w
Cites_doi 10.1073/pnas.0811879106
10.1016/j.media.2016.10.004
10.1109/IJCNN.1990.137819
10.1016/j.neuroimage.2013.05.033
10.1007/BF00058655
10.1016/j.neuroimage.2014.03.034
10.1023/A:1010933404324
10.1201/9781315139470
10.1016/j.neuroimage.2017.04.034
10.3389/fninf.2017.00061
10.1016/j.jneumeth.2016.10.007
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuroimage.2013.05.039
10.1126/science.aad8127
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2016.04.003
10.1109/TMI.2018.2863670
10.1016/j.nicl.2016.12.028
10.1002/hbm.23490
10.1016/j.neuroimage.2013.11.046
10.1109/ISBI.2017.7950500
ContentType Journal Article
Copyright 2019 The Authors. published by Wiley Periodicals, Inc.
2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
COPYRIGHT 2019 John Wiley & Sons, Inc.
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by Wiley Periodicals, Inc.
– notice: 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
– notice: COPYRIGHT 2019 John Wiley & Sons, Inc.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.24841
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

Technology Research Database
MEDLINE - Academic
CrossRef


PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Cohen et al
EISSN 1097-0193
EndPage 826
ExternalDocumentID PMC7267916
A710623742
31638304
10_1002_hbm_24841
HBM24841
Genre article
Journal Article
GrantInformation_xml – fundername: Daniel M. Soref Charitable Trust
– fundername: Medical College of Wisconsin
– fundername: ;
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
CITATION
NPM
BFHJK
EJD
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5101-af8d304be8f0d84f0e1e2d99f24b07a6306c812faa45d9576dc89e02e25cc6bf3
IEDL.DBID 24P
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:07:04 EDT 2025
Fri Jul 11 15:13:42 EDT 2025
Sat Jul 26 02:23:29 EDT 2025
Tue Jun 17 21:37:38 EDT 2025
Tue Jun 10 20:44:07 EDT 2025
Wed Feb 19 02:31:42 EST 2025
Tue Jul 01 01:10:56 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
Wed Jan 22 16:37:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords fMRI
resting state
random-forest bootstrap aggregation
machine learning
neural networks
Language English
License Attribution
2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5101-af8d304be8f0d84f0e1e2d99f24b07a6306c812faa45d9576dc89e02e25cc6bf3
Notes Funding information
Medical College of Wisconsin; Daniel M. Soref Charitable Trust
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Medical College of Wisconsin; Daniel M. Soref Charitable Trust
ORCID 0000-0003-0567-3143
0000-0002-6319-117X
0000-0001-6450-6957
0000-0002-8312-4046
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24841
PMID 31638304
PQID 2341960349
PQPubID 996345
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7267916
proquest_miscellaneous_2307737639
proquest_journals_2341960349
gale_infotracmisc_A710623742
gale_infotracacademiconefile_A710623742
pubmed_primary_31638304
crossref_primary_10_1002_hbm_24841
crossref_citationtrail_10_1002_hbm_24841
wiley_primary_10_1002_hbm_24841_HBM24841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 15, 2020
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: February 15, 2020
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2014; 90
1990
2017; 36
2017; 38
2017; 11
2017; 13
2013; 80
2019; 38
2014; 15
2018
1993a
2017
2016; 352
2017; 155
1996; 24
2001; 45
2014; 95
2017; 145
2016; 274
2009; 106
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
MATLAB (e_1_2_7_12_1) 2018
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_25_1
e_1_2_7_13_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
Srivastava N. (e_1_2_7_22_1) 2014; 15
References_xml – volume: 106
  start-page: 7209
  issue: 17
  year: 2009
  end-page: 7214
  article-title: Distinct patterns of brain activity in young carriers of the APOE‐epsilon4 allele
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 145
  start-page: 314
  year: 2017
  end-page: 328
  article-title: Task‐specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks
  publication-title: NeuroImage
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  article-title: Dropout: A simple way to prevent neural networks from Overfitting
  publication-title: Journal of Machine Learning Research
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  article-title: Bagging predictors
  publication-title: Machine Learning
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  article-title: Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers
  publication-title: NeuroImage
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  article-title: Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Medical Image Analysis
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  article-title: ICA‐based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: NeuroImage
– volume: 11
  start-page: 61
  year: 2017
  article-title: Resting state fMRI functional connectivity‐based classification using a convolutional neural network architecture
  publication-title: Frontiers in Neuroinformatics
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 13
  start-page: 378
  year: 2017
  end-page: 385
  article-title: Resting connectivity predicts task activation in pre‐surgical populations
  publication-title: Neuroimage Clinical
– volume: 80
  start-page: 169
  issue: 0
  year: 2013
  end-page: 189
  article-title: Function in the human connectome: Task‐fMRI and individual differences in behavior
  publication-title: NeuroImage
– volume: 80
  start-page: 105
  issue: 0
  year: 2013
  end-page: 124
  article-title: The minimal preprocessing pipelines for the human Connectome project
  publication-title: NeuroImage
– volume: 80
  start-page: 144
  issue: 0
  year: 2013
  end-page: 168
  article-title: Resting‐state fMRI in the human connectome project
  publication-title: NeuroImage
– volume: 38
  start-page: 280
  issue: 1
  year: 2019
  end-page: 290
  article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction
  publication-title: IEEE Transactions on Medical Imaging
– year: 2017
– volume: 274
  start-page: 146
  year: 2016
  end-page: 153
  article-title: Fast and robust segmentation of the striatum using deep convolutional neural networks
  publication-title: Journal of Neuroscience Methods
– year: 2018
– year: 1990
– volume: 352
  start-page: 216
  issue: 6282
  year: 2016
  end-page: 220
  article-title: Task‐free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
– volume: 38
  start-page: 1692
  issue: 3
  year: 2017
  end-page: 1701
  article-title: Impact of correction factors in human brain lesion‐behavior inference
  publication-title: Human Brain Mapping
– volume: 80
  start-page: 62
  issue: 0
  year: 2013
  end-page: 79
  article-title: The WU‐Minn human connectome project: An overview
  publication-title: NeuroImage
– volume: 155
  start-page: 159
  year: 2017
  end-page: 168
  article-title: Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach
  publication-title: NeuroImage
– year: 1993a
– ident: e_1_2_7_7_1
  doi: 10.1073/pnas.0811879106
– ident: e_1_2_7_11_1
  doi: 10.1016/j.media.2016.10.004
– ident: e_1_2_7_14_1
  doi: 10.1109/IJCNN.1990.137819
– ident: e_1_2_7_2_1
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: e_1_2_7_3_1
  doi: 10.1007/BF00058655
– ident: e_1_2_7_9_1
  doi: 10.1016/j.neuroimage.2014.03.034
– volume-title: MATLAB R2018a
  year: 2018
  ident: e_1_2_7_12_1
– ident: e_1_2_7_4_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_7_5_1
  doi: 10.1201/9781315139470
– ident: e_1_2_7_24_1
  doi: 10.1016/j.neuroimage.2017.04.034
– ident: e_1_2_7_13_1
  doi: 10.3389/fninf.2017.00061
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jneumeth.2016.10.007
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2013.05.039
– ident: e_1_2_7_23_1
  doi: 10.1126/science.aad8127
– ident: e_1_2_7_25_1
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_2_7_10_1
  doi: 10.1016/j.neuroimage.2016.04.003
– ident: e_1_2_7_17_1
  doi: 10.1109/TMI.2018.2863670
– ident: e_1_2_7_18_1
– ident: e_1_2_7_15_1
  doi: 10.1016/j.nicl.2016.12.028
– ident: e_1_2_7_21_1
  doi: 10.1002/hbm.23490
– ident: e_1_2_7_19_1
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_2_7_22_1
  article-title: Dropout: A simple way to prevent neural networks from Overfitting
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_7_16_1
  doi: 10.1109/ISBI.2017.7950500
SSID ssj0011501
Score 2.429503
Snippet Resting‐state fMRI has shown the ability to predict task activation on an individual basis by using a general linear model (GLM) to map resting‐state network...
Resting-state fMRI has shown the ability to predict task activation on an individual basis by using a general linear model (GLM) to map resting-state network...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 815
SubjectTerms Accuracy
Activation
Bagging
Comparative analysis
Correlation analysis
Elbow
fMRI
Functional magnetic resonance imaging
Learning algorithms
Machine learning
Magnetic resonance imaging
Model accuracy
Neural networks
Predictions
random‐forest bootstrap aggregation
Regression analysis
resting state
Training
Title Regression‐based machine‐learning approaches to predict task activation using resting‐state fMRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24841
https://www.ncbi.nlm.nih.gov/pubmed/31638304
https://www.proquest.com/docview/2341960349
https://www.proquest.com/docview/2307737639
https://pubmed.ncbi.nlm.nih.gov/PMC7267916
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxRBEG5CBPEiMfExMYZWRL2MGXse3Y2njRhWYUUWA7k1_dxIsrMhOzl48yf4G_0lVvU8kgkKXmZn6eph6Krqrqqp-oqQl4x5YZgLqefBpIU1OpWOy7SSohROaOkcBvRnX6rpcfH5pDzZIO_7WpgWH2IIuKFmxP0aFVyb9cE1aOipWb5lhcCi9TtYWotCzoqvwycEsHSitwVnbCphC-5hhTJ2MEwdHUa3t-QbZ9LtfMmbdmw8iI62yP3OgqSTluUPyIavt8nOpAbvefmDvqIxpzMGy7fJ3Vn36XyHhLlftDmv9e-fv_DwcnQZMyk9_O-aRyxojzHu17RZ0YtLnN_QRq_PKJZAtAFcitnyC4ptPeAXpseyJBpm808PyfHRx28fpmnXZCG1qI6pDsLlWWG8CJkTRcj8O8-clIEVJuO6ApfCghEQtC5KJ8E7cVZInzHPSmsrE_JHZLNe1f4JoeCMVTzoMmQ5-EEySJPbvAIhcF4g9F1C3vSrrWyHQI6NMM5Vi53MFDBGRcYk5MVAetHCbvyN6DWyTKEqwnOs7ioK4G0Q1EpNwHoC6w6c_4TsjShBhex4uGe66lR4rRgi3VUI35OQ58MwzsS0tNqvrpAm4xy3aKB53MrI8Lo5WrqwsgnhI-kZCBDYezxSfz-NAN-cVRzMdlivKGf_XgE1PZzFm93_J31K7jGMGWBTm3KPbDaXV_4ZGFaN2Y8KtB_DEnidsz_6fCQw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQIuCFoegQIGIeCSNjgP2xKXBVFtoalQ1Uq9WYkfWwSbrbrpgRs_gd_IL2HGyYamAolTEnkcRR6P55GZbwBecO5kza2PnfB1nJm6ipUVKi6UzKWVlbKWAvrlQTE9zj6e5Cdr8HZVC9PhQwwBN5KMcF6TgFNAeucPauhpPd_mmaSq9WtZwQU1buDZ5-EfApo6wd1CJRsrPINXuEIJ3xmmjrTR1TP5klK6mjB52ZANmmj3NtzqTUg26Xh-B9ZcswGbkwbd5_l39pKFpM4QLd-A62X_73wT_KGbdUmvza8fP0l7WTYPqZQOn_vuETO2Ahl3S9Yu2Nk5zW9ZWy2_MqqB6CK4jNLlZ4z6euAVp4e6JObLw727cLz74ej9NO67LMSG5DGuvLRpktVO-sTKzCfujeNWKc-zOhFVgT6FQSvAV1WWW4XuiTVSuYQ7nhtT1D69B-vNonEPgKE3Vghf5T5J0RFSXtWpSQvcBdZJwr6L4PVqtbXpIcipE8Y33YEnc42M0YExETwfSM863I2_Eb0ilmmSRXyPqfqSAvwaQrXSEzSf0LxD7z-CrRElypAZD6-YrnsZXmpOUHcF4fdE8GwYppmUl9a4xQXRJELQGY0097s9MnxuSqYurmwEYrR7BgJC9h6PNF9OA8K34IVAux3XK-yzf6-Anr4rw83D_yd9CjemR-W-3t87-PQIbnIKIFCHm3wL1tvzC_cYray2fhKE6Tft8SW-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRaq4IGh5BEoxCAGX0NR52eppeay2wFZVRaXerMSPLYLNrrrpgRs_gd_YX9IZ50FTgcRps_I4ijwz9sx45huAl5xbUXLjQpu7Mkx0WYTS5DLMpEiFEYU0hgL608NscpJ8Ok1P12C_q4Vp8CH6gBtpht-vScGXxu3-AQ09K-dveSKoaP0WXfaRePPkqL9CQEvHe1t4xoYSt-AOVijiu_3UwWF0c0u-dibdzJe8bsf6g2h8F-60FiQbNSy_B2u22oStUYXe8_wne8V8TqcPlm_CxrS9Ot8Cd2xnTc5rdfnrNx1ehs19JqXF_23ziBnrMMbtitULtjyn-TWri9V3RiUQTQCXUbb8jFFbD_zF6b4sibnp8cF9OBl__Pp-ErZNFkJN6hgWTpg4SkorXGRE4iK7Z7mR0vGkjPIiQ5dCoxHgiiJJjUTvxGghbcQtT7XOShc_gPVqUdlHwNAZy3JXpC6K0Q-STpaxjjMUAmMFQd8F8KZbbaVbBHJqhPFDNdjJXCFjlGdMAC960mUDu_E3otfEMkWqiO_RRVtRgF9DoFZqhNYTWnfo_AewPaBEFdLD4Y7pqlXhleKEdJcRfE8Az_thmklpaZVdXBBNlOe0RSPNw0ZG-s-NydLFlQ0gH0hPT0DA3sOR6tuZB_jOeZaj2Y7r5eXs3yugJu-m_uHx_5M-g42jD2P15eDw8xO4zSl8QP1t0m1Yr88v7FO0sepyx-vSFR3HJPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regression-based+machine-learning+approaches+to+predict+task+activation+using+resting-state+fMRI&rft.jtitle=Human+brain+mapping&rft.au=Cohen%2C+Alexander+D&rft.au=Chen%2C+Ziyi&rft.au=Parker+Jones%2C+Oiwi&rft.au=Niu%2C+Chen&rft.date=2020-02-15&rft.eissn=1097-0193&rft.volume=41&rft.issue=3&rft.spage=815&rft_id=info:doi/10.1002%2Fhbm.24841&rft_id=info%3Apmid%2F31638304&rft.externalDocID=31638304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon