Global motion detection and censoring in high‐density diffuse optical tomography
Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography (HD‐DOT) with hundreds to thousands of source‐detector pair measurements, motion detection methods are underdeveloped relative to both functional m...
Saved in:
Published in | Human brain mapping Vol. 41; no. 14; pp. 4093 - 4112 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography (HD‐DOT) with hundreds to thousands of source‐detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near‐infrared spectroscopy (fNIRS). This limitation restricts the application of HD‐DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi‐channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion—with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD‐based motion censoring on both hearing words task and resting state HD‐DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation‐based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD‐DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data.
Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography (HD‐DOT) with hundreds to thousands of source‐detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near‐infrared spectroscopy (fNIRS). Here, we evaluated a new motion detection method for multi‐channel optical imaging systems that leverages spatial patterns across channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index and showed that it strongly correlates with external measures of motion. |
---|---|
AbstractList | Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography (HD‐DOT) with hundreds to thousands of source‐detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near‐infrared spectroscopy (fNIRS). This limitation restricts the application of HD‐DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi‐channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion—with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD‐based motion censoring on both hearing words task and resting state HD‐DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation‐based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD‐DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data.
Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography (HD‐DOT) with hundreds to thousands of source‐detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near‐infrared spectroscopy (fNIRS). Here, we evaluated a new motion detection method for multi‐channel optical imaging systems that leverages spatial patterns across channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index and showed that it strongly correlates with external measures of motion. Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high-density diffuse optical tomography (HD-DOT) with hundreds to thousands of source-detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near-infrared spectroscopy (fNIRS). This limitation restricts the application of HD-DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi-channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion-with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD-based motion censoring on both hearing words task and resting state HD-DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation-based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD-DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data. Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high-density diffuse optical tomography (HD-DOT) with hundreds to thousands of source-detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near-infrared spectroscopy (fNIRS). This limitation restricts the application of HD-DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi-channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion-with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD-based motion censoring on both hearing words task and resting state HD-DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation-based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD-DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data.Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high-density diffuse optical tomography (HD-DOT) with hundreds to thousands of source-detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near-infrared spectroscopy (fNIRS). This limitation restricts the application of HD-DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi-channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion-with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD-based motion censoring on both hearing words task and resting state HD-DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation-based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD-DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data. |
Audience | Academic |
Author | Hershey, Tamara Ferradal, Silvina L. Culver, Joseph P. Snyder, Abraham Z. Palanca, Ben J. Burns‐Yocum, Tracy M. Lugar, Heather M. Smyser, Christopher D. Eggebrecht, Adam T. Robichaux‐Viehoever, Amy Bergonzi, Karla M. Sherafati, Arefeh |
AuthorAffiliation | 6 L3Harris, 400 Initiative Dr Rochester New York 14624 USA 1 Department of Physics Washington University in St. Louis St. Louis Missouri USA 11 Department of Anesthesiology Washington University School of Medicine in St. Louis, St. Louis Missouri USA 8 Department of Psychiatry Washington University School of Medicine in St. Louis St. Louis Missouri USA 2 Department of Radiology Washington University School of Medicine in St St. Louis Missouri USA 4 Department of Biomedical Engineering Washington University School in St. Louis St. Louis Missouri USA 3 Department of Neurology Washington University in St. Louis St. Louis Missouri USA 9 Department Of Intelligent Systems Engineering Indiana University Bloomington Indiana USA 10 Department of Pediatrics Washington University in St. Louis St. Louis Missouri USA 5 Division of Biology and Biomedical Sciences Washington University School of Medicine in St. Louis St. Louis Missouri USA 7 Department of Psychological and Brain Sciences Indiana University Blo |
AuthorAffiliation_xml | – name: 5 Division of Biology and Biomedical Sciences Washington University School of Medicine in St. Louis St. Louis Missouri USA – name: 11 Department of Anesthesiology Washington University School of Medicine in St. Louis, St. Louis Missouri USA – name: 2 Department of Radiology Washington University School of Medicine in St St. Louis Missouri USA – name: 1 Department of Physics Washington University in St. Louis St. Louis Missouri USA – name: 7 Department of Psychological and Brain Sciences Indiana University Bloomington Indiana USA – name: 4 Department of Biomedical Engineering Washington University School in St. Louis St. Louis Missouri USA – name: 8 Department of Psychiatry Washington University School of Medicine in St. Louis St. Louis Missouri USA – name: 9 Department Of Intelligent Systems Engineering Indiana University Bloomington Indiana USA – name: 6 L3Harris, 400 Initiative Dr Rochester New York 14624 USA – name: 3 Department of Neurology Washington University in St. Louis St. Louis Missouri USA – name: 10 Department of Pediatrics Washington University in St. Louis St. Louis Missouri USA |
Author_xml | – sequence: 1 givenname: Arefeh orcidid: 0000-0003-2543-0851 surname: Sherafati fullname: Sherafati, Arefeh email: arefeh@wustl.edu organization: Washington University in St. Louis – sequence: 2 givenname: Abraham Z. surname: Snyder fullname: Snyder, Abraham Z. organization: Washington University in St. Louis – sequence: 3 givenname: Adam T. surname: Eggebrecht fullname: Eggebrecht, Adam T. organization: Washington University School of Medicine in St. Louis – sequence: 4 givenname: Karla M. surname: Bergonzi fullname: Bergonzi, Karla M. organization: L3Harris, 400 Initiative Dr – sequence: 5 givenname: Tracy M. surname: Burns‐Yocum fullname: Burns‐Yocum, Tracy M. organization: Indiana University – sequence: 6 givenname: Heather M. surname: Lugar fullname: Lugar, Heather M. organization: Washington University School of Medicine in St. Louis – sequence: 7 givenname: Silvina L. surname: Ferradal fullname: Ferradal, Silvina L. organization: Indiana University – sequence: 8 givenname: Amy surname: Robichaux‐Viehoever fullname: Robichaux‐Viehoever, Amy organization: Washington University in St. Louis – sequence: 9 givenname: Christopher D. surname: Smyser fullname: Smyser, Christopher D. organization: Washington University in St. Louis – sequence: 10 givenname: Ben J. surname: Palanca fullname: Palanca, Ben J. organization: Washington University School of Medicine in St. Louis, St. Louis – sequence: 11 givenname: Tamara surname: Hershey fullname: Hershey, Tamara organization: Indiana University – sequence: 12 givenname: Joseph P. surname: Culver fullname: Culver, Joseph P. organization: Washington University School of Medicine in St. Louis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32648643$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAQxy1URL848AIoEhc4ZDu243VyQSoVtJWKkCo4W_5MXCX2EidFe-MReEaeBG-3LbQC5INH49_8PaP_7KOdEINF6AWGBQYgR50aFoRhjJ-gPQwNLwE3dGcTL1nZVBzvov2UrgAwZoCfoV1KllW9rOgeujzto5J9McTJx1AYO1l9E8lgCm1DiqMPbeFD0fm2-_n9h8k5P60L452bky3iavI6C0xxiO0oV936ED11sk_2-e19gL58eP_55Ky8-HR6fnJ8UWqGAZdMEdZYQhWvwACnDhMK2vFKUd0w5YwBpzjT4LAjijkgDBzBFTFKMg6SHqC3W93VrAZrcrPTKHuxGv0gx7WI0ouHL8F3oo3XogZCCOdZ4PWtwBi_zjZNYvBJ276XwcY5CVLljhivlzSjrx6hV3EeQx4vU7RhTU04_KZa2Vvhg4v5X70RFcc8m4FJU1eZWvyFysfYwevsrPM5_6Dg5Z-D3k9452IG3mwBPcaURuvuEQxisyEib4i42ZDMHj1itZ_kxvLche__V_Et97X-t7Q4e_dxW_ELynzL6g |
CitedBy_id | crossref_primary_10_1002_hbm_26684 crossref_primary_10_1016_j_neuroimage_2022_119460 crossref_primary_10_1088_1741_2552_abfdf9 crossref_primary_10_1016_j_bspc_2024_106496 crossref_primary_10_3389_fnins_2020_560878 crossref_primary_10_3390_s25072040 crossref_primary_10_1016_j_neuroimage_2022_119663 crossref_primary_10_1093_cercor_bhac291 crossref_primary_10_1093_cercor_bhab282 crossref_primary_10_7554_eLife_75323 crossref_primary_10_1016_j_neuroimage_2023_120190 crossref_primary_10_1016_j_neuroimage_2020_117516 crossref_primary_10_1155_2021_2136776 crossref_primary_10_1038_s41598_025_85858_7 crossref_primary_10_1109_TBME_2024_3377109 crossref_primary_10_3389_fnrgo_2024_1355534 crossref_primary_10_3389_fnins_2022_878750 crossref_primary_10_1117_1_NPh_11_4_045006 crossref_primary_10_3390_electronics11030305 crossref_primary_10_1088_1741_2552_acaccb crossref_primary_10_1093_cercor_bhad050 crossref_primary_10_1117_1_NPh_9_3_035003 crossref_primary_10_3390_chemosensors10110471 crossref_primary_10_1016_j_jneumeth_2023_109810 crossref_primary_10_1016_j_jocs_2024_102416 crossref_primary_10_1523_JNEUROSCI_1019_23_2024 crossref_primary_10_1038_s41598_024_79817_x crossref_primary_10_1117_1_NPh_12_S1_S14603 crossref_primary_10_1093_cercor_bhab312 |
Cites_doi | 10.1016/j.neuroimage.2013.04.003 10.1016/j.neuroimage.2013.05.105 10.1364/BOE.5.003882 10.1016/j.neuroimage.2020.116541 10.1038/nphoton.2014.107 10.1117/12.2252417 10.1016/j.neuroimage.2009.11.050 10.1038/s41598-017-15995-1 10.1371/journal.pone.0182939 10.1016/j.neuroimage.2013.06.054 10.1109/TBME.2005.845243 10.1038/nature18933 10.1002/mds.27942 10.1093/cercor/bhq035 10.1016/j.neuroimage.2012.08.052 10.1016/j.neuroimage.2011.02.073 10.1088/0967-3334/31/5/004 10.1186/1475-925X-9-16 10.1117/1.1852552 10.1002/hbm.22307 10.1016/j.neuroimage.2019.116400 10.1117/1.JBO.17.8.081414 10.1006/nimg.1999.0439 10.1016/j.neuroimage.2012.03.017 10.1016/j.heares.2016.02.005 10.1016/j.neuroimage.2017.08.025 10.1016/j.neuroimage.2018.09.025 10.3390/photonics6030094 10.1016/j.neuroimage.2013.03.004 10.1016/j.neuroimage.2004.07.039 10.3389/fnsys.2012.00080 10.3389/fnhum.2016.00629 10.1016/j.neuron.2018.03.035 10.1364/AO.48.00D280 10.1016/j.neuroimage.2019.06.056 10.1016/j.neuroimage.2011.07.044 10.1364/TRANSLATIONAL.2018.JW3A.51 10.1093/cercor/bhw253 10.1117/1.NPh.5.1.015003 10.1088/0967-3334/33/2/259 10.1016/j.neuroimage.2013.05.033 10.1002/mrm.1910340409 10.1002/mrm.1910350312 10.3390/a8041052 10.1016/j.neuroimage.2018.01.023 10.1016/j.neuroimage.2015.02.057 10.1016/j.neuroimage.2017.12.098 10.1016/j.neuroimage.2013.03.069 10.1016/j.neuroimage.2015.05.058 10.1002/brb3.1116 10.1016/j.neuroimage.2012.01.124 10.1016/j.neuroimage.2019.03.020 10.1142/S1793545813500661 10.1006/nimg.1995.1007 10.1016/j.neuroimage.2011.10.018 10.1016/j.neuroimage.2009.03.058 10.1038/s41598-019-45555-8 10.1038/jcbfm.2015.124 10.1364/OE.9.000272 10.1016/j.neuroimage.2011.12.063 10.1016/j.neubiorev.2009.07.008 10.1117/12.2546903 10.3389/fncir.2017.00056 10.3389/fnins.2012.00147 10.1093/cercor/bhu320 10.1016/j.bbr.2018.10.022 10.1016/j.neuroimage.2003.09.040 10.1016/j.neuron.2011.09.006 10.1016/j.neuroimage.2013.08.048 10.1016/j.neuroimage.2013.04.082 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals LLC. 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. COPYRIGHT 2020 John Wiley & Sons, Inc. 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC. – notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.25111 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Sherafati et al |
EISSN | 1097-0193 |
EndPage | 4112 |
ExternalDocumentID | PMC8022277 A710612984 32648643 10_1002_hbm_25111 HBM25111 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: P01NS080675; P30NS098577; K01MH103594; K02NS089852; KL2TR000450; R01NS090874; R21DC016086; R21MH109775; R21NS098020; U01EB027005; U54HD087011; UL1TR000448 – fundername: Mallinckrodt Institute of Radiology – fundername: NIBIB NIH HHS grantid: U01 EB027005 – fundername: NICHD NIH HHS grantid: U54 HD087011 – fundername: NCATS NIH HHS grantid: UL1 TR002345 – fundername: NINDS NIH HHS grantid: R01 NS090874 – fundername: NCATS NIH HHS grantid: UL1 TR000448 – fundername: NINDS NIH HHS grantid: R21 NS098020 – fundername: NCATS NIH HHS grantid: KL2 TR002346 – fundername: NIMH NIH HHS grantid: R01 MH122751 – fundername: NIMH NIH HHS grantid: K01 MH103594 – fundername: ; grantid: P01NS080675; P30NS098577; K01MH103594; K02NS089852; KL2TR000450; R01NS090874; R21DC016086; R21MH109775; R21NS098020; U01EB027005; U54HD087011; UL1TR000448 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ 7X7 8FI 8FJ AAFWJ AANHP AAYXX ABEML ABJNI ABUWG ACBWZ ACRPL ACSCC ACYXJ ADNMO AFKRA AFPKN AGQPQ ASPBG AVWKF AZFZN BENPR BFHJK CCPQU CITATION EJD FEDTE FYUFA GAKWD HF~ HMCUK HVGLF LW6 M6M PHGZM PHGZT RIWAO RJQFR SAMSI UKHRP WXSBR AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5101-5b259e23b740d073f1230cf74b3c95bfdd0fb75c0f1f2b5f0250f2142dba570a3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 17:42:07 EDT 2025 Fri Jul 11 14:53:28 EDT 2025 Sat Jul 26 02:21:24 EDT 2025 Tue Jun 17 21:37:36 EDT 2025 Tue Jun 10 20:49:34 EDT 2025 Sun Jul 20 01:30:39 EDT 2025 Tue Jul 01 01:10:59 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Wed Jan 22 16:34:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | optical neuroimaging motion censoring functional near-infrared spectroscopy high-density diffuse optical tomography motion artifact |
Language | English |
License | Attribution-NonCommercial 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5101-5b259e23b740d073f1230cf74b3c95bfdd0fb75c0f1f2b5f0250f2142dba570a3 |
Notes | Funding information Mallinckrodt Institute of Radiology; National Institutes of Health, Grant/Award Numbers: P01NS080675, P30NS098577, K01MH103594, K02NS089852, KL2TR000450, R01NS090874, R21DC016086, R21MH109775, R21NS098020, U01EB027005, U54HD087011, UL1TR000448 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Mallinckrodt Institute of Radiology; National Institutes of Health, Grant/Award Numbers: P01NS080675, P30NS098577, K01MH103594, K02NS089852, KL2TR000450, R01NS090874, R21DC016086, R21MH109775, R21NS098020, U01EB027005, U54HD087011, UL1TR000448 |
ORCID | 0000-0003-2543-0851 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25111 |
PMID | 32648643 |
PQID | 2439598270 |
PQPubID | 996345 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022277 proquest_miscellaneous_2423057863 proquest_journals_2439598270 gale_infotracmisc_A710612984 gale_infotracacademiconefile_A710612984 pubmed_primary_32648643 crossref_primary_10_1002_hbm_25111 crossref_citationtrail_10_1002_hbm_25111 wiley_primary_10_1002_hbm_25111_HBM25111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 1, 2020 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 1, 2020 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2012; 61 2004; 21 2015; 35 2012; 60 2017; 7 2009; 47 2019; 2019 1995; 34 2004; 23 2013; 64 2016; 2016 2019; 208 2012; 17 2011; 56 2012; 59 1996; 35 2013; 6 2019; 200 2009; 48 2018; 8 2010; 20 2018; 171 2014; 5 2018; 5 2018; 172 2011; 72 2020; 215 2017; 161 1999; 10 2019; 359 2014; 8 2010; 2 2019; 194 2010; 9 2014a; 7 2010; 34 2014b; 85 2019; 9 2010; 31 2019; 6 2017; 27 2019; 39 2016; 10 2020; 35 2014; 85 2019; 184 1995; 2 2014; 84 2015; 8 2012; 33 2010; 49 2013; 76 2016; 536 2016; 338 2020 2017; 11 2015; 112 2001; 9 2017; 12 2013; 80 2019 2005; 52 2018 2017 2014; 35 2005; 10 2015 2015; 117 2012; 6 2018; 98 2016; 26 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Salsabilian S. (e_1_2_9_60_1) 2019; 2019 Eggebrecht A. T. (e_1_2_9_18_1) 2019 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 Salsabilian S. (e_1_2_9_61_1) 2020 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 Fishell A. K. (e_1_2_9_30_1) 2016 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 Dashtestani H. (e_1_2_9_14_1) 2018; 8 e_1_2_9_2_1 Burke B. A. (e_1_2_9_9_1) 2019; 39 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 Laumann T. O. (e_1_2_9_47_1) 2017; 27 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 Gregg N. M. (e_1_2_9_38_1) 2010; 2 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 9 start-page: 272 issue: 6 year: 2001 end-page: 286 article-title: Three‐dimensional optical tomography of hemodynamics in the human head publication-title: Optics Express – volume: 76 start-page: 183 issue: 1 year: 2013 end-page: 201 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: NeuroImage – volume: 35 start-page: 1697 issue: 10 year: 2015 end-page: 1702 article-title: A method for reducing the effects of motion contamination in arterial spin labeling magnetic resonance imaging publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 34 start-page: 269 issue: 3 year: 2010 end-page: 284 article-title: Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy publication-title: Neuroscience and Biobehavioral Reviews – volume: 35 start-page: 1981 issue: 5 year: 2014 end-page: 1996 article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high‐motion data points publication-title: Human Brain Mapping – volume: 10 issue: 1 year: 2005 article-title: Eigenvector‐based spatial filtering for reduction of physiological interference in diffuse optical imaging publication-title: Journal of Biomedical Optics – volume: 49 start-page: 3039 issue: 4 year: 2010 end-page: 3046 article-title: Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics publication-title: NeuroImage – volume: 31 start-page: 649 issue: 5 year: 2010 end-page: 662 article-title: How to detect and reduce movement artifacts in near‐infrared imaging using moving standard deviation and spline interpolation publication-title: Physiological Measurement – volume: 7 issue: 8 year: 2017 article-title: Shedding light on the neonatal brain: Probing cerebral hemodynamics by diffuse optical spectroscopic methods publication-title: Scientific Reports, 2018 – volume: 338 start-page: 64 year: 2016 end-page: 75 article-title: Functional near‐infrared spectroscopy for neuroimaging in cochlear implant recipients publication-title: Hearing Research – volume: 64 start-page: 240 year: 2013 end-page: 256 article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting‐state functional connectivity data publication-title: NeuroImage – volume: 21 start-page: 372 issue: 1 year: 2004 end-page: 386 article-title: Noninvasive measurement of neuronal activity with near‐infrared optical imaging publication-title: NeuroImage – volume: 117 start-page: 319 year: 2015 end-page: 326 article-title: Mapping cortical responses to speech using high‐density diffuse optical tomography publication-title: NeuroImage – year: 2018 – year: 2020 article-title: Mapping deep brain stimulation's impact on cortical networks using high‐density diffuse optical tomography publication-title: Proceedings of SPIE 11226, Neural Imaging and Sensing 2020 – volume: 26 start-page: 1558 issue: 4 year: 2016 end-page: 1568 article-title: Functional imaging of the developing brain at the bedside using diffuse optical tomography publication-title: Cerebral Cortex – volume: 27 start-page: 4719 issue: 10 year: 2017 end-page: 4732 article-title: On the stability of BOLD fMRI correlations publication-title: Cerebral Cortex – volume: 172 start-page: 291 year: 2018 end-page: 312 article-title: Insight and inference for DVARS publication-title: NeuroImage – volume: 5 start-page: 1 year: 2018 article-title: Motion artifact detection and correction in functional near‐infrared spectroscopy: A new hybrid method based on spline interpolation method and Savitzky‐Golay filtering publication-title: Neurophotonics – volume: 2019 start-page: 5217 year: 2019 end-page: 5220 article-title: Quantifying Changes in Brain Function Following Injury via Network Measures publication-title: Conf Proc IEEE Eng Med Biol Soc. – volume: 9 issue: 1 year: 2019 article-title: Mapping brain function during naturalistic viewing using high‐density diffuse optical tomography publication-title: Scientific Reports – volume: 34 start-page: 537 issue: 4 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI publication-title: Magnetic Resonance in Medicine – volume: 23 start-page: 1046 issue: 3 year: 2004 end-page: 1058 article-title: Experimental designs and processing strategies for fMRI studies involving overt verbal responses publication-title: NeuroImage – volume: 8 start-page: 1052 issue: 4 year: 2015 end-page: 1075 article-title: A new approach for automatic removal of movement artifacts in near‐infrared spectroscopy time series by means of acceleration data publication-title: Algorithms – volume: 10 start-page: 1 issue: 1 year: 1999 end-page: 5 article-title: How many subjects constitute a study? publication-title: NeuroImage – volume: 60 start-page: 623 issue: 1 year: 2012 end-page: 632 article-title: Impact of in‐scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth publication-title: NeuroImage – volume: 80 start-page: 18 year: 2013 end-page: 26 article-title: Microstructural grey matter parcellation and its relevance for connectome analyses publication-title: NeuroImage – volume: 8 year: 2018 article-title: The role of prefrontal cortex in a moral judgment task using functional near‐infrared spectroscopy publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective – volume: 85 start-page: 117 issue: Pt 1 year: 2014 end-page: 126 article-title: Atlas‐based head modeling and spatial normalization for high‐density diffuse optical tomography: in vivo validation against fMRI publication-title: Neuroimage – volume: 98 start-page: 439 issue: 2 year: 2018 end-page: 452 e5 article-title: Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not Cognitive or Daily Variation publication-title: Neuron – volume: 80 start-page: 169 year: 2013 end-page: 189 article-title: Function in the human connectome: Task‐fMRI and individual differences in behavior publication-title: NeuroImage – volume: 8 start-page: 448 issue: 6 year: 2014 end-page: 454 article-title: Mapping distributed brain function and networks with diffuse optical tomography publication-title: Nature Photonics – volume: 85 start-page: 104 issue: Pt 1 year: 2014 end-page: 116 article-title: Statistical analysis of high density diffuse optical tomography publication-title: Neuroimage – volume: 39 start-page: 8 year: 2019 end-page: 9 article-title: Brain functional connectivity changes in acute ischemic stroke measured with bedside diffuse optical tomography publication-title: Journal Of Cerebral Blood Flow And Metabolism – volume: 72 start-page: 665 issue: 4 year: 2011 end-page: 678 article-title: Functional network organization of the human brain publication-title: Neuron – year: 2019 – year: 2015 – volume: 7 issue: 2 year: 2014a article-title: Targeted principle component analysis: A new motion artifact correction approach for near‐infrared spectroscopy publication-title: Journal of Innovative Optical Health Sciences – volume: 17 issue: 8 year: 2012 article-title: High‐density diffuse optical tomography of term infant visual cortex in the nursery publication-title: Journal of Biomedical Optics – year: 2020 article-title: Study of Functional Network Topology Alterations after Injury via Embedding Methods. Biophotonics Congress: Biomedical Optics 2020 publication-title: Optical Society of America, 2020 – volume: 161 start-page: 80 year: 2017 end-page: 93 article-title: Real‐time motion analytics during brain MRI improve data quality and reduce costs publication-title: NeuroImage – volume: 59 start-page: 431 issue: 1 year: 2012 end-page: 438 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: NeuroImage – volume: 112 start-page: 128 year: 2015 end-page: 137 article-title: A kurtosis‐based wavelet algorithm for motion artifact correction of fNIRS data publication-title: NeuroImage – volume: 20 start-page: 2852 issue: 12 year: 2010 end-page: 2862 article-title: Longitudinal analysis of neural network development in preterm infants publication-title: Cerebral Cortex – volume: 536 start-page: 171 issue: 7615 year: 2016 end-page: 178 article-title: A multi‐modal parcellation of human cerebral cortex publication-title: Nature – volume: 171 start-page: 234 year: 2018 end-page: 245 article-title: Behavioral interventions for reducing head motion during MRI scans in children publication-title: NeuroImage – volume: 84 start-page: 320 year: 2014 end-page: 341 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: NeuroImage – volume: 6 start-page: 94 year: 2019 article-title: Effects of Performance and task duration on mental workload during working memory task publication-title: Photonics – volume: 27 start-page: 4492 issue: 9 year: 2017 end-page: 4502 article-title: Data quality influences observed links between functional connectivity and behavior publication-title: Cerebral Cortex – volume: 35 start-page: 346 issue: 3 year: 1996 end-page: 355 article-title: Movement‐related effects in fMRI time‐series publication-title: Magnetic Resonance in Medicine – volume: 56 start-page: 1437 issue: 3 year: 2011 end-page: 1452 article-title: Functional connectivity MRI in infants: Exploration of the functional organization of the developing brain publication-title: NeuroImage – volume: 208 year: 2019 article-title: Correction of respiratory artifacts in MRI head motion estimates publication-title: NeuroImage – volume: 2 start-page: 45 issue: 1 year: 1995 end-page: 53 article-title: Analysis of fMRI time‐series revisited publication-title: NeuroImage – year: 2017 article-title: A global metric to detect motion artifacts in optical neuroimaging data publication-title: Presented at Neural Imaging and Sensing, 10051, International Society for Optics and Photonics – volume: 194 start-page: 211 year: 2019 end-page: 227 article-title: On time delay estimation and sampling error in resting‐state fMRI publication-title: NeuroImage – volume: 5 start-page: 3882 issue: 11 year: 2014 end-page: 3900 article-title: Quantitative evaluation of atlas‐based high‐density diffuse optical tomography for imaging of the human visual cortex publication-title: Biomedical Optics Express – volume: 12 issue: 9 year: 2017 article-title: Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection publication-title: PLoS ONE – volume: 6 start-page: 147 year: 2012 article-title: A systematic comparison of motion artifact correction techniques for functional near‐infrared spectroscopy publication-title: Frontiers in Neuroscience – volume: 184 start-page: 171 year: 2019 end-page: 179 article-title: Temporal derivative distribution repair (TDDR): A motion correction method for fNIRS publication-title: NeuroImage – volume: 59 start-page: 2142 issue: 3 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 215 year: 2020 article-title: Portable, field‐based neuroimaging using high‐density diffuse optical tomography publication-title: NeuroImage – volume: 48 start-page: D280 issue: 10 year: 2009 end-page: D298 article-title: HomER: A review of time‐series analysis methods for near‐infrared spectroscopy of the brain publication-title: Applied Optics – volume: 2 start-page: 14 year: 2010 article-title: Brain specificity of diffuse optical imaging: Improvements from superficial signal regression and tomography publication-title: Frontiers in Neuroenergetics – volume: 33 start-page: 259 issue: 2 year: 2012 end-page: 270 article-title: Wavelet‐based motion artifact removal for functional near‐infrared spectroscopy publication-title: Physiological Measurement – volume: 10 start-page: 629 year: 2016 article-title: Changes in motor‐related cortical activity following deep brain stimulation for Parkinson's disease detected by functional near infrared spectroscopy: A pilot study publication-title: Frontiers in Human Neuroscience – volume: 11 start-page: 56 year: 2017 article-title: Particle tracking facilitates real time capable motion correction in 2D or 3D two‐photon imaging of neuronal activity publication-title: Frontiers in Neural Circuits – volume: 76 start-page: 439 issue: 1 year: 2013 end-page: 441 article-title: Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to carp publication-title: NeuroImage – volume: 6 start-page: 80 year: 2013 article-title: Distinct neural signatures detected for ADHD subtypes after controlling for micro‐movements in resting state functional connectivity MRI data publication-title: Frontiers in Systems Neuroscience – volume: 47 start-page: 148 issue: 1 year: 2009 end-page: 156 article-title: Resting‐state functional connectivity in the human brain revealed with diffuse optical tomography publication-title: NeuroImage – volume: 200 start-page: 511 year: 2019 end-page: 527 article-title: Recommendations for motion correction of infant fNIRS data applicable to multiple data sets and acquisition systems publication-title: NeuroImage – volume: 61 start-page: 1120 issue: 4 year: 2012 end-page: 1128 article-title: A quantitative spatial comparison of high‐density diffuse optical tomography and fMRI cortical mapping publication-title: NeuroImage – volume: 52 start-page: 934 issue: 5 year: 2005 end-page: 938 article-title: Motion artifact cancellation in NIR spectroscopy using wiener filtering publication-title: IEEE Transactions on Biomedical Engineering – volume: 9 start-page: 16 year: 2010 article-title: Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering publication-title: Biomedical Engineering Online – volume: 359 start-page: 73 year: 2019 end-page: 80 article-title: Canonical correlation analysis of brain prefrontal activity measured by functional near infra‐red spectroscopy (fNIRS) during a moral judgment task publication-title: Behavioural Brain Research – volume: 85 start-page: 181 year: 2014 end-page: 191 article-title: Motion artifacts in functional near‐infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data publication-title: NeuroImage – volume: 85 start-page: 192 year: 2014b end-page: 201 article-title: Reducing motion artifacts for long‐term clinical NIRS monitoring using collodion‐fixed prism‐based optical fibers publication-title: NeuroImage – volume: 35 start-page: 499 issue: 3 year: 2020 end-page: 503 article-title: Little Change in Functional Brain Networks Following Acute Levodopa in Drug‐Naïve Parkinson's Disease publication-title: Movement Disorders – volume: 2016 year: 2016 – ident: e_1_2_9_10_1 doi: 10.1016/j.neuroimage.2013.04.003 – ident: e_1_2_9_41_1 doi: 10.1016/j.neuroimage.2013.05.105 – ident: e_1_2_9_78_1 doi: 10.1364/BOE.5.003882 – volume-title: NeuroDOT: An extensible Matlab toolbox for streamlined optical functional mapping. In Clinical and Preclinical Optical Diagnostics II year: 2019 ident: e_1_2_9_18_1 – ident: e_1_2_9_28_1 doi: 10.1016/j.neuroimage.2020.116541 – ident: e_1_2_9_20_1 doi: 10.1038/nphoton.2014.107 – ident: e_1_2_9_66_1 doi: 10.1117/12.2252417 – ident: e_1_2_9_65_1 – ident: e_1_2_9_13_1 doi: 10.1016/j.neuroimage.2009.11.050 – ident: e_1_2_9_24_1 doi: 10.1038/s41598-017-15995-1 – ident: e_1_2_9_56_1 doi: 10.1371/journal.pone.0182939 – ident: e_1_2_9_73_1 – ident: e_1_2_9_81_1 doi: 10.1016/j.neuroimage.2013.06.054 – ident: e_1_2_9_44_1 doi: 10.1109/TBME.2005.845243 – ident: e_1_2_9_35_1 doi: 10.1038/nature18933 – ident: e_1_2_9_39_1 – ident: e_1_2_9_76_1 doi: 10.1002/mds.27942 – ident: e_1_2_9_71_1 doi: 10.1093/cercor/bhq035 – ident: e_1_2_9_62_1 doi: 10.1016/j.neuroimage.2012.08.052 – volume: 2019 start-page: 5217 year: 2019 ident: e_1_2_9_60_1 article-title: Quantifying Changes in Brain Function Following Injury via Network Measures publication-title: Conf Proc IEEE Eng Med Biol Soc. – ident: e_1_2_9_72_1 doi: 10.1016/j.neuroimage.2011.02.073 – ident: e_1_2_9_64_1 doi: 10.1088/0967-3334/31/5/004 – ident: e_1_2_9_43_1 doi: 10.1186/1475-925X-9-16 – volume: 27 start-page: 4719 issue: 10 year: 2017 ident: e_1_2_9_47_1 article-title: On the stability of BOLD fMRI correlations publication-title: Cerebral Cortex – ident: e_1_2_9_82_1 doi: 10.1117/1.1852552 – ident: e_1_2_9_70_1 doi: 10.1002/hbm.22307 – ident: e_1_2_9_23_1 doi: 10.1016/j.neuroimage.2019.116400 – ident: e_1_2_9_48_1 doi: 10.1117/1.JBO.17.8.081414 – volume: 39 start-page: 8 year: 2019 ident: e_1_2_9_9_1 article-title: Brain functional connectivity changes in acute ischemic stroke measured with bedside diffuse optical tomography publication-title: Journal Of Cerebral Blood Flow And Metabolism – ident: e_1_2_9_33_1 doi: 10.1006/nimg.1999.0439 – ident: e_1_2_9_57_1 doi: 10.1016/j.neuroimage.2012.03.017 – ident: e_1_2_9_59_1 doi: 10.1016/j.heares.2016.02.005 – year: 2020 ident: e_1_2_9_61_1 article-title: Study of Functional Network Topology Alterations after Injury via Embedding Methods. Biophotonics Congress: Biomedical Optics 2020 publication-title: Optical Society of America, 2020 – ident: e_1_2_9_17_1 doi: 10.1016/j.neuroimage.2017.08.025 – ident: e_1_2_9_27_1 doi: 10.1016/j.neuroimage.2018.09.025 – ident: e_1_2_9_46_1 doi: 10.3390/photonics6030094 – ident: e_1_2_9_79_1 doi: 10.1016/j.neuroimage.2013.03.004 – ident: e_1_2_9_5_1 doi: 10.1016/j.neuroimage.2004.07.039 – ident: e_1_2_9_22_1 doi: 10.3389/fnsys.2012.00080 – ident: e_1_2_9_52_1 doi: 10.3389/fnhum.2016.00629 – ident: e_1_2_9_36_1 doi: 10.1016/j.neuron.2018.03.035 – ident: e_1_2_9_42_1 doi: 10.1364/AO.48.00D280 – ident: e_1_2_9_16_1 doi: 10.1016/j.neuroimage.2019.06.056 – ident: e_1_2_9_75_1 doi: 10.1016/j.neuroimage.2011.07.044 – ident: e_1_2_9_67_1 doi: 10.1364/TRANSLATIONAL.2018.JW3A.51 – ident: e_1_2_9_69_1 doi: 10.1093/cercor/bhw253 – ident: e_1_2_9_45_1 doi: 10.1117/1.NPh.5.1.015003 – ident: e_1_2_9_51_1 doi: 10.1088/0967-3334/33/2/259 – ident: e_1_2_9_4_1 doi: 10.1016/j.neuroimage.2013.05.033 – ident: e_1_2_9_6_1 doi: 10.1002/mrm.1910340409 – volume: 2 start-page: 14 year: 2010 ident: e_1_2_9_38_1 article-title: Brain specificity of diffuse optical imaging: Improvements from superficial signal regression and tomography publication-title: Frontiers in Neuroenergetics – ident: e_1_2_9_34_1 doi: 10.1002/mrm.1910350312 – ident: e_1_2_9_50_1 doi: 10.3390/a8041052 – ident: e_1_2_9_37_1 doi: 10.1016/j.neuroimage.2018.01.023 – ident: e_1_2_9_11_1 doi: 10.1016/j.neuroimage.2015.02.057 – ident: e_1_2_9_2_1 doi: 10.1016/j.neuroimage.2017.12.098 – ident: e_1_2_9_19_1 – ident: e_1_2_9_26_1 doi: 10.1016/j.neuroimage.2013.03.069 – volume-title: Biomedical optics year: 2016 ident: e_1_2_9_30_1 – ident: e_1_2_9_40_1 doi: 10.1016/j.neuroimage.2015.05.058 – volume: 8 start-page: e01116 year: 2018 ident: e_1_2_9_14_1 article-title: The role of prefrontal cortex in a moral judgment task using functional near‐infrared spectroscopy publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective doi: 10.1002/brb3.1116 – ident: e_1_2_9_21_1 doi: 10.1016/j.neuroimage.2012.01.124 – ident: e_1_2_9_58_1 doi: 10.1016/j.neuroimage.2019.03.020 – ident: e_1_2_9_80_1 doi: 10.1142/S1793545813500661 – ident: e_1_2_9_32_1 doi: 10.1006/nimg.1995.1007 – ident: e_1_2_9_53_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_9_77_1 doi: 10.1016/j.neuroimage.2009.03.058 – ident: e_1_2_9_29_1 doi: 10.1038/s41598-019-45555-8 – ident: e_1_2_9_74_1 doi: 10.1038/jcbfm.2015.124 – ident: e_1_2_9_7_1 doi: 10.1364/OE.9.000272 – ident: e_1_2_9_63_1 doi: 10.1016/j.neuroimage.2011.12.063 – ident: e_1_2_9_49_1 doi: 10.1016/j.neubiorev.2009.07.008 – ident: e_1_2_9_68_1 doi: 10.1117/12.2546903 – ident: e_1_2_9_3_1 doi: 10.3389/fncir.2017.00056 – ident: e_1_2_9_12_1 doi: 10.3389/fnins.2012.00147 – ident: e_1_2_9_25_1 doi: 10.1093/cercor/bhu320 – ident: e_1_2_9_15_1 doi: 10.1016/j.bbr.2018.10.022 – ident: e_1_2_9_31_1 doi: 10.1016/j.neuroimage.2003.09.040 – ident: e_1_2_9_54_1 doi: 10.1016/j.neuron.2011.09.006 – ident: e_1_2_9_55_1 doi: 10.1016/j.neuroimage.2013.08.048 – ident: e_1_2_9_8_1 doi: 10.1016/j.neuroimage.2013.04.082 |
SSID | ssj0011501 |
Score | 2.5496426 |
Snippet | Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography... Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high-density diffuse optical tomography... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4093 |
SubjectTerms | Accelerometry Adult Aged Brain - diagnostic imaging Brain mapping Censorship Connectome - standards Correlation analysis Datasets as Topic Density Detectors Evaluation Female Functional magnetic resonance imaging functional near‐infrared spectroscopy Functional Neuroimaging - standards Head movement Head Movements high‐density diffuse optical tomography Humans Image Processing, Computer-Assisted - standards Imaging systems Infrared spectroscopy Magnetic resonance imaging Magnetic Resonance Imaging - standards Male Mapping Mathematical analysis Measurement methods Medical imaging Middle Aged motion artifact motion censoring Motion detection Motion perception Neuroimaging optical neuroimaging Principal components analysis Sensitivity and Specificity Similarity Spectroscopy, Near-Infrared - standards Tomography Tomography, Optical - standards Young Adult |
Title | Global motion detection and censoring in high‐density diffuse optical tomography |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25111 https://www.ncbi.nlm.nih.gov/pubmed/32648643 https://www.proquest.com/docview/2439598270 https://www.proquest.com/docview/2423057863 https://pubmed.ncbi.nlm.nih.gov/PMC8022277 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VHhAXHi2PQFkZhIBLtl7HjrvitCCqFdIiVFGpB6Qodmy1gnorNnsoJ34Cv5FfwozzoFmBhLit5Mkmnsw7428AnglrRemdSysjOSYozqZGKp4S2ifqZWnyiFuweJ_Pj-W7E3WyBa-6szANPkRfcCPNiPaaFLw0q_3foKGn5nxM8TGlPtSrRQHRUQ8dRYFOTLbQxaZTtMAdqhAX-_2VA1-0aZGvuKTNdsmrYWz0Q4e34FO3g6b95PN4XZux_bYB7vifW7wNN9v4lM0agboDWy7swO4sYG5-fsmes9gxGkvxO3B90X6Y34WjZnYAa4YCscrVscUrsDJUDHe0in1-7Cwwwkf--f1HRY3z9SWjAS3rlWPLi1hUZ3ibFkT7Lhwfvv34Zp624xpSS4qdKoOplBOZ0ZJXaDk8OkVuvZYms1NlfFVxb7Sy3E-8MMpT9OUJ8a0ypdK8zO7BdlgG9wBY7oya5Ib7PNeylKp0mMZOIpqY8zKTCbzsXlxhWyxzGqnxpWhQmEWBrCsi6xJ42pNeNAAefyJ6QW-_IKXG_7FlezYBn4bgsYqZpsxZTA_wznsDSlRGO1zu5KdojcGqEBj0EU6i5gk86ZfpSmpwC265JhpkFlrPPEvgfiNu_eNm1IWIkWMCeiCIPQFBhA9XwtlphAo_iGedNfIrytnfOVDMXy_ij4f_TvoIbgiqPsTWxj3Yrr-u3WMM0WozgmtCfhjFAsco6uUvjlI4-Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQIuFFoeaQsYhIBLtt4kjrsSlwVRLdDtoWqlXpAVO7ZaQb0Vmz2UU38Cv5FfwozzoFmBhLit5Mkmnsw7428AXiTGJIWzNi51xjFBsSbWmeAxoX2iXhY6D7gF04N8cpx9PBEnK_CmPQtT40N0BTfSjGCvScGpIL3zGzX0VJ8PKEDG3OcGTfQOCdVhBx5FoU5It9DJxiO0wS2uEE92ukt73mjZJl9zSssNk9cD2eCJ9tbgc7uHugHly2BR6YH5vgTv-L-bvAt3mhCVjWuZugcr1q_Dxthjen5-yV6y0DQaqvHrcHPafJvfgMN6fACr5wKx0lahy8uzwpcMtzQPrX7szDOCSP559aOk3vnqktGMlsXcstlFqKszvE2Do30fjvfeH72bxM3EhtiQbsdCYzZlk1TLjJdoPBz6RW6czHRqRkK7suROS2G4G7pEC0cBmCPQt1IXQvIifQCrfubtI2C51WKYa-7yXGZFJgqLmewwAIpZl6VZBK_bN6dMA2dOUzW-qhqIOVHIOhVYF8HzjvSixvD4E9Erev2K9Br_xxTN8QR8GkLIUmNJyXMy2sU7b_coUR9Nf7kVINXYg7lKMO4jqETJI3jWLdOV1OPm7WxBNMgsNKB5GsHDWt66x02pERGDxwhkTxI7AkIJ76_4s9OAFr4bjjtL5FcQtL9zQE3eTsOPzX8nfQq3JkfTfbX_4eDTFtxOqBgROh23YbX6trCPMWKr9JOgmL8AOwo7SA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaq48GiBBgqYCgGXbL2JE--K00JZbVu2QhWVekCyYsdWK2h2xWYP5cRP4DfyS5hxHjQrkBC3SB4n8WSezvgbgOeRMVHmrA1zLTgmKNaEWiQ8JLRP1MtMpx63YHqcTk7F4Vlytgavm7MwFT5Eu-FGmuHtNSn4PHd7v0FDz_Vlj-JjTH1uiJQPSKT3T1rsKIp0fLaFPjYcogluYIV4tNdO7TijVZN8zSet1ktej2O9Ixrfhk_NEqr6k8-9Zal75tsKuuN_rvEO3KoDVDaqJOourNliE7ZGBSbnl1fsBfMlo34vfhM2pvWf-S04qZoHsKorEMtt6Wu8CpYVOcMVLXyhH7soGAEk__z-I6fK-fKKUYeW5cKy2dzvqjN8TI2ifQ9Ox-8-vp2Edb-G0JBmh4nGXMpGsZaC52g6HHpFbpwUOjbDRLs8507LxHDXd5FOHIVfjiDfcp0lkmfxfVgvZoXdBpZanfRTzV2aSpGJJLOYx_Y9nJh1IhYBvGo-nDI1mDn11PiiKhjmSCHrlGddALst6bxC8PgT0Uv6-oq0Gu9jsvpwAr4N4WOpkaTUORoO8Mk7HUrURtMdbuRH1dZgoSKM-ggoUfIAnrXDNJMq3Ao7WxINMgvNZxoH8KASt_Z1YypDxNAxANkRxJaAMMK7I8XFuccKH_jDzhL55eXs7xxQkzdTf_Hw30mfwsaH_bF6f3B89AhuRrQT4cscd2C9_Lq0jzFcK_UTr5a_AH-1OgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+motion+detection+and+censoring+in+high%E2%80%90density+diffuse+optical+tomography&rft.jtitle=Human+brain+mapping&rft.au=Sherafati%2C+Arefeh&rft.au=Snyder%2C+Abraham+Z.&rft.au=Eggebrecht%2C+Adam+T.&rft.au=Bergonzi%2C+Karla+M.&rft.date=2020-10-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=41&rft.issue=14&rft.spage=4093&rft.epage=4112&rft_id=info:doi/10.1002%2Fhbm.25111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_25111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |