Global motion detection and censoring in high‐density diffuse optical tomography

Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography (HD‐DOT) with hundreds to thousands of source‐detector pair measurements, motion detection methods are underdeveloped relative to both functional m...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 41; no. 14; pp. 4093 - 4112
Main Authors Sherafati, Arefeh, Snyder, Abraham Z., Eggebrecht, Adam T., Bergonzi, Karla M., Burns‐Yocum, Tracy M., Lugar, Heather M., Ferradal, Silvina L., Robichaux‐Viehoever, Amy, Smyser, Christopher D., Palanca, Ben J., Hershey, Tamara, Culver, Joseph P.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography (HD‐DOT) with hundreds to thousands of source‐detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near‐infrared spectroscopy (fNIRS). This limitation restricts the application of HD‐DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi‐channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion—with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD‐based motion censoring on both hearing words task and resting state HD‐DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation‐based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD‐DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data. Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography (HD‐DOT) with hundreds to thousands of source‐detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near‐infrared spectroscopy (fNIRS). Here, we evaluated a new motion detection method for multi‐channel optical imaging systems that leverages spatial patterns across channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index and showed that it strongly correlates with external measures of motion.
AbstractList Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography (HD‐DOT) with hundreds to thousands of source‐detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near‐infrared spectroscopy (fNIRS). This limitation restricts the application of HD‐DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi‐channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion—with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD‐based motion censoring on both hearing words task and resting state HD‐DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation‐based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD‐DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data. Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography (HD‐DOT) with hundreds to thousands of source‐detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near‐infrared spectroscopy (fNIRS). Here, we evaluated a new motion detection method for multi‐channel optical imaging systems that leverages spatial patterns across channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index and showed that it strongly correlates with external measures of motion.
Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high-density diffuse optical tomography (HD-DOT) with hundreds to thousands of source-detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near-infrared spectroscopy (fNIRS). This limitation restricts the application of HD-DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi-channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion-with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD-based motion censoring on both hearing words task and resting state HD-DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation-based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD-DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data.
Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high-density diffuse optical tomography (HD-DOT) with hundreds to thousands of source-detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near-infrared spectroscopy (fNIRS). This limitation restricts the application of HD-DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi-channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion-with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD-based motion censoring on both hearing words task and resting state HD-DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation-based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD-DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data.Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high-density diffuse optical tomography (HD-DOT) with hundreds to thousands of source-detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near-infrared spectroscopy (fNIRS). This limitation restricts the application of HD-DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi-channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion-with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD-based motion censoring on both hearing words task and resting state HD-DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation-based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD-DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data.
Audience Academic
Author Hershey, Tamara
Ferradal, Silvina L.
Culver, Joseph P.
Snyder, Abraham Z.
Palanca, Ben J.
Burns‐Yocum, Tracy M.
Lugar, Heather M.
Smyser, Christopher D.
Eggebrecht, Adam T.
Robichaux‐Viehoever, Amy
Bergonzi, Karla M.
Sherafati, Arefeh
AuthorAffiliation 6 L3Harris, 400 Initiative Dr Rochester New York 14624 USA
1 Department of Physics Washington University in St. Louis St. Louis Missouri USA
11 Department of Anesthesiology Washington University School of Medicine in St. Louis, St. Louis Missouri USA
8 Department of Psychiatry Washington University School of Medicine in St. Louis St. Louis Missouri USA
2 Department of Radiology Washington University School of Medicine in St St. Louis Missouri USA
4 Department of Biomedical Engineering Washington University School in St. Louis St. Louis Missouri USA
3 Department of Neurology Washington University in St. Louis St. Louis Missouri USA
9 Department Of Intelligent Systems Engineering Indiana University Bloomington Indiana USA
10 Department of Pediatrics Washington University in St. Louis St. Louis Missouri USA
5 Division of Biology and Biomedical Sciences Washington University School of Medicine in St. Louis St. Louis Missouri USA
7 Department of Psychological and Brain Sciences Indiana University Blo
AuthorAffiliation_xml – name: 5 Division of Biology and Biomedical Sciences Washington University School of Medicine in St. Louis St. Louis Missouri USA
– name: 11 Department of Anesthesiology Washington University School of Medicine in St. Louis, St. Louis Missouri USA
– name: 2 Department of Radiology Washington University School of Medicine in St St. Louis Missouri USA
– name: 1 Department of Physics Washington University in St. Louis St. Louis Missouri USA
– name: 7 Department of Psychological and Brain Sciences Indiana University Bloomington Indiana USA
– name: 4 Department of Biomedical Engineering Washington University School in St. Louis St. Louis Missouri USA
– name: 8 Department of Psychiatry Washington University School of Medicine in St. Louis St. Louis Missouri USA
– name: 9 Department Of Intelligent Systems Engineering Indiana University Bloomington Indiana USA
– name: 6 L3Harris, 400 Initiative Dr Rochester New York 14624 USA
– name: 3 Department of Neurology Washington University in St. Louis St. Louis Missouri USA
– name: 10 Department of Pediatrics Washington University in St. Louis St. Louis Missouri USA
Author_xml – sequence: 1
  givenname: Arefeh
  orcidid: 0000-0003-2543-0851
  surname: Sherafati
  fullname: Sherafati, Arefeh
  email: arefeh@wustl.edu
  organization: Washington University in St. Louis
– sequence: 2
  givenname: Abraham Z.
  surname: Snyder
  fullname: Snyder, Abraham Z.
  organization: Washington University in St. Louis
– sequence: 3
  givenname: Adam T.
  surname: Eggebrecht
  fullname: Eggebrecht, Adam T.
  organization: Washington University School of Medicine in St. Louis
– sequence: 4
  givenname: Karla M.
  surname: Bergonzi
  fullname: Bergonzi, Karla M.
  organization: L3Harris, 400 Initiative Dr
– sequence: 5
  givenname: Tracy M.
  surname: Burns‐Yocum
  fullname: Burns‐Yocum, Tracy M.
  organization: Indiana University
– sequence: 6
  givenname: Heather M.
  surname: Lugar
  fullname: Lugar, Heather M.
  organization: Washington University School of Medicine in St. Louis
– sequence: 7
  givenname: Silvina L.
  surname: Ferradal
  fullname: Ferradal, Silvina L.
  organization: Indiana University
– sequence: 8
  givenname: Amy
  surname: Robichaux‐Viehoever
  fullname: Robichaux‐Viehoever, Amy
  organization: Washington University in St. Louis
– sequence: 9
  givenname: Christopher D.
  surname: Smyser
  fullname: Smyser, Christopher D.
  organization: Washington University in St. Louis
– sequence: 10
  givenname: Ben J.
  surname: Palanca
  fullname: Palanca, Ben J.
  organization: Washington University School of Medicine in St. Louis, St. Louis
– sequence: 11
  givenname: Tamara
  surname: Hershey
  fullname: Hershey, Tamara
  organization: Indiana University
– sequence: 12
  givenname: Joseph P.
  surname: Culver
  fullname: Culver, Joseph P.
  organization: Washington University School of Medicine in St. Louis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32648643$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAQxy1URL848AIoEhc4ZDu243VyQSoVtJWKkCo4W_5MXCX2EidFe-MReEaeBG-3LbQC5INH49_8PaP_7KOdEINF6AWGBQYgR50aFoRhjJ-gPQwNLwE3dGcTL1nZVBzvov2UrgAwZoCfoV1KllW9rOgeujzto5J9McTJx1AYO1l9E8lgCm1DiqMPbeFD0fm2-_n9h8k5P60L452bky3iavI6C0xxiO0oV936ED11sk_2-e19gL58eP_55Ky8-HR6fnJ8UWqGAZdMEdZYQhWvwACnDhMK2vFKUd0w5YwBpzjT4LAjijkgDBzBFTFKMg6SHqC3W93VrAZrcrPTKHuxGv0gx7WI0ouHL8F3oo3XogZCCOdZ4PWtwBi_zjZNYvBJ276XwcY5CVLljhivlzSjrx6hV3EeQx4vU7RhTU04_KZa2Vvhg4v5X70RFcc8m4FJU1eZWvyFysfYwevsrPM5_6Dg5Z-D3k9452IG3mwBPcaURuvuEQxisyEib4i42ZDMHj1itZ_kxvLche__V_Et97X-t7Q4e_dxW_ELynzL6g
CitedBy_id crossref_primary_10_1002_hbm_26684
crossref_primary_10_1016_j_neuroimage_2022_119460
crossref_primary_10_1088_1741_2552_abfdf9
crossref_primary_10_1016_j_bspc_2024_106496
crossref_primary_10_3389_fnins_2020_560878
crossref_primary_10_3390_s25072040
crossref_primary_10_1016_j_neuroimage_2022_119663
crossref_primary_10_1093_cercor_bhac291
crossref_primary_10_1093_cercor_bhab282
crossref_primary_10_7554_eLife_75323
crossref_primary_10_1016_j_neuroimage_2023_120190
crossref_primary_10_1016_j_neuroimage_2020_117516
crossref_primary_10_1155_2021_2136776
crossref_primary_10_1038_s41598_025_85858_7
crossref_primary_10_1109_TBME_2024_3377109
crossref_primary_10_3389_fnrgo_2024_1355534
crossref_primary_10_3389_fnins_2022_878750
crossref_primary_10_1117_1_NPh_11_4_045006
crossref_primary_10_3390_electronics11030305
crossref_primary_10_1088_1741_2552_acaccb
crossref_primary_10_1093_cercor_bhad050
crossref_primary_10_1117_1_NPh_9_3_035003
crossref_primary_10_3390_chemosensors10110471
crossref_primary_10_1016_j_jneumeth_2023_109810
crossref_primary_10_1016_j_jocs_2024_102416
crossref_primary_10_1523_JNEUROSCI_1019_23_2024
crossref_primary_10_1038_s41598_024_79817_x
crossref_primary_10_1117_1_NPh_12_S1_S14603
crossref_primary_10_1093_cercor_bhab312
Cites_doi 10.1016/j.neuroimage.2013.04.003
10.1016/j.neuroimage.2013.05.105
10.1364/BOE.5.003882
10.1016/j.neuroimage.2020.116541
10.1038/nphoton.2014.107
10.1117/12.2252417
10.1016/j.neuroimage.2009.11.050
10.1038/s41598-017-15995-1
10.1371/journal.pone.0182939
10.1016/j.neuroimage.2013.06.054
10.1109/TBME.2005.845243
10.1038/nature18933
10.1002/mds.27942
10.1093/cercor/bhq035
10.1016/j.neuroimage.2012.08.052
10.1016/j.neuroimage.2011.02.073
10.1088/0967-3334/31/5/004
10.1186/1475-925X-9-16
10.1117/1.1852552
10.1002/hbm.22307
10.1016/j.neuroimage.2019.116400
10.1117/1.JBO.17.8.081414
10.1006/nimg.1999.0439
10.1016/j.neuroimage.2012.03.017
10.1016/j.heares.2016.02.005
10.1016/j.neuroimage.2017.08.025
10.1016/j.neuroimage.2018.09.025
10.3390/photonics6030094
10.1016/j.neuroimage.2013.03.004
10.1016/j.neuroimage.2004.07.039
10.3389/fnsys.2012.00080
10.3389/fnhum.2016.00629
10.1016/j.neuron.2018.03.035
10.1364/AO.48.00D280
10.1016/j.neuroimage.2019.06.056
10.1016/j.neuroimage.2011.07.044
10.1364/TRANSLATIONAL.2018.JW3A.51
10.1093/cercor/bhw253
10.1117/1.NPh.5.1.015003
10.1088/0967-3334/33/2/259
10.1016/j.neuroimage.2013.05.033
10.1002/mrm.1910340409
10.1002/mrm.1910350312
10.3390/a8041052
10.1016/j.neuroimage.2018.01.023
10.1016/j.neuroimage.2015.02.057
10.1016/j.neuroimage.2017.12.098
10.1016/j.neuroimage.2013.03.069
10.1016/j.neuroimage.2015.05.058
10.1002/brb3.1116
10.1016/j.neuroimage.2012.01.124
10.1016/j.neuroimage.2019.03.020
10.1142/S1793545813500661
10.1006/nimg.1995.1007
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2009.03.058
10.1038/s41598-019-45555-8
10.1038/jcbfm.2015.124
10.1364/OE.9.000272
10.1016/j.neuroimage.2011.12.063
10.1016/j.neubiorev.2009.07.008
10.1117/12.2546903
10.3389/fncir.2017.00056
10.3389/fnins.2012.00147
10.1093/cercor/bhu320
10.1016/j.bbr.2018.10.022
10.1016/j.neuroimage.2003.09.040
10.1016/j.neuron.2011.09.006
10.1016/j.neuroimage.2013.08.048
10.1016/j.neuroimage.2013.04.082
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC.
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
COPYRIGHT 2020 John Wiley & Sons, Inc.
2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC.
– notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.25111
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

CrossRef
Technology Research Database

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Sherafati et al
EISSN 1097-0193
EndPage 4112
ExternalDocumentID PMC8022277
A710612984
32648643
10_1002_hbm_25111
HBM25111
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P01NS080675; P30NS098577; K01MH103594; K02NS089852; KL2TR000450; R01NS090874; R21DC016086; R21MH109775; R21NS098020; U01EB027005; U54HD087011; UL1TR000448
– fundername: Mallinckrodt Institute of Radiology
– fundername: NIBIB NIH HHS
  grantid: U01 EB027005
– fundername: NICHD NIH HHS
  grantid: U54 HD087011
– fundername: NCATS NIH HHS
  grantid: UL1 TR002345
– fundername: NINDS NIH HHS
  grantid: R01 NS090874
– fundername: NCATS NIH HHS
  grantid: UL1 TR000448
– fundername: NINDS NIH HHS
  grantid: R21 NS098020
– fundername: NCATS NIH HHS
  grantid: KL2 TR002346
– fundername: NIMH NIH HHS
  grantid: R01 MH122751
– fundername: NIMH NIH HHS
  grantid: K01 MH103594
– fundername: ;
  grantid: P01NS080675; P30NS098577; K01MH103594; K02NS089852; KL2TR000450; R01NS090874; R21DC016086; R21MH109775; R21NS098020; U01EB027005; U54HD087011; UL1TR000448
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
7X7
8FI
8FJ
AAFWJ
AANHP
AAYXX
ABEML
ABJNI
ABUWG
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AFKRA
AFPKN
AGQPQ
ASPBG
AVWKF
AZFZN
BENPR
BFHJK
CCPQU
CITATION
EJD
FEDTE
FYUFA
GAKWD
HF~
HMCUK
HVGLF
LW6
M6M
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
UKHRP
WXSBR
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5101-5b259e23b740d073f1230cf74b3c95bfdd0fb75c0f1f2b5f0250f2142dba570a3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 17:42:07 EDT 2025
Fri Jul 11 14:53:28 EDT 2025
Sat Jul 26 02:21:24 EDT 2025
Tue Jun 17 21:37:36 EDT 2025
Tue Jun 10 20:49:34 EDT 2025
Sun Jul 20 01:30:39 EDT 2025
Tue Jul 01 01:10:59 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Wed Jan 22 16:34:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords optical neuroimaging
motion censoring
functional near-infrared spectroscopy
high-density diffuse optical tomography
motion artifact
Language English
License Attribution-NonCommercial
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5101-5b259e23b740d073f1230cf74b3c95bfdd0fb75c0f1f2b5f0250f2142dba570a3
Notes Funding information
Mallinckrodt Institute of Radiology; National Institutes of Health, Grant/Award Numbers: P01NS080675, P30NS098577, K01MH103594, K02NS089852, KL2TR000450, R01NS090874, R21DC016086, R21MH109775, R21NS098020, U01EB027005, U54HD087011, UL1TR000448
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Mallinckrodt Institute of Radiology; National Institutes of Health, Grant/Award Numbers: P01NS080675, P30NS098577, K01MH103594, K02NS089852, KL2TR000450, R01NS090874, R21DC016086, R21MH109775, R21NS098020, U01EB027005, U54HD087011, UL1TR000448
ORCID 0000-0003-2543-0851
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25111
PMID 32648643
PQID 2439598270
PQPubID 996345
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022277
proquest_miscellaneous_2423057863
proquest_journals_2439598270
gale_infotracmisc_A710612984
gale_infotracacademiconefile_A710612984
pubmed_primary_32648643
crossref_primary_10_1002_hbm_25111
crossref_citationtrail_10_1002_hbm_25111
wiley_primary_10_1002_hbm_25111_HBM25111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 1, 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 1, 2020
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012; 61
2004; 21
2015; 35
2012; 60
2017; 7
2009; 47
2019; 2019
1995; 34
2004; 23
2013; 64
2016; 2016
2019; 208
2012; 17
2011; 56
2012; 59
1996; 35
2013; 6
2019; 200
2009; 48
2018; 8
2010; 20
2018; 171
2014; 5
2018; 5
2018; 172
2011; 72
2020; 215
2017; 161
1999; 10
2019; 359
2014; 8
2010; 2
2019; 194
2010; 9
2014a; 7
2010; 34
2014b; 85
2019; 9
2010; 31
2019; 6
2017; 27
2019; 39
2016; 10
2020; 35
2014; 85
2019; 184
1995; 2
2014; 84
2015; 8
2012; 33
2010; 49
2013; 76
2016; 536
2016; 338
2020
2017; 11
2015; 112
2001; 9
2017; 12
2013; 80
2019
2005; 52
2018
2017
2014; 35
2005; 10
2015
2015; 117
2012; 6
2018; 98
2016; 26
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Salsabilian S. (e_1_2_9_60_1) 2019; 2019
Eggebrecht A. T. (e_1_2_9_18_1) 2019
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
Salsabilian S. (e_1_2_9_61_1) 2020
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
Fishell A. K. (e_1_2_9_30_1) 2016
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
Dashtestani H. (e_1_2_9_14_1) 2018; 8
e_1_2_9_2_1
Burke B. A. (e_1_2_9_9_1) 2019; 39
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
Laumann T. O. (e_1_2_9_47_1) 2017; 27
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
Gregg N. M. (e_1_2_9_38_1) 2010; 2
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 9
  start-page: 272
  issue: 6
  year: 2001
  end-page: 286
  article-title: Three‐dimensional optical tomography of hemodynamics in the human head
  publication-title: Optics Express
– volume: 76
  start-page: 183
  issue: 1
  year: 2013
  end-page: 201
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: NeuroImage
– volume: 35
  start-page: 1697
  issue: 10
  year: 2015
  end-page: 1702
  article-title: A method for reducing the effects of motion contamination in arterial spin labeling magnetic resonance imaging
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 34
  start-page: 269
  issue: 3
  year: 2010
  end-page: 284
  article-title: Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 35
  start-page: 1981
  issue: 5
  year: 2014
  end-page: 1996
  article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high‐motion data points
  publication-title: Human Brain Mapping
– volume: 10
  issue: 1
  year: 2005
  article-title: Eigenvector‐based spatial filtering for reduction of physiological interference in diffuse optical imaging
  publication-title: Journal of Biomedical Optics
– volume: 49
  start-page: 3039
  issue: 4
  year: 2010
  end-page: 3046
  article-title: Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics
  publication-title: NeuroImage
– volume: 31
  start-page: 649
  issue: 5
  year: 2010
  end-page: 662
  article-title: How to detect and reduce movement artifacts in near‐infrared imaging using moving standard deviation and spline interpolation
  publication-title: Physiological Measurement
– volume: 7
  issue: 8
  year: 2017
  article-title: Shedding light on the neonatal brain: Probing cerebral hemodynamics by diffuse optical spectroscopic methods
  publication-title: Scientific Reports, 2018
– volume: 338
  start-page: 64
  year: 2016
  end-page: 75
  article-title: Functional near‐infrared spectroscopy for neuroimaging in cochlear implant recipients
  publication-title: Hearing Research
– volume: 64
  start-page: 240
  year: 2013
  end-page: 256
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting‐state functional connectivity data
  publication-title: NeuroImage
– volume: 21
  start-page: 372
  issue: 1
  year: 2004
  end-page: 386
  article-title: Noninvasive measurement of neuronal activity with near‐infrared optical imaging
  publication-title: NeuroImage
– volume: 117
  start-page: 319
  year: 2015
  end-page: 326
  article-title: Mapping cortical responses to speech using high‐density diffuse optical tomography
  publication-title: NeuroImage
– year: 2018
– year: 2020
  article-title: Mapping deep brain stimulation's impact on cortical networks using high‐density diffuse optical tomography
  publication-title: Proceedings of SPIE 11226, Neural Imaging and Sensing 2020
– volume: 26
  start-page: 1558
  issue: 4
  year: 2016
  end-page: 1568
  article-title: Functional imaging of the developing brain at the bedside using diffuse optical tomography
  publication-title: Cerebral Cortex
– volume: 27
  start-page: 4719
  issue: 10
  year: 2017
  end-page: 4732
  article-title: On the stability of BOLD fMRI correlations
  publication-title: Cerebral Cortex
– volume: 172
  start-page: 291
  year: 2018
  end-page: 312
  article-title: Insight and inference for DVARS
  publication-title: NeuroImage
– volume: 5
  start-page: 1
  year: 2018
  article-title: Motion artifact detection and correction in functional near‐infrared spectroscopy: A new hybrid method based on spline interpolation method and Savitzky‐Golay filtering
  publication-title: Neurophotonics
– volume: 2019
  start-page: 5217
  year: 2019
  end-page: 5220
  article-title: Quantifying Changes in Brain Function Following Injury via Network Measures
  publication-title: Conf Proc IEEE Eng Med Biol Soc.
– volume: 9
  issue: 1
  year: 2019
  article-title: Mapping brain function during naturalistic viewing using high‐density diffuse optical tomography
  publication-title: Scientific Reports
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI
  publication-title: Magnetic Resonance in Medicine
– volume: 23
  start-page: 1046
  issue: 3
  year: 2004
  end-page: 1058
  article-title: Experimental designs and processing strategies for fMRI studies involving overt verbal responses
  publication-title: NeuroImage
– volume: 8
  start-page: 1052
  issue: 4
  year: 2015
  end-page: 1075
  article-title: A new approach for automatic removal of movement artifacts in near‐infrared spectroscopy time series by means of acceleration data
  publication-title: Algorithms
– volume: 10
  start-page: 1
  issue: 1
  year: 1999
  end-page: 5
  article-title: How many subjects constitute a study?
  publication-title: NeuroImage
– volume: 60
  start-page: 623
  issue: 1
  year: 2012
  end-page: 632
  article-title: Impact of in‐scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth
  publication-title: NeuroImage
– volume: 80
  start-page: 18
  year: 2013
  end-page: 26
  article-title: Microstructural grey matter parcellation and its relevance for connectome analyses
  publication-title: NeuroImage
– volume: 8
  year: 2018
  article-title: The role of prefrontal cortex in a moral judgment task using functional near‐infrared spectroscopy
  publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective
– volume: 85
  start-page: 117
  issue: Pt 1
  year: 2014
  end-page: 126
  article-title: Atlas‐based head modeling and spatial normalization for high‐density diffuse optical tomography: in vivo validation against fMRI
  publication-title: Neuroimage
– volume: 98
  start-page: 439
  issue: 2
  year: 2018
  end-page: 452 e5
  article-title: Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not Cognitive or Daily Variation
  publication-title: Neuron
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  article-title: Function in the human connectome: Task‐fMRI and individual differences in behavior
  publication-title: NeuroImage
– volume: 8
  start-page: 448
  issue: 6
  year: 2014
  end-page: 454
  article-title: Mapping distributed brain function and networks with diffuse optical tomography
  publication-title: Nature Photonics
– volume: 85
  start-page: 104
  issue: Pt 1
  year: 2014
  end-page: 116
  article-title: Statistical analysis of high density diffuse optical tomography
  publication-title: Neuroimage
– volume: 39
  start-page: 8
  year: 2019
  end-page: 9
  article-title: Brain functional connectivity changes in acute ischemic stroke measured with bedside diffuse optical tomography
  publication-title: Journal Of Cerebral Blood Flow And Metabolism
– volume: 72
  start-page: 665
  issue: 4
  year: 2011
  end-page: 678
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– year: 2019
– year: 2015
– volume: 7
  issue: 2
  year: 2014a
  article-title: Targeted principle component analysis: A new motion artifact correction approach for near‐infrared spectroscopy
  publication-title: Journal of Innovative Optical Health Sciences
– volume: 17
  issue: 8
  year: 2012
  article-title: High‐density diffuse optical tomography of term infant visual cortex in the nursery
  publication-title: Journal of Biomedical Optics
– year: 2020
  article-title: Study of Functional Network Topology Alterations after Injury via Embedding Methods. Biophotonics Congress: Biomedical Optics 2020
  publication-title: Optical Society of America, 2020
– volume: 161
  start-page: 80
  year: 2017
  end-page: 93
  article-title: Real‐time motion analytics during brain MRI improve data quality and reduce costs
  publication-title: NeuroImage
– volume: 59
  start-page: 431
  issue: 1
  year: 2012
  end-page: 438
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: NeuroImage
– volume: 112
  start-page: 128
  year: 2015
  end-page: 137
  article-title: A kurtosis‐based wavelet algorithm for motion artifact correction of fNIRS data
  publication-title: NeuroImage
– volume: 20
  start-page: 2852
  issue: 12
  year: 2010
  end-page: 2862
  article-title: Longitudinal analysis of neural network development in preterm infants
  publication-title: Cerebral Cortex
– volume: 536
  start-page: 171
  issue: 7615
  year: 2016
  end-page: 178
  article-title: A multi‐modal parcellation of human cerebral cortex
  publication-title: Nature
– volume: 171
  start-page: 234
  year: 2018
  end-page: 245
  article-title: Behavioral interventions for reducing head motion during MRI scans in children
  publication-title: NeuroImage
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: NeuroImage
– volume: 6
  start-page: 94
  year: 2019
  article-title: Effects of Performance and task duration on mental workload during working memory task
  publication-title: Photonics
– volume: 27
  start-page: 4492
  issue: 9
  year: 2017
  end-page: 4502
  article-title: Data quality influences observed links between functional connectivity and behavior
  publication-title: Cerebral Cortex
– volume: 35
  start-page: 346
  issue: 3
  year: 1996
  end-page: 355
  article-title: Movement‐related effects in fMRI time‐series
  publication-title: Magnetic Resonance in Medicine
– volume: 56
  start-page: 1437
  issue: 3
  year: 2011
  end-page: 1452
  article-title: Functional connectivity MRI in infants: Exploration of the functional organization of the developing brain
  publication-title: NeuroImage
– volume: 208
  year: 2019
  article-title: Correction of respiratory artifacts in MRI head motion estimates
  publication-title: NeuroImage
– volume: 2
  start-page: 45
  issue: 1
  year: 1995
  end-page: 53
  article-title: Analysis of fMRI time‐series revisited
  publication-title: NeuroImage
– year: 2017
  article-title: A global metric to detect motion artifacts in optical neuroimaging data
  publication-title: Presented at Neural Imaging and Sensing, 10051, International Society for Optics and Photonics
– volume: 194
  start-page: 211
  year: 2019
  end-page: 227
  article-title: On time delay estimation and sampling error in resting‐state fMRI
  publication-title: NeuroImage
– volume: 5
  start-page: 3882
  issue: 11
  year: 2014
  end-page: 3900
  article-title: Quantitative evaluation of atlas‐based high‐density diffuse optical tomography for imaging of the human visual cortex
  publication-title: Biomedical Optics Express
– volume: 12
  issue: 9
  year: 2017
  article-title: Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection
  publication-title: PLoS ONE
– volume: 6
  start-page: 147
  year: 2012
  article-title: A systematic comparison of motion artifact correction techniques for functional near‐infrared spectroscopy
  publication-title: Frontiers in Neuroscience
– volume: 184
  start-page: 171
  year: 2019
  end-page: 179
  article-title: Temporal derivative distribution repair (TDDR): A motion correction method for fNIRS
  publication-title: NeuroImage
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 215
  year: 2020
  article-title: Portable, field‐based neuroimaging using high‐density diffuse optical tomography
  publication-title: NeuroImage
– volume: 48
  start-page: D280
  issue: 10
  year: 2009
  end-page: D298
  article-title: HomER: A review of time‐series analysis methods for near‐infrared spectroscopy of the brain
  publication-title: Applied Optics
– volume: 2
  start-page: 14
  year: 2010
  article-title: Brain specificity of diffuse optical imaging: Improvements from superficial signal regression and tomography
  publication-title: Frontiers in Neuroenergetics
– volume: 33
  start-page: 259
  issue: 2
  year: 2012
  end-page: 270
  article-title: Wavelet‐based motion artifact removal for functional near‐infrared spectroscopy
  publication-title: Physiological Measurement
– volume: 10
  start-page: 629
  year: 2016
  article-title: Changes in motor‐related cortical activity following deep brain stimulation for Parkinson's disease detected by functional near infrared spectroscopy: A pilot study
  publication-title: Frontiers in Human Neuroscience
– volume: 11
  start-page: 56
  year: 2017
  article-title: Particle tracking facilitates real time capable motion correction in 2D or 3D two‐photon imaging of neuronal activity
  publication-title: Frontiers in Neural Circuits
– volume: 76
  start-page: 439
  issue: 1
  year: 2013
  end-page: 441
  article-title: Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to carp
  publication-title: NeuroImage
– volume: 6
  start-page: 80
  year: 2013
  article-title: Distinct neural signatures detected for ADHD subtypes after controlling for micro‐movements in resting state functional connectivity MRI data
  publication-title: Frontiers in Systems Neuroscience
– volume: 47
  start-page: 148
  issue: 1
  year: 2009
  end-page: 156
  article-title: Resting‐state functional connectivity in the human brain revealed with diffuse optical tomography
  publication-title: NeuroImage
– volume: 200
  start-page: 511
  year: 2019
  end-page: 527
  article-title: Recommendations for motion correction of infant fNIRS data applicable to multiple data sets and acquisition systems
  publication-title: NeuroImage
– volume: 61
  start-page: 1120
  issue: 4
  year: 2012
  end-page: 1128
  article-title: A quantitative spatial comparison of high‐density diffuse optical tomography and fMRI cortical mapping
  publication-title: NeuroImage
– volume: 52
  start-page: 934
  issue: 5
  year: 2005
  end-page: 938
  article-title: Motion artifact cancellation in NIR spectroscopy using wiener filtering
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 9
  start-page: 16
  year: 2010
  article-title: Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering
  publication-title: Biomedical Engineering Online
– volume: 359
  start-page: 73
  year: 2019
  end-page: 80
  article-title: Canonical correlation analysis of brain prefrontal activity measured by functional near infra‐red spectroscopy (fNIRS) during a moral judgment task
  publication-title: Behavioural Brain Research
– volume: 85
  start-page: 181
  year: 2014
  end-page: 191
  article-title: Motion artifacts in functional near‐infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data
  publication-title: NeuroImage
– volume: 85
  start-page: 192
  year: 2014b
  end-page: 201
  article-title: Reducing motion artifacts for long‐term clinical NIRS monitoring using collodion‐fixed prism‐based optical fibers
  publication-title: NeuroImage
– volume: 35
  start-page: 499
  issue: 3
  year: 2020
  end-page: 503
  article-title: Little Change in Functional Brain Networks Following Acute Levodopa in Drug‐Naïve Parkinson's Disease
  publication-title: Movement Disorders
– volume: 2016
  year: 2016
– ident: e_1_2_9_10_1
  doi: 10.1016/j.neuroimage.2013.04.003
– ident: e_1_2_9_41_1
  doi: 10.1016/j.neuroimage.2013.05.105
– ident: e_1_2_9_78_1
  doi: 10.1364/BOE.5.003882
– volume-title: NeuroDOT: An extensible Matlab toolbox for streamlined optical functional mapping. In Clinical and Preclinical Optical Diagnostics II
  year: 2019
  ident: e_1_2_9_18_1
– ident: e_1_2_9_28_1
  doi: 10.1016/j.neuroimage.2020.116541
– ident: e_1_2_9_20_1
  doi: 10.1038/nphoton.2014.107
– ident: e_1_2_9_66_1
  doi: 10.1117/12.2252417
– ident: e_1_2_9_65_1
– ident: e_1_2_9_13_1
  doi: 10.1016/j.neuroimage.2009.11.050
– ident: e_1_2_9_24_1
  doi: 10.1038/s41598-017-15995-1
– ident: e_1_2_9_56_1
  doi: 10.1371/journal.pone.0182939
– ident: e_1_2_9_73_1
– ident: e_1_2_9_81_1
  doi: 10.1016/j.neuroimage.2013.06.054
– ident: e_1_2_9_44_1
  doi: 10.1109/TBME.2005.845243
– ident: e_1_2_9_35_1
  doi: 10.1038/nature18933
– ident: e_1_2_9_39_1
– ident: e_1_2_9_76_1
  doi: 10.1002/mds.27942
– ident: e_1_2_9_71_1
  doi: 10.1093/cercor/bhq035
– ident: e_1_2_9_62_1
  doi: 10.1016/j.neuroimage.2012.08.052
– volume: 2019
  start-page: 5217
  year: 2019
  ident: e_1_2_9_60_1
  article-title: Quantifying Changes in Brain Function Following Injury via Network Measures
  publication-title: Conf Proc IEEE Eng Med Biol Soc.
– ident: e_1_2_9_72_1
  doi: 10.1016/j.neuroimage.2011.02.073
– ident: e_1_2_9_64_1
  doi: 10.1088/0967-3334/31/5/004
– ident: e_1_2_9_43_1
  doi: 10.1186/1475-925X-9-16
– volume: 27
  start-page: 4719
  issue: 10
  year: 2017
  ident: e_1_2_9_47_1
  article-title: On the stability of BOLD fMRI correlations
  publication-title: Cerebral Cortex
– ident: e_1_2_9_82_1
  doi: 10.1117/1.1852552
– ident: e_1_2_9_70_1
  doi: 10.1002/hbm.22307
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neuroimage.2019.116400
– ident: e_1_2_9_48_1
  doi: 10.1117/1.JBO.17.8.081414
– volume: 39
  start-page: 8
  year: 2019
  ident: e_1_2_9_9_1
  article-title: Brain functional connectivity changes in acute ischemic stroke measured with bedside diffuse optical tomography
  publication-title: Journal Of Cerebral Blood Flow And Metabolism
– ident: e_1_2_9_33_1
  doi: 10.1006/nimg.1999.0439
– ident: e_1_2_9_57_1
  doi: 10.1016/j.neuroimage.2012.03.017
– ident: e_1_2_9_59_1
  doi: 10.1016/j.heares.2016.02.005
– year: 2020
  ident: e_1_2_9_61_1
  article-title: Study of Functional Network Topology Alterations after Injury via Embedding Methods. Biophotonics Congress: Biomedical Optics 2020
  publication-title: Optical Society of America, 2020
– ident: e_1_2_9_17_1
  doi: 10.1016/j.neuroimage.2017.08.025
– ident: e_1_2_9_27_1
  doi: 10.1016/j.neuroimage.2018.09.025
– ident: e_1_2_9_46_1
  doi: 10.3390/photonics6030094
– ident: e_1_2_9_79_1
  doi: 10.1016/j.neuroimage.2013.03.004
– ident: e_1_2_9_5_1
  doi: 10.1016/j.neuroimage.2004.07.039
– ident: e_1_2_9_22_1
  doi: 10.3389/fnsys.2012.00080
– ident: e_1_2_9_52_1
  doi: 10.3389/fnhum.2016.00629
– ident: e_1_2_9_36_1
  doi: 10.1016/j.neuron.2018.03.035
– ident: e_1_2_9_42_1
  doi: 10.1364/AO.48.00D280
– ident: e_1_2_9_16_1
  doi: 10.1016/j.neuroimage.2019.06.056
– ident: e_1_2_9_75_1
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: e_1_2_9_67_1
  doi: 10.1364/TRANSLATIONAL.2018.JW3A.51
– ident: e_1_2_9_69_1
  doi: 10.1093/cercor/bhw253
– ident: e_1_2_9_45_1
  doi: 10.1117/1.NPh.5.1.015003
– ident: e_1_2_9_51_1
  doi: 10.1088/0967-3334/33/2/259
– ident: e_1_2_9_4_1
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: e_1_2_9_6_1
  doi: 10.1002/mrm.1910340409
– volume: 2
  start-page: 14
  year: 2010
  ident: e_1_2_9_38_1
  article-title: Brain specificity of diffuse optical imaging: Improvements from superficial signal regression and tomography
  publication-title: Frontiers in Neuroenergetics
– ident: e_1_2_9_34_1
  doi: 10.1002/mrm.1910350312
– ident: e_1_2_9_50_1
  doi: 10.3390/a8041052
– ident: e_1_2_9_37_1
  doi: 10.1016/j.neuroimage.2018.01.023
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neuroimage.2015.02.057
– ident: e_1_2_9_2_1
  doi: 10.1016/j.neuroimage.2017.12.098
– ident: e_1_2_9_19_1
– ident: e_1_2_9_26_1
  doi: 10.1016/j.neuroimage.2013.03.069
– volume-title: Biomedical optics
  year: 2016
  ident: e_1_2_9_30_1
– ident: e_1_2_9_40_1
  doi: 10.1016/j.neuroimage.2015.05.058
– volume: 8
  start-page: e01116
  year: 2018
  ident: e_1_2_9_14_1
  article-title: The role of prefrontal cortex in a moral judgment task using functional near‐infrared spectroscopy
  publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective
  doi: 10.1002/brb3.1116
– ident: e_1_2_9_21_1
  doi: 10.1016/j.neuroimage.2012.01.124
– ident: e_1_2_9_58_1
  doi: 10.1016/j.neuroimage.2019.03.020
– ident: e_1_2_9_80_1
  doi: 10.1142/S1793545813500661
– ident: e_1_2_9_32_1
  doi: 10.1006/nimg.1995.1007
– ident: e_1_2_9_53_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_9_77_1
  doi: 10.1016/j.neuroimage.2009.03.058
– ident: e_1_2_9_29_1
  doi: 10.1038/s41598-019-45555-8
– ident: e_1_2_9_74_1
  doi: 10.1038/jcbfm.2015.124
– ident: e_1_2_9_7_1
  doi: 10.1364/OE.9.000272
– ident: e_1_2_9_63_1
  doi: 10.1016/j.neuroimage.2011.12.063
– ident: e_1_2_9_49_1
  doi: 10.1016/j.neubiorev.2009.07.008
– ident: e_1_2_9_68_1
  doi: 10.1117/12.2546903
– ident: e_1_2_9_3_1
  doi: 10.3389/fncir.2017.00056
– ident: e_1_2_9_12_1
  doi: 10.3389/fnins.2012.00147
– ident: e_1_2_9_25_1
  doi: 10.1093/cercor/bhu320
– ident: e_1_2_9_15_1
  doi: 10.1016/j.bbr.2018.10.022
– ident: e_1_2_9_31_1
  doi: 10.1016/j.neuroimage.2003.09.040
– ident: e_1_2_9_54_1
  doi: 10.1016/j.neuron.2011.09.006
– ident: e_1_2_9_55_1
  doi: 10.1016/j.neuroimage.2013.08.048
– ident: e_1_2_9_8_1
  doi: 10.1016/j.neuroimage.2013.04.082
SSID ssj0011501
Score 2.5496426
Snippet Motion‐induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high‐density diffuse optical tomography...
Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high-density diffuse optical tomography...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4093
SubjectTerms Accelerometry
Adult
Aged
Brain - diagnostic imaging
Brain mapping
Censorship
Connectome - standards
Correlation analysis
Datasets as Topic
Density
Detectors
Evaluation
Female
Functional magnetic resonance imaging
functional near‐infrared spectroscopy
Functional Neuroimaging - standards
Head movement
Head Movements
high‐density diffuse optical tomography
Humans
Image Processing, Computer-Assisted - standards
Imaging systems
Infrared spectroscopy
Magnetic resonance imaging
Magnetic Resonance Imaging - standards
Male
Mapping
Mathematical analysis
Measurement methods
Medical imaging
Middle Aged
motion artifact
motion censoring
Motion detection
Motion perception
Neuroimaging
optical neuroimaging
Principal components analysis
Sensitivity and Specificity
Similarity
Spectroscopy, Near-Infrared - standards
Tomography
Tomography, Optical - standards
Young Adult
Title Global motion detection and censoring in high‐density diffuse optical tomography
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25111
https://www.ncbi.nlm.nih.gov/pubmed/32648643
https://www.proquest.com/docview/2439598270
https://www.proquest.com/docview/2423057863
https://pubmed.ncbi.nlm.nih.gov/PMC8022277
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VHhAXHi2PQFkZhIBLtl7HjrvitCCqFdIiVFGpB6Qodmy1gnorNnsoJ34Cv5FfwozzoFmBhLit5Mkmnsw7428AnglrRemdSysjOSYozqZGKp4S2ifqZWnyiFuweJ_Pj-W7E3WyBa-6szANPkRfcCPNiPaaFLw0q_3foKGn5nxM8TGlPtSrRQHRUQ8dRYFOTLbQxaZTtMAdqhAX-_2VA1-0aZGvuKTNdsmrYWz0Q4e34FO3g6b95PN4XZux_bYB7vifW7wNN9v4lM0agboDWy7swO4sYG5-fsmes9gxGkvxO3B90X6Y34WjZnYAa4YCscrVscUrsDJUDHe0in1-7Cwwwkf--f1HRY3z9SWjAS3rlWPLi1hUZ3ibFkT7Lhwfvv34Zp624xpSS4qdKoOplBOZ0ZJXaDk8OkVuvZYms1NlfFVxb7Sy3E-8MMpT9OUJ8a0ypdK8zO7BdlgG9wBY7oya5Ib7PNeylKp0mMZOIpqY8zKTCbzsXlxhWyxzGqnxpWhQmEWBrCsi6xJ42pNeNAAefyJ6QW-_IKXG_7FlezYBn4bgsYqZpsxZTA_wznsDSlRGO1zu5KdojcGqEBj0EU6i5gk86ZfpSmpwC265JhpkFlrPPEvgfiNu_eNm1IWIkWMCeiCIPQFBhA9XwtlphAo_iGedNfIrytnfOVDMXy_ij4f_TvoIbgiqPsTWxj3Yrr-u3WMM0WozgmtCfhjFAsco6uUvjlI4-Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQIuFFoeaQsYhIBLtt4kjrsSlwVRLdDtoWqlXpAVO7ZaQb0Vmz2UU38Cv5FfwozzoFmBhLit5Mkmnsw7428AXiTGJIWzNi51xjFBsSbWmeAxoX2iXhY6D7gF04N8cpx9PBEnK_CmPQtT40N0BTfSjGCvScGpIL3zGzX0VJ8PKEDG3OcGTfQOCdVhBx5FoU5It9DJxiO0wS2uEE92ukt73mjZJl9zSssNk9cD2eCJ9tbgc7uHugHly2BR6YH5vgTv-L-bvAt3mhCVjWuZugcr1q_Dxthjen5-yV6y0DQaqvHrcHPafJvfgMN6fACr5wKx0lahy8uzwpcMtzQPrX7szDOCSP559aOk3vnqktGMlsXcstlFqKszvE2Do30fjvfeH72bxM3EhtiQbsdCYzZlk1TLjJdoPBz6RW6czHRqRkK7suROS2G4G7pEC0cBmCPQt1IXQvIifQCrfubtI2C51WKYa-7yXGZFJgqLmewwAIpZl6VZBK_bN6dMA2dOUzW-qhqIOVHIOhVYF8HzjvSixvD4E9Erev2K9Br_xxTN8QR8GkLIUmNJyXMy2sU7b_coUR9Nf7kVINXYg7lKMO4jqETJI3jWLdOV1OPm7WxBNMgsNKB5GsHDWt66x02pERGDxwhkTxI7AkIJ76_4s9OAFr4bjjtL5FcQtL9zQE3eTsOPzX8nfQq3JkfTfbX_4eDTFtxOqBgROh23YbX6trCPMWKr9JOgmL8AOwo7SA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaq48GiBBgqYCgGXbL2JE--K00JZbVu2QhWVekCyYsdWK2h2xWYP5cRP4DfyS5hxHjQrkBC3SB4n8WSezvgbgOeRMVHmrA1zLTgmKNaEWiQ8JLRP1MtMpx63YHqcTk7F4Vlytgavm7MwFT5Eu-FGmuHtNSn4PHd7v0FDz_Vlj-JjTH1uiJQPSKT3T1rsKIp0fLaFPjYcogluYIV4tNdO7TijVZN8zSet1ktej2O9Ixrfhk_NEqr6k8-9Zal75tsKuuN_rvEO3KoDVDaqJOourNliE7ZGBSbnl1fsBfMlo34vfhM2pvWf-S04qZoHsKorEMtt6Wu8CpYVOcMVLXyhH7soGAEk__z-I6fK-fKKUYeW5cKy2dzvqjN8TI2ifQ9Ox-8-vp2Edb-G0JBmh4nGXMpGsZaC52g6HHpFbpwUOjbDRLs8507LxHDXd5FOHIVfjiDfcp0lkmfxfVgvZoXdBpZanfRTzV2aSpGJJLOYx_Y9nJh1IhYBvGo-nDI1mDn11PiiKhjmSCHrlGddALst6bxC8PgT0Uv6-oq0Gu9jsvpwAr4N4WOpkaTUORoO8Mk7HUrURtMdbuRH1dZgoSKM-ggoUfIAnrXDNJMq3Ao7WxINMgvNZxoH8KASt_Z1YypDxNAxANkRxJaAMMK7I8XFuccKH_jDzhL55eXs7xxQkzdTf_Hw30mfwsaH_bF6f3B89AhuRrQT4cscd2C9_Lq0jzFcK_UTr5a_AH-1OgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+motion+detection+and+censoring+in+high%E2%80%90density+diffuse+optical+tomography&rft.jtitle=Human+brain+mapping&rft.au=Sherafati%2C+Arefeh&rft.au=Snyder%2C+Abraham+Z.&rft.au=Eggebrecht%2C+Adam+T.&rft.au=Bergonzi%2C+Karla+M.&rft.date=2020-10-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=41&rft.issue=14&rft.spage=4093&rft.epage=4112&rft_id=info:doi/10.1002%2Fhbm.25111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_25111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon