Ecological networks in motion micro- and macroscopic variability across scales

Summary There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 30; no. 12; pp. 1926 - 1935
Main Authors Trøjelsgaard, Kristian, Olesen, Jens M.
Format Journal Article
LanguageEnglish
Published London Wiley 01.12.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological networks have been placed in spatial and temporal contexts in order to reveal what may drive network variability. Understanding the spatial and temporal variability of ecological networks, and in particular the underlying forces facilitating changes, seems pertinent in our attempts to understand and anticipate how ecological networks may vary and respond to future environmental scenarios. Network variability has been studied at widely differing temporal and spatial scales. For example, studies exploring temporal variability ranges from within‐season comparisons to comparisons over vast geological time spans, and the spatial extent ranges from the scale of a single pond to global analyses. Here, we highlight the outcomes from such studies and emphasize the identified mechanisms driving spatio‐temporal variability in ecological networks. Specifically, we describe how ecological networks vary over different temporal (years, centuries and millennia) and spatial (local, regional and global) scales, discuss how this variability is monitored and identify potential future directions. Present knowledge allows some tentative generalizations. First, ecological networks tend to exhibit considerable spatial and temporal stability in several macroscopic features (e.g. connectance, nestedness), but studies also show that macroscopic features may change, for example, in relation to mass extinction or steep environmental gradients. Secondly, microscopic features (e.g. individual specialization levels, species roles and partner affiliations), albeit less studied, seem to show strong variability, and in several cases, microscopic instability co‐occurs with macroscopic stability. We therefore recommend a stronger focus on this macro–micro interplay and list ideas (e.g. temporal species centrality measures and interaction phenologies), towards expanding the microscopic toolbox of network ecologists. A lay summary is available for this article. Lay Summary
AbstractList There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological networks have been placed in spatial and temporal contexts in order to reveal what may drive network variability. Understanding the spatial and temporal variability of ecological networks, and in particular the underlying forces facilitating changes, seems pertinent in our attempts to understand and anticipate how ecological networks may vary and respond to future environmental scenarios. Network variability has been studied at widely differing temporal and spatial scales. For example, studies exploring temporal variability ranges from within‐season comparisons to comparisons over vast geological time spans, and the spatial extent ranges from the scale of a single pond to global analyses. Here, we highlight the outcomes from such studies and emphasize the identified mechanisms driving spatio‐temporal variability in ecological networks. Specifically, we describe how ecological networks vary over different temporal (years, centuries and millennia) and spatial (local, regional and global) scales, discuss how this variability is monitored and identify potential future directions. Present knowledge allows some tentative generalizations. First, ecological networks tend to exhibit considerable spatial and temporal stability in several macroscopic features (e.g. connectance, nestedness), but studies also show that macroscopic features may change, for example, in relation to mass extinction or steep environmental gradients. Secondly, microscopic features (e.g. individual specialization levels, species roles and partner affiliations), albeit less studied, seem to show strong variability, and in several cases, microscopic instability co‐occurs with macroscopic stability. We therefore recommend a stronger focus on this macro–micro interplay and list ideas (e.g. temporal species centrality measures and interaction phenologies), towards expanding the microscopic toolbox of network ecologists. A lay summary is available for this article.
There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological networks have been placed in spatial and temporal contexts in order to reveal what may drive network variability. Understanding the spatial and temporal variability of ecological networks, and in particular the underlying forces facilitating changes, seems pertinent in our attempts to understand and anticipate how ecological networks may vary and respond to future environmental scenarios.Network variability has been studied at widely differing temporal and spatial scales. For example, studies exploring temporal variability ranges from within‐season comparisons to comparisons over vast geological time spans, and the spatial extent ranges from the scale of a single pond to global analyses. Here, we highlight the outcomes from such studies and emphasize the identified mechanisms driving spatio‐temporal variability in ecological networks. Specifically, we describe how ecological networks vary over different temporal (years, centuries and millennia) and spatial (local, regional and global) scales, discuss how this variability is monitored and identify potential future directions.Present knowledge allows some tentative generalizations. First, ecological networks tend to exhibit considerable spatial and temporal stability in several macroscopic features (e.g. connectance, nestedness), but studies also show that macroscopic features may change, for example, in relation to mass extinction or steep environmental gradients. Secondly, microscopic features (e.g. individual specialization levels, species roles and partner affiliations), albeit less studied, seem to show strong variability, and in several cases, microscopic instability co‐occurs with macroscopic stability. We therefore recommend a stronger focus on this macro–micro interplay and list ideas (e.g. temporal species centrality measures and interaction phenologies), towards expanding the microscopic toolbox of network ecologists.A lay summary is available for this article.
1. There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological networks have been placed in spatial and temporal contexts in order to reveal what may drive network variability. Understanding the spatial and temporal variability of ecological networks, and in particular the underlying forces facilitating changes, seems pertinent in our attempts to understand and anticipate how ecological networks may vary and respond to future environmental scenarios. 2. Network variability has been studied at widely differing temporal and spatial scales. For example, studies exploring temporal variability ranges from within-season comparisons to comparisons over vast geological time spans, and the spatial extent ranges from the scale of a single pond to global analyses. Here, we highlight the outcomes from such studies and emphasize the identified mechanisms driving spatio-temporal variability in ecological networks. Specifically, we describe how ecological networks vary over different temporal (years, centuries and millennia) and spatial (local, regional and global) scales, discuss how this variability is monitored and identify potential future directions. 3. Present knowledge allows some tentative generalizations. First, ecological networks tend to exhibit considerable spatial and temporal stability in several macroscopic features (e.g. connectance, nestedness), but studies also show that macroscopic features may change, for example, in relation to mass extinction or steep environmental gradients. Secondly, microscopic features (e.g. individual specialization levels, species roles and partner affiliations), albeit less studied, seem to show strong variability, and in several cases, microscopic instability co-occurs with macroscopic stability. We therefore recommend a stronger focus on this macro-micro interplay and list ideas (e.g. temporal species centrality measures and interaction phenologies), towards expanding the microscopic toolbox of network ecologists. A lay summary is available for this article. Lay Summary
Summary There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological networks have been placed in spatial and temporal contexts in order to reveal what may drive network variability. Understanding the spatial and temporal variability of ecological networks, and in particular the underlying forces facilitating changes, seems pertinent in our attempts to understand and anticipate how ecological networks may vary and respond to future environmental scenarios. Network variability has been studied at widely differing temporal and spatial scales. For example, studies exploring temporal variability ranges from within‐season comparisons to comparisons over vast geological time spans, and the spatial extent ranges from the scale of a single pond to global analyses. Here, we highlight the outcomes from such studies and emphasize the identified mechanisms driving spatio‐temporal variability in ecological networks. Specifically, we describe how ecological networks vary over different temporal (years, centuries and millennia) and spatial (local, regional and global) scales, discuss how this variability is monitored and identify potential future directions. Present knowledge allows some tentative generalizations. First, ecological networks tend to exhibit considerable spatial and temporal stability in several macroscopic features (e.g. connectance, nestedness), but studies also show that macroscopic features may change, for example, in relation to mass extinction or steep environmental gradients. Secondly, microscopic features (e.g. individual specialization levels, species roles and partner affiliations), albeit less studied, seem to show strong variability, and in several cases, microscopic instability co‐occurs with macroscopic stability. We therefore recommend a stronger focus on this macro–micro interplay and list ideas (e.g. temporal species centrality measures and interaction phenologies), towards expanding the microscopic toolbox of network ecologists. A lay summary is available for this article. Lay Summary
Author Trøjelsgaard, Kristian
Olesen, Jens M.
Author_xml – sequence: 1
  givenname: Kristian
  surname: Trøjelsgaard
  fullname: Trøjelsgaard, Kristian
– sequence: 2
  givenname: Jens M.
  surname: Olesen
  fullname: Olesen, Jens M.
BookMark eNqFkMFPwjAUhxuDiYCePZGQePEyeO1rt-5oCKgJiRc9N7XrzHCs2I4Q_3s7QQ4cpIfX5OX7Xvt-A9JrXGMJuaUwofFMKaYiYRzFhLKMwgXpHzs90geW5onkKV6RQQgrAMgFY30ymhtXu4_K6Hrc2Hbn_GcYV8147drKNdfkstR1sDeHe0jeFvPX2VOyfHl8nj0sEyMoQFKiZogCMCs4WsttWqTyHbhABCGhLNBKnWkwhRYZphpLq6UtkUnJDRQGh-R-P3fj3dfWhlatq2BsXevGum1QLP6X01zw_CxKpci5jDWN6N0JunJb38RFFMOMc8ji2EiJPWW8C8HbUpmq1d32rddVrSioLl_Vpam6NNVvvtGbnngbX621__7HOLy0q2r7fQ5Xi_nszxvtvVVonT96XArJutR_ALeUkvY
CitedBy_id crossref_primary_10_1111_ele_13510
crossref_primary_10_1002_ece3_8074
crossref_primary_10_1098_rspb_2017_2833
crossref_primary_10_1111_jzo_12612
crossref_primary_10_1111_ele_13439
crossref_primary_10_1002_ece3_5641
crossref_primary_10_1111_1365_2745_12978
crossref_primary_10_1111_aec_13004
crossref_primary_10_1007_s00442_021_04952_5
crossref_primary_10_1111_ecog_03514
crossref_primary_10_1111_jzo_13144
crossref_primary_10_1111_jvs_13076
crossref_primary_10_1098_rstb_2020_0361
crossref_primary_10_1002_ecy_3961
crossref_primary_10_1111_ecog_06102
crossref_primary_10_3161_15081109ACC2022_24_1_019
crossref_primary_10_1111_1365_2656_12978
crossref_primary_10_1007_s41109_021_00442_y
crossref_primary_10_1016_j_jtbi_2017_10_016
crossref_primary_10_2478_eko_2022_0006
crossref_primary_10_1111_geb_13310
crossref_primary_10_3390_insects11010006
crossref_primary_10_1111_1748_5967_12233
crossref_primary_10_1007_s00442_018_4320_2
crossref_primary_10_1111_1365_2435_12799
crossref_primary_10_1007_s00442_024_05578_z
crossref_primary_10_1016_j_actao_2017_08_003
crossref_primary_10_1111_een_12750
crossref_primary_10_1093_comnet_cnae004
crossref_primary_10_1111_geb_12776
crossref_primary_10_1111_btp_13216
crossref_primary_10_3390_d15080895
crossref_primary_10_1111_oik_04703
crossref_primary_10_3389_fevo_2017_00133
crossref_primary_10_1111_ele_13287
crossref_primary_10_1111_oik_08756
crossref_primary_10_1098_rstb_2021_0063
crossref_primary_10_1111_oik_07303
crossref_primary_10_1111_1365_2656_12749
crossref_primary_10_1111_1365_2656_13639
crossref_primary_10_1093_jpe_rtaa054
crossref_primary_10_24072_pcjournal_105
crossref_primary_10_1002_ecs2_3653
crossref_primary_10_1111_geb_12602
crossref_primary_10_1007_s11252_020_01089_w
crossref_primary_10_1016_j_flora_2024_152668
crossref_primary_10_1111_nyas_13974
crossref_primary_10_1098_rsif_2018_0747
crossref_primary_10_1002_ece3_5024
crossref_primary_10_1007_s11252_020_01029_8
crossref_primary_10_1111_1365_2656_12710
crossref_primary_10_1111_1365_2656_13447
crossref_primary_10_1146_annurev_phyto_080516_035326
crossref_primary_10_1111_eea_12679
crossref_primary_10_1111_jbi_14014
crossref_primary_10_1146_annurev_ecolsys_110316_022821
crossref_primary_10_1016_j_baae_2018_05_011
crossref_primary_10_1016_j_ecolmodel_2022_110224
crossref_primary_10_1016_j_tplants_2020_04_015
crossref_primary_10_1086_721023
crossref_primary_10_1111_ele_13623
crossref_primary_10_1002_ecs2_2539
crossref_primary_10_1007_s11829_022_09925_w
crossref_primary_10_1111_ecog_05945
crossref_primary_10_1111_oik_09818
crossref_primary_10_1111_een_13189
crossref_primary_10_1111_jbi_14127
crossref_primary_10_1002_ecy_3359
crossref_primary_10_1111_oik_07526
crossref_primary_10_1111_1365_2745_13391
crossref_primary_10_1111_oik_08650
crossref_primary_10_1111_icad_12497
crossref_primary_10_1111_oik_08175
crossref_primary_10_1007_s00442_021_04863_5
crossref_primary_10_1111_brv_12433
crossref_primary_10_1002_ecs2_4521
crossref_primary_10_3389_fenvs_2022_987600
Cites_doi 10.1038/23876
10.2307/3565588
10.1111/j.1365-2745.2010.01732.x
10.1111/oik.02661
10.1098/rspb.2015.1589
10.1126/science.1188321
10.1111/ecog.01078
10.1111/j.1600-0706.2013.00644.x
10.1111/1365-2656.12285
10.1515/9781400848720
10.1073/pnas.0706375104
10.1111/jbi.12165
10.1111/ele.12002
10.1371/journal.pone.0081694
10.1111/j.1600-0587.2013.00201.x
10.2307/3546998
10.1073/pnas.1633576100
10.1371/journal.pone.0026455
10.1098/rspb.2007.0515
10.1016/B978-0-12-381363-3.00001-0
10.1890/07-0451.1
10.1111/j.0030-1299.2008.16987.x
10.1126/science.1232728
10.1073/pnas.1408471111
10.1371/journal.pone.0106651
10.1126/science.1216556
10.1038/nature04742
10.1007/978-3-642-36461-7_1
10.1111/oik.01439
10.1007/978-3-642-36461-7_2
10.1038/nature05429
10.1016/j.tree.2007.09.006
10.1111/j.1600-0706.2009.17740.x
10.1111/oik.01719
10.1111/j.1461-0248.2008.01170.x
10.1111/ecog.00913
10.1111/j.1600-0706.2009.18017.x
10.1103/PhysRevE.84.016105
10.1016/j.physrep.2012.03.001
10.1111/j.1600-0706.2010.18376.x
10.1371/journal.pone.0112903
10.1890/08-1837.1
10.1016/j.biocon.2010.03.036
10.1098/rspb.2014.2925
10.1111/j.0030-1299.2004.13257.x
10.1098/rspb.2013.0239
10.1016/j.cub.2012.08.015
10.1016/j.ecocom.2009.03.008
10.1371/journal.pone.0110430
10.1371/journal.pone.0025891
10.1016/j.physrep.2010.11.002
10.1111/geb.12362
10.1111/ele.12245
10.1111/ele.12235
10.1371/journal.pbio.0060102
10.1111/j.1466-8238.2012.00777.x
10.1111/j.0030-1299.2005.13712.x
10.1890/08-1883.1
10.1007/s00442-014-2971-1
10.1186/1472-6785-6-9
ContentType Journal Article
Copyright 2016 The Authors. © 2016 British Ecological Society
2016 The Authors. Functional Ecology © 2016 British Ecological Society
Functional Ecology © 2016 British Ecological Society
Copyright_xml – notice: 2016 The Authors. © 2016 British Ecological Society
– notice: 2016 The Authors. Functional Ecology © 2016 British Ecological Society
– notice: Functional Ecology © 2016 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.12710
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Entomology Abstracts
AGRICOLA
Ecology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1935
ExternalDocumentID 10_1111_1365_2435_12710
FEC12710
48582350
Genre reviewArticle
GrantInformation_xml – fundername: Danish Natural Science Council
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c5100-f3a2335037d43ee4e6d68b045330580fd3e8a7a0cda5736a3fea8ef32884c0dc3
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:33:42 EDT 2025
Thu Jul 10 23:00:48 EDT 2025
Fri Jul 25 05:14:25 EDT 2025
Tue Jul 01 01:15:45 EDT 2025
Thu Apr 24 22:51:32 EDT 2025
Wed Jan 22 17:11:59 EST 2025
Thu Jul 03 22:17:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5100-f3a2335037d43ee4e6d68b045330580fd3e8a7a0cda5736a3fea8ef32884c0dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12710
PQID 2374407000
PQPubID 1066355
PageCount 10
ParticipantIDs proquest_miscellaneous_2000419549
proquest_miscellaneous_1859481856
proquest_journals_2374407000
crossref_citationtrail_10_1111_1365_2435_12710
crossref_primary_10_1111_1365_2435_12710
wiley_primary_10_1111_1365_2435_12710_FEC12710
jstor_primary_48582350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2016
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2007; 104
2015; 38
2013; 22
2010; 143
2011; 99
1999; 87
2008; 6
1971
2012; 15
2009; 118
2013; 280
1998; 396
2013; 8
2014; 175
2010; 119
2015; 84
2009; 90
2005; 109
2008; 117
2014; 17
2014; 9
2012; 335
2007; 22
2012; 22
2010; 7
2006; 441
2014; 123
2007; 445
2011; 499
2015; 282
2004; 104
2010; 329
2015; 124
2015; 125
2013; 40
2011; 84
2006; 6
2008; 11
2014; 111
2011; 6
2010; 42
2015; 25
1989; 55
2013; 36
2013; 339
2007; 274
2012; 519
2008; 89
2014
2013
2010; 91
2003; 100
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
MacArthur R. (e_1_2_9_26_1) 1971
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 104
  start-page: 467
  year: 2004
  end-page: 478
  article-title: Species loss and the structure and functioning of multitrophic aquatic systems
  publication-title: Oikos
– volume: 9
  start-page: e110430
  year: 2014
  article-title: Evaluating the spatio‐temporal factors that structure network parameters of plant–herbivore interactions
  publication-title: PLoS ONE
– volume: 11
  start-page: 564
  year: 2008
  end-page: 575
  article-title: Long‐term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization
  publication-title: Ecology Letters
– start-page: 15
  year: 2013
  end-page: 40
– volume: 100
  start-page: 9383
  year: 2003
  end-page: 9387
  article-title: The nested assembly of plant–animal mutualistic networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 6
  start-page: 1
  year: 2006
  end-page: 12
  article-title: Measuring specialization in species interaction networks
  publication-title: BMC Ecology
– volume: 274
  start-page: 2077
  year: 2007
  end-page: 2086
  article-title: Trophic network models explain instability of Early Triassic terrestrial communities
  publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences
– volume: 118
  start-page: 1816
  year: 2009
  end-page: 1829
  article-title: The importance of interannual variation and bottom–up nitrogen enrichment for plant–pollinator networks
  publication-title: Oikos
– start-page: 1
  year: 2013
  end-page: 14
– volume: 282
  start-page: 20151589
  year: 2015
  article-title: Latitudinal gradients in biotic niche breadth vary across ecosystem types
  publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences
– volume: 123
  start-page: 323
  year: 2014
  end-page: 333
  article-title: Structural properties of mutualistic networks withstand habitat degradation while species functional roles might change
  publication-title: Oikos
– volume: 9
  start-page: e112903
  year: 2014
  article-title: Beta diversity of plant–pollinator networks and the spatial turnover of pairwise interactions
  publication-title: PLoS ONE
– volume: 441
  start-page: 629
  year: 2006
  end-page: 632
  article-title: Biodiversity and ecosystem stability in a decade‐long grassland experiment
  publication-title: Nature
– year: 2014
– volume: 55
  start-page: 299
  year: 1989
  end-page: 311
  article-title: Spatial and temporal variation in the structure of a freshwater food web
  publication-title: Oikos
– volume: 22
  start-page: 569
  year: 2007
  end-page: 574
  article-title: The use of ‘altitude’ in ecological research
  publication-title: Trends in Ecology & Evolution
– volume: 17
  start-page: 454
  year: 2014
  end-page: 463
  article-title: Ecological, historical and evolutionary determinants of modularity in weighted seed‐dispersal networks
  publication-title: Ecology Letters
– volume: 6
  start-page: e102
  year: 2008
  article-title: Compilation and network analyses of Cambrian food webs
  publication-title: PLoS Biology
– start-page: 189
  year: 1971
  end-page: 221
– volume: 22
  start-page: 1925
  year: 2012
  end-page: 1931
  article-title: Specialization of mutualistic interaction networks decreases toward tropical latitudes
  publication-title: Current Biology
– volume: 519
  start-page: 97
  year: 2012
  end-page: 125
  article-title: Temporal networks
  publication-title: Physics Reports
– volume: 7
  start-page: 36
  year: 2010
  end-page: 43
  article-title: Centrality measures and the importance of generalist species in pollination networks
  publication-title: Ecological Complexity
– volume: 329
  start-page: 853
  year: 2010
  end-page: 856
  article-title: Stability of ecological communities and the architecture of mutualistic and trophic networks
  publication-title: Science
– volume: 280
  start-page: 20130239
  year: 2013
  article-title: The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe
  publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences
– volume: 40
  start-page: 2020
  year: 2013
  end-page: 2031
  article-title: Island biogeography of mutualistic interaction networks
  publication-title: Journal of Biogeography
– volume: 111
  start-page: 14472
  year: 2014
  end-page: 14477
  article-title: Collapse of an ecological network in ancient Egypt
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 282
  start-page: 20142925
  year: 2015
  article-title: Geographical variation in mutualistic networks: similarity, turnover and partner fidelity
  publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences
– volume: 124
  start-page: 428
  year: 2015
  end-page: 436
  article-title: Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions
  publication-title: Oikos
– volume: 90
  start-page: 2039
  year: 2009
  end-page: 2046
  article-title: Evaluating multiple determinants of the structure of plant–animal mutualistic networks
  publication-title: Ecology
– volume: 91
  start-page: 793
  year: 2010
  end-page: 801
  article-title: Changes of a mutualistic network over time: reanalysis over a 10‐year period
  publication-title: Ecology
– volume: 396
  start-page: 41
  year: 1998
  end-page: 49
  article-title: Metapopulation dynamics
  publication-title: Nature
– volume: 38
  start-page: 792
  year: 2015
  end-page: 802
  article-title: Food web structure changes with elevation but not rainforest stratum
  publication-title: Ecography
– volume: 175
  start-page: 1247
  year: 2014
  end-page: 1256
  article-title: Reconstructing past ecological networks: the reconfiguration of seed‐dispersal interactions after megafaunal extinction
  publication-title: Oecologia
– volume: 36
  start-page: 1331
  year: 2013
  end-page: 1340
  article-title: Historical climate‐change influences modularity and nestedness of pollination networks
  publication-title: Ecography
– volume: 25
  start-page: 880
  year: 2015
  end-page: 890
  article-title: Global patterns of mainland and insular pollination networks
  publication-title: Global Ecology and Biogeography
– volume: 9
  start-page: e106651
  year: 2014
  article-title: The impact of 850,000 years of climate changes on the structure and dynamics of mammal food webs
  publication-title: PLoS ONE
– volume: 84
  start-page: 016105
  year: 2011
  article-title: Path lengths, correlations, and centrality in temporal networks
  publication-title: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
– volume: 109
  start-page: 461
  year: 2005
  end-page: 472
  article-title: Patterns of interaction between plants and pollinators along an environmental gradient
  publication-title: Oikos
– volume: 6
  start-page: e25891
  year: 2011
  article-title: Specialization in plant‐hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate‐change velocity
  publication-title: PLoS ONE
– volume: 125
  start-page: 468
  year: 2015
  end-page: 479
  article-title: The temporal dimension in individual‐based plant pollination networks
  publication-title: Oikos
– volume: 119
  start-page: 825
  year: 2010
  end-page: 834
  article-title: Factors related to the inter‐annual variation in plants’ pollination generalization levels within a community
  publication-title: Oikos
– volume: 42
  start-page: 1
  year: 2010
  end-page: 69
  article-title: From broadstone to Zackenberg: space, time and hierarchies in ecological networks
  publication-title: Advances in Ecological Research
– volume: 117
  start-page: 1796
  year: 2008
  end-page: 1807
  article-title: Year‐to‐year variation in the topology of a plant–pollinator interaction network
  publication-title: Oikos
– volume: 99
  start-page: 202
  year: 2011
  end-page: 213
  article-title: The tolerance of island plant–pollinator networks to alien plants
  publication-title: Journal of Ecology
– volume: 339
  start-page: 1611
  year: 2013
  end-page: 1615
  article-title: Plant–pollinator interactions over 120 years: loss of species, co‐occurrence and function
  publication-title: Science
– volume: 445
  start-page: 202
  year: 2007
  end-page: 205
  article-title: Habitat modification alters the structure of tropical host‐parasitoid food webs
  publication-title: Nature
– volume: 89
  start-page: 1573
  year: 2008
  end-page: 1582
  article-title: Temporal dynamics in a pollination network
  publication-title: Ecology
– volume: 87
  start-page: 75
  year: 1999
  end-page: 88
  article-title: The effect of seasonal variation on the community structure and food‐web attributes of two streams: implications for food‐web science
  publication-title: Oikos
– volume: 22
  start-page: 149
  year: 2013
  end-page: 162
  article-title: Macroecology of pollination networks
  publication-title: Global Ecology and Biogeography
– volume: 104
  start-page: 19891
  year: 2007
  end-page: 19896
  article-title: The modularity of pollination networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 8
  start-page: e81694
  year: 2013
  article-title: Strong impact of temporal resolution on the structure of an ecological network
  publication-title: PLoS ONE
– volume: 17
  start-page: 340
  year: 2014
  end-page: 349
  article-title: Antagonistic interaction networks are structured independently of latitude and host guild
  publication-title: Ecology Letters
– volume: 124
  start-page: 243
  year: 2015
  end-page: 251
  article-title: Beyond species: why ecological interaction networks vary through space and time
  publication-title: Oikos
– volume: 335
  start-page: 1489
  year: 2012
  end-page: 1492
  article-title: Evolutionary conservation of species’ roles in food webs
  publication-title: Science
– volume: 119
  start-page: 1610
  year: 2010
  end-page: 1624
  article-title: Plant–pollinator network assembly along the chronosequence of a glacier foreland
  publication-title: Oikos
– volume: 38
  start-page: 130
  year: 2015
  end-page: 139
  article-title: Species’ roles in food webs show fidelity across a highly variable oak forest
  publication-title: Ecography
– volume: 499
  start-page: 1
  year: 2011
  end-page: 101
  article-title: Spatial networks
  publication-title: Physics Reports
– volume: 84
  start-page: 353
  year: 2015
  end-page: 363
  article-title: Changes in host‐parasitoid food web structure with elevation
  publication-title: Journal of Animal Ecology
– volume: 6
  start-page: e26455
  year: 2011
  article-title: Strong, long‐term temporal dynamics of an ecological network
  publication-title: PLoS ONE
– volume: 143
  start-page: 1654
  year: 2010
  end-page: 1663
  article-title: Agricultural surroundings support flower–visitor networks in an Afrotropical rain forest
  publication-title: Biological Conservation
– volume: 15
  start-page: 1353
  year: 2012
  end-page: 1361
  article-title: The dissimilarity of species interaction networks
  publication-title: Ecology Letters
– ident: e_1_2_9_19_1
  doi: 10.1038/23876
– ident: e_1_2_9_60_1
  doi: 10.2307/3565588
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1365-2745.2010.01732.x
– ident: e_1_2_9_58_1
  doi: 10.1111/oik.02661
– ident: e_1_2_9_12_1
  doi: 10.1098/rspb.2015.1589
– ident: e_1_2_9_50_1
  doi: 10.1126/science.1188321
– ident: e_1_2_9_29_1
  doi: 10.1111/ecog.01078
– ident: e_1_2_9_33_1
  doi: 10.1111/j.1600-0706.2013.00644.x
– ident: e_1_2_9_28_1
  doi: 10.1111/1365-2656.12285
– ident: e_1_2_9_6_1
  doi: 10.1515/9781400848720
– ident: e_1_2_9_35_1
  doi: 10.1073/pnas.0706375104
– ident: e_1_2_9_55_1
  doi: 10.1111/jbi.12165
– ident: e_1_2_9_44_1
  doi: 10.1111/ele.12002
– ident: e_1_2_9_45_1
  doi: 10.1371/journal.pone.0081694
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1600-0587.2013.00201.x
– ident: e_1_2_9_51_1
  doi: 10.2307/3546998
– ident: e_1_2_9_7_1
  doi: 10.1073/pnas.1633576100
– ident: e_1_2_9_34_1
  doi: 10.1371/journal.pone.0026455
– ident: e_1_2_9_46_1
  doi: 10.1098/rspb.2007.0515
– ident: e_1_2_9_37_1
  doi: 10.1016/B978-0-12-381363-3.00001-0
– ident: e_1_2_9_36_1
  doi: 10.1890/07-0451.1
– ident: e_1_2_9_2_1
  doi: 10.1111/j.0030-1299.2008.16987.x
– ident: e_1_2_9_10_1
  doi: 10.1126/science.1232728
– ident: e_1_2_9_62_1
  doi: 10.1073/pnas.1408471111
– ident: e_1_2_9_31_1
  doi: 10.1371/journal.pone.0106651
– ident: e_1_2_9_49_1
  doi: 10.1126/science.1216556
– ident: e_1_2_9_52_1
  doi: 10.1038/nature04742
– ident: e_1_2_9_21_1
  doi: 10.1007/978-3-642-36461-7_1
– ident: e_1_2_9_38_1
  doi: 10.1111/oik.01439
– ident: e_1_2_9_32_1
  doi: 10.1007/978-3-642-36461-7_2
– ident: e_1_2_9_57_1
  doi: 10.1038/nature05429
– ident: e_1_2_9_23_1
  doi: 10.1016/j.tree.2007.09.006
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1600-0706.2009.17740.x
– ident: e_1_2_9_43_1
  doi: 10.1111/oik.01719
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1461-0248.2008.01170.x
– ident: e_1_2_9_4_1
  doi: 10.1111/ecog.00913
– start-page: 189
  volume-title: Avian Biology
  year: 1971
  ident: e_1_2_9_26_1
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1600-0706.2009.18017.x
– ident: e_1_2_9_39_1
  doi: 10.1103/PhysRevE.84.016105
– ident: e_1_2_9_20_1
  doi: 10.1016/j.physrep.2012.03.001
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1600-0706.2010.18376.x
– ident: e_1_2_9_11_1
  doi: 10.1371/journal.pone.0112903
– ident: e_1_2_9_59_1
  doi: 10.1890/08-1837.1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.biocon.2010.03.036
– ident: e_1_2_9_56_1
  doi: 10.1098/rspb.2014.2925
– ident: e_1_2_9_41_1
  doi: 10.1111/j.0030-1299.2004.13257.x
– ident: e_1_2_9_61_1
  doi: 10.1098/rspb.2013.0239
– ident: e_1_2_9_47_1
  doi: 10.1016/j.cub.2012.08.015
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ecocom.2009.03.008
– ident: e_1_2_9_25_1
  doi: 10.1371/journal.pone.0110430
– ident: e_1_2_9_13_1
  doi: 10.1371/journal.pone.0025891
– ident: e_1_2_9_5_1
  doi: 10.1016/j.physrep.2010.11.002
– ident: e_1_2_9_53_1
  doi: 10.1111/geb.12362
– ident: e_1_2_9_48_1
  doi: 10.1111/ele.12245
– ident: e_1_2_9_30_1
  doi: 10.1111/ele.12235
– ident: e_1_2_9_17_1
  doi: 10.1371/journal.pbio.0060102
– ident: e_1_2_9_54_1
  doi: 10.1111/j.1466-8238.2012.00777.x
– ident: e_1_2_9_15_1
  doi: 10.1111/j.0030-1299.2005.13712.x
– ident: e_1_2_9_16_1
  doi: 10.1890/08-1883.1
– ident: e_1_2_9_42_1
  doi: 10.1007/s00442-014-2971-1
– ident: e_1_2_9_8_1
  doi: 10.1186/1472-6785-6-9
SSID ssj0009522
Score 2.47496
SecondaryResourceType review_article
Snippet Summary There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined...
There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a...
1. There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1926
SubjectTerms community dynamics
Ecology
Environmental changes
Environmental gradient
extinction
food web
Geological time
Mass extinctions
mutualism
nestedness
network metrics
Networks
pollination
Reviews
Spatial analysis
Specialization
Species
species interactions
Stability
temporal variation
Variability
Subtitle micro- and macroscopic variability across scales
Title Ecological networks in motion
URI https://www.jstor.org/stable/48582350
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12710
https://www.proquest.com/docview/2374407000
https://www.proquest.com/docview/1859481856
https://www.proquest.com/docview/2000419549
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEA9FKPSl1raHZ1VS6ENf9tjLZLNZ30TuEKGFlgp9W5JsFqS6J-6doE9-BD-jn8SZZPd6CiLiW8hOlk0y_7KZ-Q1j38ZgRWFzkRSeUnIKaROb6iJRtTUihcoUQPnOP36qw2N59DfrowkpFybiQyx_uJFkBH1NAm5suyLkMT4Lrf1oLPKQZEU95Bb9Fiuwu_EeQagiQUsLHbgPxfI8Gv_ALsXQxAdO56rrGmzPdJ3Z_qtjyMm_0WJuR-76EaDjq6b1gb3vPFO-H1lpg73xzUf2NtaqvMLWxHWtweR_chwO6LRD-4n9iiS07byJ4eUtP2l4rBS0x88o-O_u5pabpuJnhhbCzc5PHL_EA3vEC7_iobvlLb7Et5_Z8XTy5-Aw6Uo2JA6FO01qMAIgSyGvJHgvvaqUtug2AuoVndYVeG1yk7rKZDkoA7U32tcgtJYurRwM2Foza_wm4yJ3TqkC_Liqpa9rK02OyscJUNqgHhmyUb9hpevwzKmsxmnZn2toKUtayjIs5ZB9Xw44j1AeT5MOAgcs6aTOtMB5Ddl2zxJlJ-xtKYBQFnNktyH7unyMYkp3L6bxs0VboltEuDg6U0_TUNaUJAS-AucWeOS57yynk4PQ2HrpgC_sHbp-KgbmbLO1-cXC76B7Nbe7QYLuAZ17Fs8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgSX8rtiS6FGAolLVlk7cRwkDqjd1Zb-SKBW6s04jiNVpdmK7IKWUx-hz8Kr8AY8CTNxst1WqhCHHrhZiR3F9vw5-eYbgFd9kfE0S3iQOkrJSaMsyEKVBrLIDA9FblJB-c67e3J0EH04jA-X4GebC-P5IeYf3EgzantNCk4fpBe03AO00N33-hz9ZAOs3Haz73hsq95tbeIev-Z8ONjfGAVNZYHAogyGQSEMFyIORZJHwrnIyVyqDKMbPN3HKixy4ZRJTGhzEydCGlE4o1whuFKRDXMr8Lm34DbVESe-_s1PfIHo1_-54DIN0LeLhk6I0ENXXviSJ_RgyEth7mKwXHu74X341a6TB7kc96aTrGd_XKGQ_L8W8gGsNME3e--15SEsufIR3PHlOGfYGtim1Rlc5P_hgMYAVo_ho-9Cks1Kj6Cv2FHJfDGkt-yE8I2_z86ZKXN2Ymjl7fj0yLJvBjW9BiLPWH25YhU-xFVP4OBGptyB5XJcuqfAeGKtlKlw_byIXFFkkUnQvloupDJoKrvQayVE24aynSqHfNHt0Y22TtPW6XrruvBmPuDUs5Vc37VTi9y8X6RixXFeXVhrZVA39qzSXBCRZILy3YWX89toiej3kindeFppjPyI-kfF8vo-lBgWEclginOrhfJv76mHg426sfqvA9bh7mh_d0fvbO1tP4N7GOlKj0Nag-XJ16l7jtHkJHtRqy-Dzzct5n8AK7d0YA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aQyBuxm9FxwAjgcRNqtR2HAeJC7S22hhMgJi0O-M4jjSNpRVpN5UrHoFX4VX2CHsSju2kdJMmxMUuuLMSO4rt8-fkO98BeN5nOc3ylEaZdSk5Gc-jPJZZJMpc05gVOmMu3_n9rtja42_3k_0V-NXmwgR-iMUHN6cZ3l47BZ8U5ZKSB3wWevten6KbbHCVO3Z-gqe2-vX2ALf4BaWj4efNragpLBAZFME4KpmmjCUxSwvOrOVWFELmGNzg4T6RcVkwK3WqY1PoJGVCs9JqaUtGpeQmLgzD516D61zEmasWMfhEl3h-w48LKrIIXTtr2IQceOjCC59zhAELeS7KXY6VvbMb3YbTdpkCxuWwN5vmPfP9AoPkf7WOd2CtCb3Jm6Ard2HFVvfgRijGOcfW0DStzvBP9h8OaMxffR8-hi5OrkkV8PM1OahIKIX0ihw5dOPZj59EVwU50m7hzXhyYMixRj33MOQ58ZdrUuNDbP0A9q5kyh1YrcaVfQiEpsYIkTHbL0puyzLnOkXraigTUqOh7EKvFRBlGsJ2Vzfkq2oPbm7rlNs65beuCy8XAyaBq-Tyrh0vcYt-XCaS4ry6sNGKoGqsWa0oczSSKYp3F54tbqMdcj-XdGXHs1ph3OeIf2QiLu_j0sK4oxjMcG5eJv_2nmo03PSN9X8d8BRufhiM1Lvt3Z1HcAvDXBFASBuwOv02s48xlJzmT7zyEvhy1VL-Gy6-cw8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecological+networks+in+motion%3A+micro-+and+macroscopic+variability+across+scales&rft.jtitle=Functional+ecology&rft.au=Troejelsgaard%2C+Kristian&rft.au=Olesen%2C+Jens+M&rft.date=2016-12-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=30&rft.issue=12&rft.spage=1926&rft.epage=1935&rft_id=info:doi/10.1111%2F1365-2435.12710&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon