Ecological networks in motion micro- and macroscopic variability across scales
Summary There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological...
Saved in:
Published in | Functional ecology Vol. 30; no. 12; pp. 1926 - 1935 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.12.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological networks have been placed in spatial and temporal contexts in order to reveal what may drive network variability. Understanding the spatial and temporal variability of ecological networks, and in particular the underlying forces facilitating changes, seems pertinent in our attempts to understand and anticipate how ecological networks may vary and respond to future environmental scenarios.
Network variability has been studied at widely differing temporal and spatial scales. For example, studies exploring temporal variability ranges from within‐season comparisons to comparisons over vast geological time spans, and the spatial extent ranges from the scale of a single pond to global analyses. Here, we highlight the outcomes from such studies and emphasize the identified mechanisms driving spatio‐temporal variability in ecological networks. Specifically, we describe how ecological networks vary over different temporal (years, centuries and millennia) and spatial (local, regional and global) scales, discuss how this variability is monitored and identify potential future directions.
Present knowledge allows some tentative generalizations. First, ecological networks tend to exhibit considerable spatial and temporal stability in several macroscopic features (e.g. connectance, nestedness), but studies also show that macroscopic features may change, for example, in relation to mass extinction or steep environmental gradients. Secondly, microscopic features (e.g. individual specialization levels, species roles and partner affiliations), albeit less studied, seem to show strong variability, and in several cases, microscopic instability co‐occurs with macroscopic stability. We therefore recommend a stronger focus on this macro–micro interplay and list ideas (e.g. temporal species centrality measures and interaction phenologies), towards expanding the microscopic toolbox of network ecologists.
A lay summary is available for this article.
Lay Summary |
---|---|
AbstractList | There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological networks have been placed in spatial and temporal contexts in order to reveal what may drive network variability. Understanding the spatial and temporal variability of ecological networks, and in particular the underlying forces facilitating changes, seems pertinent in our attempts to understand and anticipate how ecological networks may vary and respond to future environmental scenarios.
Network variability has been studied at widely differing temporal and spatial scales. For example, studies exploring temporal variability ranges from within‐season comparisons to comparisons over vast geological time spans, and the spatial extent ranges from the scale of a single pond to global analyses. Here, we highlight the outcomes from such studies and emphasize the identified mechanisms driving spatio‐temporal variability in ecological networks. Specifically, we describe how ecological networks vary over different temporal (years, centuries and millennia) and spatial (local, regional and global) scales, discuss how this variability is monitored and identify potential future directions.
Present knowledge allows some tentative generalizations. First, ecological networks tend to exhibit considerable spatial and temporal stability in several macroscopic features (e.g. connectance, nestedness), but studies also show that macroscopic features may change, for example, in relation to mass extinction or steep environmental gradients. Secondly, microscopic features (e.g. individual specialization levels, species roles and partner affiliations), albeit less studied, seem to show strong variability, and in several cases, microscopic instability co‐occurs with macroscopic stability. We therefore recommend a stronger focus on this macro–micro interplay and list ideas (e.g. temporal species centrality measures and interaction phenologies), towards expanding the microscopic toolbox of network ecologists.
A
lay summary
is available for this article. There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological networks have been placed in spatial and temporal contexts in order to reveal what may drive network variability. Understanding the spatial and temporal variability of ecological networks, and in particular the underlying forces facilitating changes, seems pertinent in our attempts to understand and anticipate how ecological networks may vary and respond to future environmental scenarios.Network variability has been studied at widely differing temporal and spatial scales. For example, studies exploring temporal variability ranges from within‐season comparisons to comparisons over vast geological time spans, and the spatial extent ranges from the scale of a single pond to global analyses. Here, we highlight the outcomes from such studies and emphasize the identified mechanisms driving spatio‐temporal variability in ecological networks. Specifically, we describe how ecological networks vary over different temporal (years, centuries and millennia) and spatial (local, regional and global) scales, discuss how this variability is monitored and identify potential future directions.Present knowledge allows some tentative generalizations. First, ecological networks tend to exhibit considerable spatial and temporal stability in several macroscopic features (e.g. connectance, nestedness), but studies also show that macroscopic features may change, for example, in relation to mass extinction or steep environmental gradients. Secondly, microscopic features (e.g. individual specialization levels, species roles and partner affiliations), albeit less studied, seem to show strong variability, and in several cases, microscopic instability co‐occurs with macroscopic stability. We therefore recommend a stronger focus on this macro–micro interplay and list ideas (e.g. temporal species centrality measures and interaction phenologies), towards expanding the microscopic toolbox of network ecologists.A lay summary is available for this article. 1. There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological networks have been placed in spatial and temporal contexts in order to reveal what may drive network variability. Understanding the spatial and temporal variability of ecological networks, and in particular the underlying forces facilitating changes, seems pertinent in our attempts to understand and anticipate how ecological networks may vary and respond to future environmental scenarios. 2. Network variability has been studied at widely differing temporal and spatial scales. For example, studies exploring temporal variability ranges from within-season comparisons to comparisons over vast geological time spans, and the spatial extent ranges from the scale of a single pond to global analyses. Here, we highlight the outcomes from such studies and emphasize the identified mechanisms driving spatio-temporal variability in ecological networks. Specifically, we describe how ecological networks vary over different temporal (years, centuries and millennia) and spatial (local, regional and global) scales, discuss how this variability is monitored and identify potential future directions. 3. Present knowledge allows some tentative generalizations. First, ecological networks tend to exhibit considerable spatial and temporal stability in several macroscopic features (e.g. connectance, nestedness), but studies also show that macroscopic features may change, for example, in relation to mass extinction or steep environmental gradients. Secondly, microscopic features (e.g. individual specialization levels, species roles and partner affiliations), albeit less studied, seem to show strong variability, and in several cases, microscopic instability co-occurs with macroscopic stability. We therefore recommend a stronger focus on this macro-micro interplay and list ideas (e.g. temporal species centrality measures and interaction phenologies), towards expanding the microscopic toolbox of network ecologists. A lay summary is available for this article. Lay Summary Summary There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a similar way in order to understand the stability of entire communities and networks of interacting species. As a consequence, ecological networks have been placed in spatial and temporal contexts in order to reveal what may drive network variability. Understanding the spatial and temporal variability of ecological networks, and in particular the underlying forces facilitating changes, seems pertinent in our attempts to understand and anticipate how ecological networks may vary and respond to future environmental scenarios. Network variability has been studied at widely differing temporal and spatial scales. For example, studies exploring temporal variability ranges from within‐season comparisons to comparisons over vast geological time spans, and the spatial extent ranges from the scale of a single pond to global analyses. Here, we highlight the outcomes from such studies and emphasize the identified mechanisms driving spatio‐temporal variability in ecological networks. Specifically, we describe how ecological networks vary over different temporal (years, centuries and millennia) and spatial (local, regional and global) scales, discuss how this variability is monitored and identify potential future directions. Present knowledge allows some tentative generalizations. First, ecological networks tend to exhibit considerable spatial and temporal stability in several macroscopic features (e.g. connectance, nestedness), but studies also show that macroscopic features may change, for example, in relation to mass extinction or steep environmental gradients. Secondly, microscopic features (e.g. individual specialization levels, species roles and partner affiliations), albeit less studied, seem to show strong variability, and in several cases, microscopic instability co‐occurs with macroscopic stability. We therefore recommend a stronger focus on this macro–micro interplay and list ideas (e.g. temporal species centrality measures and interaction phenologies), towards expanding the microscopic toolbox of network ecologists. A lay summary is available for this article. Lay Summary |
Author | Trøjelsgaard, Kristian Olesen, Jens M. |
Author_xml | – sequence: 1 givenname: Kristian surname: Trøjelsgaard fullname: Trøjelsgaard, Kristian – sequence: 2 givenname: Jens M. surname: Olesen fullname: Olesen, Jens M. |
BookMark | eNqFkMFPwjAUhxuDiYCePZGQePEyeO1rt-5oCKgJiRc9N7XrzHCs2I4Q_3s7QQ4cpIfX5OX7Xvt-A9JrXGMJuaUwofFMKaYiYRzFhLKMwgXpHzs90geW5onkKV6RQQgrAMgFY30ymhtXu4_K6Hrc2Hbn_GcYV8147drKNdfkstR1sDeHe0jeFvPX2VOyfHl8nj0sEyMoQFKiZogCMCs4WsttWqTyHbhABCGhLNBKnWkwhRYZphpLq6UtkUnJDRQGh-R-P3fj3dfWhlatq2BsXevGum1QLP6X01zw_CxKpci5jDWN6N0JunJb38RFFMOMc8ji2EiJPWW8C8HbUpmq1d32rddVrSioLl_Vpam6NNVvvtGbnngbX621__7HOLy0q2r7fQ5Xi_nszxvtvVVonT96XArJutR_ALeUkvY |
CitedBy_id | crossref_primary_10_1111_ele_13510 crossref_primary_10_1002_ece3_8074 crossref_primary_10_1098_rspb_2017_2833 crossref_primary_10_1111_jzo_12612 crossref_primary_10_1111_ele_13439 crossref_primary_10_1002_ece3_5641 crossref_primary_10_1111_1365_2745_12978 crossref_primary_10_1111_aec_13004 crossref_primary_10_1007_s00442_021_04952_5 crossref_primary_10_1111_ecog_03514 crossref_primary_10_1111_jzo_13144 crossref_primary_10_1111_jvs_13076 crossref_primary_10_1098_rstb_2020_0361 crossref_primary_10_1002_ecy_3961 crossref_primary_10_1111_ecog_06102 crossref_primary_10_3161_15081109ACC2022_24_1_019 crossref_primary_10_1111_1365_2656_12978 crossref_primary_10_1007_s41109_021_00442_y crossref_primary_10_1016_j_jtbi_2017_10_016 crossref_primary_10_2478_eko_2022_0006 crossref_primary_10_1111_geb_13310 crossref_primary_10_3390_insects11010006 crossref_primary_10_1111_1748_5967_12233 crossref_primary_10_1007_s00442_018_4320_2 crossref_primary_10_1111_1365_2435_12799 crossref_primary_10_1007_s00442_024_05578_z crossref_primary_10_1016_j_actao_2017_08_003 crossref_primary_10_1111_een_12750 crossref_primary_10_1093_comnet_cnae004 crossref_primary_10_1111_geb_12776 crossref_primary_10_1111_btp_13216 crossref_primary_10_3390_d15080895 crossref_primary_10_1111_oik_04703 crossref_primary_10_3389_fevo_2017_00133 crossref_primary_10_1111_ele_13287 crossref_primary_10_1111_oik_08756 crossref_primary_10_1098_rstb_2021_0063 crossref_primary_10_1111_oik_07303 crossref_primary_10_1111_1365_2656_12749 crossref_primary_10_1111_1365_2656_13639 crossref_primary_10_1093_jpe_rtaa054 crossref_primary_10_24072_pcjournal_105 crossref_primary_10_1002_ecs2_3653 crossref_primary_10_1111_geb_12602 crossref_primary_10_1007_s11252_020_01089_w crossref_primary_10_1016_j_flora_2024_152668 crossref_primary_10_1111_nyas_13974 crossref_primary_10_1098_rsif_2018_0747 crossref_primary_10_1002_ece3_5024 crossref_primary_10_1007_s11252_020_01029_8 crossref_primary_10_1111_1365_2656_12710 crossref_primary_10_1111_1365_2656_13447 crossref_primary_10_1146_annurev_phyto_080516_035326 crossref_primary_10_1111_eea_12679 crossref_primary_10_1111_jbi_14014 crossref_primary_10_1146_annurev_ecolsys_110316_022821 crossref_primary_10_1016_j_baae_2018_05_011 crossref_primary_10_1016_j_ecolmodel_2022_110224 crossref_primary_10_1016_j_tplants_2020_04_015 crossref_primary_10_1086_721023 crossref_primary_10_1111_ele_13623 crossref_primary_10_1002_ecs2_2539 crossref_primary_10_1007_s11829_022_09925_w crossref_primary_10_1111_ecog_05945 crossref_primary_10_1111_oik_09818 crossref_primary_10_1111_een_13189 crossref_primary_10_1111_jbi_14127 crossref_primary_10_1002_ecy_3359 crossref_primary_10_1111_oik_07526 crossref_primary_10_1111_1365_2745_13391 crossref_primary_10_1111_oik_08650 crossref_primary_10_1111_icad_12497 crossref_primary_10_1111_oik_08175 crossref_primary_10_1007_s00442_021_04863_5 crossref_primary_10_1111_brv_12433 crossref_primary_10_1002_ecs2_4521 crossref_primary_10_3389_fenvs_2022_987600 |
Cites_doi | 10.1038/23876 10.2307/3565588 10.1111/j.1365-2745.2010.01732.x 10.1111/oik.02661 10.1098/rspb.2015.1589 10.1126/science.1188321 10.1111/ecog.01078 10.1111/j.1600-0706.2013.00644.x 10.1111/1365-2656.12285 10.1515/9781400848720 10.1073/pnas.0706375104 10.1111/jbi.12165 10.1111/ele.12002 10.1371/journal.pone.0081694 10.1111/j.1600-0587.2013.00201.x 10.2307/3546998 10.1073/pnas.1633576100 10.1371/journal.pone.0026455 10.1098/rspb.2007.0515 10.1016/B978-0-12-381363-3.00001-0 10.1890/07-0451.1 10.1111/j.0030-1299.2008.16987.x 10.1126/science.1232728 10.1073/pnas.1408471111 10.1371/journal.pone.0106651 10.1126/science.1216556 10.1038/nature04742 10.1007/978-3-642-36461-7_1 10.1111/oik.01439 10.1007/978-3-642-36461-7_2 10.1038/nature05429 10.1016/j.tree.2007.09.006 10.1111/j.1600-0706.2009.17740.x 10.1111/oik.01719 10.1111/j.1461-0248.2008.01170.x 10.1111/ecog.00913 10.1111/j.1600-0706.2009.18017.x 10.1103/PhysRevE.84.016105 10.1016/j.physrep.2012.03.001 10.1111/j.1600-0706.2010.18376.x 10.1371/journal.pone.0112903 10.1890/08-1837.1 10.1016/j.biocon.2010.03.036 10.1098/rspb.2014.2925 10.1111/j.0030-1299.2004.13257.x 10.1098/rspb.2013.0239 10.1016/j.cub.2012.08.015 10.1016/j.ecocom.2009.03.008 10.1371/journal.pone.0110430 10.1371/journal.pone.0025891 10.1016/j.physrep.2010.11.002 10.1111/geb.12362 10.1111/ele.12245 10.1111/ele.12235 10.1371/journal.pbio.0060102 10.1111/j.1466-8238.2012.00777.x 10.1111/j.0030-1299.2005.13712.x 10.1890/08-1883.1 10.1007/s00442-014-2971-1 10.1186/1472-6785-6-9 |
ContentType | Journal Article |
Copyright | 2016 The Authors. © 2016 British Ecological Society 2016 The Authors. Functional Ecology © 2016 British Ecological Society Functional Ecology © 2016 British Ecological Society |
Copyright_xml | – notice: 2016 The Authors. © 2016 British Ecological Society – notice: 2016 The Authors. Functional Ecology © 2016 British Ecological Society – notice: Functional Ecology © 2016 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.12710 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Entomology Abstracts AGRICOLA Ecology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1935 |
ExternalDocumentID | 10_1111_1365_2435_12710 FEC12710 48582350 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Danish Natural Science Council |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c5100-f3a2335037d43ee4e6d68b045330580fd3e8a7a0cda5736a3fea8ef32884c0dc3 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:33:42 EDT 2025 Thu Jul 10 23:00:48 EDT 2025 Fri Jul 25 05:14:25 EDT 2025 Tue Jul 01 01:15:45 EDT 2025 Thu Apr 24 22:51:32 EDT 2025 Wed Jan 22 17:11:59 EST 2025 Thu Jul 03 22:17:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5100-f3a2335037d43ee4e6d68b045330580fd3e8a7a0cda5736a3fea8ef32884c0dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12710 |
PQID | 2374407000 |
PQPubID | 1066355 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000419549 proquest_miscellaneous_1859481856 proquest_journals_2374407000 crossref_citationtrail_10_1111_1365_2435_12710 crossref_primary_10_1111_1365_2435_12710 wiley_primary_10_1111_1365_2435_12710_FEC12710 jstor_primary_48582350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2016 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2016 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2007; 104 2015; 38 2013; 22 2010; 143 2011; 99 1999; 87 2008; 6 1971 2012; 15 2009; 118 2013; 280 1998; 396 2013; 8 2014; 175 2010; 119 2015; 84 2009; 90 2005; 109 2008; 117 2014; 17 2014; 9 2012; 335 2007; 22 2012; 22 2010; 7 2006; 441 2014; 123 2007; 445 2011; 499 2015; 282 2004; 104 2010; 329 2015; 124 2015; 125 2013; 40 2011; 84 2006; 6 2008; 11 2014; 111 2011; 6 2010; 42 2015; 25 1989; 55 2013; 36 2013; 339 2007; 274 2012; 519 2008; 89 2014 2013 2010; 91 2003; 100 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 MacArthur R. (e_1_2_9_26_1) 1971 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 104 start-page: 467 year: 2004 end-page: 478 article-title: Species loss and the structure and functioning of multitrophic aquatic systems publication-title: Oikos – volume: 9 start-page: e110430 year: 2014 article-title: Evaluating the spatio‐temporal factors that structure network parameters of plant–herbivore interactions publication-title: PLoS ONE – volume: 11 start-page: 564 year: 2008 end-page: 575 article-title: Long‐term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization publication-title: Ecology Letters – start-page: 15 year: 2013 end-page: 40 – volume: 100 start-page: 9383 year: 2003 end-page: 9387 article-title: The nested assembly of plant–animal mutualistic networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 6 start-page: 1 year: 2006 end-page: 12 article-title: Measuring specialization in species interaction networks publication-title: BMC Ecology – volume: 274 start-page: 2077 year: 2007 end-page: 2086 article-title: Trophic network models explain instability of Early Triassic terrestrial communities publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences – volume: 118 start-page: 1816 year: 2009 end-page: 1829 article-title: The importance of interannual variation and bottom–up nitrogen enrichment for plant–pollinator networks publication-title: Oikos – start-page: 1 year: 2013 end-page: 14 – volume: 282 start-page: 20151589 year: 2015 article-title: Latitudinal gradients in biotic niche breadth vary across ecosystem types publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences – volume: 123 start-page: 323 year: 2014 end-page: 333 article-title: Structural properties of mutualistic networks withstand habitat degradation while species functional roles might change publication-title: Oikos – volume: 9 start-page: e112903 year: 2014 article-title: Beta diversity of plant–pollinator networks and the spatial turnover of pairwise interactions publication-title: PLoS ONE – volume: 441 start-page: 629 year: 2006 end-page: 632 article-title: Biodiversity and ecosystem stability in a decade‐long grassland experiment publication-title: Nature – year: 2014 – volume: 55 start-page: 299 year: 1989 end-page: 311 article-title: Spatial and temporal variation in the structure of a freshwater food web publication-title: Oikos – volume: 22 start-page: 569 year: 2007 end-page: 574 article-title: The use of ‘altitude’ in ecological research publication-title: Trends in Ecology & Evolution – volume: 17 start-page: 454 year: 2014 end-page: 463 article-title: Ecological, historical and evolutionary determinants of modularity in weighted seed‐dispersal networks publication-title: Ecology Letters – volume: 6 start-page: e102 year: 2008 article-title: Compilation and network analyses of Cambrian food webs publication-title: PLoS Biology – start-page: 189 year: 1971 end-page: 221 – volume: 22 start-page: 1925 year: 2012 end-page: 1931 article-title: Specialization of mutualistic interaction networks decreases toward tropical latitudes publication-title: Current Biology – volume: 519 start-page: 97 year: 2012 end-page: 125 article-title: Temporal networks publication-title: Physics Reports – volume: 7 start-page: 36 year: 2010 end-page: 43 article-title: Centrality measures and the importance of generalist species in pollination networks publication-title: Ecological Complexity – volume: 329 start-page: 853 year: 2010 end-page: 856 article-title: Stability of ecological communities and the architecture of mutualistic and trophic networks publication-title: Science – volume: 280 start-page: 20130239 year: 2013 article-title: The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences – volume: 40 start-page: 2020 year: 2013 end-page: 2031 article-title: Island biogeography of mutualistic interaction networks publication-title: Journal of Biogeography – volume: 111 start-page: 14472 year: 2014 end-page: 14477 article-title: Collapse of an ecological network in ancient Egypt publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 282 start-page: 20142925 year: 2015 article-title: Geographical variation in mutualistic networks: similarity, turnover and partner fidelity publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences – volume: 124 start-page: 428 year: 2015 end-page: 436 article-title: Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions publication-title: Oikos – volume: 90 start-page: 2039 year: 2009 end-page: 2046 article-title: Evaluating multiple determinants of the structure of plant–animal mutualistic networks publication-title: Ecology – volume: 91 start-page: 793 year: 2010 end-page: 801 article-title: Changes of a mutualistic network over time: reanalysis over a 10‐year period publication-title: Ecology – volume: 396 start-page: 41 year: 1998 end-page: 49 article-title: Metapopulation dynamics publication-title: Nature – volume: 38 start-page: 792 year: 2015 end-page: 802 article-title: Food web structure changes with elevation but not rainforest stratum publication-title: Ecography – volume: 175 start-page: 1247 year: 2014 end-page: 1256 article-title: Reconstructing past ecological networks: the reconfiguration of seed‐dispersal interactions after megafaunal extinction publication-title: Oecologia – volume: 36 start-page: 1331 year: 2013 end-page: 1340 article-title: Historical climate‐change influences modularity and nestedness of pollination networks publication-title: Ecography – volume: 25 start-page: 880 year: 2015 end-page: 890 article-title: Global patterns of mainland and insular pollination networks publication-title: Global Ecology and Biogeography – volume: 9 start-page: e106651 year: 2014 article-title: The impact of 850,000 years of climate changes on the structure and dynamics of mammal food webs publication-title: PLoS ONE – volume: 84 start-page: 016105 year: 2011 article-title: Path lengths, correlations, and centrality in temporal networks publication-title: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics – volume: 109 start-page: 461 year: 2005 end-page: 472 article-title: Patterns of interaction between plants and pollinators along an environmental gradient publication-title: Oikos – volume: 6 start-page: e25891 year: 2011 article-title: Specialization in plant‐hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate‐change velocity publication-title: PLoS ONE – volume: 125 start-page: 468 year: 2015 end-page: 479 article-title: The temporal dimension in individual‐based plant pollination networks publication-title: Oikos – volume: 119 start-page: 825 year: 2010 end-page: 834 article-title: Factors related to the inter‐annual variation in plants’ pollination generalization levels within a community publication-title: Oikos – volume: 42 start-page: 1 year: 2010 end-page: 69 article-title: From broadstone to Zackenberg: space, time and hierarchies in ecological networks publication-title: Advances in Ecological Research – volume: 117 start-page: 1796 year: 2008 end-page: 1807 article-title: Year‐to‐year variation in the topology of a plant–pollinator interaction network publication-title: Oikos – volume: 99 start-page: 202 year: 2011 end-page: 213 article-title: The tolerance of island plant–pollinator networks to alien plants publication-title: Journal of Ecology – volume: 339 start-page: 1611 year: 2013 end-page: 1615 article-title: Plant–pollinator interactions over 120 years: loss of species, co‐occurrence and function publication-title: Science – volume: 445 start-page: 202 year: 2007 end-page: 205 article-title: Habitat modification alters the structure of tropical host‐parasitoid food webs publication-title: Nature – volume: 89 start-page: 1573 year: 2008 end-page: 1582 article-title: Temporal dynamics in a pollination network publication-title: Ecology – volume: 87 start-page: 75 year: 1999 end-page: 88 article-title: The effect of seasonal variation on the community structure and food‐web attributes of two streams: implications for food‐web science publication-title: Oikos – volume: 22 start-page: 149 year: 2013 end-page: 162 article-title: Macroecology of pollination networks publication-title: Global Ecology and Biogeography – volume: 104 start-page: 19891 year: 2007 end-page: 19896 article-title: The modularity of pollination networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 8 start-page: e81694 year: 2013 article-title: Strong impact of temporal resolution on the structure of an ecological network publication-title: PLoS ONE – volume: 17 start-page: 340 year: 2014 end-page: 349 article-title: Antagonistic interaction networks are structured independently of latitude and host guild publication-title: Ecology Letters – volume: 124 start-page: 243 year: 2015 end-page: 251 article-title: Beyond species: why ecological interaction networks vary through space and time publication-title: Oikos – volume: 335 start-page: 1489 year: 2012 end-page: 1492 article-title: Evolutionary conservation of species’ roles in food webs publication-title: Science – volume: 119 start-page: 1610 year: 2010 end-page: 1624 article-title: Plant–pollinator network assembly along the chronosequence of a glacier foreland publication-title: Oikos – volume: 38 start-page: 130 year: 2015 end-page: 139 article-title: Species’ roles in food webs show fidelity across a highly variable oak forest publication-title: Ecography – volume: 499 start-page: 1 year: 2011 end-page: 101 article-title: Spatial networks publication-title: Physics Reports – volume: 84 start-page: 353 year: 2015 end-page: 363 article-title: Changes in host‐parasitoid food web structure with elevation publication-title: Journal of Animal Ecology – volume: 6 start-page: e26455 year: 2011 article-title: Strong, long‐term temporal dynamics of an ecological network publication-title: PLoS ONE – volume: 143 start-page: 1654 year: 2010 end-page: 1663 article-title: Agricultural surroundings support flower–visitor networks in an Afrotropical rain forest publication-title: Biological Conservation – volume: 15 start-page: 1353 year: 2012 end-page: 1361 article-title: The dissimilarity of species interaction networks publication-title: Ecology Letters – ident: e_1_2_9_19_1 doi: 10.1038/23876 – ident: e_1_2_9_60_1 doi: 10.2307/3565588 – ident: e_1_2_9_22_1 doi: 10.1111/j.1365-2745.2010.01732.x – ident: e_1_2_9_58_1 doi: 10.1111/oik.02661 – ident: e_1_2_9_12_1 doi: 10.1098/rspb.2015.1589 – ident: e_1_2_9_50_1 doi: 10.1126/science.1188321 – ident: e_1_2_9_29_1 doi: 10.1111/ecog.01078 – ident: e_1_2_9_33_1 doi: 10.1111/j.1600-0706.2013.00644.x – ident: e_1_2_9_28_1 doi: 10.1111/1365-2656.12285 – ident: e_1_2_9_6_1 doi: 10.1515/9781400848720 – ident: e_1_2_9_35_1 doi: 10.1073/pnas.0706375104 – ident: e_1_2_9_55_1 doi: 10.1111/jbi.12165 – ident: e_1_2_9_44_1 doi: 10.1111/ele.12002 – ident: e_1_2_9_45_1 doi: 10.1371/journal.pone.0081694 – ident: e_1_2_9_14_1 doi: 10.1111/j.1600-0587.2013.00201.x – ident: e_1_2_9_51_1 doi: 10.2307/3546998 – ident: e_1_2_9_7_1 doi: 10.1073/pnas.1633576100 – ident: e_1_2_9_34_1 doi: 10.1371/journal.pone.0026455 – ident: e_1_2_9_46_1 doi: 10.1098/rspb.2007.0515 – ident: e_1_2_9_37_1 doi: 10.1016/B978-0-12-381363-3.00001-0 – ident: e_1_2_9_36_1 doi: 10.1890/07-0451.1 – ident: e_1_2_9_2_1 doi: 10.1111/j.0030-1299.2008.16987.x – ident: e_1_2_9_10_1 doi: 10.1126/science.1232728 – ident: e_1_2_9_62_1 doi: 10.1073/pnas.1408471111 – ident: e_1_2_9_31_1 doi: 10.1371/journal.pone.0106651 – ident: e_1_2_9_49_1 doi: 10.1126/science.1216556 – ident: e_1_2_9_52_1 doi: 10.1038/nature04742 – ident: e_1_2_9_21_1 doi: 10.1007/978-3-642-36461-7_1 – ident: e_1_2_9_38_1 doi: 10.1111/oik.01439 – ident: e_1_2_9_32_1 doi: 10.1007/978-3-642-36461-7_2 – ident: e_1_2_9_57_1 doi: 10.1038/nature05429 – ident: e_1_2_9_23_1 doi: 10.1016/j.tree.2007.09.006 – ident: e_1_2_9_9_1 doi: 10.1111/j.1600-0706.2009.17740.x – ident: e_1_2_9_43_1 doi: 10.1111/oik.01719 – ident: e_1_2_9_40_1 doi: 10.1111/j.1461-0248.2008.01170.x – ident: e_1_2_9_4_1 doi: 10.1111/ecog.00913 – start-page: 189 volume-title: Avian Biology year: 1971 ident: e_1_2_9_26_1 – ident: e_1_2_9_24_1 doi: 10.1111/j.1600-0706.2009.18017.x – ident: e_1_2_9_39_1 doi: 10.1103/PhysRevE.84.016105 – ident: e_1_2_9_20_1 doi: 10.1016/j.physrep.2012.03.001 – ident: e_1_2_9_3_1 doi: 10.1111/j.1600-0706.2010.18376.x – ident: e_1_2_9_11_1 doi: 10.1371/journal.pone.0112903 – ident: e_1_2_9_59_1 doi: 10.1890/08-1837.1 – ident: e_1_2_9_18_1 doi: 10.1016/j.biocon.2010.03.036 – ident: e_1_2_9_56_1 doi: 10.1098/rspb.2014.2925 – ident: e_1_2_9_41_1 doi: 10.1111/j.0030-1299.2004.13257.x – ident: e_1_2_9_61_1 doi: 10.1098/rspb.2013.0239 – ident: e_1_2_9_47_1 doi: 10.1016/j.cub.2012.08.015 – ident: e_1_2_9_27_1 doi: 10.1016/j.ecocom.2009.03.008 – ident: e_1_2_9_25_1 doi: 10.1371/journal.pone.0110430 – ident: e_1_2_9_13_1 doi: 10.1371/journal.pone.0025891 – ident: e_1_2_9_5_1 doi: 10.1016/j.physrep.2010.11.002 – ident: e_1_2_9_53_1 doi: 10.1111/geb.12362 – ident: e_1_2_9_48_1 doi: 10.1111/ele.12245 – ident: e_1_2_9_30_1 doi: 10.1111/ele.12235 – ident: e_1_2_9_17_1 doi: 10.1371/journal.pbio.0060102 – ident: e_1_2_9_54_1 doi: 10.1111/j.1466-8238.2012.00777.x – ident: e_1_2_9_15_1 doi: 10.1111/j.0030-1299.2005.13712.x – ident: e_1_2_9_16_1 doi: 10.1890/08-1883.1 – ident: e_1_2_9_42_1 doi: 10.1007/s00442-014-2971-1 – ident: e_1_2_9_8_1 doi: 10.1186/1472-6785-6-9 |
SSID | ssj0009522 |
Score | 2.47496 |
SecondaryResourceType | review_article |
Snippet | Summary
There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined... There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a... 1. There has been an intense focus on the response of species to environmental changes, and more recently, the interactions of species have been examined in a... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1926 |
SubjectTerms | community dynamics Ecology Environmental changes Environmental gradient extinction food web Geological time Mass extinctions mutualism nestedness network metrics Networks pollination Reviews Spatial analysis Specialization Species species interactions Stability temporal variation Variability |
Subtitle | micro- and macroscopic variability across scales |
Title | Ecological networks in motion |
URI | https://www.jstor.org/stable/48582350 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12710 https://www.proquest.com/docview/2374407000 https://www.proquest.com/docview/1859481856 https://www.proquest.com/docview/2000419549 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEA9FKPSl1raHZ1VS6ENf9tjLZLNZ30TuEKGFlgp9W5JsFqS6J-6doE9-BD-jn8SZZPd6CiLiW8hOlk0y_7KZ-Q1j38ZgRWFzkRSeUnIKaROb6iJRtTUihcoUQPnOP36qw2N59DfrowkpFybiQyx_uJFkBH1NAm5suyLkMT4Lrf1oLPKQZEU95Bb9Fiuwu_EeQagiQUsLHbgPxfI8Gv_ALsXQxAdO56rrGmzPdJ3Z_qtjyMm_0WJuR-76EaDjq6b1gb3vPFO-H1lpg73xzUf2NtaqvMLWxHWtweR_chwO6LRD-4n9iiS07byJ4eUtP2l4rBS0x88o-O_u5pabpuJnhhbCzc5PHL_EA3vEC7_iobvlLb7Et5_Z8XTy5-Aw6Uo2JA6FO01qMAIgSyGvJHgvvaqUtug2AuoVndYVeG1yk7rKZDkoA7U32tcgtJYurRwM2Foza_wm4yJ3TqkC_Liqpa9rK02OyscJUNqgHhmyUb9hpevwzKmsxmnZn2toKUtayjIs5ZB9Xw44j1AeT5MOAgcs6aTOtMB5Ddl2zxJlJ-xtKYBQFnNktyH7unyMYkp3L6bxs0VboltEuDg6U0_TUNaUJAS-AucWeOS57yynk4PQ2HrpgC_sHbp-KgbmbLO1-cXC76B7Nbe7QYLuAZ17Fs8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgSX8rtiS6FGAolLVlk7cRwkDqjd1Zb-SKBW6s04jiNVpdmK7IKWUx-hz8Kr8AY8CTNxst1WqhCHHrhZiR3F9vw5-eYbgFd9kfE0S3iQOkrJSaMsyEKVBrLIDA9FblJB-c67e3J0EH04jA-X4GebC-P5IeYf3EgzantNCk4fpBe03AO00N33-hz9ZAOs3Haz73hsq95tbeIev-Z8ONjfGAVNZYHAogyGQSEMFyIORZJHwrnIyVyqDKMbPN3HKixy4ZRJTGhzEydCGlE4o1whuFKRDXMr8Lm34DbVESe-_s1PfIHo1_-54DIN0LeLhk6I0ENXXviSJ_RgyEth7mKwXHu74X341a6TB7kc96aTrGd_XKGQ_L8W8gGsNME3e--15SEsufIR3PHlOGfYGtim1Rlc5P_hgMYAVo_ho-9Cks1Kj6Cv2FHJfDGkt-yE8I2_z86ZKXN2Ymjl7fj0yLJvBjW9BiLPWH25YhU-xFVP4OBGptyB5XJcuqfAeGKtlKlw_byIXFFkkUnQvloupDJoKrvQayVE24aynSqHfNHt0Y22TtPW6XrruvBmPuDUs5Vc37VTi9y8X6RixXFeXVhrZVA39qzSXBCRZILy3YWX89toiej3kindeFppjPyI-kfF8vo-lBgWEclginOrhfJv76mHg426sfqvA9bh7mh_d0fvbO1tP4N7GOlKj0Nag-XJ16l7jtHkJHtRqy-Dzzct5n8AK7d0YA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aQyBuxm9FxwAjgcRNqtR2HAeJC7S22hhMgJi0O-M4jjSNpRVpN5UrHoFX4VX2CHsSju2kdJMmxMUuuLMSO4rt8-fkO98BeN5nOc3ylEaZdSk5Gc-jPJZZJMpc05gVOmMu3_n9rtja42_3k_0V-NXmwgR-iMUHN6cZ3l47BZ8U5ZKSB3wWevten6KbbHCVO3Z-gqe2-vX2ALf4BaWj4efNragpLBAZFME4KpmmjCUxSwvOrOVWFELmGNzg4T6RcVkwK3WqY1PoJGVCs9JqaUtGpeQmLgzD516D61zEmasWMfhEl3h-w48LKrIIXTtr2IQceOjCC59zhAELeS7KXY6VvbMb3YbTdpkCxuWwN5vmPfP9AoPkf7WOd2CtCb3Jm6Ard2HFVvfgRijGOcfW0DStzvBP9h8OaMxffR8-hi5OrkkV8PM1OahIKIX0ihw5dOPZj59EVwU50m7hzXhyYMixRj33MOQ58ZdrUuNDbP0A9q5kyh1YrcaVfQiEpsYIkTHbL0puyzLnOkXraigTUqOh7EKvFRBlGsJ2Vzfkq2oPbm7rlNs65beuCy8XAyaBq-Tyrh0vcYt-XCaS4ry6sNGKoGqsWa0oczSSKYp3F54tbqMdcj-XdGXHs1ph3OeIf2QiLu_j0sK4oxjMcG5eJv_2nmo03PSN9X8d8BRufhiM1Lvt3Z1HcAvDXBFASBuwOv02s48xlJzmT7zyEvhy1VL-Gy6-cw8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecological+networks+in+motion%3A+micro-+and+macroscopic+variability+across+scales&rft.jtitle=Functional+ecology&rft.au=Troejelsgaard%2C+Kristian&rft.au=Olesen%2C+Jens+M&rft.date=2016-12-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=30&rft.issue=12&rft.spage=1926&rft.epage=1935&rft_id=info:doi/10.1111%2F1365-2435.12710&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |