Grain Boundary Sliding in Aluminum Nano-Bi-Crystals Deformed at Room Temperature
Room‐temperature uniaxial compressions of 900‐nm‐diameter aluminum bi‐crystals, each containing a high‐angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 10; no. 1; pp. 100 - 108 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
15.01.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Room‐temperature uniaxial compressions of 900‐nm‐diameter aluminum bi‐crystals, each containing a high‐angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ∼176 MPa followed by gradual softening and a plateau centered around ∼125 MPa. An energetics‐based physical model, which may explain observed room‐temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano‐plasticity and defect microstructure evolution.
Bi‐crystalline Al nanopillars containing a single high‐angle grain boundary with a plane normal inclined at 24° to the loading direction are subject to room‐temperature uniaxial compression and reveal frictional sliding along the boundary plane to be the dominant deformation mechanism. An energetics‐based physical model, which may explain observed room‐temperature grain boundary sliding, is presented, and observations are discussed within the framework of crystalline nano‐plasticity and defect microstructure evolution. |
---|---|
AbstractList | Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ~ 176 MPa followed by gradual softening and a plateau centered around ~ 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution. Room‐temperature uniaxial compressions of 900‐nm‐diameter aluminum bi‐crystals, each containing a high‐angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ∼176 MPa followed by gradual softening and a plateau centered around ∼125 MPa. An energetics‐based physical model, which may explain observed room‐temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano‐plasticity and defect microstructure evolution. Bi‐crystalline Al nanopillars containing a single high‐angle grain boundary with a plane normal inclined at 24° to the loading direction are subject to room‐temperature uniaxial compression and reveal frictional sliding along the boundary plane to be the dominant deformation mechanism. An energetics‐based physical model, which may explain observed room‐temperature grain boundary sliding, is presented, and observations are discussed within the framework of crystalline nano‐plasticity and defect microstructure evolution. Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ~ 176 MPa followed by gradual softening and a plateau centered around ~ 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution.Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ~ 176 MPa followed by gradual softening and a plateau centered around ~ 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution. Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24 degree to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of 176 MPa followed by gradual softening and a plateau centered around 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution. Bi-crystalline Al nanopillars containing a single high-angle grain boundary with a plane normal inclined at 24 degree to the loading direction are subject to room-temperature uniaxial compression and reveal frictional sliding along the boundary plane to be the dominant deformation mechanism. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, is presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution. Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of 176 MPa followed by gradual softening and a plateau centered around 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution. [PUBLICATION ABSTRACT] Room‐temperature uniaxial compressions of 900‐nm‐diameter aluminum bi‐crystals, each containing a high‐angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ∼176 MPa followed by gradual softening and a plateau centered around ∼125 MPa. An energetics‐based physical model, which may explain observed room‐temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano‐plasticity and defect microstructure evolution. |
Author | Jang, Dongchan Weinberger, Christopher R. Greer, Julia R. Aitken, Zachary H. |
Author_xml | – sequence: 1 givenname: Zachary H. surname: Aitken fullname: Aitken, Zachary H. email: zaitken@caltech.edu organization: Division of Engineering and Applied Science, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA – sequence: 2 givenname: Dongchan surname: Jang fullname: Jang, Dongchan organization: Division of Engineering and Applied Science, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA – sequence: 3 givenname: Christopher R. surname: Weinberger fullname: Weinberger, Christopher R. organization: Sandia National Laboratories, P.O. Box 5800, MS1411, Albuquerque, NM 87185-1411, USA – sequence: 4 givenname: Julia R. surname: Greer fullname: Greer, Julia R. organization: Division of Engineering and Applied Science, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23873787$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEURi1URB-wZYlGYsNmgt-eWbYJTZGSgmgklpaTuUYuHju1ZwT593WVNkKVEKxsWedc-X7fKToKMQBCbwmeEIzpx9x7P6GYMEywxC_QCZGE1bKh7dHhTvAxOs35FmNGKFev0DFljWKqUSfo6zwZF6qLOIbOpF11413nwo-qvJ37sXdh7KtrE2J94epp2uXB-FzNwMbUQ1eZofoWY1-toN9CMsOY4DV6aQsDbx7PM7S6_LSaXtWLL_PP0_NFvRHl47WwjHKiQFhplIJGSAKKMtxwRpoW2rWwVnGz7gzgViljWyZYt7bWqMZIw87Qh_3YbYp3I-RB9y5vwHsTII5ZE95yxhiW6n9QrISQkhX0_TP0No4plD0KpQSmglBRqHeP1LguKehtcn3JTj-lWgC-BzYp5pzA6o0bzOBiGEraXhOsH8rTD-XpQ3lFmzzTnib_VWj3wi_nYfcPWt8sF4s_3XrvujzA74Nr0k9dMlNCf7-e6_mSX5LZkusZuweDmLlI |
CitedBy_id | crossref_primary_10_1016_j_matdes_2019_107914 crossref_primary_10_1016_j_ijplas_2019_09_001 crossref_primary_10_1080_21663831_2020_1818323 crossref_primary_10_3390_cryst6080092 crossref_primary_10_1038_srep15631 crossref_primary_10_2464_jilm_68_250 crossref_primary_10_1126_science_abm2612 crossref_primary_10_1016_j_matchar_2022_112267 crossref_primary_10_1016_j_nanoms_2020_03_007 crossref_primary_10_1021_acs_nanolett_6b00062 crossref_primary_10_1007_s11837_018_2751_1 crossref_primary_10_1016_j_ijplas_2018_05_011 crossref_primary_10_1016_j_jallcom_2015_07_064 crossref_primary_10_1016_j_jmrt_2023_05_011 crossref_primary_10_1016_j_jmst_2018_03_006 crossref_primary_10_1063_1_4977105 crossref_primary_10_1016_j_matchar_2021_111493 crossref_primary_10_1016_j_scriptamat_2015_11_018 crossref_primary_10_1016_j_eml_2015_01_006 crossref_primary_10_1002_adfm_202411440 crossref_primary_10_1016_j_actamat_2021_117505 crossref_primary_10_1557_jmr_2016_70 crossref_primary_10_1557_s43578_021_00363_7 crossref_primary_10_1016_j_ijplas_2020_102760 crossref_primary_10_1088_1361_651X_aa5aac crossref_primary_10_1016_j_cma_2020_112836 crossref_primary_10_1557_mrc_2018_81 crossref_primary_10_1016_j_actamat_2015_04_044 crossref_primary_10_2139_ssrn_4165484 |
Cites_doi | 10.1088/0965-0393/21/1/015004 10.1080/14786435.2012.690939 10.1016/S1359-6454(00)00175-0 10.1002/adem.201100242 10.1002/smll.201201614 10.1103/PhysRevB.73.245410 10.1088/0953-8984/12/42/201 10.1080/14786430600567739 10.1080/14786435.2010.502141 10.1063/1.2183814 10.1016/j.actamat.2004.12.031 10.1038/nmat2370 10.1088/1742-6596/240/1/012033 10.1080/14786430701591513 10.1016/j.scriptamat.2010.09.010 10.1016/0039-6028(77)90442-3 10.1098/rsta.1921.0006 10.1021/nl2003076 10.1103/PhysRevLett.100.155502 10.1126/science.1123889 10.1016/j.scriptamat.2006.09.016 10.1016/j.scriptamat.2011.11.008 10.1016/j.scriptamat.2011.02.001 10.1038/nnano.2012.116 10.1107/S0567739480000782 10.1016/j.msea.2007.01.046 10.1063/1.2938921 10.1016/0956-7151(91)90229-T 10.1016/j.actamat.2010.04.016 10.1063/1.2889997 10.1080/14786430903164614 10.1103/PhysRevLett.109.095507 10.1016/j.actamat.2009.04.007 10.1016/S1359-6454(99)00463-2 10.1016/0001-6160(89)90033-3 10.1016/j.actamat.2007.12.016 10.1103/PhysRevLett.79.869 10.3139/146.020428 10.1038/nmat2085 10.1016/0036-9748(85)90181-4 10.1016/j.pmatsci.2011.01.005 10.1021/nl3036993 10.1146/annurev-matsci-082908-145422 10.1016/j.actamat.2011.03.065 10.1016/j.actamat.2011.05.038 10.1080/14786437308225816 10.1016/j.actamat.2005.01.007 10.1016/j.ijplas.2010.09.010 10.1016/j.actamat.2006.05.021 |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7QF F28 FR3 |
DOI | 10.1002/smll.201301060 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Aluminium Industry Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Aluminium Industry Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 108 |
ExternalDocumentID | 3175104321 23873787 10_1002_smll_201301060 SMLL201301060 ark_67375_WNG_GM4F1DM4_D |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP GODZA HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AGQPQ AGYGG CITATION NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 7QF F28 FR3 |
ID | FETCH-LOGICAL-c5100-5f32417e5f6a77e8561e7230843189e9b5ff74abdae0977af9353dbffa78a6a3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 11:41:27 EDT 2025 Fri Jul 11 12:37:52 EDT 2025 Fri Jul 25 12:25:45 EDT 2025 Wed Feb 19 02:04:06 EST 2025 Thu Apr 24 23:08:43 EDT 2025 Tue Jul 01 02:10:10 EDT 2025 Wed Jan 22 16:19:22 EST 2025 Wed Oct 30 09:47:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | bicrystals aluminum nanopillar grain boundary mechanical properties |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5100-5f32417e5f6a77e8561e7230843189e9b5ff74abdae0977af9353dbffa78a6a3 |
Notes | ArticleID:SMLL201301060 istex:A15D1E6F5734E776772A4C01CEF2AC7D0E872F64 ark:/67375/WNG-GM4F1DM4-D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23873787 |
PQID | 1475025125 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1494333067 proquest_miscellaneous_1490755663 proquest_journals_1475025125 pubmed_primary_23873787 crossref_citationtrail_10_1002_smll_201301060 crossref_primary_10_1002_smll_201301060 wiley_primary_10_1002_smll_201301060_SMLL201301060 istex_primary_ark_67375_WNG_GM4F1DM4_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 15, 2014 |
PublicationDateYYYYMMDD | 2014-01-15 |
PublicationDate_xml | – month: 01 year: 2014 text: January 15, 2014 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | S. E. Babcock, R. W. Balluffi, Acta Metall. Mater. 1989, 37(9), 2357-2365. W. D. Nix, S.-W. Lee, Philos. Mag. 2011, 91(7-9), 1084-1096. K. S. Ng, A. H. W. Ngan, Philos. Mag. 2009, 89(33), 3013-3026. Q. Guo, Scripta Mater. 2012, 66 (5), 272-275. R. Hugo, R. Hoagland, Acta Mater. 2000, 48(8), 1949-1957. J. P. Hirth, J. Lothe, Theory of Dislocations. Second Editions ed.; John Wiley & Sons: New York 1982. H. Fukutomi, T. Iseki, T. Endo, T. Kamijo, Acta Metall. Mater. 1991, 39 (7), 1445-1448. D. I. Thomson, V. Heine, M. C. Payne, N. Marzari, M. W. Finnis, Acta Mater. 2000, 48(14), 3623-3632. S. H. Oh, M. Legros, D. Kiener, G. Dehm, Nat. Mater. 2009, 8, 95-100. D. Farkas, J.Phys.-Condens. Mat. 2000, 12, R497. S. Brinckmann, J.-Y. Kim, J. R. Greer, Phys. Rev. Lett. 2008, 100 (15), 155502. J. R. Greer, H. Espinosa, K. T. Ramesh, E. Nadgorny, Appl. Phys. Lett. 2008, 92, 096101. M. D. Uchic, P. A. Shade, D. M. Dimiduk, Ann. Rev. Mater. Res. 2009, 39, 361-386. DOI. 10.1146/annurev-matsci-082908-145422. W. R. Tyson, W. A. Miller, Surf. Sci. 1977, 62(1), 267-276. G. R. Kegg, C. A. P. Horton, J. M. Silcock, Philos. Mag. 1973, 27(5), 1041-1055. A. A. Griffith, Philos. T. R. Soc. Lond. 1920, 221, 163-198. H. Fukutomi, T. Kamijo, Scripta Metall. Mater. 1985, 19(2), 195-197. N. Kheradmand, J. Dake, A. Barnoush, H. Vehoff, Philos. Mag. 2012, 92(25-27), 3216-3230. N. Friedman, A. T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J. T. uhl, J. R. Greer, K. A. Dahmen, Phys. Rev. Lett. 2012, 109(9), 095507-095512. N. Li, N. A. Mara, Y. Q. Wang, M. Nastasi, A. Misra, Scripta Mater. 2011, 64(10), 974-977. A. P. Sutton, R. W. Balluffi, Interfaces in Crystalline Materials. Oxford University Press: USA 1995. S. Schmid, W. Sigle, W. Gust, M. Ruhle, Z. Metallkd. 2002, 93(5), 428-431. A. T. Jennings, J. Li, J. R. Greer, Acta Mater. 2011, 59(14), 5627-5637. J. R. Greer, J. T. D. Hosson, Prog. Mater. Sci. 2011, 56(6), 654-724. A. H. King, D. A. Smith, Acta Crystallogr. A 1980, 36(3), 335-343. S. I. Rao, D. M. Dimidul, M. Tang, M. D. Uchic, T. A. Parthasarathy, C. Woodward, Philos. Mag. 2007, 87 (30), 4777-4794. F. Sansoz, J. F. Molinari, Acta Mater. 2005, 53(7), 1931-1944. DOI. 10.1016/j.actamat.2005.01.007. D. Kiener, C. Motz, M. Rester, M. Jenko, G. Dehm, Mater. Sci. Eng. A 2007, 459(1-2), 262-272. X. W. Gu, C. N. Loynachan, Z. Wu, Y.-W. Zhang, D. J. Srolovitz, J. R. Greer, Nano Lett. 2012, 12 (12), 6385-6392. E. Pereiro-Lopez, W. Ludwig, D. Bellet, C. Lemaignan, Acta Mater. 2006, 54(16), 4307-4316. B. E. Schuster, Q. Wei, H. Zhang, K. T. Ramesh, Appl. Phys. Lett. 2006, 88 (10), 103112. A. Itoh, J. Izumi, K. Ina, H. Koizumi, J. Phys.-Conf. Ser. 2010, 240, 012033. D. Jang, X. Li, H. Gao, J. R. Greer, Nat. Nanotechnol. 2012, 7, 594-601. D. Jang, C. T. Gross, J. R. Greer, Int. J. Plasticity 2011, 27(6), 858-867. D. Jang, J. R. Greer, Scripta Mater. 2011, 64 (1), 77-80. A. Kunz, S. Pathak, J. R. Greer, Acta Mater. 2011, 59(11), 4416-4424. DOI. 10.1016/j.actamat.2011.03.065. K. S. Ng, A. H. W. Ngan, Acta Mater. 2008, 56(8), 1712-1720. N. Du, Y. Qi, P. E. Krajewski, A. F. Bower, Acta Mater. 2010, 58 (12), 4245-4252. D. L. Olmsted, S. M. Foiles, E. A. Holm, Acta Mater. 2009, 57(13), 3694-3703. G. J. Tucker, Z. H. Aitken, J. R. Greer, C. R. Weinberger, Model. Simul. Mater. SC. 2013, 21(1), 015004-015022. D. Jang, C. Cai, J. R. Greer, Nano Lett. 2011, 11 (4), 1743-1746. D. M. Dimiduk, C. Woodward, R. LeSar, M. D. Uchic, Science 2006, 312(5777), 1188-1190. J. R. Greer, W. C. Oliver, W. D. Nix, Acta Mater. 2005, 53(6), 1821-1830. DOI. 10.1016/j.actamat.2004.12.031. C. A. Volkert, E. T. Lilleodden, Philos. Mag. 2006, 86(33-35), 33-35. DOI. 10.1080/14786430600567739. J. R. Greer, W. D. Nix, Phys. Rev. B 2006, 73 (24), 245410-245415. DOI.10.1103/PhysRevB.73.245410. N. A. Mara, D. Bhattacharyya, P. Dickerson, R. G. Hoagland, A. Misra, Appl. Phys. Lett. 2008, 92(23), 231901. DOI.10.1063/1.2938921. N. Kheradmand, H. Vehoff, Adv. Eng. Mater. 2011, 14(3), 153-161. C. Molteni, N. Marzari, M. C. Payne, V. Heine, Phys. Rev. Lett. 1997, 79(5), 869-872. Z. W. Shan, R. K. Mishra, S. A. S. Asif, O. L. Warren, A. M. Minor, Nat. Mater. 2007, 7, 115-119. DOI. 10.1038/nmat2085. T. A. Parthasarathy, S. I. Rao, D. M. Dimiduk, M. D. Uchic, D. R. Trinkle, Scripta Mater. 2007, 56(4), 313-316. Q. Guo, P. Landau, P. Hosemann, Y. Wang, J. R. Greer, Small 2012, 9(5), 691-696. 2009; 89 1991; 39 2010; 58 2006; 73 2013; 21 2000; 48 2006; 54 1920; 221 1977; 62 2011; 11 2008; 56 2010; 240 1995 2011; 56 2011; 59 2011; 14 2008; 100 2008; 92 2012; 12 2007; 56 2006; 312 2012; 109 1985; 19 2012; 92 1980; 36 2009; 57 2007; 459 2006; 86 2011; 91 2000; 12 2006; 88 1997; 79 1973; 27 2011; 64 2005; 53 2009; 8 2007; 7 1982 2002; 93 1989; 37 2012; 7 2007; 87 2011; 27 2012; 66 2012; 9 2009; 39 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_13_2 e_1_2_8_34_2 Sutton A. P. (e_1_2_8_1_2) 1995 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_30_2 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_51_2 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_48_2 e_1_2_8_2_2 e_1_2_8_4_2 Guo Q. (e_1_2_8_6_2) 2012; 66 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_12_2 Hirth J. P. (e_1_2_8_25_2) 1982 e_1_2_8_35_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_31_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_50_2 |
References_xml | – reference: S. E. Babcock, R. W. Balluffi, Acta Metall. Mater. 1989, 37(9), 2357-2365. – reference: N. Kheradmand, H. Vehoff, Adv. Eng. Mater. 2011, 14(3), 153-161. – reference: C. Molteni, N. Marzari, M. C. Payne, V. Heine, Phys. Rev. Lett. 1997, 79(5), 869-872. – reference: S. Brinckmann, J.-Y. Kim, J. R. Greer, Phys. Rev. Lett. 2008, 100 (15), 155502. – reference: Q. Guo, P. Landau, P. Hosemann, Y. Wang, J. R. Greer, Small 2012, 9(5), 691-696. – reference: X. W. Gu, C. N. Loynachan, Z. Wu, Y.-W. Zhang, D. J. Srolovitz, J. R. Greer, Nano Lett. 2012, 12 (12), 6385-6392. – reference: D. Jang, J. R. Greer, Scripta Mater. 2011, 64 (1), 77-80. – reference: Q. Guo, Scripta Mater. 2012, 66 (5), 272-275. – reference: J. P. Hirth, J. Lothe, Theory of Dislocations. Second Editions ed.; John Wiley & Sons: New York 1982. – reference: G. R. Kegg, C. A. P. Horton, J. M. Silcock, Philos. Mag. 1973, 27(5), 1041-1055. – reference: S. H. Oh, M. Legros, D. Kiener, G. Dehm, Nat. Mater. 2009, 8, 95-100. – reference: S. I. Rao, D. M. Dimidul, M. Tang, M. D. Uchic, T. A. Parthasarathy, C. Woodward, Philos. Mag. 2007, 87 (30), 4777-4794. – reference: G. J. Tucker, Z. H. Aitken, J. R. Greer, C. R. Weinberger, Model. Simul. Mater. SC. 2013, 21(1), 015004-015022. – reference: D. Jang, C. T. Gross, J. R. Greer, Int. J. Plasticity 2011, 27(6), 858-867. – reference: S. Schmid, W. Sigle, W. Gust, M. Ruhle, Z. Metallkd. 2002, 93(5), 428-431. – reference: D. M. Dimiduk, C. Woodward, R. LeSar, M. D. Uchic, Science 2006, 312(5777), 1188-1190. – reference: E. Pereiro-Lopez, W. Ludwig, D. Bellet, C. Lemaignan, Acta Mater. 2006, 54(16), 4307-4316. – reference: N. Friedman, A. T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J. T. uhl, J. R. Greer, K. A. Dahmen, Phys. Rev. Lett. 2012, 109(9), 095507-095512. – reference: M. D. Uchic, P. A. Shade, D. M. Dimiduk, Ann. Rev. Mater. Res. 2009, 39, 361-386. DOI. 10.1146/annurev-matsci-082908-145422. – reference: N. Du, Y. Qi, P. E. Krajewski, A. F. Bower, Acta Mater. 2010, 58 (12), 4245-4252. – reference: D. L. Olmsted, S. M. Foiles, E. A. Holm, Acta Mater. 2009, 57(13), 3694-3703. – reference: J. R. Greer, J. T. D. Hosson, Prog. Mater. Sci. 2011, 56(6), 654-724. – reference: C. A. Volkert, E. T. Lilleodden, Philos. Mag. 2006, 86(33-35), 33-35. DOI. 10.1080/14786430600567739. – reference: A. Itoh, J. Izumi, K. Ina, H. Koizumi, J. Phys.-Conf. Ser. 2010, 240, 012033. – reference: K. S. Ng, A. H. W. Ngan, Acta Mater. 2008, 56(8), 1712-1720. – reference: R. Hugo, R. Hoagland, Acta Mater. 2000, 48(8), 1949-1957. – reference: N. Li, N. A. Mara, Y. Q. Wang, M. Nastasi, A. Misra, Scripta Mater. 2011, 64(10), 974-977. – reference: K. S. Ng, A. H. W. Ngan, Philos. Mag. 2009, 89(33), 3013-3026. – reference: J. R. Greer, W. D. Nix, Phys. Rev. B 2006, 73 (24), 245410-245415. DOI.10.1103/PhysRevB.73.245410. – reference: A. P. Sutton, R. W. Balluffi, Interfaces in Crystalline Materials. Oxford University Press: USA 1995. – reference: N. A. Mara, D. Bhattacharyya, P. Dickerson, R. G. Hoagland, A. Misra, Appl. Phys. Lett. 2008, 92(23), 231901. DOI.10.1063/1.2938921. – reference: J. R. Greer, H. Espinosa, K. T. Ramesh, E. Nadgorny, Appl. Phys. Lett. 2008, 92, 096101. – reference: T. A. Parthasarathy, S. I. Rao, D. M. Dimiduk, M. D. Uchic, D. R. Trinkle, Scripta Mater. 2007, 56(4), 313-316. – reference: A. A. Griffith, Philos. T. R. Soc. Lond. 1920, 221, 163-198. – reference: J. R. Greer, W. C. Oliver, W. D. Nix, Acta Mater. 2005, 53(6), 1821-1830. DOI. 10.1016/j.actamat.2004.12.031. – reference: D. Farkas, J.Phys.-Condens. Mat. 2000, 12, R497. – reference: D. Jang, C. Cai, J. R. Greer, Nano Lett. 2011, 11 (4), 1743-1746. – reference: D. Kiener, C. Motz, M. Rester, M. Jenko, G. Dehm, Mater. Sci. Eng. A 2007, 459(1-2), 262-272. – reference: W. D. Nix, S.-W. Lee, Philos. Mag. 2011, 91(7-9), 1084-1096. – reference: D. Jang, X. Li, H. Gao, J. R. Greer, Nat. Nanotechnol. 2012, 7, 594-601. – reference: A. Kunz, S. Pathak, J. R. Greer, Acta Mater. 2011, 59(11), 4416-4424. DOI. 10.1016/j.actamat.2011.03.065. – reference: H. Fukutomi, T. Iseki, T. Endo, T. Kamijo, Acta Metall. Mater. 1991, 39 (7), 1445-1448. – reference: A. H. King, D. A. Smith, Acta Crystallogr. A 1980, 36(3), 335-343. – reference: N. Kheradmand, J. Dake, A. Barnoush, H. Vehoff, Philos. Mag. 2012, 92(25-27), 3216-3230. – reference: F. Sansoz, J. F. Molinari, Acta Mater. 2005, 53(7), 1931-1944. DOI. 10.1016/j.actamat.2005.01.007. – reference: A. T. Jennings, J. Li, J. R. Greer, Acta Mater. 2011, 59(14), 5627-5637. – reference: H. Fukutomi, T. Kamijo, Scripta Metall. Mater. 1985, 19(2), 195-197. – reference: Z. W. Shan, R. K. Mishra, S. A. S. Asif, O. L. Warren, A. M. Minor, Nat. Mater. 2007, 7, 115-119. DOI. 10.1038/nmat2085. – reference: D. I. Thomson, V. Heine, M. C. Payne, N. Marzari, M. W. Finnis, Acta Mater. 2000, 48(14), 3623-3632. – reference: B. E. Schuster, Q. Wei, H. Zhang, K. T. Ramesh, Appl. Phys. Lett. 2006, 88 (10), 103112. – reference: W. R. Tyson, W. A. Miller, Surf. Sci. 1977, 62(1), 267-276. – volume: 48 start-page: 1949 issue: 8 year: 2000 end-page: 1957 publication-title: Acta Mater. – volume: 54 start-page: 4307 issue: 16 year: 2006 end-page: 4316 publication-title: Acta Mater. – volume: 79 start-page: 869 issue: 5 year: 1997 end-page: 872 publication-title: Phys. Rev. Lett. – volume: 59 start-page: 4416 issue: 11 year: 2011 end-page: 4424 publication-title: Acta Mater. – volume: 62 start-page: 267 issue: 1 year: 1977 end-page: 276 publication-title: Surf. Sci. – volume: 27 start-page: 1041 issue: 5 year: 1973 end-page: 1055 publication-title: Philos. Mag. – volume: 53 start-page: 1931 issue: 7 year: 2005 end-page: 1944 publication-title: Acta Mater. – year: 1982 – volume: 56 start-page: 1712 issue: 8 year: 2008 end-page: 1720 publication-title: Acta Mater. – volume: 91 start-page: 1084 issue: 7‐9 year: 2011 end-page: 1096 publication-title: Philos. Mag. – volume: 7 start-page: 115 year: 2007 end-page: 119 publication-title: Nat. Mater. – volume: 59 start-page: 5627 issue: 14 year: 2011 end-page: 5637 publication-title: Acta Mater. – volume: 312 start-page: 1188 issue: 5777 year: 2006 end-page: 1190 publication-title: Science – volume: 100 start-page: 155502 issue: 15 year: 2008 publication-title: Phys. Rev. Lett. – volume: 58 start-page: 4245 year: 2010 end-page: 4252 publication-title: Acta Mater. – volume: 39 start-page: 1445 issue: 7 year: 1991 end-page: 1448 publication-title: Acta Metall. Mater. – volume: 19 start-page: 195 issue: 2 year: 1985 end-page: 197 publication-title: Scripta Metall. Mater. – volume: 64 start-page: 974 issue: 10 year: 2011 end-page: 977 publication-title: Scripta Mater. – volume: 240 start-page: 012033 year: 2010 publication-title: J. Phys.‐Conf. Ser. – volume: 53 start-page: 1821 issue: 6 year: 2005 end-page: 1830 publication-title: Acta Mater. – volume: 48 start-page: 3623 issue: 14 year: 2000 end-page: 3632 publication-title: Acta Mater. – volume: 36 start-page: 335 issue: 3 year: 1980 end-page: 343 publication-title: Acta Crystallogr. A – volume: 109 start-page: 095507 issue: 9 year: 2012 end-page: 095512 publication-title: Phys. Rev. Lett. – volume: 73 start-page: 245410 issue: 24 year: 2006 end-page: 245415 publication-title: Phys. Rev. B – volume: 9 start-page: 691 year: 2012 end-page: 696 publication-title: Small – volume: 39 start-page: 361 year: 2009 end-page: 386 publication-title: Ann. Rev. Mater. Res. – volume: 21 start-page: 015004 year: 2013 end-page: 015022 publication-title: Model. Simul. Mater. SC. – volume: 56 start-page: 313 year: 2007 end-page: 316 publication-title: Scripta Mater. – volume: 8 start-page: 95 year: 2009 end-page: 100 publication-title: Nat. Mater. – volume: 89 start-page: 3013 year: 2009 end-page: 3026 publication-title: Philos. Mag. – volume: 93 start-page: 428 issue: 5 year: 2002 end-page: 431 publication-title: Z. Metallkd. – volume: 12 start-page: 6385 issue: 12 year: 2012 end-page: 6392 publication-title: Nano Lett. – volume: 56 start-page: 654 year: 2011 end-page: 724 publication-title: Prog. Mater. Sci. – volume: 92 start-page: 096101 year: 2008 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 594 year: 2012 end-page: 601 publication-title: Nat. Nanotechnol. – volume: 37 start-page: 2357 issue: 9 year: 1989 end-page: 2365 publication-title: Acta Metall. Mater. – volume: 459 start-page: 262 year: 2007 end-page: 272 publication-title: Mater. Sci. Eng. A – volume: 88 start-page: 103112 issue: 10 year: 2006 publication-title: Appl. Phys. Lett. – volume: 12 start-page: R497 year: 2000 publication-title: J.Phys.‐Condens. Mat. – volume: 221 start-page: 163 year: 1920 end-page: 198 publication-title: Philos. T. R. Soc. Lond. – volume: 11 start-page: 1743 issue: 4 year: 2011 end-page: 1746 publication-title: Nano Lett. – volume: 86 start-page: 33 year: 2006 end-page: 35 publication-title: Philos. Mag. – year: 1995 – volume: 87 start-page: 4777 issue: 30 year: 2007 end-page: 4794 publication-title: Philos. Mag. – volume: 64 start-page: 77 issue: 1 year: 2011 end-page: 80 publication-title: Scripta Mater. – volume: 92 start-page: 3216 issue: 25‐27 year: 2012 end-page: 3230 publication-title: Philos. Mag. – volume: 27 start-page: 858 issue: 6 year: 2011 end-page: 867 publication-title: Int. J. Plasticity – volume: 66 start-page: 272 issue: 5 year: 2012 end-page: 275 publication-title: Scripta Mater. – volume: 92 start-page: 231901 issue: 23 year: 2008 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 153 issue: 3 year: 2011 end-page: 161 publication-title: Adv. Eng. Mater. – volume: 57 start-page: 3694 year: 2009 end-page: 3703 publication-title: Acta Mater. – volume-title: Interfaces in Crystalline Materials. year: 1995 ident: e_1_2_8_1_2 – ident: e_1_2_8_28_2 doi: 10.1088/0965-0393/21/1/015004 – ident: e_1_2_8_16_2 doi: 10.1080/14786435.2012.690939 – ident: e_1_2_8_43_2 doi: 10.1016/S1359-6454(00)00175-0 – ident: e_1_2_8_27_2 doi: 10.1002/adem.201100242 – ident: e_1_2_8_5_2 doi: 10.1002/smll.201201614 – ident: e_1_2_8_22_2 doi: 10.1103/PhysRevB.73.245410 – ident: e_1_2_8_35_2 doi: 10.1088/0953-8984/12/42/201 – ident: e_1_2_8_51_2 doi: 10.1080/14786430600567739 – ident: e_1_2_8_23_2 doi: 10.1080/14786435.2010.502141 – ident: e_1_2_8_13_2 doi: 10.1063/1.2183814 – ident: e_1_2_8_50_2 doi: 10.1016/j.actamat.2004.12.031 – ident: e_1_2_8_20_2 doi: 10.1038/nmat2370 – ident: e_1_2_8_41_2 doi: 10.1088/1742-6596/240/1/012033 – ident: e_1_2_8_21_2 doi: 10.1080/14786430701591513 – ident: e_1_2_8_11_2 doi: 10.1016/j.scriptamat.2010.09.010 – ident: e_1_2_8_49_2 doi: 10.1016/0039-6028(77)90442-3 – ident: e_1_2_8_47_2 doi: 10.1098/rsta.1921.0006 – ident: e_1_2_8_10_2 doi: 10.1021/nl2003076 – ident: e_1_2_8_32_2 doi: 10.1103/PhysRevLett.100.155502 – ident: e_1_2_8_29_2 doi: 10.1126/science.1123889 – ident: e_1_2_8_19_2 doi: 10.1016/j.scriptamat.2006.09.016 – volume: 66 start-page: 272 issue: 5 year: 2012 ident: e_1_2_8_6_2 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2011.11.008 – ident: e_1_2_8_8_2 doi: 10.1016/j.scriptamat.2011.02.001 – ident: e_1_2_8_9_2 doi: 10.1038/nnano.2012.116 – ident: e_1_2_8_34_2 doi: 10.1107/S0567739480000782 – ident: e_1_2_8_44_2 doi: 10.1016/j.msea.2007.01.046 – ident: e_1_2_8_7_2 doi: 10.1063/1.2938921 – ident: e_1_2_8_33_2 doi: 10.1016/0956-7151(91)90229-T – ident: e_1_2_8_38_2 doi: 10.1016/j.actamat.2010.04.016 – ident: e_1_2_8_45_2 doi: 10.1063/1.2889997 – ident: e_1_2_8_14_2 doi: 10.1080/14786430903164614 – ident: e_1_2_8_30_2 doi: 10.1103/PhysRevLett.109.095507 – ident: e_1_2_8_46_2 – ident: e_1_2_8_48_2 doi: 10.1016/j.actamat.2009.04.007 – ident: e_1_2_8_42_2 doi: 10.1016/S1359-6454(99)00463-2 – ident: e_1_2_8_4_2 doi: 10.1016/0001-6160(89)90033-3 – ident: e_1_2_8_31_2 doi: 10.1016/j.actamat.2007.12.016 – ident: e_1_2_8_37_2 doi: 10.1103/PhysRevLett.79.869 – ident: e_1_2_8_40_2 doi: 10.3139/146.020428 – ident: e_1_2_8_52_2 doi: 10.1038/nmat2085 – ident: e_1_2_8_3_2 doi: 10.1016/0036-9748(85)90181-4 – ident: e_1_2_8_18_2 doi: 10.1016/j.pmatsci.2011.01.005 – ident: e_1_2_8_12_2 doi: 10.1021/nl3036993 – ident: e_1_2_8_17_2 doi: 10.1146/annurev-matsci-082908-145422 – ident: e_1_2_8_15_2 doi: 10.1016/j.actamat.2011.03.065 – ident: e_1_2_8_24_2 doi: 10.1016/j.actamat.2011.05.038 – ident: e_1_2_8_2_2 doi: 10.1080/14786437308225816 – ident: e_1_2_8_36_2 doi: 10.1016/j.actamat.2005.01.007 – volume-title: Theory of Dislocations. year: 1982 ident: e_1_2_8_25_2 – ident: e_1_2_8_26_2 doi: 10.1016/j.ijplas.2010.09.010 – ident: e_1_2_8_39_2 doi: 10.1016/j.actamat.2006.05.021 |
SSID | ssj0031247 |
Score | 2.25851 |
Snippet | Room‐temperature uniaxial compressions of 900‐nm‐diameter aluminum bi‐crystals, each containing a high‐angle grain boundary with a plane normal inclined at 24°... Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24°... Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100 |
SubjectTerms | Aluminum bicrystals grain boundary mechanical properties nanopillar Nanotechnology |
Title | Grain Boundary Sliding in Aluminum Nano-Bi-Crystals Deformed at Room Temperature |
URI | https://api.istex.fr/ark:/67375/WNG-GM4F1DM4-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201301060 https://www.ncbi.nlm.nih.gov/pubmed/23873787 https://www.proquest.com/docview/1475025125 https://www.proquest.com/docview/1490755663 https://www.proquest.com/docview/1494333067 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMeP0HiBB-6wwEBGQvDkLY3tJnncVtoJrXvYitibdZzYUrUuRb1IjCc-Ap-RT8I5SRtWxEWCl6ptThTH9jn-ndj5G-AV-hDyGLU0mVNSlyqXrgyGspREp5iHxAR-wXl40j16r9-dm_Nrb_E3-hDtAzf2jDpes4Ojm-_9EA2dX0546oBiMGU1nLTzgi2motNWP0rxBTnjojFLsvDWWrUxTvY2T98YlW5yBX_6FXJuEmw9BPXvAq4L36w8udhdLtxu8fknXcf_ubt7cGfFp2K_6VD34YavHsDta6qFD2E04G0lxEG9IdPsSpxNxjwACvpvn0LduFpeCgra029fvh6M6eNwdkUIOpmLnmdC9qXAhTglYBcjT9DeiDo_glH_7ejwSK42Z5AFuXEsTSAU66TehC6mqc-Iw3xK-UxGRJLlPnfUyKlGV6KPiTEx5Mqo0oWAaYZdVI9hq5pWfhtETEmm7sYJhqB1UhiXF44S89h4hxRhXARy3Ta2WAmX8_4ZE9tILieWK8u2lRXBm9b-YyPZ8VvL13VTt2Y4u-CFbqmxH04GdjDU_U5vqG0vgp11X7ArH59T0kS0xXhoInjZHibv5CkXrPx0yTY5MRkhs_qjjVaKU7cInjT9rC0QARUVJ6MjSd1b_nJD9mx4fNz-evovJz2DW_SdVybJjtmBrcVs6Z8Tdy3ci9q3vgNn1CRJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6h9gAcgPI0lLJICE7bOvZubB_bhiRAnENrBLfVrr0rRU0dlIfU9sRP4DfyS5ixY0MQDwkuluwdy_ua2e-z198AvNDWucTXgsvYhFwUYcJN4SSylEBEOnGBdPSDczruDt-Ltx9ls5uQ_oWp9SHaF27kGVW8JgenF9IH31VDF-dT-naAQRhpDbL2bUrrXbGqk1ZBKqRHEufCVYuT9Faj2-gHB5v3b6xL29TFF78CnZsYtlqE-rfBNNWv956c7a-WZj-_-knZ8b_adwdurSEqO6zn1A5cs-VduPmDcOE9yAaUWYIdVTmZ5pfsdDqhNZDhtUOMdpNydc4wbs--fv5yNMHD8fwSUeh0wXqWQLItmF6yE8TsLLOI22td5_uQ9V9nx0O-zs_Ac_Rkn0uHaKwTWem6OopsjFDMRkhpYgQlcWITg-McCW0KbX2EmdoloQwL45yOYt3V4QPYKmelfQTMR54pun6gnRMiyKVJcoPc3JfWaAwyxgPeDI7K19rllEJjqmrV5UBRZ6m2szx41dp_qlU7fmv5shrr1kzPz2ivWyTVh_FADVLR7_RSoXoe7DaTQa3dfIG8CQEXIUTpwfO2GB2Uvrro0s5WZJMgLEPUHP7RRoQhsTcPHtYTra0QYiqsTowlQTVd_tIgdZqORu3Z43-56RlcH2bpSI3ejN89gRt4nTYq8Y7cha3lfGWfIgxbmr3K0b4Bn0coZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5Cm4TggXEnMMBICJ68pbHdJI_bQjugrdBWxN4sO7Glal069SJtPPET-I38Es5J2rAiLhK8REp8ojj2Ocffl9ifAV4a530aGslVYgWXhUi5LbxClhLJ2KQ-Up4WOPcH7cOP8t2JOrmyir_Wh2g-uFFkVPmaAvy88Ls_RENnZ2P6dYA5GFkNkvZN2Q4T8uvsqBGQEvREolw4aHFS3lrJNobR7vr9a8PSJrXwxa8w5zqErcagzhaYVe3rqSenO4u53ck__yTs-D-vdxtuLQEq26s96g5cc-VduHlFtvAeDLu0rwTbr3Zkml6y4_GIRkCG1_Yw143KxRnDrD359uXr_ggPB9NLxKDjGcscQWRXMDNnR4jY2dAhaq9Vne_DsPNmeHDIl7sz8BzjOOTKIxZrxU75toljlyAQczESmgQhSZK61GIvx9LYwrgQQabxqVCisN6bODFtIx7ARjkp3SNgIbJM7LzIeC9llCub5haZeaicNZhibAB81Tc6XyqX0wYaY11rLkeaGks3jRXA68b-vNbs-K3lq6qrGzMzPaWZbrHSnwZd3e3LTivrS50FsL3yBb0M8hmyJoRbhA9VAC-aYgxP-udiSjdZkE2KoAwxs_ijjRSCuFsAD2s_ayqEiAqrk2BJVHnLX15IH_d7vebs8b_c9Byuf8g6uvd28P4J3MDLNEuJt9Q2bMynC_cUMdjcPqvC7DsdnCcc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grain+boundary+sliding+in+aluminum+nano-bi-crystals+deformed+at+room+temperature&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Aitken%2C+Zachary+H&rft.au=Jang%2C+Dongchan&rft.au=Weinberger%2C+Christopher+R&rft.au=Greer%2C+Julia+R&rft.date=2014-01-15&rft.eissn=1613-6829&rft.volume=10&rft.issue=1&rft.spage=100&rft_id=info:doi/10.1002%2Fsmll.201301060&rft_id=info%3Apmid%2F23873787&rft.externalDocID=23873787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |