Grain Boundary Sliding in Aluminum Nano-Bi-Crystals Deformed at Room Temperature

Room‐temperature uniaxial compressions of 900‐nm‐diameter aluminum bi‐crystals, each containing a high‐angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 10; no. 1; pp. 100 - 108
Main Authors Aitken, Zachary H., Jang, Dongchan, Weinberger, Christopher R., Greer, Julia R.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 15.01.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Room‐temperature uniaxial compressions of 900‐nm‐diameter aluminum bi‐crystals, each containing a high‐angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ∼176 MPa followed by gradual softening and a plateau centered around ∼125 MPa. An energetics‐based physical model, which may explain observed room‐temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano‐plasticity and defect microstructure evolution. Bi‐crystalline Al nanopillars containing a single high‐angle grain boundary with a plane normal inclined at 24° to the loading direction are subject to room‐temperature uniaxial compression and reveal frictional sliding along the boundary plane to be the dominant deformation mechanism. An energetics‐based physical model, which may explain observed room‐temperature grain boundary sliding, is presented, and observations are discussed within the framework of crystalline nano‐plasticity and defect microstructure evolution.
AbstractList Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ~ 176 MPa followed by gradual softening and a plateau centered around ~ 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution.
Room‐temperature uniaxial compressions of 900‐nm‐diameter aluminum bi‐crystals, each containing a high‐angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ∼176 MPa followed by gradual softening and a plateau centered around ∼125 MPa. An energetics‐based physical model, which may explain observed room‐temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano‐plasticity and defect microstructure evolution. Bi‐crystalline Al nanopillars containing a single high‐angle grain boundary with a plane normal inclined at 24° to the loading direction are subject to room‐temperature uniaxial compression and reveal frictional sliding along the boundary plane to be the dominant deformation mechanism. An energetics‐based physical model, which may explain observed room‐temperature grain boundary sliding, is presented, and observations are discussed within the framework of crystalline nano‐plasticity and defect microstructure evolution.
Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ~ 176 MPa followed by gradual softening and a plateau centered around ~ 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution.Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ~ 176 MPa followed by gradual softening and a plateau centered around ~ 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution.
Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24 degree to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of 176 MPa followed by gradual softening and a plateau centered around 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution. Bi-crystalline Al nanopillars containing a single high-angle grain boundary with a plane normal inclined at 24 degree to the loading direction are subject to room-temperature uniaxial compression and reveal frictional sliding along the boundary plane to be the dominant deformation mechanism. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, is presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution.
Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of 176 MPa followed by gradual softening and a plateau centered around 125 MPa. An energetics-based physical model, which may explain observed room-temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano-plasticity and defect microstructure evolution. [PUBLICATION ABSTRACT]
Room‐temperature uniaxial compressions of 900‐nm‐diameter aluminum bi‐crystals, each containing a high‐angle grain boundary with a plane normal inclined at 24° to the loading direction, revealed frictional sliding along the boundary plane to be the dominant deformation mechanism. The top crystallite sheared off as a single unit in the course of compression instead of crystallographic slip and extensive dislocation activity, as would be expected. Compressive stress strain data of deforming nano bicrystals was continuous, in contrast to single crystalline nano structures that show a stochastic stress strain signature, and displayed a peak in stress at the elastic limit of ∼176 MPa followed by gradual softening and a plateau centered around ∼125 MPa. An energetics‐based physical model, which may explain observed room‐temperature grain boundary sliding, in presented, and observations are discussed within the framework of crystalline nano‐plasticity and defect microstructure evolution.
Author Jang, Dongchan
Weinberger, Christopher R.
Greer, Julia R.
Aitken, Zachary H.
Author_xml – sequence: 1
  givenname: Zachary H.
  surname: Aitken
  fullname: Aitken, Zachary H.
  email: zaitken@caltech.edu
  organization: Division of Engineering and Applied Science, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
– sequence: 2
  givenname: Dongchan
  surname: Jang
  fullname: Jang, Dongchan
  organization: Division of Engineering and Applied Science, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
– sequence: 3
  givenname: Christopher R.
  surname: Weinberger
  fullname: Weinberger, Christopher R.
  organization: Sandia National Laboratories, P.O. Box 5800, MS1411, Albuquerque, NM 87185-1411, USA
– sequence: 4
  givenname: Julia R.
  surname: Greer
  fullname: Greer, Julia R.
  organization: Division of Engineering and Applied Science, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23873787$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEURi1URB-wZYlGYsNmgt-eWbYJTZGSgmgklpaTuUYuHju1ZwT593WVNkKVEKxsWedc-X7fKToKMQBCbwmeEIzpx9x7P6GYMEywxC_QCZGE1bKh7dHhTvAxOs35FmNGKFev0DFljWKqUSfo6zwZF6qLOIbOpF11413nwo-qvJ37sXdh7KtrE2J94epp2uXB-FzNwMbUQ1eZofoWY1-toN9CMsOY4DV6aQsDbx7PM7S6_LSaXtWLL_PP0_NFvRHl47WwjHKiQFhplIJGSAKKMtxwRpoW2rWwVnGz7gzgViljWyZYt7bWqMZIw87Qh_3YbYp3I-RB9y5vwHsTII5ZE95yxhiW6n9QrISQkhX0_TP0No4plD0KpQSmglBRqHeP1LguKehtcn3JTj-lWgC-BzYp5pzA6o0bzOBiGEraXhOsH8rTD-XpQ3lFmzzTnib_VWj3wi_nYfcPWt8sF4s_3XrvujzA74Nr0k9dMlNCf7-e6_mSX5LZkusZuweDmLlI
CitedBy_id crossref_primary_10_1016_j_matdes_2019_107914
crossref_primary_10_1016_j_ijplas_2019_09_001
crossref_primary_10_1080_21663831_2020_1818323
crossref_primary_10_3390_cryst6080092
crossref_primary_10_1038_srep15631
crossref_primary_10_2464_jilm_68_250
crossref_primary_10_1126_science_abm2612
crossref_primary_10_1016_j_matchar_2022_112267
crossref_primary_10_1016_j_nanoms_2020_03_007
crossref_primary_10_1021_acs_nanolett_6b00062
crossref_primary_10_1007_s11837_018_2751_1
crossref_primary_10_1016_j_ijplas_2018_05_011
crossref_primary_10_1016_j_jallcom_2015_07_064
crossref_primary_10_1016_j_jmrt_2023_05_011
crossref_primary_10_1016_j_jmst_2018_03_006
crossref_primary_10_1063_1_4977105
crossref_primary_10_1016_j_matchar_2021_111493
crossref_primary_10_1016_j_scriptamat_2015_11_018
crossref_primary_10_1016_j_eml_2015_01_006
crossref_primary_10_1002_adfm_202411440
crossref_primary_10_1016_j_actamat_2021_117505
crossref_primary_10_1557_jmr_2016_70
crossref_primary_10_1557_s43578_021_00363_7
crossref_primary_10_1016_j_ijplas_2020_102760
crossref_primary_10_1088_1361_651X_aa5aac
crossref_primary_10_1016_j_cma_2020_112836
crossref_primary_10_1557_mrc_2018_81
crossref_primary_10_1016_j_actamat_2015_04_044
crossref_primary_10_2139_ssrn_4165484
Cites_doi 10.1088/0965-0393/21/1/015004
10.1080/14786435.2012.690939
10.1016/S1359-6454(00)00175-0
10.1002/adem.201100242
10.1002/smll.201201614
10.1103/PhysRevB.73.245410
10.1088/0953-8984/12/42/201
10.1080/14786430600567739
10.1080/14786435.2010.502141
10.1063/1.2183814
10.1016/j.actamat.2004.12.031
10.1038/nmat2370
10.1088/1742-6596/240/1/012033
10.1080/14786430701591513
10.1016/j.scriptamat.2010.09.010
10.1016/0039-6028(77)90442-3
10.1098/rsta.1921.0006
10.1021/nl2003076
10.1103/PhysRevLett.100.155502
10.1126/science.1123889
10.1016/j.scriptamat.2006.09.016
10.1016/j.scriptamat.2011.11.008
10.1016/j.scriptamat.2011.02.001
10.1038/nnano.2012.116
10.1107/S0567739480000782
10.1016/j.msea.2007.01.046
10.1063/1.2938921
10.1016/0956-7151(91)90229-T
10.1016/j.actamat.2010.04.016
10.1063/1.2889997
10.1080/14786430903164614
10.1103/PhysRevLett.109.095507
10.1016/j.actamat.2009.04.007
10.1016/S1359-6454(99)00463-2
10.1016/0001-6160(89)90033-3
10.1016/j.actamat.2007.12.016
10.1103/PhysRevLett.79.869
10.3139/146.020428
10.1038/nmat2085
10.1016/0036-9748(85)90181-4
10.1016/j.pmatsci.2011.01.005
10.1021/nl3036993
10.1146/annurev-matsci-082908-145422
10.1016/j.actamat.2011.03.065
10.1016/j.actamat.2011.05.038
10.1080/14786437308225816
10.1016/j.actamat.2005.01.007
10.1016/j.ijplas.2010.09.010
10.1016/j.actamat.2006.05.021
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7QF
F28
FR3
DOI 10.1002/smll.201301060
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Aluminium Industry Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Aluminium Industry Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 108
ExternalDocumentID 3175104321
23873787
10_1002_smll_201301060
SMLL201301060
ark_67375_WNG_GM4F1DM4_D
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AGQPQ
AGYGG
CITATION
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
7QF
F28
FR3
ID FETCH-LOGICAL-c5100-5f32417e5f6a77e8561e7230843189e9b5ff74abdae0977af9353dbffa78a6a3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 11:41:27 EDT 2025
Fri Jul 11 12:37:52 EDT 2025
Fri Jul 25 12:25:45 EDT 2025
Wed Feb 19 02:04:06 EST 2025
Thu Apr 24 23:08:43 EDT 2025
Tue Jul 01 02:10:10 EDT 2025
Wed Jan 22 16:19:22 EST 2025
Wed Oct 30 09:47:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords bicrystals
aluminum
nanopillar
grain boundary
mechanical properties
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5100-5f32417e5f6a77e8561e7230843189e9b5ff74abdae0977af9353dbffa78a6a3
Notes ArticleID:SMLL201301060
istex:A15D1E6F5734E776772A4C01CEF2AC7D0E872F64
ark:/67375/WNG-GM4F1DM4-D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23873787
PQID 1475025125
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_1494333067
proquest_miscellaneous_1490755663
proquest_journals_1475025125
pubmed_primary_23873787
crossref_citationtrail_10_1002_smll_201301060
crossref_primary_10_1002_smll_201301060
wiley_primary_10_1002_smll_201301060_SMLL201301060
istex_primary_ark_67375_WNG_GM4F1DM4_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 15, 2014
PublicationDateYYYYMMDD 2014-01-15
PublicationDate_xml – month: 01
  year: 2014
  text: January 15, 2014
  day: 15
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References S. E. Babcock, R. W. Balluffi, Acta Metall. Mater. 1989, 37(9), 2357-2365.
W. D. Nix, S.-W. Lee, Philos. Mag. 2011, 91(7-9), 1084-1096.
K. S. Ng, A. H. W. Ngan, Philos. Mag. 2009, 89(33), 3013-3026.
Q. Guo, Scripta Mater. 2012, 66 (5), 272-275.
R. Hugo, R. Hoagland, Acta Mater. 2000, 48(8), 1949-1957.
J. P. Hirth, J. Lothe, Theory of Dislocations. Second Editions ed.; John Wiley & Sons: New York 1982.
H. Fukutomi, T. Iseki, T. Endo, T. Kamijo, Acta Metall. Mater. 1991, 39 (7), 1445-1448.
D. I. Thomson, V. Heine, M. C. Payne, N. Marzari, M. W. Finnis, Acta Mater. 2000, 48(14), 3623-3632.
S. H. Oh, M. Legros, D. Kiener, G. Dehm, Nat. Mater. 2009, 8, 95-100.
D. Farkas, J.Phys.-Condens. Mat. 2000, 12, R497.
S. Brinckmann, J.-Y. Kim, J. R. Greer, Phys. Rev. Lett. 2008, 100 (15), 155502.
J. R. Greer, H. Espinosa, K. T. Ramesh, E. Nadgorny, Appl. Phys. Lett. 2008, 92, 096101.
M. D. Uchic, P. A. Shade, D. M. Dimiduk, Ann. Rev. Mater. Res. 2009, 39, 361-386. DOI. 10.1146/annurev-matsci-082908-145422.
W. R. Tyson, W. A. Miller, Surf. Sci. 1977, 62(1), 267-276.
G. R. Kegg, C. A. P. Horton, J. M. Silcock, Philos. Mag. 1973, 27(5), 1041-1055.
A. A. Griffith, Philos. T. R. Soc. Lond. 1920, 221, 163-198.
H. Fukutomi, T. Kamijo, Scripta Metall. Mater. 1985, 19(2), 195-197.
N. Kheradmand, J. Dake, A. Barnoush, H. Vehoff, Philos. Mag. 2012, 92(25-27), 3216-3230.
N. Friedman, A. T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J. T. uhl, J. R. Greer, K. A. Dahmen, Phys. Rev. Lett. 2012, 109(9), 095507-095512.
N. Li, N. A. Mara, Y. Q. Wang, M. Nastasi, A. Misra, Scripta Mater. 2011, 64(10), 974-977.
A. P. Sutton, R. W. Balluffi, Interfaces in Crystalline Materials. Oxford University Press: USA 1995.
S. Schmid, W. Sigle, W. Gust, M. Ruhle, Z. Metallkd. 2002, 93(5), 428-431.
A. T. Jennings, J. Li, J. R. Greer, Acta Mater. 2011, 59(14), 5627-5637.
J. R. Greer, J. T. D. Hosson, Prog. Mater. Sci. 2011, 56(6), 654-724.
A. H. King, D. A. Smith, Acta Crystallogr. A 1980, 36(3), 335-343.
S. I. Rao, D. M. Dimidul, M. Tang, M. D. Uchic, T. A. Parthasarathy, C. Woodward, Philos. Mag. 2007, 87 (30), 4777-4794.
F. Sansoz, J. F. Molinari, Acta Mater. 2005, 53(7), 1931-1944. DOI. 10.1016/j.actamat.2005.01.007.
D. Kiener, C. Motz, M. Rester, M. Jenko, G. Dehm, Mater. Sci. Eng. A 2007, 459(1-2), 262-272.
X. W. Gu, C. N. Loynachan, Z. Wu, Y.-W. Zhang, D. J. Srolovitz, J. R. Greer, Nano Lett. 2012, 12 (12), 6385-6392.
E. Pereiro-Lopez, W. Ludwig, D. Bellet, C. Lemaignan, Acta Mater. 2006, 54(16), 4307-4316.
B. E. Schuster, Q. Wei, H. Zhang, K. T. Ramesh, Appl. Phys. Lett. 2006, 88 (10), 103112.
A. Itoh, J. Izumi, K. Ina, H. Koizumi, J. Phys.-Conf. Ser. 2010, 240, 012033.
D. Jang, X. Li, H. Gao, J. R. Greer, Nat. Nanotechnol. 2012, 7, 594-601.
D. Jang, C. T. Gross, J. R. Greer, Int. J. Plasticity 2011, 27(6), 858-867.
D. Jang, J. R. Greer, Scripta Mater. 2011, 64 (1), 77-80.
A. Kunz, S. Pathak, J. R. Greer, Acta Mater. 2011, 59(11), 4416-4424. DOI. 10.1016/j.actamat.2011.03.065.
K. S. Ng, A. H. W. Ngan, Acta Mater. 2008, 56(8), 1712-1720.
N. Du, Y. Qi, P. E. Krajewski, A. F. Bower, Acta Mater. 2010, 58 (12), 4245-4252.
D. L. Olmsted, S. M. Foiles, E. A. Holm, Acta Mater. 2009, 57(13), 3694-3703.
G. J. Tucker, Z. H. Aitken, J. R. Greer, C. R. Weinberger, Model. Simul. Mater. SC. 2013, 21(1), 015004-015022.
D. Jang, C. Cai, J. R. Greer, Nano Lett. 2011, 11 (4), 1743-1746.
D. M. Dimiduk, C. Woodward, R. LeSar, M. D. Uchic, Science 2006, 312(5777), 1188-1190.
J. R. Greer, W. C. Oliver, W. D. Nix, Acta Mater. 2005, 53(6), 1821-1830. DOI. 10.1016/j.actamat.2004.12.031.
C. A. Volkert, E. T. Lilleodden, Philos. Mag. 2006, 86(33-35), 33-35. DOI. 10.1080/14786430600567739.
J. R. Greer, W. D. Nix, Phys. Rev. B 2006, 73 (24), 245410-245415. DOI.10.1103/PhysRevB.73.245410.
N. A. Mara, D. Bhattacharyya, P. Dickerson, R. G. Hoagland, A. Misra, Appl. Phys. Lett. 2008, 92(23), 231901. DOI.10.1063/1.2938921.
N. Kheradmand, H. Vehoff, Adv. Eng. Mater. 2011, 14(3), 153-161.
C. Molteni, N. Marzari, M. C. Payne, V. Heine, Phys. Rev. Lett. 1997, 79(5), 869-872.
Z. W. Shan, R. K. Mishra, S. A. S. Asif, O. L. Warren, A. M. Minor, Nat. Mater. 2007, 7, 115-119. DOI. 10.1038/nmat2085.
T. A. Parthasarathy, S. I. Rao, D. M. Dimiduk, M. D. Uchic, D. R. Trinkle, Scripta Mater. 2007, 56(4), 313-316.
Q. Guo, P. Landau, P. Hosemann, Y. Wang, J. R. Greer, Small 2012, 9(5), 691-696.
2009; 89
1991; 39
2010; 58
2006; 73
2013; 21
2000; 48
2006; 54
1920; 221
1977; 62
2011; 11
2008; 56
2010; 240
1995
2011; 56
2011; 59
2011; 14
2008; 100
2008; 92
2012; 12
2007; 56
2006; 312
2012; 109
1985; 19
2012; 92
1980; 36
2009; 57
2007; 459
2006; 86
2011; 91
2000; 12
2006; 88
1997; 79
1973; 27
2011; 64
2005; 53
2009; 8
2007; 7
1982
2002; 93
1989; 37
2012; 7
2007; 87
2011; 27
2012; 66
2012; 9
2009; 39
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_34_2
Sutton A. P. (e_1_2_8_1_2) 1995
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_30_2
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_51_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_48_2
e_1_2_8_2_2
e_1_2_8_4_2
Guo Q. (e_1_2_8_6_2) 2012; 66
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
Hirth J. P. (e_1_2_8_25_2) 1982
e_1_2_8_35_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_31_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_50_2
References_xml – reference: S. E. Babcock, R. W. Balluffi, Acta Metall. Mater. 1989, 37(9), 2357-2365.
– reference: N. Kheradmand, H. Vehoff, Adv. Eng. Mater. 2011, 14(3), 153-161.
– reference: C. Molteni, N. Marzari, M. C. Payne, V. Heine, Phys. Rev. Lett. 1997, 79(5), 869-872.
– reference: S. Brinckmann, J.-Y. Kim, J. R. Greer, Phys. Rev. Lett. 2008, 100 (15), 155502.
– reference: Q. Guo, P. Landau, P. Hosemann, Y. Wang, J. R. Greer, Small 2012, 9(5), 691-696.
– reference: X. W. Gu, C. N. Loynachan, Z. Wu, Y.-W. Zhang, D. J. Srolovitz, J. R. Greer, Nano Lett. 2012, 12 (12), 6385-6392.
– reference: D. Jang, J. R. Greer, Scripta Mater. 2011, 64 (1), 77-80.
– reference: Q. Guo, Scripta Mater. 2012, 66 (5), 272-275.
– reference: J. P. Hirth, J. Lothe, Theory of Dislocations. Second Editions ed.; John Wiley & Sons: New York 1982.
– reference: G. R. Kegg, C. A. P. Horton, J. M. Silcock, Philos. Mag. 1973, 27(5), 1041-1055.
– reference: S. H. Oh, M. Legros, D. Kiener, G. Dehm, Nat. Mater. 2009, 8, 95-100.
– reference: S. I. Rao, D. M. Dimidul, M. Tang, M. D. Uchic, T. A. Parthasarathy, C. Woodward, Philos. Mag. 2007, 87 (30), 4777-4794.
– reference: G. J. Tucker, Z. H. Aitken, J. R. Greer, C. R. Weinberger, Model. Simul. Mater. SC. 2013, 21(1), 015004-015022.
– reference: D. Jang, C. T. Gross, J. R. Greer, Int. J. Plasticity 2011, 27(6), 858-867.
– reference: S. Schmid, W. Sigle, W. Gust, M. Ruhle, Z. Metallkd. 2002, 93(5), 428-431.
– reference: D. M. Dimiduk, C. Woodward, R. LeSar, M. D. Uchic, Science 2006, 312(5777), 1188-1190.
– reference: E. Pereiro-Lopez, W. Ludwig, D. Bellet, C. Lemaignan, Acta Mater. 2006, 54(16), 4307-4316.
– reference: N. Friedman, A. T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J. T. uhl, J. R. Greer, K. A. Dahmen, Phys. Rev. Lett. 2012, 109(9), 095507-095512.
– reference: M. D. Uchic, P. A. Shade, D. M. Dimiduk, Ann. Rev. Mater. Res. 2009, 39, 361-386. DOI. 10.1146/annurev-matsci-082908-145422.
– reference: N. Du, Y. Qi, P. E. Krajewski, A. F. Bower, Acta Mater. 2010, 58 (12), 4245-4252.
– reference: D. L. Olmsted, S. M. Foiles, E. A. Holm, Acta Mater. 2009, 57(13), 3694-3703.
– reference: J. R. Greer, J. T. D. Hosson, Prog. Mater. Sci. 2011, 56(6), 654-724.
– reference: C. A. Volkert, E. T. Lilleodden, Philos. Mag. 2006, 86(33-35), 33-35. DOI. 10.1080/14786430600567739.
– reference: A. Itoh, J. Izumi, K. Ina, H. Koizumi, J. Phys.-Conf. Ser. 2010, 240, 012033.
– reference: K. S. Ng, A. H. W. Ngan, Acta Mater. 2008, 56(8), 1712-1720.
– reference: R. Hugo, R. Hoagland, Acta Mater. 2000, 48(8), 1949-1957.
– reference: N. Li, N. A. Mara, Y. Q. Wang, M. Nastasi, A. Misra, Scripta Mater. 2011, 64(10), 974-977.
– reference: K. S. Ng, A. H. W. Ngan, Philos. Mag. 2009, 89(33), 3013-3026.
– reference: J. R. Greer, W. D. Nix, Phys. Rev. B 2006, 73 (24), 245410-245415. DOI.10.1103/PhysRevB.73.245410.
– reference: A. P. Sutton, R. W. Balluffi, Interfaces in Crystalline Materials. Oxford University Press: USA 1995.
– reference: N. A. Mara, D. Bhattacharyya, P. Dickerson, R. G. Hoagland, A. Misra, Appl. Phys. Lett. 2008, 92(23), 231901. DOI.10.1063/1.2938921.
– reference: J. R. Greer, H. Espinosa, K. T. Ramesh, E. Nadgorny, Appl. Phys. Lett. 2008, 92, 096101.
– reference: T. A. Parthasarathy, S. I. Rao, D. M. Dimiduk, M. D. Uchic, D. R. Trinkle, Scripta Mater. 2007, 56(4), 313-316.
– reference: A. A. Griffith, Philos. T. R. Soc. Lond. 1920, 221, 163-198.
– reference: J. R. Greer, W. C. Oliver, W. D. Nix, Acta Mater. 2005, 53(6), 1821-1830. DOI. 10.1016/j.actamat.2004.12.031.
– reference: D. Farkas, J.Phys.-Condens. Mat. 2000, 12, R497.
– reference: D. Jang, C. Cai, J. R. Greer, Nano Lett. 2011, 11 (4), 1743-1746.
– reference: D. Kiener, C. Motz, M. Rester, M. Jenko, G. Dehm, Mater. Sci. Eng. A 2007, 459(1-2), 262-272.
– reference: W. D. Nix, S.-W. Lee, Philos. Mag. 2011, 91(7-9), 1084-1096.
– reference: D. Jang, X. Li, H. Gao, J. R. Greer, Nat. Nanotechnol. 2012, 7, 594-601.
– reference: A. Kunz, S. Pathak, J. R. Greer, Acta Mater. 2011, 59(11), 4416-4424. DOI. 10.1016/j.actamat.2011.03.065.
– reference: H. Fukutomi, T. Iseki, T. Endo, T. Kamijo, Acta Metall. Mater. 1991, 39 (7), 1445-1448.
– reference: A. H. King, D. A. Smith, Acta Crystallogr. A 1980, 36(3), 335-343.
– reference: N. Kheradmand, J. Dake, A. Barnoush, H. Vehoff, Philos. Mag. 2012, 92(25-27), 3216-3230.
– reference: F. Sansoz, J. F. Molinari, Acta Mater. 2005, 53(7), 1931-1944. DOI. 10.1016/j.actamat.2005.01.007.
– reference: A. T. Jennings, J. Li, J. R. Greer, Acta Mater. 2011, 59(14), 5627-5637.
– reference: H. Fukutomi, T. Kamijo, Scripta Metall. Mater. 1985, 19(2), 195-197.
– reference: Z. W. Shan, R. K. Mishra, S. A. S. Asif, O. L. Warren, A. M. Minor, Nat. Mater. 2007, 7, 115-119. DOI. 10.1038/nmat2085.
– reference: D. I. Thomson, V. Heine, M. C. Payne, N. Marzari, M. W. Finnis, Acta Mater. 2000, 48(14), 3623-3632.
– reference: B. E. Schuster, Q. Wei, H. Zhang, K. T. Ramesh, Appl. Phys. Lett. 2006, 88 (10), 103112.
– reference: W. R. Tyson, W. A. Miller, Surf. Sci. 1977, 62(1), 267-276.
– volume: 48
  start-page: 1949
  issue: 8
  year: 2000
  end-page: 1957
  publication-title: Acta Mater.
– volume: 54
  start-page: 4307
  issue: 16
  year: 2006
  end-page: 4316
  publication-title: Acta Mater.
– volume: 79
  start-page: 869
  issue: 5
  year: 1997
  end-page: 872
  publication-title: Phys. Rev. Lett.
– volume: 59
  start-page: 4416
  issue: 11
  year: 2011
  end-page: 4424
  publication-title: Acta Mater.
– volume: 62
  start-page: 267
  issue: 1
  year: 1977
  end-page: 276
  publication-title: Surf. Sci.
– volume: 27
  start-page: 1041
  issue: 5
  year: 1973
  end-page: 1055
  publication-title: Philos. Mag.
– volume: 53
  start-page: 1931
  issue: 7
  year: 2005
  end-page: 1944
  publication-title: Acta Mater.
– year: 1982
– volume: 56
  start-page: 1712
  issue: 8
  year: 2008
  end-page: 1720
  publication-title: Acta Mater.
– volume: 91
  start-page: 1084
  issue: 7‐9
  year: 2011
  end-page: 1096
  publication-title: Philos. Mag.
– volume: 7
  start-page: 115
  year: 2007
  end-page: 119
  publication-title: Nat. Mater.
– volume: 59
  start-page: 5627
  issue: 14
  year: 2011
  end-page: 5637
  publication-title: Acta Mater.
– volume: 312
  start-page: 1188
  issue: 5777
  year: 2006
  end-page: 1190
  publication-title: Science
– volume: 100
  start-page: 155502
  issue: 15
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 58
  start-page: 4245
  year: 2010
  end-page: 4252
  publication-title: Acta Mater.
– volume: 39
  start-page: 1445
  issue: 7
  year: 1991
  end-page: 1448
  publication-title: Acta Metall. Mater.
– volume: 19
  start-page: 195
  issue: 2
  year: 1985
  end-page: 197
  publication-title: Scripta Metall. Mater.
– volume: 64
  start-page: 974
  issue: 10
  year: 2011
  end-page: 977
  publication-title: Scripta Mater.
– volume: 240
  start-page: 012033
  year: 2010
  publication-title: J. Phys.‐Conf. Ser.
– volume: 53
  start-page: 1821
  issue: 6
  year: 2005
  end-page: 1830
  publication-title: Acta Mater.
– volume: 48
  start-page: 3623
  issue: 14
  year: 2000
  end-page: 3632
  publication-title: Acta Mater.
– volume: 36
  start-page: 335
  issue: 3
  year: 1980
  end-page: 343
  publication-title: Acta Crystallogr. A
– volume: 109
  start-page: 095507
  issue: 9
  year: 2012
  end-page: 095512
  publication-title: Phys. Rev. Lett.
– volume: 73
  start-page: 245410
  issue: 24
  year: 2006
  end-page: 245415
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 691
  year: 2012
  end-page: 696
  publication-title: Small
– volume: 39
  start-page: 361
  year: 2009
  end-page: 386
  publication-title: Ann. Rev. Mater. Res.
– volume: 21
  start-page: 015004
  year: 2013
  end-page: 015022
  publication-title: Model. Simul. Mater. SC.
– volume: 56
  start-page: 313
  year: 2007
  end-page: 316
  publication-title: Scripta Mater.
– volume: 8
  start-page: 95
  year: 2009
  end-page: 100
  publication-title: Nat. Mater.
– volume: 89
  start-page: 3013
  year: 2009
  end-page: 3026
  publication-title: Philos. Mag.
– volume: 93
  start-page: 428
  issue: 5
  year: 2002
  end-page: 431
  publication-title: Z. Metallkd.
– volume: 12
  start-page: 6385
  issue: 12
  year: 2012
  end-page: 6392
  publication-title: Nano Lett.
– volume: 56
  start-page: 654
  year: 2011
  end-page: 724
  publication-title: Prog. Mater. Sci.
– volume: 92
  start-page: 096101
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 594
  year: 2012
  end-page: 601
  publication-title: Nat. Nanotechnol.
– volume: 37
  start-page: 2357
  issue: 9
  year: 1989
  end-page: 2365
  publication-title: Acta Metall. Mater.
– volume: 459
  start-page: 262
  year: 2007
  end-page: 272
  publication-title: Mater. Sci. Eng. A
– volume: 88
  start-page: 103112
  issue: 10
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: R497
  year: 2000
  publication-title: J.Phys.‐Condens. Mat.
– volume: 221
  start-page: 163
  year: 1920
  end-page: 198
  publication-title: Philos. T. R. Soc. Lond.
– volume: 11
  start-page: 1743
  issue: 4
  year: 2011
  end-page: 1746
  publication-title: Nano Lett.
– volume: 86
  start-page: 33
  year: 2006
  end-page: 35
  publication-title: Philos. Mag.
– year: 1995
– volume: 87
  start-page: 4777
  issue: 30
  year: 2007
  end-page: 4794
  publication-title: Philos. Mag.
– volume: 64
  start-page: 77
  issue: 1
  year: 2011
  end-page: 80
  publication-title: Scripta Mater.
– volume: 92
  start-page: 3216
  issue: 25‐27
  year: 2012
  end-page: 3230
  publication-title: Philos. Mag.
– volume: 27
  start-page: 858
  issue: 6
  year: 2011
  end-page: 867
  publication-title: Int. J. Plasticity
– volume: 66
  start-page: 272
  issue: 5
  year: 2012
  end-page: 275
  publication-title: Scripta Mater.
– volume: 92
  start-page: 231901
  issue: 23
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 153
  issue: 3
  year: 2011
  end-page: 161
  publication-title: Adv. Eng. Mater.
– volume: 57
  start-page: 3694
  year: 2009
  end-page: 3703
  publication-title: Acta Mater.
– volume-title: Interfaces in Crystalline Materials.
  year: 1995
  ident: e_1_2_8_1_2
– ident: e_1_2_8_28_2
  doi: 10.1088/0965-0393/21/1/015004
– ident: e_1_2_8_16_2
  doi: 10.1080/14786435.2012.690939
– ident: e_1_2_8_43_2
  doi: 10.1016/S1359-6454(00)00175-0
– ident: e_1_2_8_27_2
  doi: 10.1002/adem.201100242
– ident: e_1_2_8_5_2
  doi: 10.1002/smll.201201614
– ident: e_1_2_8_22_2
  doi: 10.1103/PhysRevB.73.245410
– ident: e_1_2_8_35_2
  doi: 10.1088/0953-8984/12/42/201
– ident: e_1_2_8_51_2
  doi: 10.1080/14786430600567739
– ident: e_1_2_8_23_2
  doi: 10.1080/14786435.2010.502141
– ident: e_1_2_8_13_2
  doi: 10.1063/1.2183814
– ident: e_1_2_8_50_2
  doi: 10.1016/j.actamat.2004.12.031
– ident: e_1_2_8_20_2
  doi: 10.1038/nmat2370
– ident: e_1_2_8_41_2
  doi: 10.1088/1742-6596/240/1/012033
– ident: e_1_2_8_21_2
  doi: 10.1080/14786430701591513
– ident: e_1_2_8_11_2
  doi: 10.1016/j.scriptamat.2010.09.010
– ident: e_1_2_8_49_2
  doi: 10.1016/0039-6028(77)90442-3
– ident: e_1_2_8_47_2
  doi: 10.1098/rsta.1921.0006
– ident: e_1_2_8_10_2
  doi: 10.1021/nl2003076
– ident: e_1_2_8_32_2
  doi: 10.1103/PhysRevLett.100.155502
– ident: e_1_2_8_29_2
  doi: 10.1126/science.1123889
– ident: e_1_2_8_19_2
  doi: 10.1016/j.scriptamat.2006.09.016
– volume: 66
  start-page: 272
  issue: 5
  year: 2012
  ident: e_1_2_8_6_2
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2011.11.008
– ident: e_1_2_8_8_2
  doi: 10.1016/j.scriptamat.2011.02.001
– ident: e_1_2_8_9_2
  doi: 10.1038/nnano.2012.116
– ident: e_1_2_8_34_2
  doi: 10.1107/S0567739480000782
– ident: e_1_2_8_44_2
  doi: 10.1016/j.msea.2007.01.046
– ident: e_1_2_8_7_2
  doi: 10.1063/1.2938921
– ident: e_1_2_8_33_2
  doi: 10.1016/0956-7151(91)90229-T
– ident: e_1_2_8_38_2
  doi: 10.1016/j.actamat.2010.04.016
– ident: e_1_2_8_45_2
  doi: 10.1063/1.2889997
– ident: e_1_2_8_14_2
  doi: 10.1080/14786430903164614
– ident: e_1_2_8_30_2
  doi: 10.1103/PhysRevLett.109.095507
– ident: e_1_2_8_46_2
– ident: e_1_2_8_48_2
  doi: 10.1016/j.actamat.2009.04.007
– ident: e_1_2_8_42_2
  doi: 10.1016/S1359-6454(99)00463-2
– ident: e_1_2_8_4_2
  doi: 10.1016/0001-6160(89)90033-3
– ident: e_1_2_8_31_2
  doi: 10.1016/j.actamat.2007.12.016
– ident: e_1_2_8_37_2
  doi: 10.1103/PhysRevLett.79.869
– ident: e_1_2_8_40_2
  doi: 10.3139/146.020428
– ident: e_1_2_8_52_2
  doi: 10.1038/nmat2085
– ident: e_1_2_8_3_2
  doi: 10.1016/0036-9748(85)90181-4
– ident: e_1_2_8_18_2
  doi: 10.1016/j.pmatsci.2011.01.005
– ident: e_1_2_8_12_2
  doi: 10.1021/nl3036993
– ident: e_1_2_8_17_2
  doi: 10.1146/annurev-matsci-082908-145422
– ident: e_1_2_8_15_2
  doi: 10.1016/j.actamat.2011.03.065
– ident: e_1_2_8_24_2
  doi: 10.1016/j.actamat.2011.05.038
– ident: e_1_2_8_2_2
  doi: 10.1080/14786437308225816
– ident: e_1_2_8_36_2
  doi: 10.1016/j.actamat.2005.01.007
– volume-title: Theory of Dislocations.
  year: 1982
  ident: e_1_2_8_25_2
– ident: e_1_2_8_26_2
  doi: 10.1016/j.ijplas.2010.09.010
– ident: e_1_2_8_39_2
  doi: 10.1016/j.actamat.2006.05.021
SSID ssj0031247
Score 2.25851
Snippet Room‐temperature uniaxial compressions of 900‐nm‐diameter aluminum bi‐crystals, each containing a high‐angle grain boundary with a plane normal inclined at 24°...
Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24°...
Room-temperature uniaxial compressions of 900-nm-diameter aluminum bi-crystals, each containing a high-angle grain boundary with a plane normal inclined at 24...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100
SubjectTerms Aluminum
bicrystals
grain boundary
mechanical properties
nanopillar
Nanotechnology
Title Grain Boundary Sliding in Aluminum Nano-Bi-Crystals Deformed at Room Temperature
URI https://api.istex.fr/ark:/67375/WNG-GM4F1DM4-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201301060
https://www.ncbi.nlm.nih.gov/pubmed/23873787
https://www.proquest.com/docview/1475025125
https://www.proquest.com/docview/1490755663
https://www.proquest.com/docview/1494333067
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMeP0HiBB-6wwEBGQvDkLY3tJnncVtoJrXvYitibdZzYUrUuRb1IjCc-Ap-RT8I5SRtWxEWCl6ptThTH9jn-ndj5G-AV-hDyGLU0mVNSlyqXrgyGspREp5iHxAR-wXl40j16r9-dm_Nrb_E3-hDtAzf2jDpes4Ojm-_9EA2dX0546oBiMGU1nLTzgi2motNWP0rxBTnjojFLsvDWWrUxTvY2T98YlW5yBX_6FXJuEmw9BPXvAq4L36w8udhdLtxu8fknXcf_ubt7cGfFp2K_6VD34YavHsDta6qFD2E04G0lxEG9IdPsSpxNxjwACvpvn0LduFpeCgra029fvh6M6eNwdkUIOpmLnmdC9qXAhTglYBcjT9DeiDo_glH_7ejwSK42Z5AFuXEsTSAU66TehC6mqc-Iw3xK-UxGRJLlPnfUyKlGV6KPiTEx5Mqo0oWAaYZdVI9hq5pWfhtETEmm7sYJhqB1UhiXF44S89h4hxRhXARy3Ta2WAmX8_4ZE9tILieWK8u2lRXBm9b-YyPZ8VvL13VTt2Y4u-CFbqmxH04GdjDU_U5vqG0vgp11X7ArH59T0kS0xXhoInjZHibv5CkXrPx0yTY5MRkhs_qjjVaKU7cInjT9rC0QARUVJ6MjSd1b_nJD9mx4fNz-evovJz2DW_SdVybJjtmBrcVs6Z8Tdy3ci9q3vgNn1CRJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6h9gAcgPI0lLJICE7bOvZubB_bhiRAnENrBLfVrr0rRU0dlIfU9sRP4DfyS5ixY0MQDwkuluwdy_ua2e-z198AvNDWucTXgsvYhFwUYcJN4SSylEBEOnGBdPSDczruDt-Ltx9ls5uQ_oWp9SHaF27kGVW8JgenF9IH31VDF-dT-naAQRhpDbL2bUrrXbGqk1ZBKqRHEufCVYuT9Faj2-gHB5v3b6xL29TFF78CnZsYtlqE-rfBNNWv956c7a-WZj-_-knZ8b_adwdurSEqO6zn1A5cs-VduPmDcOE9yAaUWYIdVTmZ5pfsdDqhNZDhtUOMdpNydc4wbs--fv5yNMHD8fwSUeh0wXqWQLItmF6yE8TsLLOI22td5_uQ9V9nx0O-zs_Ac_Rkn0uHaKwTWem6OopsjFDMRkhpYgQlcWITg-McCW0KbX2EmdoloQwL45yOYt3V4QPYKmelfQTMR54pun6gnRMiyKVJcoPc3JfWaAwyxgPeDI7K19rllEJjqmrV5UBRZ6m2szx41dp_qlU7fmv5shrr1kzPz2ivWyTVh_FADVLR7_RSoXoe7DaTQa3dfIG8CQEXIUTpwfO2GB2Uvrro0s5WZJMgLEPUHP7RRoQhsTcPHtYTra0QYiqsTowlQTVd_tIgdZqORu3Z43-56RlcH2bpSI3ejN89gRt4nTYq8Y7cha3lfGWfIgxbmr3K0b4Bn0coZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5Cm4TggXEnMMBICJ68pbHdJI_bQjugrdBWxN4sO7Glal069SJtPPET-I38Es5J2rAiLhK8REp8ojj2Ocffl9ifAV4a530aGslVYgWXhUi5LbxClhLJ2KQ-Up4WOPcH7cOP8t2JOrmyir_Wh2g-uFFkVPmaAvy88Ls_RENnZ2P6dYA5GFkNkvZN2Q4T8uvsqBGQEvREolw4aHFS3lrJNobR7vr9a8PSJrXwxa8w5zqErcagzhaYVe3rqSenO4u53ck__yTs-D-vdxtuLQEq26s96g5cc-VduHlFtvAeDLu0rwTbr3Zkml6y4_GIRkCG1_Yw143KxRnDrD359uXr_ggPB9NLxKDjGcscQWRXMDNnR4jY2dAhaq9Vne_DsPNmeHDIl7sz8BzjOOTKIxZrxU75toljlyAQczESmgQhSZK61GIvx9LYwrgQQabxqVCisN6bODFtIx7ARjkp3SNgIbJM7LzIeC9llCub5haZeaicNZhibAB81Tc6XyqX0wYaY11rLkeaGks3jRXA68b-vNbs-K3lq6qrGzMzPaWZbrHSnwZd3e3LTivrS50FsL3yBb0M8hmyJoRbhA9VAC-aYgxP-udiSjdZkE2KoAwxs_ijjRSCuFsAD2s_ayqEiAqrk2BJVHnLX15IH_d7vebs8b_c9Byuf8g6uvd28P4J3MDLNEuJt9Q2bMynC_cUMdjcPqvC7DsdnCcc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grain+boundary+sliding+in+aluminum+nano-bi-crystals+deformed+at+room+temperature&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Aitken%2C+Zachary+H&rft.au=Jang%2C+Dongchan&rft.au=Weinberger%2C+Christopher+R&rft.au=Greer%2C+Julia+R&rft.date=2014-01-15&rft.eissn=1613-6829&rft.volume=10&rft.issue=1&rft.spage=100&rft_id=info:doi/10.1002%2Fsmll.201301060&rft_id=info%3Apmid%2F23873787&rft.externalDocID=23873787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon