Environmental control of carbon allocation matters for modelling forest growth

We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct envir...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 214; no. 1; pp. 180 - 193
Main Authors Guillemot, Joannès, Francois, Christophe, Hmimina, Gabriel, Dufrêne, Eric, Martin‐StPaul, Nicolas K., Soudani, Kamel, Marie, Guillaume, Ourcival, Jean‐Marc, Delpierre, Nicolas
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.04.2017
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text
ISSN0028-646X
1469-8137
1469-8137
DOI10.1111/nph.14320

Cover

Loading…
Abstract We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model–data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 104 sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year’s water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink–demand fluctuations, for the simulations of current and future forest productivity with process-based models.
AbstractList Summary We aimed to evaluate the importance of modulations of within‐tree carbon (C) allocation by water and low‐temperature stress for the prediction of annual forest growth with a process‐based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model–data fusion procedure, using satellite‐derived leaf production estimates and biometric measurements at c. 104 sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year‐to‐year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink–demand fluctuations, for the simulations of current and future forest productivity with process‐based models.
We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model–data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 104 sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species.Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink–demand fluctuations, for the simulations of current and future forest productivity with process-based models.
We aimed to evaluate the importance of modulations of within‐tree carbon (C) allocation by water and low‐temperature stress for the prediction of annual forest growth with a process‐based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model–data fusion procedure, using satellite‐derived leaf production estimates and biometric measurements at c . 10 4 sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year‐to‐year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink–demand fluctuations, for the simulations of current and future forest productivity with process‐based models.
* We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. * A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model-data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 10 super(4) sites. * The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. * Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink-demand fluctuations, for the simulations of current and future forest productivity with process-based models.
We aimed to evaluate the importance of modulations of within‐tree carbon (C) allocation by water and low‐temperature stress for the prediction of annual forest growth with a process‐based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model–data fusion procedure, using satellite‐derived leaf production estimates and biometric measurements at c. 10⁴ sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year‐to‐year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink–demand fluctuations, for the simulations of current and future forest productivity with process‐based models.
Summary We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model-data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 104 sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink-demand fluctuations, for the simulations of current and future forest productivity with process-based models.
We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model–data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 104 sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year’s water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink–demand fluctuations, for the simulations of current and future forest productivity with process-based models.
We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model-data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 10 sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink-demand fluctuations, for the simulations of current and future forest productivity with process-based models.
We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model-data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 104 sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink-demand fluctuations, for the simulations of current and future forest productivity with process-based models.We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model-data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 104 sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink-demand fluctuations, for the simulations of current and future forest productivity with process-based models.
Author Kamel Soudani
Joannès Guillemot
Eric Dufrêne
Jean-Marc Ourcival
Gabriel Hmimina
Nicolas K. Martin-St Paul
Guillaume Marie
Christophe Francois
Nicolas Delpierre
Author_xml – sequence: 1
  givenname: Joannès
  surname: Guillemot
  fullname: Guillemot, Joannès
  email: joannes.guillemot@cirad.fr
  organization: UMR ECO&SOLS
– sequence: 2
  givenname: Christophe
  surname: Francois
  fullname: Francois, Christophe
  organization: Université Paris‐Saclay
– sequence: 3
  givenname: Gabriel
  surname: Hmimina
  fullname: Hmimina, Gabriel
  organization: Université Paris‐Saclay
– sequence: 4
  givenname: Eric
  surname: Dufrêne
  fullname: Dufrêne, Eric
  organization: Université Paris‐Saclay
– sequence: 5
  givenname: Nicolas K.
  surname: Martin‐StPaul
  fullname: Martin‐StPaul, Nicolas K.
  organization: INRA
– sequence: 6
  givenname: Kamel
  surname: Soudani
  fullname: Soudani, Kamel
  organization: Université Paris‐Saclay
– sequence: 7
  givenname: Guillaume
  surname: Marie
  fullname: Marie, Guillaume
  organization: Université Paris‐Saclay
– sequence: 8
  givenname: Jean‐Marc
  surname: Ourcival
  fullname: Ourcival, Jean‐Marc
  organization: UMR5175
– sequence: 9
  givenname: Nicolas
  surname: Delpierre
  fullname: Delpierre, Nicolas
  organization: Université Paris‐Saclay
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27883190$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01594822$$DView record in HAL
BookMark eNqNkk1LHDEYx0Ox1NX20A_QMtCLPYzmySSTzFFEu8KiPbTQW8hkMu4smWSbZBW_fTOuriC0NYe88fs_PC__A7TnvDMIfQR8DHmduPXyGGhF8Bs0A1o3pYCK76EZxkSUNa1_7aODGFcY44bV5B3aJ1yICho8Q1fn7nYI3o3GJWUL7V0K3ha-L7QKrXeFstZrlYZ8HVVKJsSi96EYfWesHdzN9DIxFTfB36Xle_S2VzaaD4_nIfp5cf7jbF4urr9dnp0uSs0A45J2ihrS9xS4prXipm5BE90zqnHddLQVtNOEQ2c6EK3ClLVAdVN1inWkZrg6RF-3cZfKynUYRhXupVeDnJ8u5PSHgTVUEHILmT3asuvgf29yrnIcos7ZK2f8JkqS-0Jp3tl_URCcCwqMvAalVVNzDlMCX16gK78JLvdnCkigIhRIpj4_Upt2NN2uqqdZPdesg48xmH6HAJaTD2T2gXzwQWZPXrB6SA9TTEEN9l-Ku8Ga-7-Hllff50-KT1vFKiYfdoomtxOyzao_KAnKrQ
CitedBy_id crossref_primary_10_1111_ele_13158
crossref_primary_10_1111_ele_14205
crossref_primary_10_1007_s13595_018_0707_9
crossref_primary_10_1016_j_tplants_2018_08_001
crossref_primary_10_1111_nph_16456
crossref_primary_10_1016_j_agrformet_2023_109852
crossref_primary_10_1016_j_dendro_2018_02_001
crossref_primary_10_1093_treephys_tpac079
crossref_primary_10_1002_ecm_1271
crossref_primary_10_1007_s13595_019_0819_x
crossref_primary_10_1016_j_earscirev_2020_103348
crossref_primary_10_1007_s40725_024_00233_5
crossref_primary_10_1111_1365_2435_13760
crossref_primary_10_1093_treephys_tpz105
crossref_primary_10_5194_gmd_16_3165_2023
crossref_primary_10_1111_gcb_14759
crossref_primary_10_1111_nph_17610
crossref_primary_10_1093_forestry_cpx055
crossref_primary_10_1016_j_scitotenv_2022_155981
crossref_primary_10_1111_ele_14130
crossref_primary_10_1186_s13595_025_01277_8
crossref_primary_10_3389_fpls_2021_674438
crossref_primary_10_1002_vzj2_20317
crossref_primary_10_3390_f13081171
crossref_primary_10_1111_gcb_16172
crossref_primary_10_3390_f15010129
crossref_primary_10_1111_gcb_16332
crossref_primary_10_1029_2018JG004777
crossref_primary_10_1007_s10342_018_1108_1
crossref_primary_10_1016_j_agrformet_2021_108703
crossref_primary_10_1007_s13595_021_01085_w
crossref_primary_10_1038_d41586_022_02107_x
crossref_primary_10_1111_nph_16872
crossref_primary_10_1029_2018MS001540
crossref_primary_10_1093_jpe_rtad048
crossref_primary_10_1007_s10113_020_01732_4
crossref_primary_10_3390_f13081212
crossref_primary_10_5194_bg_20_3093_2023
crossref_primary_10_1186_s13595_022_01162_8
crossref_primary_10_1126_sciadv_aat4313
crossref_primary_10_1016_j_ecoinf_2022_101695
crossref_primary_10_1016_j_agrformet_2020_108030
crossref_primary_10_1016_j_scitotenv_2024_170726
crossref_primary_10_1111_gcb_15397
crossref_primary_10_1111_nph_16757
crossref_primary_10_2478_forj_2019_0018
crossref_primary_10_1016_j_jenvman_2024_121822
crossref_primary_10_1002_ecs2_3109
crossref_primary_10_1111_nph_15451
crossref_primary_10_1111_gcb_14539
crossref_primary_10_1038_s41467_022_35451_7
crossref_primary_10_1093_treephys_tpaa002
crossref_primary_10_1016_j_ecolecon_2023_107825
crossref_primary_10_1093_treephys_tpab094
crossref_primary_10_1016_j_dendro_2025_126324
crossref_primary_10_1093_treephys_tpz099
crossref_primary_10_1016_j_foreco_2022_120033
crossref_primary_10_1590_1519_6984_285326
crossref_primary_10_1093_treephys_tpz018
crossref_primary_10_1029_2022JG007085
Cites_doi 10.1111/j.1466-8238.2008.00417.x
10.1016/S0378-1127(00)00432-1
10.1016/j.rse.2009.12.009
10.1007/978-94-007-1242-3_14
10.1111/geb.12023
10.1016/j.pbi.2015.05.003
10.1029/WR018i002p00325
10.1111/nph.13275
10.1007/s13595-015-0477-6
10.1111/geb.12047
10.1111/j.1365-2486.2007.01420.x
10.1111/j.1365-2486.2011.02476.x
10.1038/nplants.2015.160
10.1126/science.1201609
10.1111/j.1420-9101.2011.02414.x
10.1073/pnas.1402333111
10.1093/treephys/tps052
10.1111/nph.13771
10.1111/gcb.12766
10.1111/j.1469-8137.2012.04180.x
10.1007/s00442-010-1628-y
10.1111/nph.12042
10.1016/S0378-1127(99)00246-7
10.1063/1.1699114
10.1093/aob/mcu059
10.1038/nclimate2177
10.1016/j.agrformet.2011.10.010
10.1093/treephys/tpp105
10.1038/ncomms5967
10.1111/nph.12614
10.1046/j.1469-8137.2003.00681.x
10.1006/anbo.1997.0406
10.1111/nph.13007
10.1111/nph.12847
10.1016/j.rse.2009.07.018
10.1038/nclimate1853
10.1016/j.pbi.2011.02.002
10.1080/17550870802273411
10.1016/j.foreco.2011.01.019
10.5194/bg-11-2027-2014
10.1111/j.1365-2486.2008.01835.x
10.1111/j.1469-8137.2011.03778.x
10.1093/treephys/tpr143
10.5194/essd-7-349-2015
10.1016/j.ecolmodel.2010.08.038
10.1016/j.agrformet.2007.08.004
10.1093/treephys/tpr138
10.5194/bg-12-2773-2015
10.1016/j.rse.2013.01.010
10.1016/0022-5193(65)90077-9
10.1046/j.1365-3040.2000.00537.x
10.1093/treephys/25.6.651
10.1890/13-1507.1
10.1007/BF00029077
10.1051/forest:2008052
10.1093/treephys/tpq027
10.1093/jxb/erq438
10.1016/j.ecolmodel.2012.01.010
10.1007/s00442-012-2584-5
10.1111/j.1654-1103.2011.01288.x
10.1016/j.agrformet.2008.11.014
10.1093/treephys/25.7.915
10.1890/10-1201.1
10.5194/bg-11-6855-2014
10.1111/j.1399-3054.2012.01663.x
10.1016/j.foreco.2010.06.005
10.1111/j.1365-2486.2003.00687.x
10.1890/1051-0761(2006)016[1555:TIOADI]2.0.CO;2
10.1016/j.agrformet.2008.08.014
10.1093/treephys/tpu071
10.1146/annurev-arplant-050213-040054
10.1016/S0022-1694(98)00211-X
10.1016/j.ecolmodel.2005.01.004
10.1111/nph.13400
ContentType Journal Article
Copyright 2016 New Phytologist Trust
2016 The Authors. New Phytologist © 2016 New Phytologist Trust
2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Copyright © 2017 New Phytologist Trust
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 New Phytologist Trust
– notice: 2016 The Authors. New Phytologist © 2016 New Phytologist Trust
– notice: 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
– notice: Copyright © 2017 New Phytologist Trust
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
DOI 10.1111/nph.14320
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Environmental Sciences
EISSN 1469-8137
EndPage 193
ExternalDocumentID oai_HAL_hal_01594822v1
4317212531
27883190
10_1111_nph_14320
NPH14320
90001562
Genre article
Journal Article
GrantInformation_xml – fundername: MESR
– fundername: University of Paris‐Sud
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c5100-4da4e2ff417c46a7e6b1c2cf54c069d4b84dc271ded18ba045b14c93da5d26503
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Aug 14 06:51:15 EDT 2025
Fri Jul 11 18:29:03 EDT 2025
Fri Jul 11 10:03:35 EDT 2025
Fri Jul 11 15:14:47 EDT 2025
Sun Jul 13 02:51:53 EDT 2025
Wed Feb 19 02:43:04 EST 2025
Thu Apr 24 22:56:13 EDT 2025
Tue Jul 01 03:09:25 EDT 2025
Wed Jan 22 16:54:33 EST 2025
Thu Jul 03 22:32:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords water stress
organ phenology
process-based modelling
biomass growth
carbon (C) allocation
sink-demand
allocation
accroissement de la biomasse
phenology
bilan environnemental
dynamique forestière
stress hydrique
modelling
sink–demand
environmental assessment
phénologie
allocation de carbone
carbon
source puits
process-based
modélisation
carbone
croissance du peuplement forestier
carbon (C)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5100-4da4e2ff417c46a7e6b1c2cf54c069d4b84dc271ded18ba045b14c93da5d26503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4385-7656
0000-0001-7574-0108
0000-0002-1554-8584
0000-0003-0906-9402
0000-0002-3557-3496
0000-0002-3468-5648
OpenAccessLink https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14320
PMID 27883190
PQID 1872132412
PQPubID 2026848
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01594822v1
proquest_miscellaneous_2000442005
proquest_miscellaneous_1877841525
proquest_miscellaneous_1843967711
proquest_journals_1872132412
pubmed_primary_27883190
crossref_primary_10_1111_nph_14320
crossref_citationtrail_10_1111_nph_14320
wiley_primary_10_1111_nph_14320_NPH14320
jstor_primary_90001562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2017
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2017
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
– name: Wiley
References 1997; 80
2013; 3
2011a; 222
1982; 18
2013; 22
2016b; 73
2011; 62
2009; 113
2010; 260
2008; 148
2011; 191
2000; 134
2011; 14
2008; 1
2003; 157
2001; 147
2014; 65
2005; 25
2009b; 15
2006; 63
2014; 5
2014; 4
2005; 185
2011b; 17
2009a; 149
1965; 8
2010; 114
2003; 9
2011; 22
2011; 21
2008; 64
2013; 197
2012; 25
2014; 95
2010; 30
2014; 203
1953; 21
2014; 11
2014; 201
2015; 1
2015; 12
2011; 333
2011
2000; 23
2006; 16
1992; 147
2008; 17
2008
1997
2013; 147
2010; 164
2015; 207
2015; 206
2015; 205
2014; 111
1998; 212
2015; 7
2012; 32
2014; 114
2007; 13
1999
2012; 195
2012; 230
2015; 25
2012; 154
2016a; 210
2015; 21
2013; 132
2011; 261
2013; 171
2014; 34
2009; 149
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
Bréda N (e_1_2_7_9_1) 2006; 63
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
Ulrich E (e_1_2_7_73_1) 1997
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 185
  start-page: 407
  year: 2005
  end-page: 436
  article-title: Modelling carbon and water cycles in a Beech forest. Part I: model description and uncertainty analysis on modelled NEE
  publication-title: Ecological Modelling
– volume: 1
  start-page: 15160
  year: 2015
  article-title: Woody biomass production lags stem‐girth increase by over one month in coniferous forests
  publication-title: Nature Plants
– volume: 32
  start-page: 648
  year: 2012
  end-page: 666
  article-title: Modeling carbon allocation in trees: a search for principles
  publication-title: Tree Physiology
– volume: 16
  start-page: 1555
  year: 2006
  end-page: 1574
  article-title: The importance of age‐related decline in forest NPP for modeling regional carbon balances
  publication-title: Ecological Applications
– volume: 17
  start-page: 3274
  year: 2011b
  end-page: 3292
  article-title: Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000
  publication-title: Global Change Biology
– volume: 64
  start-page: 704
  year: 2008
  article-title: Ten years of fluxes and stand growth in a young beech forest at Hesse, North‐eastern France
  publication-title: Annals of Forest Science
– volume: 25
  start-page: 651
  year: 2005
  end-page: 660
  article-title: Intra‐annual variations in climate influence growth and wood density of Norway spruce
  publication-title: Tree Physiology
– volume: 261
  start-page: 1382
  year: 2011
  end-page: 1391
  article-title: Size‐mediated climate–growth relationships in temperate forests: a multi‐species analysis
  publication-title: Forest Ecology and Management
– volume: 62
  start-page: 1715
  year: 2011
  end-page: 1729
  article-title: Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs
  publication-title: Journal of Experimental Botany
– volume: 203
  start-page: 883
  year: 2014
  end-page: 899
  article-title: Where does the carbon go? A model‐data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free‐air CO enrichment sites
  publication-title: New Phytologist
– volume: 260
  start-page: 864
  year: 2010
  end-page: 874
  article-title: Recent changes in forest productivity: an analysis of national forest inventory data for common beech ( L.) in north‐eastern France
  publication-title: Forest Ecology and Management
– volume: 111
  start-page: 9527
  year: 2014
  end-page: 9532
  article-title: Evidence for environmentally enhanced forest growth
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 25
  start-page: 107
  year: 2015
  end-page: 114
  article-title: Paradigm shift in plant growth control
  publication-title: Current Opinion in Plant Biology
– volume: 132
  start-page: 145
  year: 2013
  end-page: 158
  article-title: Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground‐based NDVI measurements
  publication-title: Remote Sensing of Environment
– volume: 9
  start-page: 1813
  year: 2003
  end-page: 1824
  article-title: Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy
  publication-title: Global Change Biology
– volume: 222
  start-page: 57
  year: 2011a
  end-page: 75
  article-title: Modelling forest management within a global vegetation model—Part 2: model validation from a tree to a continental scale
  publication-title: Ecological Modelling
– volume: 149
  start-page: 349
  year: 2009
  end-page: 361
  article-title: The fundamental role of reserves and hydraulic constraints in predicting LAI and carbon allocation in forests
  publication-title: Agricultural and Forest Meteorology
– volume: 114
  start-page: 779
  year: 2014
  end-page: 793
  article-title: Assessing the effects of management on forest growth across France: insights from a new functional–structural model
  publication-title: Annals of Botany
– volume: 25
  start-page: 915
  year: 2005
  end-page: 927
  article-title: Bayesian calibration of process‐based forest models: bridging the gap between models and data
  publication-title: Tree Physiology
– volume: 8
  start-page: 264
  year: 1965
  end-page: 275
  article-title: An analysis of irreversible plant cell elongation
  publication-title: Journal of Theoretical Biology
– volume: 164
  start-page: 25
  year: 2010
  end-page: 40
  article-title: Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint constraints
  publication-title: Oecologia
– volume: 7
  start-page: 349
  year: 2015
  end-page: 396
  article-title: Global carbon budget 2015
  publication-title: Earth System Science Data
– volume: 80
  start-page: 45
  year: 1997
  end-page: 55
  article-title: A coordination model of whole‐plant carbon allocation in relation to water stress
  publication-title: Annals of Botany
– volume: 23
  start-page: 251
  year: 2000
  end-page: 263
  article-title: Age‐related decline in stand productivity: the role of structural acclimation under hydraulic constraints
  publication-title: Plant, Cell & Environment
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  article-title: Equation of state calculations by fast computing machines
  publication-title: Journal of Chemical Physics
– volume: 205
  start-page: 137
  year: 2015
  end-page: 146
  article-title: New insights into mechanisms driving carbon allocation in tropical forests
  publication-title: New Phytologist
– year: 2008
– volume: 25
  start-page: 157
  year: 2012
  end-page: 173
  article-title: Strength, diversity and plasticity of postmating reproductive barriers between two hybridizing oak species ( L. and (Matt) Liebl.)
  publication-title: Journal of Evolutionary Biology
– year: 1997
– volume: 21
  start-page: 1737
  year: 2015
  end-page: 1751
  article-title: Predictability of the terrestrial carbon cycle
  publication-title: Global Change biology
– volume: 171
  start-page: 639
  year: 2013
  end-page: 651
  article-title: Beyond global change: lessons from 25 years of CO research
  publication-title: Oecologia
– volume: 147
  start-page: 46
  year: 2013
  end-page: 54
  article-title: Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees
  publication-title: Physiologia Plantarum
– volume: 63
  start-page: 625
  year: 2006
  end-page: 644
  article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long‐term consequences
  publication-title: Review Literature and Arts of the Americas
– volume: 191
  start-page: 15
  year: 2011
  end-page: 18
  article-title: How do we improve Earth system models? Integrating Earth system models, ecosystem models, experiments and long‐term data
  publication-title: New Phytologist
– volume: 32
  start-page: 1033
  year: 2012
  end-page: 1045
  article-title: Comparing the intra‐annual wood formation of three European species ( , and ) as related to leaf phenology and non‐structural carbohydrate dynamics
  publication-title: Tree Physiology
– volume: 230
  start-page: 92
  year: 2012
  end-page: 100
  article-title: Bayesian comparison of six different temperature‐based budburst models for four temperate tree species
  publication-title: Ecological Modelling
– volume: 195
  start-page: 285
  year: 2012
  end-page: 289
  article-title: A re‐evaluation of carbon storage in trees lends greater support for carbon limitation to growth
  publication-title: New Phytologist
– volume: 14
  start-page: 283
  year: 2011
  end-page: 289
  article-title: Water deficit and growth. Co‐ordinating processes without an orchestrator?
  publication-title: Current Opinion in Plant Biology
– volume: 73
  start-page: 5
  year: 2016b
  end-page: 25
  article-title: Temperate and boreal forest tree phenology: from organ‐scale processes to terrestrial ecosystem models
  publication-title: Annals of Forest Science
– volume: 3
  start-page: 792
  year: 2013
  end-page: 796
  article-title: First signs of carbon sink saturation in European forest biomass
  publication-title: Nature Climate Change
– volume: 32
  start-page: 1
  year: 2012
  end-page: 12
  article-title: Carbon dynamics in trees: feast or famine?
  publication-title: Tree Physiology
– volume: 22
  start-page: 932
  year: 2011
  end-page: 942
  article-title: Silver fir stand productivity is enhanced when mixed with Norway spruce: evidence based on large‐scale inventory data and a generic modelling approach
  publication-title: Journal of Vegetation Science
– volume: 157
  start-page: 605
  year: 2003
  end-page: 615
  article-title: Distribution of above‐ground and below‐ground carbohydrate reserves in adult trees of two contrasting broad‐leaved species ( and )
  publication-title: New Phytologist
– volume: 95
  start-page: 2192
  year: 2014
  end-page: 2201
  article-title: Allocation trade‐offs dominate the response of tropical forest growth to seasonal and interannual drought
  publication-title: Ecology
– volume: 11
  start-page: 2027
  year: 2014
  end-page: 2054
  article-title: Implications of incorporating N cycling and N limitations on primary production in an individual‐based dynamic vegetation model
  publication-title: Biogeosciences
– volume: 147
  start-page: 75
  year: 2001
  end-page: 97
  article-title: A generic process‐based SImulator for meditERRanean landscApes (SIERRA): design and validation exercises
  publication-title: Forest Ecology and Management
– volume: 21
  start-page: 1546
  year: 2011
  end-page: 1556
  article-title: Allometric growth and allocation in forests: a perspective from FLUXNET
  publication-title: Ecological Applications
– volume: 206
  start-page: 647
  year: 2015
  end-page: 659
  article-title: CASSIA – a dynamic model for predicting intra‐annual sink demand and interannual growth variation in Scots pine
  publication-title: New Phytologist
– volume: 210
  start-page: 459
  year: 2016a
  end-page: 470
  article-title: Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest
  publication-title: New Phytologist
– volume: 30
  start-page: 689
  year: 2010
  end-page: 704
  article-title: The influence of climate and fructification on the inter‐annual variability of stem growth and net primary productivity in an old‐growth, mixed beech forest
  publication-title: Tree Physiology
– volume: 15
  start-page: 1455
  year: 2009b
  end-page: 1474
  article-title: Exceptional carbon uptake in European forests during the warm spring of 2007: a data‐model analysis
  publication-title: Global Change Biology
– volume: 134
  start-page: 71
  year: 2000
  end-page: 81
  article-title: Interannual and spatial variation in maximum leaf area index of temperate deciduous stands
  publication-title: Forest Ecology and Management
– volume: 207
  start-page: 579
  year: 2015
  end-page: 590
  article-title: Growth duration is a better predictor of stem increment than carbon supply in a Mediterranean oak forest: implications for assessing forest productivity under climate change
  publication-title: New Phytologist
– volume: 22
  start-page: 924
  year: 2013
  end-page: 932
  article-title: A sink‐limited growth model improves biomass estimation along boreal and alpine tree lines
  publication-title: Global Ecology and Biogeography
– volume: 30
  start-page: 177
  year: 2010
  end-page: 192
  article-title: Age‐related variation in carbon allocation at tree and stand scales in beech ( L.) and sessile oak ( (Matt.) Liebl.) using a chronosequence approach
  publication-title: Tree Physiology
– volume: 65
  start-page: 667
  year: 2014
  end-page: 687
  article-title: Nonstructural carbon in woody plants
  publication-title: Annual Review of Plant Biology
– volume: 149
  start-page: 938
  year: 2009a
  end-page: 948
  article-title: Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France
  publication-title: Agricultural and Forest Meteorology
– volume: 147
  start-page: 251
  year: 1992
  end-page: 265
  article-title: Influence of nutrient and water stress on Norway spruce production in south Sweden – the role of air pollutants
  publication-title: Plant and Soil
– volume: 4
  start-page: 471
  year: 2014
  end-page: 476
  article-title: Nutrient availability as the key regulator of global forest carbon balance
  publication-title: Nature climate Change
– volume: 197
  start-page: 850
  year: 2013
  end-page: 861
  article-title: Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees
  publication-title: New Phytologist
– start-page: 363
  year: 2011
  end-page: 384
– volume: 11
  start-page: 6855
  year: 2014
  end-page: 6869
  article-title: How drought severity constrains gross primary production (GPP) and its partitioning among carbon pools in a coppice?
  publication-title: Biogeosciences
– volume: 13
  start-page: 2089
  year: 2007
  end-page: 2109
  article-title: Carbon allocation in forest ecosystems
  publication-title: Global Change Biology
– volume: 22
  start-page: 706
  year: 2013
  end-page: 717
  article-title: Site‐ and species‐specific responses of forest growth to climate across the European continent
  publication-title: Global Ecology and Biogeography
– volume: 17
  start-page: 696
  year: 2008
  end-page: 707
  article-title: Critical temperatures for xylogenesis in conifers of cold climates
  publication-title: Global Ecology and Biogeography
– volume: 212
  start-page: 268
  year: 1998
  end-page: 286
  article-title: A model for hydrological equilibrium of leaf area index on a global scale
  publication-title: Journal of Hydrology
– volume: 1
  start-page: 3
  year: 2008
  end-page: 11
  article-title: Winter crop growth at low temperature may hold the answer for alpine treeline formation
  publication-title: Plant Ecology Diversity
– volume: 201
  start-page: 1086
  year: 2014
  end-page: 1095
  article-title: Moving beyond photosynthesis: from carbon source to sink‐driven vegetation modeling
  publication-title: New Phytologist
– volume: 154
  start-page: 99
  year: 2012
  end-page: 112
  article-title: Quantifying the influence of climate and biological drivers on the interannual variability of carbon exchanges in European forests through process‐based modelling
  publication-title: Agricultural and Forest Meteorology
– volume: 333
  start-page: 988
  year: 2011
  end-page: 993
  article-title: A large and persistent carbon sink in the world's forests
  publication-title: Science
– volume: 34
  start-page: 981
  year: 2014
  end-page: 992
  article-title: Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi‐arid forest
  publication-title: Tree Physiology
– volume: 114
  start-page: 941
  year: 2010
  end-page: 949
  article-title: Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000
  publication-title: Remote Sensing of Environment
– volume: 113
  start-page: 2547
  year: 2009
  end-page: 2559
  article-title: Comparative analysis of MODIS‐FAPAR and MERIS–MGVI datasets: potential impacts on ecosystem modeling
  publication-title: Remote Sensing of Environment
– volume: 148
  start-page: 158
  year: 2008
  end-page: 170
  article-title: Multi‐year convergence of biometric and meteorological estimates of forest carbon storage
  publication-title: Agricultural and Forest Meteorology
– volume: 18
  start-page: 325
  year: 1982
  end-page: 340
  article-title: Ecological optimality in water‐limited natural soil vegetation systems: 1. Theory and hypothesis
  publication-title: Water Resources Research
– volume: 5
  start-page: 4967
  year: 2014
  article-title: Forest stand growth dynamics in Central Europe have accelerated since 1870
  publication-title: Nature Communications
– volume: 12
  start-page: 2773
  year: 2015
  end-page: 2790
  article-title: The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source–sink limitation of growth: implications for modelling
  publication-title: Biogeosciences
– year: 1999
– ident: e_1_2_7_66_1
  doi: 10.1111/j.1466-8238.2008.00417.x
– ident: e_1_2_7_55_1
  doi: 10.1016/S0378-1127(00)00432-1
– ident: e_1_2_7_51_1
  doi: 10.1016/j.rse.2009.12.009
– ident: e_1_2_7_78_1
  doi: 10.1007/978-94-007-1242-3_14
– ident: e_1_2_7_3_1
  doi: 10.1111/geb.12023
– ident: e_1_2_7_40_1
  doi: 10.1016/j.pbi.2015.05.003
– ident: e_1_2_7_23_1
  doi: 10.1029/WR018i002p00325
– ident: e_1_2_7_68_1
  doi: 10.1111/nph.13275
– ident: e_1_2_7_19_1
  doi: 10.1007/s13595-015-0477-6
– ident: e_1_2_7_45_1
  doi: 10.1111/geb.12047
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1365-2486.2007.01420.x
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1365-2486.2011.02476.x
– volume-title: Organization of forest system monitoring in France‐the RENECOFOR network
  year: 1997
  ident: e_1_2_7_73_1
– ident: e_1_2_7_12_1
  doi: 10.1038/nplants.2015.160
– ident: e_1_2_7_60_1
  doi: 10.1126/science.1201609
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1420-9101.2011.02414.x
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.1402333111
– ident: e_1_2_7_54_1
  doi: 10.1093/treephys/tps052
– ident: e_1_2_7_15_1
  doi: 10.1111/nph.13771
– ident: e_1_2_7_49_1
  doi: 10.1111/gcb.12766
– ident: e_1_2_7_76_1
  doi: 10.1111/j.1469-8137.2012.04180.x
– ident: e_1_2_7_65_1
  doi: 10.1007/s00442-010-1628-y
– ident: e_1_2_7_64_1
  doi: 10.1111/nph.12042
– ident: e_1_2_7_41_1
  doi: 10.1016/S0378-1127(99)00246-7
– ident: e_1_2_7_53_1
  doi: 10.1063/1.1699114
– ident: e_1_2_7_32_1
  doi: 10.1093/aob/mcu059
– ident: e_1_2_7_38_1
– ident: e_1_2_7_26_1
  doi: 10.1038/nclimate2177
– ident: e_1_2_7_18_1
  doi: 10.1016/j.agrformet.2011.10.010
– ident: e_1_2_7_29_1
  doi: 10.1093/treephys/tpp105
– ident: e_1_2_7_61_1
  doi: 10.1038/ncomms5967
– ident: e_1_2_7_25_1
  doi: 10.1111/nph.12614
– ident: e_1_2_7_4_1
  doi: 10.1046/j.1469-8137.2003.00681.x
– ident: e_1_2_7_11_1
  doi: 10.1006/anbo.1997.0406
– ident: e_1_2_7_35_1
  doi: 10.1111/nph.13007
– ident: e_1_2_7_14_1
  doi: 10.1111/nph.12847
– ident: e_1_2_7_69_1
  doi: 10.1016/j.rse.2009.07.018
– ident: e_1_2_7_58_1
  doi: 10.1038/nclimate1853
– ident: e_1_2_7_71_1
  doi: 10.1016/j.pbi.2011.02.002
– ident: e_1_2_7_39_1
  doi: 10.1080/17550870802273411
– ident: e_1_2_7_52_1
  doi: 10.1016/j.foreco.2011.01.019
– ident: e_1_2_7_70_1
  doi: 10.5194/bg-11-2027-2014
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1365-2486.2008.01835.x
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1469-8137.2011.03778.x
– ident: e_1_2_7_67_1
  doi: 10.1093/treephys/tpr143
– ident: e_1_2_7_42_1
  doi: 10.5194/essd-7-349-2015
– volume: 63
  start-page: 625
  year: 2006
  ident: e_1_2_7_9_1
  article-title: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long‐term consequences
  publication-title: Review Literature and Arts of the Americas
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ecolmodel.2010.08.038
– ident: e_1_2_7_30_1
  doi: 10.1016/j.agrformet.2007.08.004
– ident: e_1_2_7_27_1
  doi: 10.1093/treephys/tpr138
– ident: e_1_2_7_33_1
  doi: 10.5194/bg-12-2773-2015
– ident: e_1_2_7_34_1
  doi: 10.1016/j.rse.2013.01.010
– ident: e_1_2_7_48_1
  doi: 10.1016/0022-5193(65)90077-9
– ident: e_1_2_7_50_1
  doi: 10.1046/j.1365-3040.2000.00537.x
– ident: e_1_2_7_8_1
  doi: 10.1093/treephys/25.6.651
– ident: e_1_2_7_21_1
  doi: 10.1890/13-1507.1
– ident: e_1_2_7_59_1
  doi: 10.1007/BF00029077
– ident: e_1_2_7_31_1
  doi: 10.1051/forest:2008052
– ident: e_1_2_7_57_1
  doi: 10.1093/treephys/tpq027
– ident: e_1_2_7_56_1
  doi: 10.1093/jxb/erq438
– ident: e_1_2_7_28_1
  doi: 10.1016/j.ecolmodel.2012.01.010
– ident: e_1_2_7_44_1
  doi: 10.1007/s00442-012-2584-5
– ident: e_1_2_7_74_1
  doi: 10.1111/j.1654-1103.2011.01288.x
– ident: e_1_2_7_16_1
  doi: 10.1016/j.agrformet.2008.11.014
– ident: e_1_2_7_75_1
  doi: 10.1093/treephys/25.7.915
– ident: e_1_2_7_77_1
  doi: 10.1890/10-1201.1
– ident: e_1_2_7_62_1
  doi: 10.5194/bg-11-6855-2014
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1399-3054.2012.01663.x
– ident: e_1_2_7_72_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.foreco.2010.06.005
– ident: e_1_2_7_63_1
  doi: 10.1111/j.1365-2486.2003.00687.x
– ident: e_1_2_7_79_1
  doi: 10.1890/1051-0761(2006)016[1555:TIOADI]2.0.CO;2
– ident: e_1_2_7_13_1
  doi: 10.1016/j.agrformet.2008.08.014
– ident: e_1_2_7_37_1
  doi: 10.1093/treephys/tpu071
– ident: e_1_2_7_20_1
  doi: 10.1146/annurev-arplant-050213-040054
– ident: e_1_2_7_36_1
  doi: 10.1016/S0022-1694(98)00211-X
– ident: e_1_2_7_22_1
  doi: 10.1016/j.ecolmodel.2005.01.004
– ident: e_1_2_7_43_1
  doi: 10.1111/nph.13400
SSID ssj0009562
Score 2.4663908
Snippet We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest...
Summary We aimed to evaluate the importance of modulations of within‐tree carbon (C) allocation by water and low‐temperature stress for the prediction of...
We aimed to evaluate the importance of modulations of within‐tree carbon (C) allocation by water and low‐temperature stress for the prediction of annual forest...
Summary We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of...
* We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual...
SourceID hal
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 180
SubjectTerms biomass growth
Calibration
carbon
carbon (C) allocation
Carbon - metabolism
Castanea
cold stress
Environment
Environmental control
Environmental Sciences
forest growth
Forest productivity
Forests
Global Changes
Leaves
Low temperature
Models, Biological
organ phenology
Photosynthesis
Plant Development
Plant Leaves - anatomy & histology
Plant Leaves - physiology
prediction
process‐based modelling
Seasons
sink–demand
Time Factors
Water stress
Wood
Wood - growth & development
Title Environmental control of carbon allocation matters for modelling forest growth
URI https://www.jstor.org/stable/90001562
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14320
https://www.ncbi.nlm.nih.gov/pubmed/27883190
https://www.proquest.com/docview/1872132412
https://www.proquest.com/docview/1843967711
https://www.proquest.com/docview/1877841525
https://www.proquest.com/docview/2000442005
https://hal.science/hal-01594822
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-1ePDid3W1ShQPvWx5yWaTLJ6qtDxEHyIW3kFY8ukDdbe07wn61zuT7K6ttCLedjezkGQyyW-SmV8IeWFngfMYq9Iro8FB0ay0IuhSNpVpKm9cVWE28ruFnB-LN8t6uUVejrkwmR9i2nBDy0jzNRq4sWfnjLw7WYGZVxz9dYzVQkD0gZ8j3JV8ZGCWQi4HViGM4pn-vLAWXVthJGQOSrwMbl5Er2n5ObpFPo0Vz1EnX_Y3a7vvfv7B6fifLbtNbg6wlB7kcXSHbIXuLrn-qgfo-OMeWRz-TocDqSG8nfaROnNq-47i6X3e-6PfMmEnBTBM0zU7mO-Ob9BK-hmc_vXqPjk-Ovz4el4OFzGUDkx2VgpvRACNCqackEYFaZnjLtbCzWTjhdXCO66YD55pawAlWiYcqrr2HCBgtUO2u74LDwmNOs6CjDCpNoDEvNHMiShqZWLNlBe-IHujSlo3sJTjZRlf29Fbgd5pU-8U5PkkepKpOS4VAr1O5UimPT942-I3AEKNAHz0nRVkJ6l9EmtyijkvyO44DtrBts9apsFrBhzKoPjZVAxWiUctpgv9BmUA6EmlGPubjMJD35rXV8vwdOKOO38FeZDH4VRJrrSGCRSauJdG09Wd0C7ez9PDo38XfUxucEQwKUhpl2yvTzfhCeCvtX2aDO0XToApwA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VgkQvvAuBAgFx6CXV2nFsR-JSUKsA2xVCrbQXFDm205UoSVV2keDXM-M8aFGLELcknki2x2N_Y898BnhVTTzndZ0mThmNDopmSSW8TmSemjx1xqYpZSMfzGRxJN7Ps_kavB5yYTp-iHHDjSwjzNdk4LQhfc7Km9MF2nnK0WG_Tjd6B4fqEz9HuSv5wMEshZz3vEIUxzP-emE1uragWMguLPEywHkRv4YFaP82fB6q3sWdfNlZLasd-_MPVsf_bdsduNUj03i3G0p3Yc039-DGmxbR44_7MNv7nRGHUn2Ee9zWsTVnVdvEdIDfbf_FXzvOzhjxcBxu2qGUd3rDZsbH6PcvFw_gaH_v8G2R9HcxJBatdpIIZ4RHpQqmrJBGeVkxy22dCTuRuROVFs5yxZx3TFcGgWLFhCVtZ44jCkw3Yb1pG_8I4lrXEy9rnFdzBGPOaGZFLTJl6owpJ1wE24NOStsTldN9GSfl4LBg75ShdyJ4OYqeduwclwqhYsdy4tMudqclfUMslAuESN9ZBJtB76NY3mWZ8wi2hoFQ9ub9rWQaHWeEogyLX4zFaJh02mIa365IBrGeVIqxv8koOvfNeHa1DA-H7rT5F8HDbiCOleRKa5xDsYnbYThd3Qnl7GMRHh7_u-hzuFkcHkzL6bvZhyewwQnQhJilLVhfnq38U4Rjy-pZsLpf0QEt2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VghAX3oVAgYA49JIqdhzbEadCu1qgrCpEpT0gRX6yEpCsyi4S_HrGzoMWtQhxS-KJFHtmnG_smc8Az3XuKPW-yKxQEgMUSTLNnMx4VaiqsMoURahGfjfj02P2Zl7ON-DFUAvT8UOMC27BM-J8HRx8af0pJ2-WC3TzgmK8fpnxXAaT3n9PTzHucjpQMHPG5z2tUEjjGV898zO6tAipkF1W4nl48yx8jf-fyQ34OHx5l3byeXe90rvm5x-kjv_ZtZtwvcel6V5nSLdgwzW34crLFrHjjzswO_hdD4dSfX572vrUqBPdNmnYvu8W_9KvHWNnimg4jefshIL3cIe9TD9h1L9a3IXjycGHV9OsP4khM-izecasYg5VyogwjCvhuCaGGl8yk_PKMi2ZNVQQ6yyRWiFM1ISZoOvSUsSAxRZsNm3j7kPqpc8d9zirVgjFrJLEMM9KoXxJhGU2gZ1BJbXpacrDaRlf6iFcwdGp4-gk8GwUXXbcHOcKoV7H9sCmPd07rMMzREIVQ4D0nSSwFdU-ilVdjTlNYHuwg7p37m81kRg2IxAl2Px0bEa3DHstqnHtOsgg0uNCEPI3GRF2fUtaXixD45Z7WPpL4F5nh-NHUiElzqDYxZ1oTRcPQj07msaLB_8u-gSuHu1P6sPXs7cP4RoNaCYmLG3D5upk7R4hFlvpx9HnfgFCSSyT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+control+of+carbon+allocation+matters+for+modelling+forest+growth&rft.jtitle=The+New+phytologist&rft.au=Guillemot%2C+Joann%C3%A8s&rft.au=Francois%2C+Christophe&rft.au=Hmimina%2C+Gabriel&rft.au=Dufrene%2C+Eric&rft.date=2017-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=214&rft.issue=1&rft.spage=180&rft_id=info:doi/10.1111%2Fnph.14320&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4317212531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon