Quality and denoising in real‐time functional magnetic resonance imaging neurofeedback: A methods review
Neurofeedback training using real‐time functional magnetic resonance imaging (rtfMRI‐NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non‐invasive treatment option in neuropsychiatric and neurocognitive disorders, alt...
Saved in:
Published in | Human brain mapping Vol. 41; no. 12; pp. 3439 - 3467 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neurofeedback training using real‐time functional magnetic resonance imaging (rtfMRI‐NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non‐invasive treatment option in neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance are yet to be determined. In this work, we present the first extensive review of acquisition, processing and quality control methods available to improve the quality of the neurofeedback signal. Furthermore, we investigate the state of denoising and quality control practices in 128 recently published rtfMRI‐NF studies. We found: (a) that less than a third of the studies reported implementing standard real‐time fMRI denoising steps, (b) significant room for improvement with regards to methods reporting and (c) the need for methodological studies quantifying and comparing the contribution of denoising steps to the neurofeedback signal quality. Advances in rtfMRI‐NF research depend on reproducibility of methods and results. Notably, a systematic effort is needed to build up evidence that disentangles the various mechanisms influencing neurofeedback effects. To this end, we recommend that future rtfMRI‐NF studies: (a) report implementation of a set of standard real‐time fMRI denoising steps according to a proposed COBIDAS‐style checklist (https://osf.io/kjwhf/), (b) ensure the quality of the neurofeedback signal by calculating and reporting community‐informed quality metrics and applying offline control checks and (c) strive to adopt transparent principles in the form of methods and data sharing and support of open‐source rtfMRI‐NF software. Code and data for reproducibility, as well as an interactive environment to explore the study data, can be accessed at https://github.com/jsheunis/quality‐and‐denoising‐in‐rtfmri‐nf. |
---|---|
AbstractList | Neurofeedback training using real‐time functional magnetic resonance imaging (rtfMRI‐NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non‐invasive treatment option in neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance are yet to be determined. In this work, we present the first extensive review of acquisition, processing and quality control methods available to improve the quality of the neurofeedback signal. Furthermore, we investigate the state of denoising and quality control practices in 128 recently published rtfMRI‐NF studies. We found: (a) that less than a third of the studies reported implementing standard real‐time fMRI denoising steps, (b) significant room for improvement with regards to methods reporting and (c) the need for methodological studies quantifying and comparing the contribution of denoising steps to the neurofeedback signal quality. Advances in rtfMRI‐NF research depend on reproducibility of methods and results. Notably, a systematic effort is needed to build up evidence that disentangles the various mechanisms influencing neurofeedback effects. To this end, we recommend that future rtfMRI‐NF studies: (a) report implementation of a set of standard real‐time fMRI denoising steps according to a proposed COBIDAS‐style checklist (
https://osf.io/kjwhf/
), (b) ensure the quality of the neurofeedback signal by calculating and reporting community‐informed quality metrics and applying offline control checks and (c) strive to adopt transparent principles in the form of methods and data sharing and support of open‐source rtfMRI‐NF software. Code and data for reproducibility, as well as an interactive environment to explore the study data, can be accessed at https://github.com/jsheunis/quality‐and‐denoising‐in‐rtfmri‐nf. Neurofeedback training using real-time functional magnetic resonance imaging (rtfMRI-NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non-invasive treatment option in neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance are yet to be determined. In this work, we present the first extensive review of acquisition, processing and quality control methods available to improve the quality of the neurofeedback signal. Furthermore, we investigate the state of denoising and quality control practices in 128 recently published rtfMRI-NF studies. We found: (a) that less than a third of the studies reported implementing standard real-time fMRI denoising steps, (b) significant room for improvement with regards to methods reporting and (c) the need for methodological studies quantifying and comparing the contribution of denoising steps to the neurofeedback signal quality. Advances in rtfMRI-NF research depend on reproducibility of methods and results. Notably, a systematic effort is needed to build up evidence that disentangles the various mechanisms influencing neurofeedback effects. To this end, we recommend that future rtfMRI-NF studies: (a) report implementation of a set of standard real-time fMRI denoising steps according to a proposed COBIDAS-style checklist (https://osf.io/kjwhf/), (b) ensure the quality of the neurofeedback signal by calculating and reporting community-informed quality metrics and applying offline control checks and (c) strive to adopt transparent principles in the form of methods and data sharing and support of open-source rtfMRI-NF software. Code and data for reproducibility, as well as an interactive environment to explore the study data, can be accessed at https://github.com/jsheunis/quality-and-denoising-in-rtfmri-nf.Neurofeedback training using real-time functional magnetic resonance imaging (rtfMRI-NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non-invasive treatment option in neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance are yet to be determined. In this work, we present the first extensive review of acquisition, processing and quality control methods available to improve the quality of the neurofeedback signal. Furthermore, we investigate the state of denoising and quality control practices in 128 recently published rtfMRI-NF studies. We found: (a) that less than a third of the studies reported implementing standard real-time fMRI denoising steps, (b) significant room for improvement with regards to methods reporting and (c) the need for methodological studies quantifying and comparing the contribution of denoising steps to the neurofeedback signal quality. Advances in rtfMRI-NF research depend on reproducibility of methods and results. Notably, a systematic effort is needed to build up evidence that disentangles the various mechanisms influencing neurofeedback effects. To this end, we recommend that future rtfMRI-NF studies: (a) report implementation of a set of standard real-time fMRI denoising steps according to a proposed COBIDAS-style checklist (https://osf.io/kjwhf/), (b) ensure the quality of the neurofeedback signal by calculating and reporting community-informed quality metrics and applying offline control checks and (c) strive to adopt transparent principles in the form of methods and data sharing and support of open-source rtfMRI-NF software. Code and data for reproducibility, as well as an interactive environment to explore the study data, can be accessed at https://github.com/jsheunis/quality-and-denoising-in-rtfmri-nf. Neurofeedback training using real-time functional magnetic resonance imaging (rtfMRI-NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non-invasive treatment option in neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance are yet to be determined. In this work, we present the first extensive review of acquisition, processing and quality control methods available to improve the quality of the neurofeedback signal. Furthermore, we investigate the state of denoising and quality control practices in 128 recently published rtfMRI-NF studies. We found: (a) that less than a third of the studies reported implementing standard real-time fMRI denoising steps, (b) significant room for improvement with regards to methods reporting and (c) the need for methodological studies quantifying and comparing the contribution of denoising steps to the neurofeedback signal quality. Advances in rtfMRI-NF research depend on reproducibility of methods and results. Notably, a systematic effort is needed to build up evidence that disentangles the various mechanisms influencing neurofeedback effects. To this end, we recommend that future rtfMRI-NF studies: (a) report implementation of a set of standard real-time fMRI denoising steps according to a proposed COBIDAS-style checklist (https://osf.io/kjwhf/), (b) ensure the quality of the neurofeedback signal by calculating and reporting community-informed quality metrics and applying offline control checks and (c) strive to adopt transparent principles in the form of methods and data sharing and support of open-source rtfMRI-NF software. Code and data for reproducibility, as well as an interactive environment to explore the study data, can be accessed at https://github.com/jsheunis/quality-and-denoising-in-rtfmri-nf. Neurofeedback training using real-time functional magnetic resonance imaging (rtfMRI-NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non-invasive treatment option in neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance are yet to be determined. In this work, we present the first extensive review of acquisition, processing and quality control methods available to improve the quality of the neurofeedback signal. Furthermore, we investigate the state of denoising and quality control practices in 128 recently published rtfMRI-NF studies. We found: (a) that less than a third of the studies reported implementing standard real-time fMRI denoising steps, (b) significant room for improvement with regards to methods reporting and (c) the need for methodological studies quantifying and comparing the contribution of denoising steps to the neurofeedback signal quality. Advances in rtfMRI-NF research depend on reproducibility of methods and results. Notably, a systematic effort is needed to build up evidence that disentangles the various mechanisms influencing neurofeedback effects. To this end, we recommend that future rtfMRI-NF studies: (a) report implementation of a set of standard real-time fMRI denoising steps according to a proposed COBIDAS-style checklist ( |
Audience | Academic |
Author | Lamerichs, Rolf Aldenkamp, Bert Zinger, Svitlana Heunis, Stephan Caballero‐Gaudes, Cesar Jansen, Jacobus F. A. Breeuwer, Marcel |
AuthorAffiliation | 1 Department of Electrical Engineering Eindhoven University of Technology Eindhoven The Netherlands 6 School for Mental Health and Neuroscience Maastricht The Netherlands 9 Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands 8 Department of Neurology Maastricht University Medical Center Maastricht The Netherlands 10 Philips Healthcare Best The Netherlands 5 Department of Radiology Maastricht University Medical Centre Maastricht The Netherlands 4 Basque Center on Cognition Brain and Language San Sebastian Spain 7 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology Ghent University Hospital Ghent Belgium 2 Department of Research and Development Epilepsy Centre Kempenhaeghe Heeze The Netherlands 3 Philips Research Eindhoven The Netherlands |
AuthorAffiliation_xml | – name: 9 Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands – name: 10 Philips Healthcare Best The Netherlands – name: 4 Basque Center on Cognition Brain and Language San Sebastian Spain – name: 3 Philips Research Eindhoven The Netherlands – name: 5 Department of Radiology Maastricht University Medical Centre Maastricht The Netherlands – name: 6 School for Mental Health and Neuroscience Maastricht The Netherlands – name: 2 Department of Research and Development Epilepsy Centre Kempenhaeghe Heeze The Netherlands – name: 7 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology Ghent University Hospital Ghent Belgium – name: 8 Department of Neurology Maastricht University Medical Center Maastricht The Netherlands – name: 1 Department of Electrical Engineering Eindhoven University of Technology Eindhoven The Netherlands |
Author_xml | – sequence: 1 givenname: Stephan orcidid: 0000-0003-3503-9872 surname: Heunis fullname: Heunis, Stephan email: j.s.heunis@tue.nl organization: Epilepsy Centre Kempenhaeghe – sequence: 2 givenname: Rolf surname: Lamerichs fullname: Lamerichs, Rolf organization: Philips Research – sequence: 3 givenname: Svitlana surname: Zinger fullname: Zinger, Svitlana organization: Epilepsy Centre Kempenhaeghe – sequence: 4 givenname: Cesar surname: Caballero‐Gaudes fullname: Caballero‐Gaudes, Cesar organization: Brain and Language – sequence: 5 givenname: Jacobus F. A. orcidid: 0000-0002-5271-8060 surname: Jansen fullname: Jansen, Jacobus F. A. organization: School for Mental Health and Neuroscience – sequence: 6 givenname: Bert surname: Aldenkamp fullname: Aldenkamp, Bert organization: Maastricht University Medical Center – sequence: 7 givenname: Marcel surname: Breeuwer fullname: Breeuwer, Marcel organization: Philips Healthcare |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32333624$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktuFDEQhi0URB6w4AKoJTawmIkf_TILpCECghSEkGBtue3yjIduO2l3J5pdjpAzchKqmQmQKMgLW-Xv_13lqkOyF2IAQp4zOmeU8uNV0815QRl9RA4YldWMMin2pnNZzGResX1ymNKaUsaQekL2BRdClDw_IOuvo279sMl0sJmFEH3yYZn5kPWg25_XN4PvIHNjMIOPQbdZp5cBBm_wPmEgGMg8xiZRgLGPDsA22vx4ky2yDoZVtAnRSw9XT8ljp9sEz3b7Efn-4f23k9PZ2ZePn04WZzNTYDUzVgsDVHArdZEboWtDLXVNZZ10dWFz6upG5mXFrG44zWVeNHVptZGFrmpZWXFE3m59z8emA2sgDL1u1XmPefYbFbVXd2-CX6llvFSVqArGSjR4tTPo48UIaVCdTwbaVgeIY1JcyLyWJRc5oi_voes49vhPSOW8qPGTmfhLLXULygcX8V0zmapFhU2inFOK1PwBCpeFzhvsuPMYvyN48W-hfyq87S4Cx1vA9DGlHpwyftBTI9HZt4pRNc2PwvlRv-cHFa_vKW5NH2J37leY1-b_oDp993mr-AVUfdSI |
CitedBy_id | crossref_primary_10_1098_rstb_2023_0085 crossref_primary_10_3389_fnins_2023_1100544 crossref_primary_10_14778_3514061_3514072 crossref_primary_10_1007_s12021_022_09582_7 crossref_primary_10_1016_j_neuroimage_2022_119623 crossref_primary_10_3389_fnhum_2020_00226 crossref_primary_10_1590_1980_5764_dn_2023_0017 crossref_primary_10_3389_fnagi_2021_682683 crossref_primary_10_1038_s41598_022_05675_0 crossref_primary_10_12688_f1000research_29988_1 crossref_primary_10_1016_j_cub_2023_10_010 crossref_primary_10_3389_fnins_2020_00594 crossref_primary_10_3389_fnrgo_2021_678981 crossref_primary_10_52294_001c_77768 crossref_primary_10_1371_journal_pcbi_1010778 crossref_primary_10_1016_j_biopsycho_2021_108081 crossref_primary_10_1007_s00778_023_00815_y crossref_primary_10_1016_j_neubiorev_2021_02_015 crossref_primary_10_1016_j_neurom_2022_01_007 crossref_primary_10_1088_1741_2552_ac0b33 crossref_primary_10_1186_s12888_023_05223_8 crossref_primary_10_1016_j_neubiorev_2024_105680 crossref_primary_10_1016_j_neuroimage_2021_118244 crossref_primary_10_3389_fnimg_2022_1073734 crossref_primary_10_3390_life13071472 crossref_primary_10_1016_j_neubiorev_2020_12_020 crossref_primary_10_1038_s42003_022_03756_4 |
Cites_doi | 10.1016/j.neuroimage.2018.10.021 10.1523/JNEUROSCI.3098-14.2015 10.1371/journal.pcbi.1005681 10.1016/j.neuroimage.2013.08.048 10.1002/(SICI)1522-2594(199907)42:1<87::AID-MRM13>3.0.CO;2-O 10.1073/pnas.0505210102 10.1016/j.neuroimage.2005.02.050 10.1016/S1053-8119(09)72192-5 10.1016/j.neuroimage.2010.06.052 10.1016/j.neuroimage.2018.12.006 10.1002/hbm.23584 10.1002/mrm.27146 10.1016/j.neuroimage.2010.07.060 10.1002/mrm.21136 10.1016/j.neuroimage.2005.01.007 10.1016/j.mri.2007.02.007 10.1016/j.appet.2017.01.032 10.1016/j.neuroimage.2012.09.043 10.1002/mrm.20261 10.1093/ntr/ntt122 10.1016/j.cub.2012.05.022 10.3389/fnhum.2016.00183 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1016/j.neuroimage.2011.10.018 10.1002/1522-2594(200102)45:2<289::AID-MRM1038>3.0.CO;2-U 10.1016/j.neuroimage.2016.10.048 10.1016/j.neuroimage.2016.12.024 10.1016/j.neuroimage.2013.03.033 10.1002/mrm.1910350312 10.1016/j.mri.2006.09.042 10.3389/fnbeh.2015.00003 10.1126/scitranslmed.aaf5027 10.1371/journal.pone.0085929 10.1002/jmri.20935 10.1016/j.neuroimage.2016.12.018 10.1016/j.neuroimage.2003.08.012 10.1016/j.neuroimage.2017.06.039 10.1016/j.jneumeth.2008.08.013 10.1371/journal.pone.0038115 10.1016/j.neuroimage.2014.03.034 10.1002/mrm.1222 10.1371/journal.pone.0077089 10.1016/j.neuroimage.2012.02.015 10.1371/journal.pbio.1002546 10.1016/j.neuroimage.2006.10.026 10.1126/science.1212003 10.1162/jocn_a_00802 10.1016/j.tics.2017.09.010 10.1523/JNEUROSCI.5911-12.2013 10.1016/j.neuroimage.2014.03.073 10.1016/j.neuroimage.2016.09.008 10.1016/j.neuroimage.2019.02.058 10.1002/hbm.20997 10.1016/j.neuroimage.2015.09.042 10.1006/nimg.2001.0900 10.1002/1097-0193(200101)12:1<25::AID-HBM30>3.0.CO;2-H 10.1038/nn.4500 10.1093/cercor/bhx177 10.1007/s10548-014-0384-4 10.1146/annurev.biophys.27.1.447 10.1016/j.cmpb.2011.07.007 10.1523/JNEUROSCI.23-10-03963.2003 10.1073/pnas.1720985115 10.1016/j.neuroimage.2017.08.025 10.1016/j.neuroimage.2017.12.071 10.3389/fninf.2011.00027 10.1016/j.neuroimage.2016.11.052 10.1002/mrm.10259 10.1016/j.tics.2007.08.014 10.1016/j.neuroscience.2016.09.026 10.1016/j.eurpsy.2017.10.011 10.1007/s12021-013-9176-3 10.1016/j.yebeh.2010.08.004 10.1109/TBME.2004.827063 10.1097/00001756-200208070-00005 10.1002/hbm.20326 10.1016/j.neuroimage.2011.06.078 10.1371/journal.pone.0170795 10.1016/j.jneumeth.2015.08.033 10.1016/S1053-8119(03)00081-8 10.1371/journal.pone.0118890 10.1111/j.1552-6569.2010.00529.x 10.1016/j.neuroimage.2013.05.115 10.1016/j.dib.2017.07.049 10.1002/mrm.24314 10.1016/j.neuroimage.2011.07.044 10.1016/j.neuroscience.2016.12.050 10.1002/1522-2594(200101)45:1<167::AID-MRM1023>3.0.CO;2-M 10.1002/mrm.25770 10.1016/j.neuroimage.2016.08.009 10.1006/nimg.2002.1132 10.1007/s10548-009-0121-6 10.1007/s12529-011-9165-6 10.1006/nimg.1999.0457 10.3389/fnbeh.2015.00341 10.1371/journal.pone.0088785 10.1038/nn.4499 10.1016/j.neuroimage.2008.09.029 10.1002/mrm.1910330213 10.1016/j.neuroimage.2017.03.033 10.1002/mrm.20900 10.1002/mrm.1240 10.1038/nrn.2016.164 10.1016/j.neuroimage.2017.10.031 10.1016/j.nicl.2016.12.023 10.1016/j.neuroimage.2005.04.039 10.1002/1522-2594(200012)44:6<925::AID-MRM14>3.0.CO;2-M 10.1002/(SICI)1522-2594(199912)42:6<1014::AID-MRM4>3.0.CO;2-F 10.1016/j.neuroimage.2003.08.041 10.1016/j.neuroimage.2006.09.032 10.1016/j.neuroimage.2018.01.023 10.1016/S1053-8119(03)00058-2 10.1016/j.neuroimage.2013.06.010 10.1016/j.neuroimage.2010.12.016 10.1177/1073858411407205 10.1002/(SICI)1522-2594(200002)43:2<259::AID-MRM13>3.0.CO;2-P 10.1016/j.neuroimage.2004.10.012 10.1371/journal.pone.0184661 10.1002/hbm.21427 10.1016/j.neuroimage.2006.02.048 10.1016/j.neuroimage.2013.04.001 10.1109/ICIP.1994.413892 10.1093/scan/nsq024 10.1016/S1053-8119(02)00016-2 10.2463/mrms.5.157 10.1002/mrm.1910310307 10.1016/j.neuroimage.2016.09.038 10.1002/hbm.22307 10.1097/00006123-200009000-00037 10.1016/j.neuroimage.2013.05.030 10.1016/j.pscychresns.2016.01.016 10.1016/j.neuroimage.2013.05.010 10.1038/s41562-016-0021 10.1371/journal.pone.0027638 10.1016/j.ejrad.2011.09.025 10.1016/j.neuroimage.2012.02.059 10.1016/j.nicl.2014.07.002 10.1016/j.neuroimage.2011.07.076 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals, Inc. 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. COPYRIGHT 2020 John Wiley & Sons, Inc. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals, Inc. – notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.25010 |
DatabaseName | Wiley Online Library Open Access (Hollins) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Heunis et al |
EISSN | 1097-0193 |
EndPage | 3467 |
ExternalDocumentID | PMC7375116 A710602200 32333624 10_1002_hbm_25010 HBM25010 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: LSH‐TKI funderid: LSHM16053‐SGF – fundername: Philips Research – fundername: LSH-TKI grantid: LSHM16053-SGF – fundername: LSH‐TKI grantid: LSHM16053‐SGF |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5100-183ce032d9a54c3a8c0d0fb7df9f85d40f8b94671dab204945b86dac95a7897d3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 17:42:22 EDT 2025 Tue Aug 05 10:40:49 EDT 2025 Sat Jul 26 01:19:43 EDT 2025 Tue Jun 17 21:37:35 EDT 2025 Tue Jun 10 20:49:29 EDT 2025 Mon Jul 21 06:02:15 EDT 2025 Tue Jul 01 01:10:58 EDT 2025 Thu Apr 24 23:10:11 EDT 2025 Wed Jan 22 16:32:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | denoising fMRI real-time reproducibility neurofeedback quality |
Language | English |
License | Attribution 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5100-183ce032d9a54c3a8c0d0fb7df9f85d40f8b94671dab204945b86dac95a7897d3 |
Notes | Funding information LSH‐TKI, Grant/Award Number: LSHM16053‐SGF; Philips Research ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Funding information LSH‐TKI, Grant/Award Number: LSHM16053‐SGF; Philips Research |
ORCID | 0000-0003-3503-9872 0000-0002-5271-8060 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25010 |
PMID | 32333624 |
PQID | 2425836213 |
PQPubID | 996345 |
PageCount | 29 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7375116 proquest_miscellaneous_2394896234 proquest_journals_2425836213 gale_infotracmisc_A710602200 gale_infotracacademiconefile_A710602200 pubmed_primary_32333624 crossref_citationtrail_10_1002_hbm_25010 crossref_primary_10_1002_hbm_25010 wiley_primary_10_1002_hbm_25010_HBM25010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 15, 2020 |
PublicationDateYYYYMMDD | 2020-08-15 |
PublicationDate_xml | – month: 08 year: 2020 text: August 15, 2020 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2004; 21 2002; 17 2018; 166 2006; 31 2018; 168 2002; 13 2013; 64 1995; 33 2011; 55 2012; 19 2011; 54 2016; 143 2012; 18 1999; 42 2011; 56 2017; 154 2011; 58 2001; 45 2013; 8 2001; 46 2010; 23 2018; 171 2018; 172 2000; 12 2005; 102 2015; 256 2017; 161 2014; 96 2014; 95 2010; 5 2012; 22 2010; 32 2019; 191 2017b; 27 2006; 55 2013; 83 2016; 10 1998 1994 2019; 185 2011; 6 2007; 11 2012; 105 2019; 188 2016; 14 2004; 52 2004; 51 2013; 76 2018; 115 2013; 80 2013; 82 2013; 81 2014; 35 2017; 146 2003; 20 2016; 8 2003; 23 2015; 35 2012; 61 2009; 44 2009; 47 2017; 1 2000; 47 2000; 43 2000; 44 2016; 75 2018; 80 2003; 18 2003; 19 2012; 59 2005; 26 2005; 27 1996; 35 2017; 112 2007; 34 2005; 24 2007; 28 2002; 48 2013; 15 2014; 5 2013; 11 2000 2017; 38 2018; 378 2011; 20 1999; 10 2017c; 14 2012; 69 2014; 9 2001; 14 2007; 25 1994; 31 2012; 62 1998; 27 2017; 20 2017a; 156 2011; 334 2012 2011 2017; 27 2017; 21 2015; 10 2016; 124 2006; 5 2016; 249 2015; 9 2014; 84 2007; 57 2004; 98 2015; 28 2015; 27 2013; 33 2017; 14 2020 2013; 34 2017; 13 2017; 12 2019 2018 2017 2016 2017; 18 2014 2018; 50 2012; 7 2008; 175 e_1_2_13_120_1 e_1_2_13_24_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_101_1 e_1_2_13_147_1 e_1_2_13_43_1 e_1_2_13_124_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_62_1 e_1_2_13_81_1 Weiskopf N. (e_1_2_13_143_1) 2004; 98 e_1_2_13_92_1 e_1_2_13_117_1 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 Hellrung L. (e_1_2_13_51_1) 2018 e_1_2_13_131_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_135_1 e_1_2_13_74_1 e_1_2_13_70_1 e_1_2_13_150_1 e_1_2_13_4_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_128_1 e_1_2_13_29_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_142_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_123_1 e_1_2_13_86_1 e_1_2_13_146_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_82_1 e_1_2_13_91_1 e_1_2_13_95_1 e_1_2_13_116_1 e_1_2_13_99_1 Posse S. (e_1_2_13_102_1) 1998 e_1_2_13_139_1 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_111_1 e_1_2_13_130_1 e_1_2_13_37_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_115_1 e_1_2_13_134_1 e_1_2_13_33_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_71_1 e_1_2_13_5_1 e_1_2_13_108_1 e_1_2_13_127_1 e_1_2_13_49_1 e_1_2_13_122_1 e_1_2_13_141_1 e_1_2_13_26_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_126_1 e_1_2_13_87_1 e_1_2_13_145_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_6_1 e_1_2_13_90_1 e_1_2_13_94_1 e_1_2_13_98_1 e_1_2_13_119_1 e_1_2_13_138_1 Poldrack R. A. (e_1_2_13_96_1) 2011 e_1_2_13_19_1 e_1_2_13_133_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_152_1 Wang Y. (e_1_2_13_137_1) 2016 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_114_1 e_1_2_13_30_1 e_1_2_13_72_1 e_1_2_13_2_1 Koush Y. (e_1_2_13_69_1) 2017; 27 e_1_2_13_107_1 Ros T. (e_1_2_13_112_1) 2020 e_1_2_13_149_1 e_1_2_13_121_1 e_1_2_13_144_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_125_1 e_1_2_13_148_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_84_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_80_1 e_1_2_13_140_1 Thesen S. (e_1_2_13_129_1) 2000 e_1_2_13_93_1 e_1_2_13_97_1 e_1_2_13_118_1 e_1_2_13_39_1 e_1_2_13_132_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_58_1 e_1_2_13_113_1 e_1_2_13_136_1 e_1_2_13_31_1 e_1_2_13_77_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_151_1 e_1_2_13_3_1 e_1_2_13_106_1 e_1_2_13_89_1 e_1_2_13_28_1 |
References_xml | – volume: 146 start-page: 609 year: 2017 end-page: 625 article-title: Sources and implications of whole‐brain fMRI signals in humans publication-title: NeuroImage – start-page: 1242 year: 2016 end-page: 1251 article-title: Real‐time full correlation matrix analysis of fMRI data publication-title: IEEE International Conference on Big Data (Big Data), IEEE – volume: 175 start-page: 154 year: 2008 end-page: 162 article-title: A new concept of a unified parameter management, experiment control, and data analysis in fMRI: Application to real‐time fMRI at 3 T and 7 T publication-title: Journal of Neuroscience Methods – volume: 1 start-page: 0021 year: 2017 article-title: A manifesto for reproducible science publication-title: Nature Human Behaviour – volume: 26 start-page: 243 year: 2005 end-page: 250 article-title: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters publication-title: NeuroImage – volume: 80 start-page: 1697 year: 2018 end-page: 1713 article-title: Hemodynamic response function (HRF) variability confounds resting‐state fMRI functional connectivity publication-title: Magnetic Resonance in Medicine – volume: 23 start-page: 3963 year: 2003 end-page: 3971 article-title: The underpinnings of the BOLD functional magnetic resonance imaging signal publication-title: The Journal of Neuroscience – volume: 69 start-page: 621 year: 2012 end-page: 636 article-title: Prospective motion correction in brain imaging: A review publication-title: Magnetic Resonance in Medicine – volume: 5 start-page: 157 year: 2006 end-page: 165 article-title: Real‐time functional MRI: Development and emerging applications publication-title: Magnetic Resonance in Medical Sciences – volume: 5 start-page: 245 year: 2014 end-page: 255 article-title: Optimizing real time fMRI neurofeedback for therapeutic discovery and development publication-title: NeuroImage – volume: 45 start-page: 289 year: 2001 end-page: 298 article-title: Real‐time multiple linear regression for fMRI supported by time‐aware acquisition and processing publication-title: Magnetic Resonance in Medicine – volume: 42 start-page: 1014 year: 1999 end-page: 1018 article-title: Real‐time 3D image registration for functional MRI publication-title: Magnetic Resonance in Medicine – volume: 28 start-page: 1033 year: 2007 end-page: 1044 article-title: Real‐time fMRI using brain‐state classification publication-title: Human Brain Mapping – volume: 25 start-page: 989 year: 2007 end-page: 1003 article-title: Real‐time functional magnetic resonance imaging: Methods and applications publication-title: Magnetic Resonance Imaging – volume: 5 start-page: 98 year: 2010 end-page: 107 article-title: It's in your eyes—Using gaze‐contingent stimuli to create truly interactive paradigms for social cognitive and affective neuroscience publication-title: Social Cognitive and Affective Neuroscience – volume: 33 start-page: 230 year: 1995 end-page: 236 article-title: Real‐time functional magnetic resonance imaging publication-title: Magnetic Resonance in Medicine – year: 2020 publication-title: Brain – volume: 57 start-page: 362 year: 2007 end-page: 368 article-title: Real‐time shimming to compensate for respiration‐induced B0 fluctuations publication-title: Magnetic Resonance in Medicine – year: 2014 – volume: 75 start-page: 1831 year: 2016 end-page: 1840 article-title: A field camera for MR sequence monitoring and system analysis publication-title: Magnetic Resonance in Medicine – volume: 58 start-page: 588 year: 2011 end-page: 594 article-title: Slice‐timing effects and their correction in functional MRI publication-title: NeuroImage – volume: 55 start-page: 1298 year: 2011 end-page: 1305 article-title: Improved modulation of rostrolateral prefrontal cortex using real‐time fMRI training and meta‐cognitive awareness publication-title: NeuroImage – volume: 80 start-page: 349 year: 2013 end-page: 359 article-title: Resting‐state FMRI confounds and cleanup publication-title: NeuroImage – volume: 6 year: 2011 article-title: Real‐time decoding of brain responses to visuospatial attention using 7T fMRI publication-title: PLoS One – volume: 59 start-page: 2142 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 47 start-page: S194 year: 2009 article-title: The use of neurofeedback with real‐time functional MRI to suppress physiological noise publication-title: NeuroImage – volume: 188 start-page: 322 year: 2019 end-page: 334 article-title: A framework for offline evaluation and optimization of real‐time algorithms for use in neurofeedback, demonstrated on an instantaneous proxy for correlations publication-title: NeuroImage – volume: 9 year: 2015 article-title: Enhancing motor network activity using real‐time functional MRI neurofeedback of left premotor cortex publication-title: Frontiers in Behavioral Neuroscience – volume: 21 start-page: 997 year: 2017 end-page: 1010 article-title: Advances in fMRI real‐time neurofeedback publication-title: Trends in Cognitive Sciences – volume: 20 start-page: 299 year: 2017 end-page: 303 article-title: Best practices in data analysis and sharing in neuroimaging using MRI (WWW document) publication-title: Nature Neuroscience – volume: 50 start-page: 28 year: 2018 end-page: 33 article-title: Current practices in clinical neurofeedback with functional MRI—Analysis of a survey using the TIDieR checklist publication-title: European Psychiatry – volume: 52 start-page: 1156 year: 2004 end-page: 1166 article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: Fast, robust, and flexible method for echo‐planar imaging distortion correction publication-title: Magnetic Resonance in Medicine – volume: 83 start-page: 817 year: 2013 end-page: 825 article-title: Neurofeedback‐mediated self‐regulation of the dopaminergic midbrain publication-title: NeuroImage – volume: 27 start-page: 1193 year: 2017b end-page: 1202 article-title: Learning control over emotion networks through connectivity‐based neurofeedback publication-title: Cerebral Cortex – volume: 64 start-page: 526 year: 2013 end-page: 537 article-title: Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data publication-title: NeuroImage – volume: 20 start-page: 214 year: 2011 end-page: 222 article-title: Functional MRI is a valid noninvasive alternative to Wada testing publication-title: Epilepsy & Behavior – volume: 98 start-page: 357 year: 2004 end-page: 373 article-title: Self‐regulation of local brain activity using real‐time functional magnetic resonance imaging (fMRI) publication-title: Journal of Physiology – volume: 34 start-page: 1487 year: 2007 end-page: 1496 article-title: Dynamic causal modeling: A generative model of slice timing in fMRI publication-title: NeuroImage – year: 2019 – volume: 34 start-page: 565 year: 2007 end-page: 574 article-title: How long to scan? The relationship between fMRI temporal signal to noise and necessary scan duration publication-title: NeuroImage – volume: 154 start-page: 59 year: 2017 end-page: 80 article-title: Multi‐echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals publication-title: NeuroImage – volume: 19 start-page: 372 year: 2012 end-page: 381 article-title: Quantification of adverse events associated with functional MRI scanning and with real‐time fMRI‐based training publication-title: International Journal of Behavioral Medicine – volume: 27 start-page: 153 year: 2005 end-page: 162 article-title: Head motion suppression using real‐time feedback of motion information and its effects on task performance in fMRI publication-title: NeuroImage – volume: 105 start-page: 145 year: 2012 end-page: 161 article-title: fMRI analysis on the GPU—Possibilities and challenges publication-title: Computer Methods and Programs in Biomedicine – volume: 161 start-page: 80 year: 2017 end-page: 93 article-title: Real‐time motion analytics during brain MRI improve data quality and reduce costs publication-title: NeuroImage – volume: 13 year: 2017 article-title: Self‐regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment publication-title: PLoS Computational Biology – volume: 95 start-page: 232 year: 2014 end-page: 247 article-title: ICA‐based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: NeuroImage – volume: 18 start-page: 487 year: 2012 end-page: 501 article-title: Real‐time fMRI: A tool for local brain regulation publication-title: The Neuroscientist – volume: 62 start-page: 1017 year: 2012 end-page: 1023 article-title: The continuing challenge of understanding and modeling hemodynamic variation in fMRI publication-title: NeuroImage – volume: 13 start-page: 1377 year: 2002 end-page: 1381 article-title: Functional MRI for neurofeedback: Feasibility study on a hand motor task publication-title: Neuroreport – volume: 81 start-page: 422 year: 2013 end-page: 430 article-title: Connectivity‐based neurofeedback: Dynamic causal modeling for real‐time fMRI publication-title: NeuroImage – volume: 249 start-page: 91 year: 2016 end-page: 96 article-title: Effects of salience‐network‐node neurofeedback training on affective biases in major depressive disorder publication-title: Psychiatry Research: Neuroimaging – volume: 14 year: 2016 article-title: Differential activation patterns in the same brain region led to opposite emotional states publication-title: PLoS Biology – volume: 20 start-page: 304 year: 2017 end-page: 313 article-title: Computational approaches to fMRI analysis publication-title: Nature Neuroscience – volume: 84 start-page: 320 year: 2014 end-page: 341 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: NeuroImage – volume: 34 start-page: 200 year: 2013 end-page: 212 article-title: Acquired self‐control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia publication-title: Human Brain Mapping – volume: 81 start-page: 110 year: 2013 end-page: 118 article-title: Real‐time fMRI links subjective experience with brain activity during focused attention publication-title: NeuroImage – volume: 82 start-page: 336 year: 2013 end-page: 343 article-title: Comparing neural response to painful electrical stimulation with functional MRI at 3 and 7 T publication-title: NeuroImage – volume: 156 start-page: 489 year: 2017a end-page: 503 article-title: OpenNFT: An open‐source Python/Matlab framework for real‐time fMRI neurofeedback training based on activity, connectivity and multivariate pattern analysis publication-title: NeuroImage – volume: 44 start-page: 925 year: 2000 end-page: 932 article-title: Impact of signal‐to‐noise on functional MRI publication-title: Magnetic Resonance in Medicine – volume: 51 start-page: 966 year: 2004 end-page: 970 article-title: Principles of a brain‐computer interface (BCI) based on real‐time functional magnetic resonance imaging (fMRI) publication-title: IEEE Transactions on Biomedical Engineering – volume: 191 start-page: 421 year: 2019 end-page: 429 article-title: No time for drifting: Comparing performance and applicability of signal detrending algorithms for real‐time fMRI publication-title: NeuroImage – volume: 61 start-page: 115 year: 2012 end-page: 130 article-title: Enhancement of temporal resolution and BOLD sensitivity in real‐time fMRI using multi‐slab echo‐volumar imaging publication-title: NeuroImage – volume: 42 start-page: 87 year: 1999 end-page: 97 article-title: Enhancement of BOLD‐contrast sensitivity by single‐shot multi‐echo functional MR imaging publication-title: Magnetic Resonance in Medicine – volume: 378 start-page: 71 year: 2018 end-page: 88 article-title: When the brain takes ‘BOLD’ steps: Real‐time fMRI neurofeedback can further enhance the ability to gradually self‐regulate regional brain activation publication-title: Neuroscience – volume: 44 start-page: 162 year: 2000 end-page: 167 article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magnetic Resonance in Medicine – volume: 154 start-page: 169 year: 2017 end-page: 173 article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI publication-title: NeuroImage – year: 1998 article-title: Single shot *‐sensitive spectroscopic imaging increases fMRI sensitivity: Preliminary evidence from visual and olfactory activation publication-title: International Society for Magnetic Resonance in Medicine – volume: 35 start-page: 1981 year: 2014 end-page: 1996 article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high‐motion data points publication-title: Human Brain Mapping – volume: 82 start-page: 728 year: 2013 end-page: 733 article-title: High‐resolution functional MRI of the human amygdala at 7 T publication-title: European Journal of Radiology – volume: 35 start-page: 346 year: 1996 end-page: 355 article-title: Movement‐related effects in fMRI time‐series publication-title: Magnetic Resonance in Medicine – volume: 334 start-page: 1413 year: 2011 end-page: 1415 article-title: Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation publication-title: Science – volume: 9 year: 2014 article-title: Real‐time fMRI neurofeedback training of amygdala activity in patients with major depressive disorder publication-title: PLoS One – volume: 27 start-page: 624 year: 2005 end-page: 634 article-title: Detecting and adjusting for artifacts in fMRI time series data publication-title: NeuroImage – volume: 10 year: 2015 article-title: Flexible adaptive paradigms for fMRI using a novel software package ‘brain analysis in real‐time’ (BART) publication-title: PLoS One – volume: 46 start-page: 631 year: 2001 end-page: 637 article-title: Physiological noise in oxygenation‐sensitive magnetic resonance imaging publication-title: Magnetic Resonance in Medicine – volume: 43 start-page: 259 year: 2000 end-page: 268 article-title: Functional magnetic resonance imaging in real time (FIRE): Sliding‐window correlation analysis and reference‐vector optimization publication-title: Magnetic Resonance in Medicine – volume: 27 start-page: 4960 year: 2017 end-page: 4970 article-title: Connectivity neurofeedback training can differentially change functional connectivity and cognitive performance publication-title: Cerebral Cortex – volume: 11 start-page: 473 year: 2007 end-page: 481 article-title: Reading and controlling human brain activation using real‐time functional magnetic resonance imaging publication-title: Trends in Cognitive Sciences – volume: 32 start-page: 22 year: 2010 end-page: 31 article-title: Modulation of subgenual anterior cingulate cortex activity with real‐time neurofeedback publication-title: Human Brain Mapping – volume: 17 start-page: 825 year: 2002 end-page: 841 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 38 start-page: 3190 year: 2017 end-page: 3209 article-title: Real‐time fMRI neurofeedback in adolescents with attention deficit hyperactivity disorder publication-title: Human Brain Mapping – volume: 168 start-page: 383 year: 2018 end-page: 391 article-title: Unsmoothed functional MRI of the human amygdala and bed nucleus of the stria terminalis during processing of emotional faces publication-title: NeuroImage – volume: 27 start-page: 447 year: 1998 end-page: 474 article-title: On the characteristics of functional magnetic resonance imaging of the brain publication-title: Annual Review of Biophysics and Biomolecular Structure – volume: 15 start-page: 2120 year: 2013 end-page: 2124 article-title: Sustained reduction of nicotine craving with real‐time neurofeedback: Exploring the role of severity of dependence publication-title: Nicotine & Tobacco Research – volume: 33 start-page: 9488 year: 2013 end-page: 9497 article-title: The day‐after effect: Long term, Hebbian‐like restructuring of resting‐state fMRI patterns induced by a single epoch of cortical activation publication-title: The Journal of Neuroscience – volume: 166 start-page: 198 year: 2018 end-page: 208 article-title: Intermittent compared to continuous real‐time fMRI neurofeedback boosts control over amygdala activation publication-title: NeuroImage – volume: 45 start-page: 167 year: 2001 end-page: 171 article-title: Evaluation of motion and realignment for functional magnetic resonance imaging in real time publication-title: Magnetic Resonance in Medicine – volume: 18 start-page: 86 year: 2017 end-page: 100 article-title: Closed‐loop brain training: The science of neurofeedback publication-title: Nature Reviews Neuroscience – volume: 12 start-page: 25 year: 2000 end-page: 41 article-title: A new approach to measure single‐event related brain activity using real‐time fMRI: Feasibility of sensory, motor, and higher cognitive tasks publication-title: Human Brain Mapping – volume: 11 start-page: 291 year: 2013 end-page: 300 article-title: A graphics processing unit accelerated motion correction algorithm and modular system for real‐time fMRI publication-title: Neuroinformatics – volume: 22 start-page: 58 year: 2012 end-page: 66 article-title: Intermittent “real‐time” fMRI feedback is superior to continuous presentation for a motor imagery task: A pilot study publication-title: Journal of Neuroimaging – volume: 24 start-page: 1068 year: 2005 end-page: 1079 article-title: Single‐shot compensation of image distortions and BOLD contrast optimization using multi‐echo EPI for real‐time fMRI publication-title: NeuroImage – volume: 46 start-page: 515 year: 2001 end-page: 522 article-title: Spiral‐in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts publication-title: Magnetic Resonance in Medicine – year: 1994 – year: 2011 article-title: Handbook of Functional MRI Data Analysis [WWW Document] publication-title: Cambridge Core – volume: 154 start-page: 150 year: 2017 end-page: 158 article-title: A simple but useful way to assess fMRI scan qualities publication-title: NeuroImage – volume: 31 start-page: 283 year: 1994 end-page: 291 article-title: Artifacts due to stimulus correlated motion in functional imaging of the brain publication-title: Magnetic Resonance in Medicine – volume: 59 start-page: 431 year: 2012 end-page: 438 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: NeuroImage – year: 2011 article-title: Automated real‐time behavioral and physiological data acquisition and display integrated with stimulus presentation for fMRI publication-title: Frontiers in Neuroinformatics, – volume: 124 start-page: 806 year: 2016 end-page: 812 article-title: Meta‐analysis of real‐time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? publication-title: NeuroImage – volume: 10 year: 2016 article-title: Amygdala regulation following fMRI‐neurofeedback without instructed strategies publication-title: Frontiers in Human Neuroscience – volume: 154 start-page: 128 year: 2017 end-page: 149 article-title: Methods for cleaning the BOLD fMRI signal publication-title: NeuroImage – volume: 18 start-page: 390 year: 2003 end-page: 400 article-title: Single‐shot * mapping with 3D compensation of local susceptibility gradients in multiple regions publication-title: NeuroImage – volume: 25 start-page: 1263 year: 2007 end-page: 1270 article-title: Contrast‐to‐noise ratio (CNR) as a quality parameter in fMRI publication-title: Journal of Magnetic Resonance Imaging – volume: 172 start-page: 786 year: 2018 end-page: 807 article-title: Neurofeedback with fMRI: A critical systematic review publication-title: NeuroImage – volume: 28 start-page: 197 year: 2015 end-page: 207 article-title: Upregulation of the rostral anterior cingulate cortex can Alter the perception of emotions: fMRI‐based neurofeedback at 3 and 7 T publication-title: Brain Topography – volume: 14 start-page: 97 year: 2017 end-page: 104 article-title: Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real‐time fMRI—A pilot study publication-title: NeuroImage – volume: 14 start-page: 967 year: 2001 end-page: 976 article-title: Regional differences in the refractory period of the hemodynamic response: An event‐related fMRI study publication-title: NeuroImage – volume: 7 year: 2012 article-title: Real‐time self‐regulation of emotion networks in patients with depression publication-title: PLoS One – volume: 54 start-page: 361 year: 2011 end-page: 368 article-title: Computing moment‐to‐moment BOLD activation for real‐time neurofeedback publication-title: NeuroImage – volume: 102 start-page: 18626 year: 2005 end-page: 18631 article-title: Control over brain activation and pain learned by using real‐time functional MRI publication-title: PNAS – volume: 96 start-page: 237 year: 2014 end-page: 244 article-title: Control of nucleus accumbens activity with neurofeedback publication-title: NeuroImage – volume: 44 start-page: 857 year: 2009 end-page: 869 article-title: Influence of heart rate on the BOLD signal: The cardiac response function publication-title: NeuroImage – volume: 378 start-page: 155 year: 2018 end-page: 164 article-title: Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning publication-title: Neuroscience – volume: 143 start-page: 141 year: 2016 end-page: 151 article-title: Noise contributions to the fMRI signal: An overview publication-title: NeuroImage – volume: 10 start-page: 91 year: 1999 end-page: 106 article-title: Real‐time fMRI paradigm control, physiology, and behavior combined with near real‐time statistical analysis publication-title: NeuroImage – volume: 56 start-page: 440 year: 2011 end-page: 454 article-title: Decoding fMRI brain states in real‐time publication-title: NeuroImage – volume: 55 start-page: 1227 year: 2006 end-page: 1235 article-title: BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel‐acquired inhomogeneity‐desensitized fMRI publication-title: Magnetic Resonance in Medicine – volume: 112 start-page: 188 year: 2017 end-page: 195 article-title: Volitional regulation of brain responses to food stimuli in overweight and obese subjects: A real‐time fMRI feedback study publication-title: Appetite – year: 2018 article-title: Motion and physiological noise effects on amygdala real‐time fMRI neurofeedback learning publication-title: bioRxiv – volume: 19 start-page: 200 year: 2003 end-page: 207 article-title: Modeling regional and psychophysiologic interactions in fMRI: The importance of hemodynamic deconvolution publication-title: NeuroImage – volume: 20 start-page: 2209 year: 2003 end-page: 2224 article-title: Real‐time independent component analysis of fMRI time‐series publication-title: NeuroImage – volume: 14 start-page: 344 year: 2017c end-page: 347 article-title: Real‐time fMRI data for testing OpenNFT functionality publication-title: Data in Brief – volume: 9 year: 2015 article-title: FRIEND engine framework: A real time neurofeedback client‐server system for neuroimaging studies publication-title: Frontiers in Behavioral Neuroscience – year: 2000 – volume: 171 start-page: 234 year: 2018 end-page: 245 article-title: Behavioral interventions for reducing head motion during MRI scans in children publication-title: NeuroImage – volume: 76 start-page: 386 year: 2013 end-page: 399 article-title: Real‐time fMRI neurofeedback: Progress and challenges publication-title: NeuroImage – volume: 8 start-page: 341ps12 year: 2016 end-page: 341ps12 article-title: What does research reproducibility mean? publication-title: Science Translational Medicine – volume: 31 start-page: 1536 year: 2006 end-page: 1548 article-title: Separating respiratory‐variation‐related fluctuations from neuronal‐activity‐related fluctuations in fMRI publication-title: NeuroImage – volume: 146 start-page: 157 year: 2017 end-page: 170 article-title: The real‐time fMRI neurofeedback based stratification of default network regulation neuroimaging data repository publication-title: NeuroImage – volume: 22 start-page: 1333 year: 2012 end-page: 1338 article-title: A real‐time fMRI‐based spelling device immediately enabling robust motor‐independent communication publication-title: Current Biology – volume: 115 year: 2018 article-title: Ridding fMRI data of motion‐related influences: Removal of signals with distinct spatial and physical bases in multiecho data publication-title: PNAS – volume: 12 year: 2017 article-title: fMRI neurofeedback training for increasing anterior cingulate cortex activation in adult attention deficit hyperactivity disorder. An exploratory randomized, single‐blinded study publication-title: PLoS One – volume: 23 start-page: 194 year: 2010 end-page: 198 article-title: Towards a cure for BCI illiteracy publication-title: Brain Topography – volume: 47 start-page: 711 year: 2000 end-page: 722 article-title: An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions publication-title: Neurosurgery – volume: 185 start-page: 545 year: 2019 end-page: 555 article-title: A systematic review of the psychological factors that influence neurofeedback learning outcomes publication-title: NeuroImage – volume: 59 start-page: 478 year: 2012 end-page: 489 article-title: Signal quality and Bayesian signal processing in neurofeedback based on real‐time fMRI publication-title: NeuroImage – volume: 8 year: 2013 article-title: On the definition of signal‐to‐noise ratio and contrast‐to‐noise ratio for fMRI data publication-title: PLoS One – year: 2012 – volume: 21 start-page: 436 year: 2004 end-page: 443 article-title: Learned regulation of spatially localized brain activation using real‐time fMRI publication-title: NeuroImage – volume: 25 start-page: 35 year: 2007 end-page: 46 article-title: CORSICA: Correction of structured noise in fMRI by automatic identification of ICA components publication-title: Magnetic Resonance Imaging – volume: 48 start-page: 771 year: 2002 end-page: 780 article-title: Real‐time autoshimming for echo planar timecourse imaging publication-title: Magnetic Resonance in Medicine – volume: 19 start-page: 422 year: 2003 end-page: 429 article-title: Estimation of general linear model coefficients for real‐time application publication-title: NeuroImage – volume: 9 year: 2014 article-title: Windowed correlation: A suitable tool for providing dynamic fMRI‐based functional connectivity neurofeedback on task difficulty publication-title: PLoS One – volume: 27 start-page: 1552 year: 2015 end-page: 1572 article-title: The inclusion of functional connectivity information into fMRI‐based neurofeedback improves its efficacy in the reduction of cigarette cravings publication-title: Journal of Cognitive Neuroscience – volume: 35 start-page: 2588 year: 2015 end-page: 2595 article-title: Differential magnetic resonance neurofeedback modulations across extrinsic (visual) and intrinsic (default‐mode) nodes of the human cortex publication-title: The Journal of Neuroscience – year: 2017 – volume: 256 start-page: 117 year: 2015 end-page: 121 article-title: Real‐time fMRI processing with physiological noise correction—Comparison with off‐line analysis publication-title: Journal of Neuroscience Methods – volume: 12 year: 2017 article-title: MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites publication-title: PLoS One – ident: e_1_2_13_63_1 doi: 10.1016/j.neuroimage.2018.10.021 – ident: e_1_2_13_48_1 doi: 10.1523/JNEUROSCI.3098-14.2015 – ident: e_1_2_13_92_1 doi: 10.1371/journal.pcbi.1005681 – ident: e_1_2_13_105_1 doi: 10.1016/j.neuroimage.2013.08.048 – ident: e_1_2_13_101_1 doi: 10.1002/(SICI)1522-2594(199907)42:1<87::AID-MRM13>3.0.CO;2-O – ident: e_1_2_13_22_1 doi: 10.1073/pnas.0505210102 – ident: e_1_2_13_147_1 doi: 10.1016/j.neuroimage.2005.02.050 – ident: e_1_2_13_10_1 doi: 10.1016/S1053-8119(09)72192-5 – ident: e_1_2_13_74_1 doi: 10.1016/j.neuroimage.2010.06.052 – ident: e_1_2_13_109_1 doi: 10.1016/j.neuroimage.2018.12.006 – ident: e_1_2_13_2_1 doi: 10.1002/hbm.23584 – ident: e_1_2_13_111_1 doi: 10.1002/mrm.27146 – ident: e_1_2_13_57_1 doi: 10.1016/j.neuroimage.2010.07.060 – ident: e_1_2_13_133_1 doi: 10.1002/mrm.21136 – start-page: 366138 year: 2018 ident: e_1_2_13_51_1 article-title: Motion and physiological noise effects on amygdala real‐time fMRI neurofeedback learning publication-title: bioRxiv – ident: e_1_2_13_131_1 doi: 10.1016/j.neuroimage.2005.01.007 – ident: e_1_2_13_142_1 doi: 10.1016/j.mri.2007.02.007 – ident: e_1_2_13_125_1 doi: 10.1016/j.appet.2017.01.032 – ident: e_1_2_13_11_1 doi: 10.1016/j.neuroimage.2012.09.043 – ident: e_1_2_13_150_1 doi: 10.1002/mrm.20261 – ident: e_1_2_13_13_1 doi: 10.1093/ntr/ntt122 – volume-title: Prospective acquisition correction for head motion with image‐based trackingfor real‐time fMRI year: 2000 ident: e_1_2_13_129_1 – ident: e_1_2_13_124_1 doi: 10.1016/j.cub.2012.05.022 – ident: e_1_2_13_81_1 doi: 10.3389/fnhum.2016.00183 – ident: e_1_2_13_37_1 doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – ident: e_1_2_13_104_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_13_122_1 doi: 10.1002/1522-2594(200102)45:2<289::AID-MRM1038>3.0.CO;2-U – ident: e_1_2_13_84_1 doi: 10.1016/j.neuroimage.2016.10.048 – ident: e_1_2_13_121_1 doi: 10.1016/j.neuroimage.2016.12.024 – ident: e_1_2_13_127_1 doi: 10.1016/j.neuroimage.2013.03.033 – start-page: 1242 year: 2016 ident: e_1_2_13_137_1 article-title: Real‐time full correlation matrix analysis of fMRI data publication-title: IEEE International Conference on Big Data (Big Data), IEEE – ident: e_1_2_13_31_1 doi: 10.1002/mrm.1910350312 – ident: e_1_2_13_95_1 doi: 10.1016/j.mri.2006.09.042 – ident: e_1_2_13_7_1 doi: 10.3389/fnbeh.2015.00003 – ident: e_1_2_13_38_1 doi: 10.1126/scitranslmed.aaf5027 – ident: e_1_2_13_152_1 doi: 10.1371/journal.pone.0085929 – ident: e_1_2_13_33_1 doi: 10.1002/jmri.20935 – ident: e_1_2_13_12_1 doi: 10.1016/j.neuroimage.2016.12.018 – ident: e_1_2_13_29_1 doi: 10.1016/j.neuroimage.2003.08.012 – ident: e_1_2_13_67_1 doi: 10.1016/j.neuroimage.2017.06.039 – ident: e_1_2_13_59_1 doi: 10.1016/j.jneumeth.2008.08.013 – volume: 98 start-page: 357 year: 2004 ident: e_1_2_13_143_1 article-title: Self‐regulation of local brain activity using real‐time functional magnetic resonance imaging (fMRI) publication-title: Journal of Physiology – volume: 27 start-page: 1193 year: 2017 ident: e_1_2_13_69_1 article-title: Learning control over emotion networks through connectivity‐based neurofeedback publication-title: Cerebral Cortex – ident: e_1_2_13_76_1 doi: 10.1371/journal.pone.0038115 – ident: e_1_2_13_41_1 doi: 10.1016/j.neuroimage.2014.03.034 – ident: e_1_2_13_36_1 doi: 10.1002/mrm.1222 – ident: e_1_2_13_144_1 doi: 10.1371/journal.pone.0077089 – ident: e_1_2_13_47_1 doi: 10.1016/j.neuroimage.2012.02.015 – ident: e_1_2_13_115_1 doi: 10.1371/journal.pbio.1002546 – ident: e_1_2_13_64_1 doi: 10.1016/j.neuroimage.2006.10.026 – ident: e_1_2_13_116_1 doi: 10.1126/science.1212003 – ident: e_1_2_13_65_1 doi: 10.1162/jocn_a_00802 – ident: e_1_2_13_139_1 doi: 10.1016/j.tics.2017.09.010 – ident: e_1_2_13_49_1 doi: 10.1523/JNEUROSCI.5911-12.2013 – ident: e_1_2_13_40_1 doi: 10.1016/j.neuroimage.2014.03.073 – ident: e_1_2_13_77_1 doi: 10.1016/j.neuroimage.2016.09.008 – ident: e_1_2_13_66_1 doi: 10.1016/j.neuroimage.2019.02.058 – ident: e_1_2_13_108_1 – ident: e_1_2_13_46_1 doi: 10.1002/hbm.20997 – ident: e_1_2_13_28_1 doi: 10.1016/j.neuroimage.2015.09.042 – ident: e_1_2_13_60_1 doi: 10.1006/nimg.2001.0900 – ident: e_1_2_13_99_1 doi: 10.1002/1097-0193(200101)12:1<25::AID-HBM30>3.0.CO;2-H – ident: e_1_2_13_90_1 doi: 10.1038/nn.4500 – ident: e_1_2_13_146_1 doi: 10.1093/cercor/bhx177 – ident: e_1_2_13_42_1 doi: 10.1007/s10548-014-0384-4 – ident: e_1_2_13_93_1 doi: 10.1146/annurev.biophys.27.1.447 – ident: e_1_2_13_26_1 doi: 10.1016/j.cmpb.2011.07.007 – ident: e_1_2_13_78_1 doi: 10.1523/JNEUROSCI.23-10-03963.2003 – ident: e_1_2_13_106_1 doi: 10.1073/pnas.1720985115 – ident: e_1_2_13_56_1 – ident: e_1_2_13_25_1 doi: 10.1016/j.neuroimage.2017.08.025 – ident: e_1_2_13_130_1 doi: 10.1016/j.neuroimage.2017.12.071 – ident: e_1_2_13_135_1 doi: 10.3389/fninf.2011.00027 – ident: e_1_2_13_89_1 doi: 10.1016/j.neuroimage.2016.11.052 – ident: e_1_2_13_138_1 doi: 10.1002/mrm.10259 – ident: e_1_2_13_19_1 doi: 10.1016/j.tics.2007.08.014 – ident: e_1_2_13_123_1 doi: 10.1016/j.neuroscience.2016.09.026 – ident: e_1_2_13_110_1 doi: 10.1016/j.eurpsy.2017.10.011 – ident: e_1_2_13_114_1 doi: 10.1007/s12021-013-9176-3 – ident: e_1_2_13_8_1 doi: 10.1016/j.yebeh.2010.08.004 – ident: e_1_2_13_141_1 doi: 10.1109/TBME.2004.827063 – ident: e_1_2_13_148_1 doi: 10.1097/00001756-200208070-00005 – ident: e_1_2_13_75_1 doi: 10.1002/hbm.20326 – ident: e_1_2_13_120_1 doi: 10.1016/j.neuroimage.2011.06.078 – ident: e_1_2_13_151_1 doi: 10.1371/journal.pone.0170795 – ident: e_1_2_13_85_1 doi: 10.1016/j.jneumeth.2015.08.033 – ident: e_1_2_13_5_1 doi: 10.1016/S1053-8119(03)00081-8 – ident: e_1_2_13_53_1 doi: 10.1371/journal.pone.0118890 – ident: e_1_2_13_62_1 doi: 10.1111/j.1552-6569.2010.00529.x – ident: e_1_2_13_54_1 – ident: e_1_2_13_128_1 doi: 10.1016/j.neuroimage.2013.05.115 – ident: e_1_2_13_68_1 doi: 10.1016/j.dib.2017.07.049 – ident: e_1_2_13_79_1 doi: 10.1002/mrm.24314 – ident: e_1_2_13_132_1 doi: 10.1016/j.neuroimage.2011.07.044 – ident: e_1_2_13_3_1 doi: 10.1016/j.neuroscience.2016.12.050 – ident: e_1_2_13_82_1 doi: 10.1002/1522-2594(200101)45:1<167::AID-MRM1023>3.0.CO;2-M – ident: e_1_2_13_24_1 doi: 10.1002/mrm.25770 – ident: e_1_2_13_103_1 doi: 10.1016/j.neuroimage.2016.08.009 – ident: e_1_2_13_61_1 doi: 10.1006/nimg.2002.1132 – ident: e_1_2_13_134_1 doi: 10.1007/s10548-009-0121-6 – ident: e_1_2_13_50_1 doi: 10.1007/s12529-011-9165-6 – ident: e_1_2_13_136_1 doi: 10.1006/nimg.1999.0457 – ident: e_1_2_13_80_1 doi: 10.3389/fnbeh.2015.00341 – ident: e_1_2_13_149_1 doi: 10.1371/journal.pone.0088785 – ident: e_1_2_13_16_1 doi: 10.1038/nn.4499 – ident: e_1_2_13_15_1 doi: 10.1016/j.neuroimage.2008.09.029 – ident: e_1_2_13_18_1 doi: 10.1002/mrm.1910330213 – ident: e_1_2_13_73_1 doi: 10.1016/j.neuroimage.2017.03.033 – ident: e_1_2_13_97_1 doi: 10.1002/mrm.20900 – ident: e_1_2_13_72_1 doi: 10.1002/mrm.1240 – ident: e_1_2_13_118_1 doi: 10.1038/nrn.2016.164 – ident: e_1_2_13_55_1 – ident: e_1_2_13_52_1 doi: 10.1016/j.neuroimage.2017.10.031 – ident: e_1_2_13_27_1 doi: 10.1016/j.nicl.2016.12.023 – ident: e_1_2_13_23_1 doi: 10.1016/j.neuroimage.2005.04.039 – ident: e_1_2_13_94_1 doi: 10.1002/1522-2594(200012)44:6<925::AID-MRM14>3.0.CO;2-M – ident: e_1_2_13_17_1 doi: 10.1002/(SICI)1522-2594(199912)42:6<1014::AID-MRM4>3.0.CO;2-F – ident: e_1_2_13_21_1 doi: 10.1016/j.neuroimage.2003.08.041 – ident: e_1_2_13_88_1 doi: 10.1016/j.neuroimage.2006.09.032 – ident: e_1_2_13_39_1 doi: 10.1016/j.neuroimage.2018.01.023 – ident: e_1_2_13_35_1 doi: 10.1016/S1053-8119(03)00058-2 – ident: e_1_2_13_43_1 doi: 10.1016/j.neuroimage.2013.06.010 – ident: e_1_2_13_83_1 doi: 10.1016/j.neuroimage.2010.12.016 – ident: e_1_2_13_14_1 doi: 10.1177/1073858411407205 – ident: e_1_2_13_34_1 doi: 10.1002/(SICI)1522-2594(200002)43:2<259::AID-MRM13>3.0.CO;2-P – ident: e_1_2_13_20_1 – ident: e_1_2_13_140_1 doi: 10.1016/j.neuroimage.2004.10.012 – ident: e_1_2_13_30_1 doi: 10.1371/journal.pone.0184661 – ident: e_1_2_13_113_1 doi: 10.1002/hbm.21427 – year: 2011 ident: e_1_2_13_96_1 article-title: Handbook of Functional MRI Data Analysis [WWW Document] publication-title: Cambridge Core – ident: e_1_2_13_9_1 doi: 10.1016/j.neuroimage.2006.02.048 – ident: e_1_2_13_87_1 doi: 10.1016/j.neuroimage.2013.04.001 – ident: e_1_2_13_91_1 doi: 10.1109/ICIP.1994.413892 – ident: e_1_2_13_145_1 doi: 10.1093/scan/nsq024 – ident: e_1_2_13_100_1 doi: 10.1016/S1053-8119(02)00016-2 – ident: e_1_2_13_6_1 doi: 10.2463/mrms.5.157 – ident: e_1_2_13_44_1 doi: 10.1002/mrm.1910310307 – ident: e_1_2_13_107_1 doi: 10.1016/j.neuroimage.2016.09.038 – ident: e_1_2_13_117_1 doi: 10.1002/hbm.22307 – year: 1998 ident: e_1_2_13_102_1 article-title: Single shot T 2*‐sensitive spectroscopic imaging increases fMRI sensitivity: Preliminary evidence from visual and olfactory activation publication-title: International Society for Magnetic Resonance in Medicine – ident: e_1_2_13_58_1 doi: 10.1097/00006123-200009000-00037 – ident: e_1_2_13_32_1 doi: 10.1016/j.neuroimage.2013.05.030 – ident: e_1_2_13_45_1 doi: 10.1016/j.pscychresns.2016.01.016 – ident: e_1_2_13_70_1 doi: 10.1016/j.neuroimage.2013.05.010 – ident: e_1_2_13_86_1 doi: 10.1038/s41562-016-0021 – ident: e_1_2_13_4_1 doi: 10.1371/journal.pone.0027638 – year: 2020 ident: e_1_2_13_112_1 publication-title: Brain – ident: e_1_2_13_119_1 doi: 10.1016/j.ejrad.2011.09.025 – ident: e_1_2_13_98_1 doi: 10.1016/j.neuroimage.2012.02.059 – ident: e_1_2_13_126_1 doi: 10.1016/j.nicl.2014.07.002 – ident: e_1_2_13_71_1 doi: 10.1016/j.neuroimage.2011.07.076 |
SSID | ssj0011501 |
Score | 2.478168 |
SecondaryResourceType | review_article |
Snippet | Neurofeedback training using real‐time functional magnetic resonance imaging (rtfMRI‐NF) allows subjects voluntary control of localised and distributed brain... Neurofeedback training using real-time functional magnetic resonance imaging (rtfMRI-NF) allows subjects voluntary control of localised and distributed brain... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3439 |
SubjectTerms | Biofeedback Biofeedback training Brain mapping Cognition Control methods Data retrieval denoising Electroencephalography Feedback fMRI Functional magnetic resonance imaging Functional Neuroimaging - methods Functional Neuroimaging - standards Humans Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - standards Learning strategies Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Mental disorders neurofeedback Neurofeedback - methods Neuroimaging Noise reduction quality Quality Control real‐time Reproducibility Resonance Review Signal quality Software |
Title | Quality and denoising in real‐time functional magnetic resonance imaging neurofeedback: A methods review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25010 https://www.ncbi.nlm.nih.gov/pubmed/32333624 https://www.proquest.com/docview/2425836213 https://www.proquest.com/docview/2394896234 https://pubmed.ncbi.nlm.nih.gov/PMC7375116 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VHhAXHi2PQIkWhICLU8e7jnfhFBBVhBSEEJV6QLL25Ta02VRNcignfgK_kV_CzK5t6ggkxM3RzFr2Zl47nvmGkGeM62HqHE9MkeYJF9okSsFPPjJcWOVyVmGD8_TDaHLI3x_lR1vkddMLE_Eh2oQbakaw16jgSi_3f4OGnuj5APx3aK_CWi0MiD610FEY6ITDFrjYRIIFblCF0my_XdnxRZsW-YpL2iyXvBrGBj90cIt8ad4glp-cDtYrPTDfNsAd__MVb5ObdXxKx1Gg7pAt53fI7tjD2Xx-SZ_TUDEaUvE75Pq0_jC_S75GLI5LqrylYMoWM8xB0JmnEJSe_fz-A2fYU3SiMfdI5-rYY_8k0PEwAKJHZ_MwMYn6iBfirFbm9BUd0zjlekljm81dcnjw7vPbSVKPcUgMKDx-OWY4lCyzUuXcMCVMatNKF7aSlcgtTyuhJdjroVU6Q7iaXIuRVUbmqhCysOwe2fYL7x4Q6lyhMpsKaZzkQ2l0JQQHoeJSy6qqsh552fyhpakxznHUxlkZ0ZmzEra0DFvaI09b1vMI7PEnphcoFSUqO9zHqLpnAZ4GYbPKMcRnI-xVBs69DicoqemSG7kqayOxLPG0JyCAGLIeedKScSUWvnm3WAMPk1xIiFF5j9yPYtg-LssYg-VAKToC2jIgdHiX4mcnAUK8YAVE2iPYryB_f9-BcvJmGi4e_jvrI3Ijw6wEAgfne2R7dbF2jyF0W-k-uZbxj_2Q-OgHff0Fg_lDJw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgEXHi2PhQIGIeCSbTZ2EhtxWR7VAt0eUCv1giy_Qpd2s4juHsqJn8Bv5JcwY2dDswIJcUs04yh25uWJ5xtCHjNuBqn3PLFlmidcGJtoDbe8sFw47XNWYYHzeK8YHfB3h_nhGnmxrIWJ-BBtwg01I9hrVHBMSG__Rg09MtM-OHCsr7qAHb0ROf_1hxY8CkOdsN0CJ5tIsMFLXKE0226HdrzRqk0-55RWD0yeD2SDJ9q5Sj4u5xAPoBz3F3PTt99W4B3_d5LXyJUmRKXDKFPXyZqvN8jmsIbt-fSMPqHh0GjIxm-Qi-Pm3_wm-RzhOM6orh0FazabYBqCTmoKcenJz-8_sI09RT8a0490qj_VWEIJdNwPgPTRyTQ0TaJ1hAzxzmh7_JwOaWx0fUpjpc0NcrDzZv_VKGk6OSQWdB5_HjPsS5Y5qXNumRY2dWllSlfJSuSOp5UwEkz2wGmTIWJNbkThtJW5LoUsHbtJ1utZ7W8T6n2pM5cKab3kA2lNJQQHueLSyKqqsh55tvyiyjYw59ht40RFgOZMwZKqsKQ98qhl_RKxPf7E9BTFQqG-w3OsbsoW4G0QOUsNIUQrsFwZOLc6nKCntkteCpZq7MSpwg2fgBhiwHrkYUvGkXj2rfazBfAwyYWEMJX3yK0oh-3rsowxGA6UsiOhLQOih3cp9eQooIiXrIRgu4D1CgL49xVQo5fjcHHn31kfkEuj_fGu2n279_4uuZxhkgJxhPMtsj7_uvD3IJKbm_tBYX8BUdBFdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIlVcELQ8FgoYhIBLaDZ2EhtOy2O1PLbqgUq9WX7Sha63ou2hN34Cv5FfwoydDd0KJG6JZhxFHs_DY883hDxh3AxL73lh27IuuDC20BpeeWO5cNrXLGCB83S3mezzDwf1wRp5tayFyfgQfcINNSPZa1TwYxd2_oCGHpr5C_DfWF51BQ_78D5Xxff6IwSIdNJuC3xsIcEEL2GFymqnH7rijC6b5As-6fJ9yYtxbHJE4-vkWhdB0lEW-Q2y5uMm2RpF2D3Pz-lTmu50pmT5JtmYdkfnW-RrRss4pzo6CsZmMcMsAZ1FCmHj0a8fP7HLPEU3l7ODdK6_RKxwBDqG67A46GyeehrRmBE9vDPafntJRzT3oT6huRDmJtkfv_v8ZlJ0jRYKCyqJZ7sM24ZVTuqaW6aFLV0ZTOuCDKJ2vAzCSLCoQ6dNhYAytRGN01bWuhWydewWWY-L6O8Q6n2rK1cKab3kQ2lNEIKD2Lk0MoRQDcjz5Ywr26GQYzOMI5XxkysFwlFJOAPyuGc9ztAbf2N6hmJTqI7wHau7qgL4GwS2UiOIoBqsJgbO7RVOUCO7Sl4KXnVqfKJwPybAxQ_ZgDzqyTgSr6ZFvzgDHia5kBBF8gG5nddJ_7usYgyGA6VdWUE9A4J7r1Li7DCBfLeshVi4gflKa-3fM6Amr6fp4e7_sz4kG3tvx-rT-92P98jVClMIiPJbb5P10-9n_j7EWafmQdKn32WfJAY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+and+denoising+in+real-time+functional+magnetic+resonance+imaging+neurofeedback%3A+A+methods+review&rft.jtitle=Human+brain+mapping&rft.au=Heunis%2C+Stephan&rft.au=Lamerichs%2C+Rolf&rft.au=Zinger%2C+Svitlana&rft.au=Caballero-Gaudes%2C+Cesar&rft.date=2020-08-15&rft.eissn=1097-0193&rft.volume=41&rft.issue=12&rft.spage=3439&rft_id=info:doi/10.1002%2Fhbm.25010&rft_id=info%3Apmid%2F32333624&rft.externalDocID=32333624 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |