Closed-loop control of targeted ultrasound drug delivery across the blood–brain/tumor barriers in a rat glioma model
Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood–brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatm...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 48; pp. E10281 - E10290 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
28.11.2017
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood–brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies. |
---|---|
AbstractList | Focused ultrasound is currently the only method of reversible blood–brain barrier disruption for targeted drug delivery without incision or radiation. A significant challenge for its clinical translation is a lack of reliable real-time treatment control. Here a closed-loop, real-time control paradigm is shown capable of sustaining stable microbubble oscillations at a preset level while minimizing microbubble behavior that may result in vascular damage. Tested at clinically relevant frequency in healthy and tumor-bearing rats, our approach enables targeted delivery of predefined drug concentrations within a therapeutically effective range in both normal tissue and glioma, while maintaining a safe exposure level. It can be readily implemented clinically for delivering chemotherapeutics or other agents and potentially applied to other cavitation-enhanced ultrasound therapies.
Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood–brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies. Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies. Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies. |
Author | Alexander, Phillip M. Sun, Tao Power, Chanikarn Sutton, Jonathan T. Zhang, Yongzhi Aryal, Muna Miller, Eric L. McDannold, Nathan J. Vykhodtseva, Natalia |
Author_xml | – sequence: 1 givenname: Tao surname: Sun fullname: Sun, Tao organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 – sequence: 2 givenname: Yongzhi surname: Zhang fullname: Zhang, Yongzhi organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 – sequence: 3 givenname: Chanikarn surname: Power fullname: Power, Chanikarn organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 – sequence: 4 givenname: Phillip M. surname: Alexander fullname: Alexander, Phillip M. organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 – sequence: 5 givenname: Jonathan T. surname: Sutton fullname: Sutton, Jonathan T. organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 – sequence: 6 givenname: Muna surname: Aryal fullname: Aryal, Muna organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 – sequence: 7 givenname: Natalia surname: Vykhodtseva fullname: Vykhodtseva, Natalia organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 – sequence: 8 givenname: Eric L. surname: Miller fullname: Miller, Eric L. organization: Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155 – sequence: 9 givenname: Nathan J. surname: McDannold fullname: McDannold, Nathan J. organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29133392$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtuFDEYhS0URC5QU4Es0dBM1pfxzLhBQituUiSa9NY_tmfjlcdebM9K6XgH3pAnwcuGBFJQufD3HR37nKOTEINF6CUll5T0fLULkC9pTzlnA6XtE3RGiaRN10pygs4IYX0ztKw9Rec5bwkhUgzkGTplshpcsjO0X_uYrWl8jDusYygpehwnXCBtbLEGL74kyHEJBpu0bLCx3u1tusWgU8wZlxuLx2qbn99_jAlcWJVljgmPkJKzKWMXMOAEBW-8izPgOdaI5-jpBD7bF3fnBbr--OF6_bm5-vrpy_r9VaMFkaWZJtCCE6E7PWimZdd2YgDZGmIsFYZIraE3gnAGrNNyGqEj4ySIrfo4cn6B3h1jd8s4W6NtfR94tUtuhnSrIjj1701wN2oT90r0VPR9WwPe3gWk-G2xuajZZW29h2DjkhWtlVjPCKcVffMI3cYlhfq6Sg2M9kJ0slKv_250X-XPIhVYHYHf35vsdI9Qog6bq8Pm6mHzaohHhnYFijuMCc7_x3t19La5xPTQpGsHwQbOfwEfjr5I |
CitedBy_id | crossref_primary_10_1109_TUFFC_2021_3062357 crossref_primary_10_1126_sciadv_abf7390 crossref_primary_10_1121_10_0002096 crossref_primary_10_1002_mp_14093 crossref_primary_10_1038_s41467_021_22743_7 crossref_primary_10_1007_s12017_021_08681_z crossref_primary_10_1016_j_ultsonch_2021_105882 crossref_primary_10_34133_2022_9807347 crossref_primary_10_1016_j_jconrel_2021_06_037 crossref_primary_10_3389_fnins_2020_00675 crossref_primary_10_1172_jci_insight_132880 crossref_primary_10_1088_1361_6560_aafaa5 crossref_primary_10_1016_j_jconrel_2024_06_036 crossref_primary_10_1016_j_ijsolstr_2021_111387 crossref_primary_10_1016_j_ultrasmedbio_2018_10_035 crossref_primary_10_1080_10717544_2018_1561765 crossref_primary_10_1016_j_jconrel_2025_02_018 crossref_primary_10_1109_TASE_2023_3259905 crossref_primary_10_1016_j_ultsonch_2023_106291 crossref_primary_10_1038_s41598_020_73312_9 crossref_primary_10_1016_j_ultras_2019_106030 crossref_primary_10_1002_btm2_10408 crossref_primary_10_1016_j_jconrel_2025_113631 crossref_primary_10_1080_17425247_2018_1547279 crossref_primary_10_1088_1361_6560_ad8334 crossref_primary_10_1016_j_ultrasmedbio_2020_01_002 crossref_primary_10_3390_pharmaceutics13071084 crossref_primary_10_3390_pharmaceutics14122607 crossref_primary_10_1016_j_addr_2022_114539 crossref_primary_10_1016_j_ultsonch_2023_106346 crossref_primary_10_1002_jev2_12508 crossref_primary_10_1038_s41598_019_51785_7 crossref_primary_10_1016_j_ultrasmedbio_2020_01_009 crossref_primary_10_1109_TUFFC_2020_3001848 crossref_primary_10_1038_s41598_019_55629_2 crossref_primary_10_1038_s41598_019_39090_9 crossref_primary_10_1186_s43046_024_00240_4 crossref_primary_10_1016_j_jconrel_2019_08_023 crossref_primary_10_1016_j_jmps_2019_103859 crossref_primary_10_1073_pnas_2103280118 crossref_primary_10_3389_fnagi_2024_1353003 crossref_primary_10_1016_j_jconrel_2023_10_015 crossref_primary_10_1016_j_ultrasmedbio_2022_08_009 crossref_primary_10_1021_acsanm_3c02747 crossref_primary_10_1186_s12974_019_1543_z crossref_primary_10_1016_j_addr_2020_06_010 crossref_primary_10_1016_j_addr_2021_01_015 crossref_primary_10_1021_acs_chemrev_1c00622 crossref_primary_10_3389_fphy_2022_791145 crossref_primary_10_1088_1361_6560_ace23e crossref_primary_10_1002_mp_14390 crossref_primary_10_1016_j_addr_2021_02_015 crossref_primary_10_1371_journal_pone_0234182 crossref_primary_10_1208_s12249_021_02144_1 crossref_primary_10_1016_j_ultrasmedbio_2019_09_010 crossref_primary_10_1007_s13346_021_00963_0 crossref_primary_10_3390_pharmaceutics12111125 crossref_primary_10_3390_neurolint15010018 crossref_primary_10_1073_pnas_2218847120 crossref_primary_10_3171_2017_11_FOCUS17705 crossref_primary_10_1016_j_ultrasmedbio_2019_09_011 crossref_primary_10_1016_j_neuroimage_2019_01_037 crossref_primary_10_1259_bjr_20180601 crossref_primary_10_1016_j_device_2023_100092 crossref_primary_10_1002_adem_202100972 crossref_primary_10_1016_j_ultrasmedbio_2021_05_010 crossref_primary_10_1016_j_jconrel_2023_11_037 crossref_primary_10_1016_j_ultsonch_2019_02_020 crossref_primary_10_1016_j_ultsonch_2023_106685 crossref_primary_10_1016_j_jconrel_2020_10_004 crossref_primary_10_1007_s00018_021_03904_9 crossref_primary_10_1016_j_pacs_2020_100208 crossref_primary_10_1109_TBME_2024_3509533 crossref_primary_10_1016_j_ultrasmedbio_2019_04_005 crossref_primary_10_1016_j_jconrel_2023_02_009 crossref_primary_10_1186_s41231_022_00115_7 crossref_primary_10_1016_j_trechm_2020_02_009 crossref_primary_10_3390_pharmaceutics15020698 crossref_primary_10_1109_TBME_2022_3150781 crossref_primary_10_1109_TBME_2024_3466550 crossref_primary_10_1016_j_jconrel_2019_07_023 crossref_primary_10_1109_TBME_2019_2936972 crossref_primary_10_1038_s41598_021_94188_3 crossref_primary_10_1016_j_ultrasmedbio_2019_04_010 crossref_primary_10_1038_s41598_020_64440_3 crossref_primary_10_1038_s41598_020_65617_6 crossref_primary_10_1109_TUFFC_2020_3032441 crossref_primary_10_1159_000512111 crossref_primary_10_1038_s41598_020_66994_8 crossref_primary_10_1016_j_eng_2024_09_024 crossref_primary_10_3390_pharmaceutics16111383 crossref_primary_10_1063_5_0131930 crossref_primary_10_1109_TBME_2022_3170832 crossref_primary_10_1088_1361_6560_ad84b4 crossref_primary_10_1002_adfm_202412344 crossref_primary_10_1021_acsanm_0c02297 crossref_primary_10_3390_s23031369 crossref_primary_10_1121_10_0017836 crossref_primary_10_1088_1361_6560_aab05c crossref_primary_10_1007_s10483_020_2656_8 crossref_primary_10_1038_s41598_018_34494_5 crossref_primary_10_1016_j_addr_2024_115275 crossref_primary_10_1038_s42003_022_03881_0 crossref_primary_10_1021_acs_langmuir_8b03779 crossref_primary_10_1016_j_jconrel_2020_05_020 crossref_primary_10_1109_TBME_2021_3132014 crossref_primary_10_1093_ons_opz374 crossref_primary_10_1146_annurev_bioeng_062117_121238 crossref_primary_10_1016_j_jconrel_2020_05_040 crossref_primary_10_1016_j_jconrel_2022_03_035 crossref_primary_10_1016_j_trecan_2019_06_003 crossref_primary_10_1002_admi_201800968 crossref_primary_10_1088_1361_6560_ad5b47 crossref_primary_10_2176_nmc_ra_2021_0187 crossref_primary_10_1038_s41598_022_20568_y crossref_primary_10_1109_TBME_2020_3047575 crossref_primary_10_1016_j_ultrasmedbio_2018_06_005 crossref_primary_10_1109_TBME_2018_2882337 crossref_primary_10_1038_s41598_024_55442_6 crossref_primary_10_1063_1_5144617 crossref_primary_10_1002_adhm_202303289 crossref_primary_10_1016_j_ultsonch_2024_106760 crossref_primary_10_1038_s41598_018_30825_8 crossref_primary_10_1016_j_jconrel_2021_07_042 crossref_primary_10_1073_pnas_1912012117 crossref_primary_10_1038_s41598_020_76259_z crossref_primary_10_1109_TUFFC_2020_2964786 crossref_primary_10_1126_sciadv_add2288 crossref_primary_10_1016_j_jconrel_2018_11_028 crossref_primary_10_1038_s41598_021_83874_x crossref_primary_10_1021_acsbiomaterials_1c00587 crossref_primary_10_1038_s41467_019_13198_y crossref_primary_10_1016_j_ultrasmedbio_2021_06_012 crossref_primary_10_1080_17425247_2019_1567490 crossref_primary_10_34133_2022_9867230 crossref_primary_10_1016_j_nantod_2021_101127 crossref_primary_10_1016_j_ultrasmedbio_2021_03_007 crossref_primary_10_1038_s41598_025_85811_8 crossref_primary_10_31728_jnn_2019_00046 crossref_primary_10_1021_acsami_8b16737 crossref_primary_10_1121_1_5045328 crossref_primary_10_1248_bpb_b21_00453 crossref_primary_10_1016_j_inoche_2024_113765 crossref_primary_10_1186_s12951_022_01638_9 crossref_primary_10_1016_j_celbio_2025_100016 crossref_primary_10_1109_TUFFC_2021_3125670 crossref_primary_10_1002_advs_202304389 crossref_primary_10_1016_j_ultrasmedbio_2019_07_004 crossref_primary_10_3390_pharmaceutics16101289 crossref_primary_10_1002_aisy_202100279 crossref_primary_10_1016_j_xphs_2020_06_008 crossref_primary_10_1021_acsmaterialslett_1c00296 crossref_primary_10_3389_fnana_2024_1469250 crossref_primary_10_1016_j_jmmm_2021_168178 crossref_primary_10_3390_cancers14071627 crossref_primary_10_1016_j_jconrel_2023_04_041 crossref_primary_10_1002_mp_16248 crossref_primary_10_1016_j_wneu_2018_05_239 crossref_primary_10_1016_j_jconrel_2025_01_056 crossref_primary_10_1016_j_jconrel_2024_01_034 crossref_primary_10_2147_IJN_S374247 crossref_primary_10_1016_j_addr_2023_115145 crossref_primary_10_1088_1741_2552_ad9958 crossref_primary_10_1088_1361_6560_aad0c2 crossref_primary_10_1109_TUFFC_2021_3091950 crossref_primary_10_1126_sciadv_adj7686 crossref_primary_10_3389_fonc_2022_1072780 crossref_primary_10_1007_s13346_022_01234_2 crossref_primary_10_1038_s41568_019_0205_x crossref_primary_10_1016_j_jconrel_2021_09_014 crossref_primary_10_1002_mds_27675 crossref_primary_10_1002_smsc_202300300 crossref_primary_10_1109_TUFFC_2020_3011657 |
Cites_doi | 10.1016/j.ultrasmedbio.2011.08.001 10.1056/NEJMoa1300962 10.1007/s11060-009-9875-7 10.1016/j.addr.2014.01.008 10.1038/gt.2014.91 10.1088/0031-9155/60/23/9079 10.1109/58.656630 10.1016/j.ultrasmedbio.2007.10.016 10.1038/sj.jcbfm.9600336 10.1073/pnas.1614777114 10.1016/j.ultrasmedbio.2012.04.015 10.1371/journal.pone.0022598 10.1126/scitranslmed.aaf6086 10.1038/srep45657 10.1016/j.ultrasmedbio.2016.09.019 10.1016/j.jconrel.2015.02.033 10.1016/S0301-5629(03)00013-9 10.1121/1.4707512 10.1109/TBME.2014.2300838 10.1161/STROKEAHA.115.012056 10.1016/j.ultrasmedbio.2005.11.007 10.1371/journal.pone.0045783 10.1148/radiol.2401050717 10.1088/0031-9155/51/4/003 10.1016/j.jconrel.2013.04.007 10.1088/0031-9155/55/18/001 10.1016/j.ultrasmedbio.2009.04.023 10.1088/0031-9155/50/8/013 10.1148/radiol.2411051170 10.1016/j.jconrel.2015.12.034 10.1259/bjr/56737365 10.1118/1.3553405 10.1016/j.jconrel.2016.05.052 10.1063/1.5000896 10.1016/0041-624X(84)90057-X 10.1073/pnas.1208198109 10.1016/j.jconrel.2010.04.010 10.1088/0031-9155/61/7/2926 10.1016/j.ultrasmedbio.2010.02.009 10.1172/JCI83312 10.1148/radiol.14140245 10.1016/j.ultrasmedbio.2015.09.017 10.1001/archneurpsyc.1956.02330290001001 10.1088/0031-9155/60/6/2511 10.1121/1.4843175 10.1158/0008-5472.CAN-12-0128 10.1148/radiol.11111417 10.1148/radiol.2202001804 10.1088/0031-9155/58/1/127 10.1021/cn300191b 10.1088/0031-9155/58/14/4749 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Nov 28, 2017 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Nov 28, 2017 – notice: 2017 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1713328114 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Closed-loop control of ultrasound drug delivery |
EISSN | 1091-6490 |
EndPage | E10290 |
ExternalDocumentID | PMC5715774 29133392 10_1073_pnas_1713328114 26485283 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01 CA174645 – fundername: Office of Extramural Research, National Institutes of Health (OER) grantid: P01 CA174645 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-ffac5305c6c8c2c964658a94d0de15d09cca7d5032a26c9fba60bf50ec50bb33 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:02:02 EDT 2025 Thu Jul 10 17:29:58 EDT 2025 Mon Jun 30 10:23:05 EDT 2025 Thu Apr 03 07:07:09 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Tue Jul 01 03:19:43 EDT 2025 Fri May 30 11:47:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Keywords | acoustic cavitation blood–brain barrier drug delivery focused ultrasound treatment control |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-ffac5305c6c8c2c964658a94d0de15d09cca7d5032a26c9fba60bf50ec50bb33 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: T.S. and N.J.M. designed research; T.S., Y.Z., C.P., P.M.A., J.T.S., and M.A. performed research; T.S. and N.V. analyzed data; and T.S., J.T.S., N.V., E.L.M., and N.J.M. wrote the paper. Edited by Robert Langer, Massachusetts Institute of Technology, Cambridge, MA, and approved October 16, 2017 (received for review July 27, 2017) |
OpenAccessLink | https://www.pnas.org/content/pnas/114/48/E10281.full.pdf |
PMID | 29133392 |
PQID | 1982175569 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5715774 proquest_miscellaneous_1964272031 proquest_journals_1982175569 pubmed_primary_29133392 crossref_primary_10_1073_pnas_1713328114 crossref_citationtrail_10_1073_pnas_1713328114 jstor_primary_26485283 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-28 |
PublicationDateYYYYMMDD | 2017-11-28 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 23603615 - J Control Release. 2013 Jul 10;169(1-2):103-11 27235980 - J Control Release. 2016 Aug 10;235:72-81 25234874 - J Acoust Soc Am. 2014 Feb;135(2):646-53 19632760 - Ultrasound Med Biol. 2009 Oct;35(10):1748-55 16990673 - Radiology. 2006 Oct;241(1):95-106 18207311 - Ultrasound Med Biol. 2008 May;34(5):834-40 26562661 - Phys Med Biol. 2015 Dec 7;60(23 ):9079-94 11526261 - Radiology. 2001 Sep;220(3):640-6 26988240 - Phys Med Biol. 2016 Apr 7;61(7):2926-46 26603628 - Ultrasound Med Biol. 2016 Feb;42(2):528-538 16530103 - Ultrasound Med Biol. 2006 Mar;32(3):439-47 23379618 - ACS Chem Neurosci. 2013 Apr 17;4(4):519-26 16467579 - Phys Med Biol. 2006 Feb 21;51(4):793-807 24462453 - Adv Drug Deliv Rev. 2014 Jun;72:94-109 23788054 - Phys Med Biol. 2013 Jul 21;58(14 ):4749-61 19381449 - J Neurooncol. 2009 Sep;94(3):299-312 22818878 - Ultrasound Med Biol. 2012 Oct;38(10):1716-25 15815098 - Phys Med Biol. 2005 Apr 21;50(8):1821-36 20420973 - Ultrasound Med Biol. 2010 May;36(5):840-52 22712910 - J Acoust Soc Am. 2012 Jun;131(6):4358-64 16793983 - Radiology. 2006 Jul;240(1):263-72 26595815 - J Clin Invest. 2016 Jan;126(1):99-111 21799913 - PLoS One. 2011;6(7):e22598 27048701 - Stroke. 2016 May;47(5):1344-53 24658252 - IEEE Trans Biomed Eng. 2014 Apr;61(4):1285-94 21626921 - Med Phys. 2011 Apr;38(4):1877-87 12754072 - Ultrasound Med Biol. 2003 May;29(5):725-37 26732553 - J Control Release. 2016 Feb 10;223:109-117 23029240 - PLoS One. 2012;7(9):e45783 25222068 - Radiology. 2014 Dec;273(3):736-45 25724272 - J Control Release. 2015 Apr 28;204:60-9 20398711 - J Control Release. 2010 Jul 1;145(1):40-8 23221109 - Phys Med Biol. 2013 Jan 7;58(1):127-44 27994152 - Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):E75-E84 25354683 - Gene Ther. 2015 Jan;22(1):104-10 20720286 - Phys Med Biol. 2010 Sep 21;55(18):5251-67 27789044 - Ultrasound Med Biol. 2017 Feb;43(2):469-475 28374753 - Sci Rep. 2017 Apr 04;7:45657 22552291 - Cancer Res. 2012 Jul 15;72(14):3652-63 13371961 - AMA Arch Neurol Psychiatry. 1956 Nov;76(5):457-67 27306666 - Sci Transl Med. 2016 Jun 15;8(343 ):343re2 23944301 - N Engl J Med. 2013 Aug 15;369(7):640-8 16685254 - J Cereb Blood Flow Metab. 2007 Feb;27(2):393-403 22700259 - Br J Radiol. 2012 Oct;85(1018):1363-70 23012425 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16486-91 21925788 - Ultrasound Med Biol. 2011 Nov;37(11):1930-7 25746014 - Phys Med Biol. 2015 Mar 21;60(6):2511-27 22332065 - Radiology. 2012 Apr;263(1):96-106 |
References_xml | – ident: e_1_3_3_49_2 doi: 10.1016/j.ultrasmedbio.2011.08.001 – ident: e_1_3_3_1_2 doi: 10.1056/NEJMoa1300962 – ident: e_1_3_3_47_2 doi: 10.1007/s11060-009-9875-7 – ident: e_1_3_3_7_2 doi: 10.1016/j.addr.2014.01.008 – ident: e_1_3_3_13_2 doi: 10.1038/gt.2014.91 – ident: e_1_3_3_21_2 doi: 10.1088/0031-9155/60/23/9079 – ident: e_1_3_3_32_2 doi: 10.1109/58.656630 – ident: e_1_3_3_37_2 doi: 10.1016/j.ultrasmedbio.2007.10.016 – ident: e_1_3_3_44_2 doi: 10.1038/sj.jcbfm.9600336 – ident: e_1_3_3_45_2 doi: 10.1073/pnas.1614777114 – ident: e_1_3_3_48_2 doi: 10.1016/j.ultrasmedbio.2012.04.015 – ident: e_1_3_3_18_2 doi: 10.1371/journal.pone.0022598 – ident: e_1_3_3_19_2 doi: 10.1126/scitranslmed.aaf6086 – ident: e_1_3_3_46_2 doi: 10.1038/srep45657 – ident: e_1_3_3_16_2 doi: 10.1016/j.ultrasmedbio.2016.09.019 – ident: e_1_3_3_36_2 doi: 10.1016/j.jconrel.2015.02.033 – ident: e_1_3_3_28_2 doi: 10.1016/S0301-5629(03)00013-9 – ident: e_1_3_3_31_2 doi: 10.1121/1.4707512 – ident: e_1_3_3_43_2 doi: 10.1109/TBME.2014.2300838 – ident: e_1_3_3_9_2 doi: 10.1161/STROKEAHA.115.012056 – ident: e_1_3_3_50_2 doi: 10.1016/j.ultrasmedbio.2005.11.007 – ident: e_1_3_3_26_2 doi: 10.1371/journal.pone.0045783 – ident: e_1_3_3_2_2 doi: 10.1148/radiol.2401050717 – ident: e_1_3_3_24_2 doi: 10.1088/0031-9155/51/4/003 – ident: e_1_3_3_11_2 doi: 10.1016/j.jconrel.2013.04.007 – ident: e_1_3_3_38_2 doi: 10.1088/0031-9155/55/18/001 – ident: e_1_3_3_51_2 doi: 10.1016/j.ultrasmedbio.2009.04.023 – ident: e_1_3_3_39_2 doi: 10.1088/0031-9155/50/8/013 – ident: e_1_3_3_20_2 – ident: e_1_3_3_10_2 doi: 10.1148/radiol.2411051170 – ident: e_1_3_3_15_2 doi: 10.1016/j.jconrel.2015.12.034 – ident: e_1_3_3_4_2 doi: 10.1259/bjr/56737365 – ident: e_1_3_3_34_2 doi: 10.1118/1.3553405 – ident: e_1_3_3_14_2 doi: 10.1016/j.jconrel.2016.05.052 – ident: e_1_3_3_35_2 doi: 10.1063/1.5000896 – ident: e_1_3_3_22_2 doi: 10.1016/0041-624X(84)90057-X – ident: e_1_3_3_8_2 doi: 10.1073/pnas.1208198109 – ident: e_1_3_3_29_2 doi: 10.1016/j.jconrel.2010.04.010 – ident: e_1_3_3_27_2 doi: 10.1088/0031-9155/61/7/2926 – ident: e_1_3_3_25_2 doi: 10.1016/j.ultrasmedbio.2010.02.009 – ident: e_1_3_3_3_2 doi: 10.1172/JCI83312 – ident: e_1_3_3_12_2 doi: 10.1148/radiol.14140245 – ident: e_1_3_3_33_2 doi: 10.1016/j.ultrasmedbio.2015.09.017 – ident: e_1_3_3_52_2 doi: 10.1001/archneurpsyc.1956.02330290001001 – ident: e_1_3_3_41_2 doi: 10.1088/0031-9155/60/6/2511 – ident: e_1_3_3_40_2 doi: 10.1121/1.4843175 – ident: e_1_3_3_17_2 doi: 10.1158/0008-5472.CAN-12-0128 – ident: e_1_3_3_30_2 doi: 10.1148/radiol.11111417 – ident: e_1_3_3_5_2 doi: 10.1148/radiol.2202001804 – ident: e_1_3_3_23_2 doi: 10.1088/0031-9155/58/1/127 – ident: e_1_3_3_6_2 doi: 10.1021/cn300191b – ident: e_1_3_3_42_2 doi: 10.1088/0031-9155/58/14/4749 – reference: 23944301 - N Engl J Med. 2013 Aug 15;369(7):640-8 – reference: 15815098 - Phys Med Biol. 2005 Apr 21;50(8):1821-36 – reference: 21925788 - Ultrasound Med Biol. 2011 Nov;37(11):1930-7 – reference: 26988240 - Phys Med Biol. 2016 Apr 7;61(7):2926-46 – reference: 23012425 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16486-91 – reference: 20398711 - J Control Release. 2010 Jul 1;145(1):40-8 – reference: 23029240 - PLoS One. 2012;7(9):e45783 – reference: 22552291 - Cancer Res. 2012 Jul 15;72(14):3652-63 – reference: 13371961 - AMA Arch Neurol Psychiatry. 1956 Nov;76(5):457-67 – reference: 24462453 - Adv Drug Deliv Rev. 2014 Jun;72:94-109 – reference: 19381449 - J Neurooncol. 2009 Sep;94(3):299-312 – reference: 26595815 - J Clin Invest. 2016 Jan;126(1):99-111 – reference: 27306666 - Sci Transl Med. 2016 Jun 15;8(343 ):343re2 – reference: 16685254 - J Cereb Blood Flow Metab. 2007 Feb;27(2):393-403 – reference: 23603615 - J Control Release. 2013 Jul 10;169(1-2):103-11 – reference: 25746014 - Phys Med Biol. 2015 Mar 21;60(6):2511-27 – reference: 23788054 - Phys Med Biol. 2013 Jul 21;58(14 ):4749-61 – reference: 22332065 - Radiology. 2012 Apr;263(1):96-106 – reference: 23379618 - ACS Chem Neurosci. 2013 Apr 17;4(4):519-26 – reference: 27048701 - Stroke. 2016 May;47(5):1344-53 – reference: 24658252 - IEEE Trans Biomed Eng. 2014 Apr;61(4):1285-94 – reference: 23221109 - Phys Med Biol. 2013 Jan 7;58(1):127-44 – reference: 26603628 - Ultrasound Med Biol. 2016 Feb;42(2):528-538 – reference: 25222068 - Radiology. 2014 Dec;273(3):736-45 – reference: 20720286 - Phys Med Biol. 2010 Sep 21;55(18):5251-67 – reference: 27235980 - J Control Release. 2016 Aug 10;235:72-81 – reference: 25234874 - J Acoust Soc Am. 2014 Feb;135(2):646-53 – reference: 21799913 - PLoS One. 2011;6(7):e22598 – reference: 28374753 - Sci Rep. 2017 Apr 04;7:45657 – reference: 16530103 - Ultrasound Med Biol. 2006 Mar;32(3):439-47 – reference: 22700259 - Br J Radiol. 2012 Oct;85(1018):1363-70 – reference: 25354683 - Gene Ther. 2015 Jan;22(1):104-10 – reference: 25724272 - J Control Release. 2015 Apr 28;204:60-9 – reference: 11526261 - Radiology. 2001 Sep;220(3):640-6 – reference: 16467579 - Phys Med Biol. 2006 Feb 21;51(4):793-807 – reference: 18207311 - Ultrasound Med Biol. 2008 May;34(5):834-40 – reference: 22818878 - Ultrasound Med Biol. 2012 Oct;38(10):1716-25 – reference: 27789044 - Ultrasound Med Biol. 2017 Feb;43(2):469-475 – reference: 26732553 - J Control Release. 2016 Feb 10;223:109-117 – reference: 21626921 - Med Phys. 2011 Apr;38(4):1877-87 – reference: 19632760 - Ultrasound Med Biol. 2009 Oct;35(10):1748-55 – reference: 16990673 - Radiology. 2006 Oct;241(1):95-106 – reference: 12754072 - Ultrasound Med Biol. 2003 May;29(5):725-37 – reference: 26562661 - Phys Med Biol. 2015 Dec 7;60(23 ):9079-94 – reference: 16793983 - Radiology. 2006 Jul;240(1):263-72 – reference: 22712910 - J Acoust Soc Am. 2012 Jun;131(6):4358-64 – reference: 27994152 - Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):E75-E84 – reference: 20420973 - Ultrasound Med Biol. 2010 May;36(5):840-52 |
SSID | ssj0009580 |
Score | 2.6160052 |
Snippet | Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood–brain barrier (BBB) for treating... Focused ultrasound is currently the only method of reversible blood–brain barrier disruption for targeted drug delivery without incision or radiation. A... Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E10281 |
SubjectTerms | Biological Sciences Blood-brain barrier Cavitation Physical Sciences PNAS Plus Regression analysis Rodents Tumors Ultrasonic imaging |
Title | Closed-loop control of targeted ultrasound drug delivery across the blood–brain/tumor barriers in a rat glioma model |
URI | https://www.jstor.org/stable/26485283 https://www.ncbi.nlm.nih.gov/pubmed/29133392 https://www.proquest.com/docview/1982175569 https://www.proquest.com/docview/1964272031 https://pubmed.ncbi.nlm.nih.gov/PMC5715774 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FsmGDKFAwFDRILIosp36M7cyyqloqpEaVCFJYReNXatW1I8dGoiv-gW_jB_gS7rxsp00lYGNF9szY8j25j_G59yL03g_JhDGSWgAWahFGXIsGSWQlvPYmDfzQozx3-HwanH0hn-b-fDT6NWAttU00jm-25pX8j1ThHMiVZ8n-g2S7ReEE_Ab5whEkDMe_kvFxUa3TxCqqatVxzvk3f8HuBk-yLZqarXnjJDOp26WZpAWnYXw3mTCOwukUzHVNefCiWuwUnDbtNadxspo3tBOUWWYCVsxlkVfXTPbPGfq1F50dXGvWwVRvMx71SStKk6xNy7yY9i2QP7eyRzKr7uxjf63K5c1l3mlw3tRN0QTK_IrVHba7TB29TVTkK_N8PNzVAEvpODpLfFAUfOsjDtW5CyaWyCTscSo1ODhAVkBkD9JOxctEVYVlWdpTaewT7mE5A_vPT8jZd6wLqEPeErlk67HDg3uYqBbeLNnNWYO8aM4D9NCF6IU31vg4dwa1oCcyM0o9va44FXqHt9becJYkX3ZbJHSb0DvwkGZP0GMV2uAjidNdNErLp2hXv098oCqcf3iGvg2AixVwcZVhDVzcAxdz4GINXCyBiwFfWAD394-fArKHArBYAxbnJWYYAIslYLEA7HM0Oz2ZHZ9ZqgGIFYMf21hZxmIfDFIcxJPYjWlAwF9mlCR2kjp-YlNQP2Hi257L3CCmWcQCO8p8O4XpUeR5e2inrMr0JcIeSSI6iTOQCoUQPYnCgPCdITdObeYQZqCxftGLWBXH5z1aioUgaYTegktm0UvGQAfdhJWsC3P_0D0huW6choeB9rUoF0qrwDw6ccGl9wNqoHfdZdD5_EMeK9Oq5WMCIvgTjoFeSMn3i1O4LwQ9Bgo3MNEN4PXkN6-U-aWoK--Hjg_R4Kv7nvc1etT_VffRTlO36RtwyZvorQD4Hxel5aw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Closed-loop+control+of+targeted+ultrasound+drug+delivery+across+the+blood%E2%80%93brain%2Ftumor+barriers+in+a+rat+glioma+model&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sun%2C+Tao&rft.au=Zhang%2C+Yongzhi&rft.au=Power%2C+Chanikarn&rft.au=Alexander%2C+Phillip+M.&rft.date=2017-11-28&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=48&rft.spage=E10281&rft.epage=E10290&rft_id=info:doi/10.1073%2Fpnas.1713328114&rft.externalDocID=26485283 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |