Closed-loop control of targeted ultrasound drug delivery across the blood–brain/tumor barriers in a rat glioma model

Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood–brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatm...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 48; pp. E10281 - E10290
Main Authors Sun, Tao, Zhang, Yongzhi, Power, Chanikarn, Alexander, Phillip M., Sutton, Jonathan T., Aryal, Muna, Vykhodtseva, Natalia, Miller, Eric L., McDannold, Nathan J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 28.11.2017
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood–brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.
AbstractList Focused ultrasound is currently the only method of reversible blood–brain barrier disruption for targeted drug delivery without incision or radiation. A significant challenge for its clinical translation is a lack of reliable real-time treatment control. Here a closed-loop, real-time control paradigm is shown capable of sustaining stable microbubble oscillations at a preset level while minimizing microbubble behavior that may result in vascular damage. Tested at clinically relevant frequency in healthy and tumor-bearing rats, our approach enables targeted delivery of predefined drug concentrations within a therapeutically effective range in both normal tissue and glioma, while maintaining a safe exposure level. It can be readily implemented clinically for delivering chemotherapeutics or other agents and potentially applied to other cavitation-enhanced ultrasound therapies. Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood–brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.
Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.
Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.
Author Alexander, Phillip M.
Sun, Tao
Power, Chanikarn
Sutton, Jonathan T.
Zhang, Yongzhi
Aryal, Muna
Miller, Eric L.
McDannold, Nathan J.
Vykhodtseva, Natalia
Author_xml – sequence: 1
  givenname: Tao
  surname: Sun
  fullname: Sun, Tao
  organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
– sequence: 2
  givenname: Yongzhi
  surname: Zhang
  fullname: Zhang, Yongzhi
  organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
– sequence: 3
  givenname: Chanikarn
  surname: Power
  fullname: Power, Chanikarn
  organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
– sequence: 4
  givenname: Phillip M.
  surname: Alexander
  fullname: Alexander, Phillip M.
  organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
– sequence: 5
  givenname: Jonathan T.
  surname: Sutton
  fullname: Sutton, Jonathan T.
  organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
– sequence: 6
  givenname: Muna
  surname: Aryal
  fullname: Aryal, Muna
  organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
– sequence: 7
  givenname: Natalia
  surname: Vykhodtseva
  fullname: Vykhodtseva, Natalia
  organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
– sequence: 8
  givenname: Eric L.
  surname: Miller
  fullname: Miller, Eric L.
  organization: Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155
– sequence: 9
  givenname: Nathan J.
  surname: McDannold
  fullname: McDannold, Nathan J.
  organization: Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29133392$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtuFDEYhS0URC5QU4Es0dBM1pfxzLhBQituUiSa9NY_tmfjlcdebM9K6XgH3pAnwcuGBFJQufD3HR37nKOTEINF6CUll5T0fLULkC9pTzlnA6XtE3RGiaRN10pygs4IYX0ztKw9Rec5bwkhUgzkGTplshpcsjO0X_uYrWl8jDusYygpehwnXCBtbLEGL74kyHEJBpu0bLCx3u1tusWgU8wZlxuLx2qbn99_jAlcWJVljgmPkJKzKWMXMOAEBW-8izPgOdaI5-jpBD7bF3fnBbr--OF6_bm5-vrpy_r9VaMFkaWZJtCCE6E7PWimZdd2YgDZGmIsFYZIraE3gnAGrNNyGqEj4ySIrfo4cn6B3h1jd8s4W6NtfR94tUtuhnSrIjj1701wN2oT90r0VPR9WwPe3gWk-G2xuajZZW29h2DjkhWtlVjPCKcVffMI3cYlhfq6Sg2M9kJ0slKv_250X-XPIhVYHYHf35vsdI9Qog6bq8Pm6mHzaohHhnYFijuMCc7_x3t19La5xPTQpGsHwQbOfwEfjr5I
CitedBy_id crossref_primary_10_1109_TUFFC_2021_3062357
crossref_primary_10_1126_sciadv_abf7390
crossref_primary_10_1121_10_0002096
crossref_primary_10_1002_mp_14093
crossref_primary_10_1038_s41467_021_22743_7
crossref_primary_10_1007_s12017_021_08681_z
crossref_primary_10_1016_j_ultsonch_2021_105882
crossref_primary_10_34133_2022_9807347
crossref_primary_10_1016_j_jconrel_2021_06_037
crossref_primary_10_3389_fnins_2020_00675
crossref_primary_10_1172_jci_insight_132880
crossref_primary_10_1088_1361_6560_aafaa5
crossref_primary_10_1016_j_jconrel_2024_06_036
crossref_primary_10_1016_j_ijsolstr_2021_111387
crossref_primary_10_1016_j_ultrasmedbio_2018_10_035
crossref_primary_10_1080_10717544_2018_1561765
crossref_primary_10_1016_j_jconrel_2025_02_018
crossref_primary_10_1109_TASE_2023_3259905
crossref_primary_10_1016_j_ultsonch_2023_106291
crossref_primary_10_1038_s41598_020_73312_9
crossref_primary_10_1016_j_ultras_2019_106030
crossref_primary_10_1002_btm2_10408
crossref_primary_10_1016_j_jconrel_2025_113631
crossref_primary_10_1080_17425247_2018_1547279
crossref_primary_10_1088_1361_6560_ad8334
crossref_primary_10_1016_j_ultrasmedbio_2020_01_002
crossref_primary_10_3390_pharmaceutics13071084
crossref_primary_10_3390_pharmaceutics14122607
crossref_primary_10_1016_j_addr_2022_114539
crossref_primary_10_1016_j_ultsonch_2023_106346
crossref_primary_10_1002_jev2_12508
crossref_primary_10_1038_s41598_019_51785_7
crossref_primary_10_1016_j_ultrasmedbio_2020_01_009
crossref_primary_10_1109_TUFFC_2020_3001848
crossref_primary_10_1038_s41598_019_55629_2
crossref_primary_10_1038_s41598_019_39090_9
crossref_primary_10_1186_s43046_024_00240_4
crossref_primary_10_1016_j_jconrel_2019_08_023
crossref_primary_10_1016_j_jmps_2019_103859
crossref_primary_10_1073_pnas_2103280118
crossref_primary_10_3389_fnagi_2024_1353003
crossref_primary_10_1016_j_jconrel_2023_10_015
crossref_primary_10_1016_j_ultrasmedbio_2022_08_009
crossref_primary_10_1021_acsanm_3c02747
crossref_primary_10_1186_s12974_019_1543_z
crossref_primary_10_1016_j_addr_2020_06_010
crossref_primary_10_1016_j_addr_2021_01_015
crossref_primary_10_1021_acs_chemrev_1c00622
crossref_primary_10_3389_fphy_2022_791145
crossref_primary_10_1088_1361_6560_ace23e
crossref_primary_10_1002_mp_14390
crossref_primary_10_1016_j_addr_2021_02_015
crossref_primary_10_1371_journal_pone_0234182
crossref_primary_10_1208_s12249_021_02144_1
crossref_primary_10_1016_j_ultrasmedbio_2019_09_010
crossref_primary_10_1007_s13346_021_00963_0
crossref_primary_10_3390_pharmaceutics12111125
crossref_primary_10_3390_neurolint15010018
crossref_primary_10_1073_pnas_2218847120
crossref_primary_10_3171_2017_11_FOCUS17705
crossref_primary_10_1016_j_ultrasmedbio_2019_09_011
crossref_primary_10_1016_j_neuroimage_2019_01_037
crossref_primary_10_1259_bjr_20180601
crossref_primary_10_1016_j_device_2023_100092
crossref_primary_10_1002_adem_202100972
crossref_primary_10_1016_j_ultrasmedbio_2021_05_010
crossref_primary_10_1016_j_jconrel_2023_11_037
crossref_primary_10_1016_j_ultsonch_2019_02_020
crossref_primary_10_1016_j_ultsonch_2023_106685
crossref_primary_10_1016_j_jconrel_2020_10_004
crossref_primary_10_1007_s00018_021_03904_9
crossref_primary_10_1016_j_pacs_2020_100208
crossref_primary_10_1109_TBME_2024_3509533
crossref_primary_10_1016_j_ultrasmedbio_2019_04_005
crossref_primary_10_1016_j_jconrel_2023_02_009
crossref_primary_10_1186_s41231_022_00115_7
crossref_primary_10_1016_j_trechm_2020_02_009
crossref_primary_10_3390_pharmaceutics15020698
crossref_primary_10_1109_TBME_2022_3150781
crossref_primary_10_1109_TBME_2024_3466550
crossref_primary_10_1016_j_jconrel_2019_07_023
crossref_primary_10_1109_TBME_2019_2936972
crossref_primary_10_1038_s41598_021_94188_3
crossref_primary_10_1016_j_ultrasmedbio_2019_04_010
crossref_primary_10_1038_s41598_020_64440_3
crossref_primary_10_1038_s41598_020_65617_6
crossref_primary_10_1109_TUFFC_2020_3032441
crossref_primary_10_1159_000512111
crossref_primary_10_1038_s41598_020_66994_8
crossref_primary_10_1016_j_eng_2024_09_024
crossref_primary_10_3390_pharmaceutics16111383
crossref_primary_10_1063_5_0131930
crossref_primary_10_1109_TBME_2022_3170832
crossref_primary_10_1088_1361_6560_ad84b4
crossref_primary_10_1002_adfm_202412344
crossref_primary_10_1021_acsanm_0c02297
crossref_primary_10_3390_s23031369
crossref_primary_10_1121_10_0017836
crossref_primary_10_1088_1361_6560_aab05c
crossref_primary_10_1007_s10483_020_2656_8
crossref_primary_10_1038_s41598_018_34494_5
crossref_primary_10_1016_j_addr_2024_115275
crossref_primary_10_1038_s42003_022_03881_0
crossref_primary_10_1021_acs_langmuir_8b03779
crossref_primary_10_1016_j_jconrel_2020_05_020
crossref_primary_10_1109_TBME_2021_3132014
crossref_primary_10_1093_ons_opz374
crossref_primary_10_1146_annurev_bioeng_062117_121238
crossref_primary_10_1016_j_jconrel_2020_05_040
crossref_primary_10_1016_j_jconrel_2022_03_035
crossref_primary_10_1016_j_trecan_2019_06_003
crossref_primary_10_1002_admi_201800968
crossref_primary_10_1088_1361_6560_ad5b47
crossref_primary_10_2176_nmc_ra_2021_0187
crossref_primary_10_1038_s41598_022_20568_y
crossref_primary_10_1109_TBME_2020_3047575
crossref_primary_10_1016_j_ultrasmedbio_2018_06_005
crossref_primary_10_1109_TBME_2018_2882337
crossref_primary_10_1038_s41598_024_55442_6
crossref_primary_10_1063_1_5144617
crossref_primary_10_1002_adhm_202303289
crossref_primary_10_1016_j_ultsonch_2024_106760
crossref_primary_10_1038_s41598_018_30825_8
crossref_primary_10_1016_j_jconrel_2021_07_042
crossref_primary_10_1073_pnas_1912012117
crossref_primary_10_1038_s41598_020_76259_z
crossref_primary_10_1109_TUFFC_2020_2964786
crossref_primary_10_1126_sciadv_add2288
crossref_primary_10_1016_j_jconrel_2018_11_028
crossref_primary_10_1038_s41598_021_83874_x
crossref_primary_10_1021_acsbiomaterials_1c00587
crossref_primary_10_1038_s41467_019_13198_y
crossref_primary_10_1016_j_ultrasmedbio_2021_06_012
crossref_primary_10_1080_17425247_2019_1567490
crossref_primary_10_34133_2022_9867230
crossref_primary_10_1016_j_nantod_2021_101127
crossref_primary_10_1016_j_ultrasmedbio_2021_03_007
crossref_primary_10_1038_s41598_025_85811_8
crossref_primary_10_31728_jnn_2019_00046
crossref_primary_10_1021_acsami_8b16737
crossref_primary_10_1121_1_5045328
crossref_primary_10_1248_bpb_b21_00453
crossref_primary_10_1016_j_inoche_2024_113765
crossref_primary_10_1186_s12951_022_01638_9
crossref_primary_10_1016_j_celbio_2025_100016
crossref_primary_10_1109_TUFFC_2021_3125670
crossref_primary_10_1002_advs_202304389
crossref_primary_10_1016_j_ultrasmedbio_2019_07_004
crossref_primary_10_3390_pharmaceutics16101289
crossref_primary_10_1002_aisy_202100279
crossref_primary_10_1016_j_xphs_2020_06_008
crossref_primary_10_1021_acsmaterialslett_1c00296
crossref_primary_10_3389_fnana_2024_1469250
crossref_primary_10_1016_j_jmmm_2021_168178
crossref_primary_10_3390_cancers14071627
crossref_primary_10_1016_j_jconrel_2023_04_041
crossref_primary_10_1002_mp_16248
crossref_primary_10_1016_j_wneu_2018_05_239
crossref_primary_10_1016_j_jconrel_2025_01_056
crossref_primary_10_1016_j_jconrel_2024_01_034
crossref_primary_10_2147_IJN_S374247
crossref_primary_10_1016_j_addr_2023_115145
crossref_primary_10_1088_1741_2552_ad9958
crossref_primary_10_1088_1361_6560_aad0c2
crossref_primary_10_1109_TUFFC_2021_3091950
crossref_primary_10_1126_sciadv_adj7686
crossref_primary_10_3389_fonc_2022_1072780
crossref_primary_10_1007_s13346_022_01234_2
crossref_primary_10_1038_s41568_019_0205_x
crossref_primary_10_1016_j_jconrel_2021_09_014
crossref_primary_10_1002_mds_27675
crossref_primary_10_1002_smsc_202300300
crossref_primary_10_1109_TUFFC_2020_3011657
Cites_doi 10.1016/j.ultrasmedbio.2011.08.001
10.1056/NEJMoa1300962
10.1007/s11060-009-9875-7
10.1016/j.addr.2014.01.008
10.1038/gt.2014.91
10.1088/0031-9155/60/23/9079
10.1109/58.656630
10.1016/j.ultrasmedbio.2007.10.016
10.1038/sj.jcbfm.9600336
10.1073/pnas.1614777114
10.1016/j.ultrasmedbio.2012.04.015
10.1371/journal.pone.0022598
10.1126/scitranslmed.aaf6086
10.1038/srep45657
10.1016/j.ultrasmedbio.2016.09.019
10.1016/j.jconrel.2015.02.033
10.1016/S0301-5629(03)00013-9
10.1121/1.4707512
10.1109/TBME.2014.2300838
10.1161/STROKEAHA.115.012056
10.1016/j.ultrasmedbio.2005.11.007
10.1371/journal.pone.0045783
10.1148/radiol.2401050717
10.1088/0031-9155/51/4/003
10.1016/j.jconrel.2013.04.007
10.1088/0031-9155/55/18/001
10.1016/j.ultrasmedbio.2009.04.023
10.1088/0031-9155/50/8/013
10.1148/radiol.2411051170
10.1016/j.jconrel.2015.12.034
10.1259/bjr/56737365
10.1118/1.3553405
10.1016/j.jconrel.2016.05.052
10.1063/1.5000896
10.1016/0041-624X(84)90057-X
10.1073/pnas.1208198109
10.1016/j.jconrel.2010.04.010
10.1088/0031-9155/61/7/2926
10.1016/j.ultrasmedbio.2010.02.009
10.1172/JCI83312
10.1148/radiol.14140245
10.1016/j.ultrasmedbio.2015.09.017
10.1001/archneurpsyc.1956.02330290001001
10.1088/0031-9155/60/6/2511
10.1121/1.4843175
10.1158/0008-5472.CAN-12-0128
10.1148/radiol.11111417
10.1148/radiol.2202001804
10.1088/0031-9155/58/1/127
10.1021/cn300191b
10.1088/0031-9155/58/14/4749
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Nov 28, 2017
2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Nov 28, 2017
– notice: 2017
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1713328114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Closed-loop control of ultrasound drug delivery
EISSN 1091-6490
EndPage E10290
ExternalDocumentID PMC5715774
29133392
10_1073_pnas_1713328114
26485283
Genre Journal Article
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA174645
– fundername: Office of Extramural Research, National Institutes of Health (OER)
  grantid: P01 CA174645
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-ffac5305c6c8c2c964658a94d0de15d09cca7d5032a26c9fba60bf50ec50bb33
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:02:02 EDT 2025
Thu Jul 10 17:29:58 EDT 2025
Mon Jun 30 10:23:05 EDT 2025
Thu Apr 03 07:07:09 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Tue Jul 01 03:19:43 EDT 2025
Fri May 30 11:47:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords acoustic cavitation
blood–brain barrier
drug delivery
focused ultrasound
treatment control
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-ffac5305c6c8c2c964658a94d0de15d09cca7d5032a26c9fba60bf50ec50bb33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: T.S. and N.J.M. designed research; T.S., Y.Z., C.P., P.M.A., J.T.S., and M.A. performed research; T.S. and N.V. analyzed data; and T.S., J.T.S., N.V., E.L.M., and N.J.M. wrote the paper.
Edited by Robert Langer, Massachusetts Institute of Technology, Cambridge, MA, and approved October 16, 2017 (received for review July 27, 2017)
OpenAccessLink https://www.pnas.org/content/pnas/114/48/E10281.full.pdf
PMID 29133392
PQID 1982175569
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5715774
proquest_miscellaneous_1964272031
proquest_journals_1982175569
pubmed_primary_29133392
crossref_primary_10_1073_pnas_1713328114
crossref_citationtrail_10_1073_pnas_1713328114
jstor_primary_26485283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-28
PublicationDateYYYYMMDD 2017-11-28
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
23603615 - J Control Release. 2013 Jul 10;169(1-2):103-11
27235980 - J Control Release. 2016 Aug 10;235:72-81
25234874 - J Acoust Soc Am. 2014 Feb;135(2):646-53
19632760 - Ultrasound Med Biol. 2009 Oct;35(10):1748-55
16990673 - Radiology. 2006 Oct;241(1):95-106
18207311 - Ultrasound Med Biol. 2008 May;34(5):834-40
26562661 - Phys Med Biol. 2015 Dec 7;60(23 ):9079-94
11526261 - Radiology. 2001 Sep;220(3):640-6
26988240 - Phys Med Biol. 2016 Apr 7;61(7):2926-46
26603628 - Ultrasound Med Biol. 2016 Feb;42(2):528-538
16530103 - Ultrasound Med Biol. 2006 Mar;32(3):439-47
23379618 - ACS Chem Neurosci. 2013 Apr 17;4(4):519-26
16467579 - Phys Med Biol. 2006 Feb 21;51(4):793-807
24462453 - Adv Drug Deliv Rev. 2014 Jun;72:94-109
23788054 - Phys Med Biol. 2013 Jul 21;58(14 ):4749-61
19381449 - J Neurooncol. 2009 Sep;94(3):299-312
22818878 - Ultrasound Med Biol. 2012 Oct;38(10):1716-25
15815098 - Phys Med Biol. 2005 Apr 21;50(8):1821-36
20420973 - Ultrasound Med Biol. 2010 May;36(5):840-52
22712910 - J Acoust Soc Am. 2012 Jun;131(6):4358-64
16793983 - Radiology. 2006 Jul;240(1):263-72
26595815 - J Clin Invest. 2016 Jan;126(1):99-111
21799913 - PLoS One. 2011;6(7):e22598
27048701 - Stroke. 2016 May;47(5):1344-53
24658252 - IEEE Trans Biomed Eng. 2014 Apr;61(4):1285-94
21626921 - Med Phys. 2011 Apr;38(4):1877-87
12754072 - Ultrasound Med Biol. 2003 May;29(5):725-37
26732553 - J Control Release. 2016 Feb 10;223:109-117
23029240 - PLoS One. 2012;7(9):e45783
25222068 - Radiology. 2014 Dec;273(3):736-45
25724272 - J Control Release. 2015 Apr 28;204:60-9
20398711 - J Control Release. 2010 Jul 1;145(1):40-8
23221109 - Phys Med Biol. 2013 Jan 7;58(1):127-44
27994152 - Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):E75-E84
25354683 - Gene Ther. 2015 Jan;22(1):104-10
20720286 - Phys Med Biol. 2010 Sep 21;55(18):5251-67
27789044 - Ultrasound Med Biol. 2017 Feb;43(2):469-475
28374753 - Sci Rep. 2017 Apr 04;7:45657
22552291 - Cancer Res. 2012 Jul 15;72(14):3652-63
13371961 - AMA Arch Neurol Psychiatry. 1956 Nov;76(5):457-67
27306666 - Sci Transl Med. 2016 Jun 15;8(343 ):343re2
23944301 - N Engl J Med. 2013 Aug 15;369(7):640-8
16685254 - J Cereb Blood Flow Metab. 2007 Feb;27(2):393-403
22700259 - Br J Radiol. 2012 Oct;85(1018):1363-70
23012425 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16486-91
21925788 - Ultrasound Med Biol. 2011 Nov;37(11):1930-7
25746014 - Phys Med Biol. 2015 Mar 21;60(6):2511-27
22332065 - Radiology. 2012 Apr;263(1):96-106
References_xml – ident: e_1_3_3_49_2
  doi: 10.1016/j.ultrasmedbio.2011.08.001
– ident: e_1_3_3_1_2
  doi: 10.1056/NEJMoa1300962
– ident: e_1_3_3_47_2
  doi: 10.1007/s11060-009-9875-7
– ident: e_1_3_3_7_2
  doi: 10.1016/j.addr.2014.01.008
– ident: e_1_3_3_13_2
  doi: 10.1038/gt.2014.91
– ident: e_1_3_3_21_2
  doi: 10.1088/0031-9155/60/23/9079
– ident: e_1_3_3_32_2
  doi: 10.1109/58.656630
– ident: e_1_3_3_37_2
  doi: 10.1016/j.ultrasmedbio.2007.10.016
– ident: e_1_3_3_44_2
  doi: 10.1038/sj.jcbfm.9600336
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.1614777114
– ident: e_1_3_3_48_2
  doi: 10.1016/j.ultrasmedbio.2012.04.015
– ident: e_1_3_3_18_2
  doi: 10.1371/journal.pone.0022598
– ident: e_1_3_3_19_2
  doi: 10.1126/scitranslmed.aaf6086
– ident: e_1_3_3_46_2
  doi: 10.1038/srep45657
– ident: e_1_3_3_16_2
  doi: 10.1016/j.ultrasmedbio.2016.09.019
– ident: e_1_3_3_36_2
  doi: 10.1016/j.jconrel.2015.02.033
– ident: e_1_3_3_28_2
  doi: 10.1016/S0301-5629(03)00013-9
– ident: e_1_3_3_31_2
  doi: 10.1121/1.4707512
– ident: e_1_3_3_43_2
  doi: 10.1109/TBME.2014.2300838
– ident: e_1_3_3_9_2
  doi: 10.1161/STROKEAHA.115.012056
– ident: e_1_3_3_50_2
  doi: 10.1016/j.ultrasmedbio.2005.11.007
– ident: e_1_3_3_26_2
  doi: 10.1371/journal.pone.0045783
– ident: e_1_3_3_2_2
  doi: 10.1148/radiol.2401050717
– ident: e_1_3_3_24_2
  doi: 10.1088/0031-9155/51/4/003
– ident: e_1_3_3_11_2
  doi: 10.1016/j.jconrel.2013.04.007
– ident: e_1_3_3_38_2
  doi: 10.1088/0031-9155/55/18/001
– ident: e_1_3_3_51_2
  doi: 10.1016/j.ultrasmedbio.2009.04.023
– ident: e_1_3_3_39_2
  doi: 10.1088/0031-9155/50/8/013
– ident: e_1_3_3_20_2
– ident: e_1_3_3_10_2
  doi: 10.1148/radiol.2411051170
– ident: e_1_3_3_15_2
  doi: 10.1016/j.jconrel.2015.12.034
– ident: e_1_3_3_4_2
  doi: 10.1259/bjr/56737365
– ident: e_1_3_3_34_2
  doi: 10.1118/1.3553405
– ident: e_1_3_3_14_2
  doi: 10.1016/j.jconrel.2016.05.052
– ident: e_1_3_3_35_2
  doi: 10.1063/1.5000896
– ident: e_1_3_3_22_2
  doi: 10.1016/0041-624X(84)90057-X
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.1208198109
– ident: e_1_3_3_29_2
  doi: 10.1016/j.jconrel.2010.04.010
– ident: e_1_3_3_27_2
  doi: 10.1088/0031-9155/61/7/2926
– ident: e_1_3_3_25_2
  doi: 10.1016/j.ultrasmedbio.2010.02.009
– ident: e_1_3_3_3_2
  doi: 10.1172/JCI83312
– ident: e_1_3_3_12_2
  doi: 10.1148/radiol.14140245
– ident: e_1_3_3_33_2
  doi: 10.1016/j.ultrasmedbio.2015.09.017
– ident: e_1_3_3_52_2
  doi: 10.1001/archneurpsyc.1956.02330290001001
– ident: e_1_3_3_41_2
  doi: 10.1088/0031-9155/60/6/2511
– ident: e_1_3_3_40_2
  doi: 10.1121/1.4843175
– ident: e_1_3_3_17_2
  doi: 10.1158/0008-5472.CAN-12-0128
– ident: e_1_3_3_30_2
  doi: 10.1148/radiol.11111417
– ident: e_1_3_3_5_2
  doi: 10.1148/radiol.2202001804
– ident: e_1_3_3_23_2
  doi: 10.1088/0031-9155/58/1/127
– ident: e_1_3_3_6_2
  doi: 10.1021/cn300191b
– ident: e_1_3_3_42_2
  doi: 10.1088/0031-9155/58/14/4749
– reference: 23944301 - N Engl J Med. 2013 Aug 15;369(7):640-8
– reference: 15815098 - Phys Med Biol. 2005 Apr 21;50(8):1821-36
– reference: 21925788 - Ultrasound Med Biol. 2011 Nov;37(11):1930-7
– reference: 26988240 - Phys Med Biol. 2016 Apr 7;61(7):2926-46
– reference: 23012425 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16486-91
– reference: 20398711 - J Control Release. 2010 Jul 1;145(1):40-8
– reference: 23029240 - PLoS One. 2012;7(9):e45783
– reference: 22552291 - Cancer Res. 2012 Jul 15;72(14):3652-63
– reference: 13371961 - AMA Arch Neurol Psychiatry. 1956 Nov;76(5):457-67
– reference: 24462453 - Adv Drug Deliv Rev. 2014 Jun;72:94-109
– reference: 19381449 - J Neurooncol. 2009 Sep;94(3):299-312
– reference: 26595815 - J Clin Invest. 2016 Jan;126(1):99-111
– reference: 27306666 - Sci Transl Med. 2016 Jun 15;8(343 ):343re2
– reference: 16685254 - J Cereb Blood Flow Metab. 2007 Feb;27(2):393-403
– reference: 23603615 - J Control Release. 2013 Jul 10;169(1-2):103-11
– reference: 25746014 - Phys Med Biol. 2015 Mar 21;60(6):2511-27
– reference: 23788054 - Phys Med Biol. 2013 Jul 21;58(14 ):4749-61
– reference: 22332065 - Radiology. 2012 Apr;263(1):96-106
– reference: 23379618 - ACS Chem Neurosci. 2013 Apr 17;4(4):519-26
– reference: 27048701 - Stroke. 2016 May;47(5):1344-53
– reference: 24658252 - IEEE Trans Biomed Eng. 2014 Apr;61(4):1285-94
– reference: 23221109 - Phys Med Biol. 2013 Jan 7;58(1):127-44
– reference: 26603628 - Ultrasound Med Biol. 2016 Feb;42(2):528-538
– reference: 25222068 - Radiology. 2014 Dec;273(3):736-45
– reference: 20720286 - Phys Med Biol. 2010 Sep 21;55(18):5251-67
– reference: 27235980 - J Control Release. 2016 Aug 10;235:72-81
– reference: 25234874 - J Acoust Soc Am. 2014 Feb;135(2):646-53
– reference: 21799913 - PLoS One. 2011;6(7):e22598
– reference: 28374753 - Sci Rep. 2017 Apr 04;7:45657
– reference: 16530103 - Ultrasound Med Biol. 2006 Mar;32(3):439-47
– reference: 22700259 - Br J Radiol. 2012 Oct;85(1018):1363-70
– reference: 25354683 - Gene Ther. 2015 Jan;22(1):104-10
– reference: 25724272 - J Control Release. 2015 Apr 28;204:60-9
– reference: 11526261 - Radiology. 2001 Sep;220(3):640-6
– reference: 16467579 - Phys Med Biol. 2006 Feb 21;51(4):793-807
– reference: 18207311 - Ultrasound Med Biol. 2008 May;34(5):834-40
– reference: 22818878 - Ultrasound Med Biol. 2012 Oct;38(10):1716-25
– reference: 27789044 - Ultrasound Med Biol. 2017 Feb;43(2):469-475
– reference: 26732553 - J Control Release. 2016 Feb 10;223:109-117
– reference: 21626921 - Med Phys. 2011 Apr;38(4):1877-87
– reference: 19632760 - Ultrasound Med Biol. 2009 Oct;35(10):1748-55
– reference: 16990673 - Radiology. 2006 Oct;241(1):95-106
– reference: 12754072 - Ultrasound Med Biol. 2003 May;29(5):725-37
– reference: 26562661 - Phys Med Biol. 2015 Dec 7;60(23 ):9079-94
– reference: 16793983 - Radiology. 2006 Jul;240(1):263-72
– reference: 22712910 - J Acoust Soc Am. 2012 Jun;131(6):4358-64
– reference: 27994152 - Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):E75-E84
– reference: 20420973 - Ultrasound Med Biol. 2010 May;36(5):840-52
SSID ssj0009580
Score 2.6160052
Snippet Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood–brain barrier (BBB) for treating...
Focused ultrasound is currently the only method of reversible blood–brain barrier disruption for targeted drug delivery without incision or radiation. A...
Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E10281
SubjectTerms Biological Sciences
Blood-brain barrier
Cavitation
Physical Sciences
PNAS Plus
Regression analysis
Rodents
Tumors
Ultrasonic imaging
Title Closed-loop control of targeted ultrasound drug delivery across the blood–brain/tumor barriers in a rat glioma model
URI https://www.jstor.org/stable/26485283
https://www.ncbi.nlm.nih.gov/pubmed/29133392
https://www.proquest.com/docview/1982175569
https://www.proquest.com/docview/1964272031
https://pubmed.ncbi.nlm.nih.gov/PMC5715774
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FsmGDKFAwFDRILIosp36M7cyyqloqpEaVCFJYReNXatW1I8dGoiv-gW_jB_gS7rxsp00lYGNF9szY8j25j_G59yL03g_JhDGSWgAWahFGXIsGSWQlvPYmDfzQozx3-HwanH0hn-b-fDT6NWAttU00jm-25pX8j1ThHMiVZ8n-g2S7ReEE_Ab5whEkDMe_kvFxUa3TxCqqatVxzvk3f8HuBk-yLZqarXnjJDOp26WZpAWnYXw3mTCOwukUzHVNefCiWuwUnDbtNadxspo3tBOUWWYCVsxlkVfXTPbPGfq1F50dXGvWwVRvMx71SStKk6xNy7yY9i2QP7eyRzKr7uxjf63K5c1l3mlw3tRN0QTK_IrVHba7TB29TVTkK_N8PNzVAEvpODpLfFAUfOsjDtW5CyaWyCTscSo1ODhAVkBkD9JOxctEVYVlWdpTaewT7mE5A_vPT8jZd6wLqEPeErlk67HDg3uYqBbeLNnNWYO8aM4D9NCF6IU31vg4dwa1oCcyM0o9va44FXqHt9becJYkX3ZbJHSb0DvwkGZP0GMV2uAjidNdNErLp2hXv098oCqcf3iGvg2AixVwcZVhDVzcAxdz4GINXCyBiwFfWAD394-fArKHArBYAxbnJWYYAIslYLEA7HM0Oz2ZHZ9ZqgGIFYMf21hZxmIfDFIcxJPYjWlAwF9mlCR2kjp-YlNQP2Hi257L3CCmWcQCO8p8O4XpUeR5e2inrMr0JcIeSSI6iTOQCoUQPYnCgPCdITdObeYQZqCxftGLWBXH5z1aioUgaYTegktm0UvGQAfdhJWsC3P_0D0huW6choeB9rUoF0qrwDw6ccGl9wNqoHfdZdD5_EMeK9Oq5WMCIvgTjoFeSMn3i1O4LwQ9Bgo3MNEN4PXkN6-U-aWoK--Hjg_R4Kv7nvc1etT_VffRTlO36RtwyZvorQD4Hxel5aw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Closed-loop+control+of+targeted+ultrasound+drug+delivery+across+the+blood%E2%80%93brain%2Ftumor+barriers+in+a+rat+glioma+model&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sun%2C+Tao&rft.au=Zhang%2C+Yongzhi&rft.au=Power%2C+Chanikarn&rft.au=Alexander%2C+Phillip+M.&rft.date=2017-11-28&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=48&rft.spage=E10281&rft.epage=E10290&rft_id=info:doi/10.1073%2Fpnas.1713328114&rft.externalDocID=26485283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon