Investigating mobile element variations by statistical genetics

The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and...

Full description

Saved in:
Bibliographic Details
Published inHuman genome variation Vol. 11; no. 1; pp. 23 - 6
Main Author Kojima, Shohei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.05.2024
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants. Genetic insights: mobile element variations influence human complex traits This research investigates how mobile elements contribute to human genetic diversity and disease. Researchers conducted a review using various sequencing technologies to analyze MEs in different human populations, focusing on three main families: Alu , LINE-1, and SVA. They studied these elements in over 2,500 individuals worldwide, finding that MEs significantly contribute to genetic variation and are linked to certain diseases. Using the short-read sequencing method, they identified thousands of ME variations, some linked to genetic disorders. These methods help uncover how MEs affect genome structure and function. The results show that MEs account for a large part of human structural variations, influencing gene expression and contributing to populations’ genetic makeup. Future studies may clarify how MEs contribute to genetic diversity and disease, leading to new diagnostic and therapeutic strategies. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
AbstractList Abstract The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants.
The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants.
The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants. Genetic insights: mobile element variations influence human complex traits This research investigates how mobile elements contribute to human genetic diversity and disease. Researchers conducted a review using various sequencing technologies to analyze MEs in different human populations, focusing on three main families: Alu , LINE-1, and SVA. They studied these elements in over 2,500 individuals worldwide, finding that MEs significantly contribute to genetic variation and are linked to certain diseases. Using the short-read sequencing method, they identified thousands of ME variations, some linked to genetic disorders. These methods help uncover how MEs affect genome structure and function. The results show that MEs account for a large part of human structural variations, influencing gene expression and contributing to populations’ genetic makeup. Future studies may clarify how MEs contribute to genetic diversity and disease, leading to new diagnostic and therapeutic strategies. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants.The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants.
The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants.Genetic insights: mobile element variations influence human complex traitsThis research investigates how mobile elements contribute to human genetic diversity and disease. Researchers conducted a review using various sequencing technologies to analyze MEs in different human populations, focusing on three main families: Alu, LINE-1, and SVA. They studied these elements in over 2,500 individuals worldwide, finding that MEs significantly contribute to genetic variation and are linked to certain diseases. Using the short-read sequencing method, they identified thousands of ME variations, some linked to genetic disorders. These methods help uncover how MEs affect genome structure and function. The results show that MEs account for a large part of human structural variations, influencing gene expression and contributing to populations’ genetic makeup. Future studies may clarify how MEs contribute to genetic diversity and disease, leading to new diagnostic and therapeutic strategies. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
ArticleNumber 23
Author Kojima, Shohei
Author_xml – sequence: 1
  givenname: Shohei
  orcidid: 0000-0002-6764-4818
  surname: Kojima
  fullname: Kojima, Shohei
  email: shohei.kojima@riken.jp
  organization: Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38816353$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1UREvpH2CBIrFhExi_EmeFUMXjSpXYgMTOsp1JlKvELnZupf57pjctoC668sj-znjmnJfsJKaIjL3m8J6DNB-K4kp2NQhVAwgDNX_GzgRoVUulf538V5-yi1L2AMB1pwyXL9ipNIY3Ussz9nEXb7Cs0-jWKY7Vkvw0Y4UzLhjX6sbliR5SLJW_rcpKNbHBzdWIEakqr9jzwc0FL-7Pc_bzy-cfl9_qq-9fd5efruqgoVvrIfi-b03TaDTKoDBK9-B65aEJTvgBRY8qDKid4V3TuSBb3qJ02rcYfNDynO22vn1ye3udp8XlW5vcZI8XKY_WZRpoRgtSeQmka_pWGS2MB_rT8U4YHFrdUq93W6_rnH4faHu7TCXgPLuI6VCshIZ868ghQt8-QvfpkCNtekcJCZ1pDFFv7qmDX7D_O96DzQSYDQg5lZJxsGFaj8au2U2z5WDvQrVbqJZCtcdQLSepeCR96P6kSG6iQnAcMf8b-wnVH3_4sps
CitedBy_id crossref_primary_10_1111_cge_14655
Cites_doi 10.1038/s41586-023-06277-0
10.1016/S0092-8674(00)81998-4
10.1371/journal.pgen.1002236
10.1186/s13059-014-0488-x
10.1101/gad.351051.123
10.1186/1759-8753-1-7
10.1038/s41587-023-01964-9
10.1016/j.cell.2016.11.038
10.1101/gr.275323.121
10.1038/s41467-021-24041-8
10.1146/annurev.genet.35.102401.091032
10.1016/j.jmb.2006.01.089
10.1093/ve/vex023
10.1038/ng.3834
10.1093/nar/gkaa074
10.1101/gr.247965.118
10.1038/s41588-023-01390-2
10.1186/s12977-015-0162-8
10.1186/s13059-020-02101-4
10.1126/science.aad5497
10.1534/genetics.105.043976
10.1016/j.biopsych.2020.06.011
10.1038/s41586-020-2287-8
10.1093/nar/9.23.6439
10.1016/j.xgen.2023.100294
10.1038/28653
10.3390/ijms22126319
10.1126/science.abf7117
10.1093/bioinformatics/btz106
10.1186/s12859-019-3113-x
10.1101/gr.10.4.411
10.1101/gr.275488.121
10.1186/s13059-023-02898-w
10.1126/science.adh7699
10.1371/journal.pgen.1010680
10.1016/j.cell.2010.10.027
10.1093/nar/15.21.8725
10.1016/j.xgen.2023.100328
10.1038/s41586-023-06046-z
10.1038/s41431-022-01137-3
10.1038/ng.3009
10.1016/S0092-8674(00)81997-2
10.1093/bioinformatics/bts697
10.1101/gr.149400
10.1016/j.cell.2018.02.011
10.1038/ng0597-37
10.1038/nature08248
10.1073/pnas.1004290107
10.1073/pnas.1704117114
10.1016/j.cell.2022.06.032
10.1016/0888-7543(91)90414-A
10.1186/s13100-020-00230-y
10.1073/pnas.1602336113
10.1002/ajmg.a.38167
10.1098/rstb.2019.0331
10.1007/BF00163207
10.1002/mds.27441
10.1016/j.jmb.2005.09.085
10.1093/hmg/ddad039
10.1016/j.ajhg.2023.09.008
10.1038/s41588-022-01043-w
10.1016/j.tig.2022.02.009
10.1038/ng1223
10.1038/s41431-022-01250-3
10.1093/nar/gkad821
10.1101/gr.218032.116
10.1093/bioinformatics/btz205
10.1038/s41588-019-0562-0
10.1073/pnas.1712526114
10.1038/s41467-021-27438-7
10.1093/emboj/cdf592
10.1038/sdata.2016.25
10.1016/j.jid.2018.07.044
10.1038/s41431-020-00763-z
10.1038/s41586-023-06323-x
10.1093/hmg/9.4.653
10.1186/s13100-021-00256-w
10.1128/JVI.79.19.12507-12514.2005
10.1186/s13100-018-0142-3
10.1038/s41431-023-01478-7
10.1086/380207
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Springer Nature B.V. 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Springer Nature B.V. 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7T3
7X7
7XB
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.1038/s41439-024-00280-1
DatabaseName SpringerOpen
CrossRef
PubMed
ProQuest Central (Corporate)
Human Genome Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Human Genome Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 2054-345X
EndPage 6
ExternalDocumentID oai_doaj_org_article_034b307ec6d748528b0848a1928ef757
38816353
10_1038_s41439_024_00280_1
Genre Journal Article
Review
GrantInformation_xml – fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 22K15385
  funderid: https://doi.org/10.13039/501100001691
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 22K15385
GroupedDBID 0R~
53G
5VS
7X7
8FI
AAJSJ
AASML
ABUWG
ACGFS
ADBBV
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
DIK
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
HCIFZ
HYE
KQ8
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RPM
SNYQT
UKHRP
8FJ
AAYXX
CCPQU
CITATION
HMCUK
PHGZM
PHGZT
AJTQC
NPM
3V.
7T3
7XB
8FD
8FE
8FH
8FK
AARCD
AZQEC
DWQXO
FR3
GNUQQ
K9.
LK8
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c509t-fcbdd78665e848e2845d0ad4b06ca2bfe2de4cfe5a81969ac3717e3a5b7ecbc53
IEDL.DBID AAJSJ
ISSN 2054-345X
IngestDate Wed Aug 27 01:26:39 EDT 2025
Thu Jul 10 17:17:21 EDT 2025
Wed Aug 13 03:37:47 EDT 2025
Thu Apr 03 07:02:51 EDT 2025
Tue Jul 01 02:40:52 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Mon Jul 21 06:08:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-fcbdd78665e848e2845d0ad4b06ca2bfe2de4cfe5a81969ac3717e3a5b7ecbc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6764-4818
OpenAccessLink https://www.nature.com/articles/s41439-024-00280-1
PMID 38816353
PQID 3062309868
PQPubID 2041955
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_034b307ec6d748528b0848a1928ef757
proquest_miscellaneous_3063459163
proquest_journals_3062309868
pubmed_primary_38816353
crossref_citationtrail_10_1038_s41439_024_00280_1
crossref_primary_10_1038_s41439_024_00280_1
springer_journals_10_1038_s41439_024_00280_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-30
PublicationDateYYYYMMDD 2024-05-30
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Human genome variation
PublicationTitleAbbrev Hum Genome Var
PublicationTitleAlternate Hum Genome Var
PublicationYear 2024
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References C Goubert (280_CR39) 2020; 375
DT Thung (280_CR46) 2014; 15
C Groza (280_CR37) 2023; 3
LM Payer (280_CR36) 2017; 114
280_CR80
FM Sheen (280_CR20) 2000; 10
TJ Meyer (280_CR55) 2010; 1
B Rodriguez-Martin (280_CR53) 2020; 52
DM Sassaman (280_CR3) 1997; 16
B Mulvey (280_CR74) 2021; 89
JA Morris (280_CR77) 2023; 380
JH Wildschutte (280_CR25) 2016; 113
OK Pickeral (280_CR57) 2000; 10
AJ Scott (280_CR40) 2021; 31
J Skowronski (280_CR2) 1988; 8
M Ono (280_CR6) 1987; 15
GJ Cost (280_CR83) 2002; 21
C Chiang (280_CR65) 2017; 49
280_CR35
P Garret (280_CR70) 2023; 31
G Spirito (280_CR63) 2019; 20
M Dewannieux (280_CR12) 2003; 35
SA Fuhrman (280_CR9) 1981; 9
MA Batzer (280_CR4) 1991; 9
L Liang (280_CR38) 2023; 619
CM Macfarlane (280_CR26) 2015; 12
K Kobayashi (280_CR30) 1998; 394
K Tamura (280_CR31) 2023; 32
SL Gasior (280_CR84) 2006; 357
C Goubert (280_CR44) 2020; 48
G Pascarella (280_CR54) 2022; 185
JM Zook (280_CR59) 2016; 3
GD Swergold (280_CR10) 1990; 10
MA Batzer (280_CR5) 1996; 42
JM Kidd (280_CR1) 2010; 143
F Wünnemann (280_CR78) 2023; 19
C Chu (280_CR42) 2021; 12
NK Tuano (280_CR79) 2023; 24
J Feusier (280_CR24) 2019; 29
R Belshaw (280_CR27) 2005; 79
JL Goodier (280_CR56) 2000; 9
NT Chuang (280_CR17) 2021; 31
A Rakovic (280_CR33) 2018; 33
S Koks (280_CR64) 2021; 22
J Storer (280_CR22) 2021; 12
B Zhao (280_CR86) 2023; 110
X Chen (280_CR48) 2019; 35
T Jiang (280_CR50) 2019; 35
T Aneichyk (280_CR32) 2018; 172
NG Coufal (280_CR72) 2009; 460
R Borges-Monroy (280_CR71) 2021; 12
MV Almeida (280_CR15) 2022; 38
Q Feng (280_CR13) 1996; 87
EM Ostertag (280_CR7) 2003; 73
T Takenouchi (280_CR29) 2017; 173
TM Keane (280_CR45) 2013; 29
EM Ostertag (280_CR11) 2001; 35
EJ Gardner (280_CR41) 2017; 27
CG Santander (280_CR47) 2017; 3
R Rajaby (280_CR49) 2018; 46
X Cao (280_CR66) 2020; 21
JB Kinney (280_CR75) 2010; 107
C Chu (280_CR43) 2023; 51
JF Hughes (280_CR52) 2005; 171
A Dixit (280_CR81) 2016; 167
L Wang (280_CR62) 2017; 45
CH Nam (280_CR73) 2023; 617
J Kim (280_CR85) 2023; 619
W Chen (280_CR61) 2021; 12
C Mendez-Dorantes (280_CR82) 2023; 37
B Zhao (280_CR28) 2022; 30
C Stewart (280_CR16) 2011; 7
E Peter (280_CR19) 2021; 372
M Fujita (280_CR67) 2019; 139
CD Arnold (280_CR76) 2014; 46
J Ebler (280_CR58) 2022; 54
H Wang (280_CR8) 2005; 354
RL Collins (280_CR18) 2020; 581
280_CR21
J Thomas (280_CR51) 2018; 9
DC Bragg (280_CR34) 2017; 114
S Kosugi (280_CR60) 2023; 3
280_CR69
JV Moran (280_CR14) 1996; 87
280_CR23
EB Chuong (280_CR68) 2016; 351
References_xml – volume: 619
  start-page: 828
  year: 2023
  ident: 280_CR85
  publication-title: Nature
  doi: 10.1038/s41586-023-06277-0
– volume: 87
  start-page: 917
  year: 1996
  ident: 280_CR14
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81998-4
– volume: 7
  start-page: e1002236
  year: 2011
  ident: 280_CR16
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002236
– volume: 15
  year: 2014
  ident: 280_CR46
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0488-x
– volume: 37
  start-page: 948
  year: 2023
  ident: 280_CR82
  publication-title: Genes Dev.
  doi: 10.1101/gad.351051.123
– volume: 1
  year: 2010
  ident: 280_CR55
  publication-title: Mob. DNA
  doi: 10.1186/1759-8753-1-7
– ident: 280_CR80
  doi: 10.1038/s41587-023-01964-9
– volume: 167
  start-page: 1853
  year: 2016
  ident: 280_CR81
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.038
– volume: 31
  start-page: 2225
  year: 2021
  ident: 280_CR17
  publication-title: Genome Res.
  doi: 10.1101/gr.275323.121
– volume: 12
  year: 2021
  ident: 280_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24041-8
– volume: 35
  start-page: 501
  year: 2001
  ident: 280_CR11
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.35.102401.091032
– volume: 357
  start-page: 1383
  year: 2006
  ident: 280_CR84
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.01.089
– volume: 3
  start-page: vex023
  year: 2017
  ident: 280_CR47
  publication-title: Virus Evol.
  doi: 10.1093/ve/vex023
– volume: 49
  start-page: 692
  year: 2017
  ident: 280_CR65
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3834
– volume: 48
  start-page: e36
  year: 2020
  ident: 280_CR44
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa074
– volume: 46
  start-page: e122
  year: 2018
  ident: 280_CR49
  publication-title: Nucleic Acids Res.
– volume: 29
  start-page: 1567
  year: 2019
  ident: 280_CR24
  publication-title: Genome Res.
  doi: 10.1101/gr.247965.118
– ident: 280_CR23
  doi: 10.1038/s41588-023-01390-2
– volume: 12
  year: 2015
  ident: 280_CR26
  publication-title: Retrovirology
  doi: 10.1186/s12977-015-0162-8
– volume: 45
  start-page: 2318
  year: 2017
  ident: 280_CR62
  publication-title: Nucleic Acids Res.
– volume: 21
  year: 2020
  ident: 280_CR66
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02101-4
– volume: 351
  start-page: 1083
  year: 2016
  ident: 280_CR68
  publication-title: Science
  doi: 10.1126/science.aad5497
– volume: 171
  start-page: 1183
  year: 2005
  ident: 280_CR52
  publication-title: Genetics
  doi: 10.1534/genetics.105.043976
– volume: 89
  start-page: 76
  year: 2021
  ident: 280_CR74
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2020.06.011
– volume: 581
  start-page: 444
  year: 2020
  ident: 280_CR18
  publication-title: Nature
  doi: 10.1038/s41586-020-2287-8
– ident: 280_CR21
– volume: 8
  start-page: 1385
  year: 1988
  ident: 280_CR2
  publication-title: Mol. Cell Biol.
– volume: 9
  start-page: 6439
  year: 1981
  ident: 280_CR9
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/9.23.6439
– volume: 3
  year: 2023
  ident: 280_CR37
  publication-title: Cell Genom.
  doi: 10.1016/j.xgen.2023.100294
– volume: 394
  start-page: 388
  year: 1998
  ident: 280_CR30
  publication-title: Nature
  doi: 10.1038/28653
– volume: 22
  start-page: 6319
  year: 2021
  ident: 280_CR64
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22126319
– volume: 372
  start-page: eabf7117
  year: 2021
  ident: 280_CR19
  publication-title: Science
  doi: 10.1126/science.abf7117
– volume: 35
  start-page: 3484
  year: 2019
  ident: 280_CR50
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz106
– volume: 20
  year: 2019
  ident: 280_CR63
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-019-3113-x
– volume: 10
  start-page: 411
  year: 2000
  ident: 280_CR57
  publication-title: Genome Res.
  doi: 10.1101/gr.10.4.411
– volume: 31
  start-page: 2249
  year: 2021
  ident: 280_CR40
  publication-title: Genome Res.
  doi: 10.1101/gr.275488.121
– volume: 24
  year: 2023
  ident: 280_CR79
  publication-title: Genome Biol.
  doi: 10.1186/s13059-023-02898-w
– volume: 380
  year: 2023
  ident: 280_CR77
  publication-title: Science
  doi: 10.1126/science.adh7699
– volume: 19
  start-page: e1010680
  year: 2023
  ident: 280_CR78
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1010680
– volume: 143
  start-page: 837
  year: 2010
  ident: 280_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.027
– volume: 15
  start-page: 8725
  year: 1987
  ident: 280_CR6
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/15.21.8725
– volume: 3
  year: 2023
  ident: 280_CR60
  publication-title: Cell Genom.
  doi: 10.1016/j.xgen.2023.100328
– volume: 617
  start-page: 540
  year: 2023
  ident: 280_CR73
  publication-title: Nature
  doi: 10.1038/s41586-023-06046-z
– volume: 30
  start-page: 1083
  year: 2022
  ident: 280_CR28
  publication-title: Eur. J. Hum. Genet
  doi: 10.1038/s41431-022-01137-3
– volume: 46
  start-page: 685
  year: 2014
  ident: 280_CR76
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3009
– volume: 87
  start-page: 905
  year: 1996
  ident: 280_CR13
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81997-2
– volume: 29
  start-page: 389
  year: 2013
  ident: 280_CR45
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts697
– volume: 10
  start-page: 6718
  year: 1990
  ident: 280_CR10
  publication-title: Mol. Cell Biol.
– volume: 10
  start-page: 1496
  year: 2000
  ident: 280_CR20
  publication-title: Genome Res.
  doi: 10.1101/gr.149400
– volume: 172
  start-page: 897
  year: 2018
  ident: 280_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.011
– volume: 16
  start-page: 37
  year: 1997
  ident: 280_CR3
  publication-title: Nat. Genet
  doi: 10.1038/ng0597-37
– volume: 460
  start-page: 1127
  year: 2009
  ident: 280_CR72
  publication-title: Nature
  doi: 10.1038/nature08248
– volume: 107
  start-page: 9158
  year: 2010
  ident: 280_CR75
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1004290107
– volume: 114
  start-page: E3984
  year: 2017
  ident: 280_CR36
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1704117114
– volume: 185
  start-page: 3025
  year: 2022
  ident: 280_CR54
  publication-title: Cell
  doi: 10.1016/j.cell.2022.06.032
– volume: 9
  start-page: 481
  year: 1991
  ident: 280_CR4
  publication-title: Genomics
  doi: 10.1016/0888-7543(91)90414-A
– volume: 12
  year: 2021
  ident: 280_CR22
  publication-title: Mob. DNA
  doi: 10.1186/s13100-020-00230-y
– volume: 113
  start-page: E2326 LP
  year: 2016
  ident: 280_CR25
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1602336113
– volume: 173
  start-page: 1353
  year: 2017
  ident: 280_CR29
  publication-title: Am. J. Med. Genet. A
  doi: 10.1002/ajmg.a.38167
– volume: 375
  start-page: 20190331
  year: 2020
  ident: 280_CR39
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2019.0331
– volume: 42
  start-page: 22
  year: 1996
  ident: 280_CR5
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF00163207
– volume: 33
  start-page: 1108
  year: 2018
  ident: 280_CR33
  publication-title: Mov. Disord.
  doi: 10.1002/mds.27441
– volume: 354
  start-page: 994
  year: 2005
  ident: 280_CR8
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.09.085
– volume: 32
  start-page: 2046
  year: 2023
  ident: 280_CR31
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddad039
– volume: 110
  start-page: 1976
  year: 2023
  ident: 280_CR86
  publication-title: Am. J. Hum. Genet
  doi: 10.1016/j.ajhg.2023.09.008
– volume: 54
  start-page: 518
  year: 2022
  ident: 280_CR58
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-022-01043-w
– volume: 38
  start-page: 529
  year: 2022
  ident: 280_CR15
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2022.02.009
– volume: 35
  start-page: 41
  year: 2003
  ident: 280_CR12
  publication-title: Nat. Genet.
  doi: 10.1038/ng1223
– volume: 31
  start-page: 761
  year: 2023
  ident: 280_CR70
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/s41431-022-01250-3
– volume: 51
  start-page: 11453
  year: 2023
  ident: 280_CR43
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad821
– volume: 27
  start-page: 1916
  year: 2017
  ident: 280_CR41
  publication-title: Genome Res.
  doi: 10.1101/gr.218032.116
– volume: 35
  start-page: 3913
  year: 2019
  ident: 280_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz205
– volume: 52
  start-page: 306
  year: 2020
  ident: 280_CR53
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0562-0
– volume: 114
  start-page: E11020
  year: 2017
  ident: 280_CR34
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1712526114
– volume: 12
  year: 2021
  ident: 280_CR61
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27438-7
– volume: 21
  start-page: 5899
  year: 2002
  ident: 280_CR83
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf592
– volume: 3
  year: 2016
  ident: 280_CR59
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.25
– volume: 139
  start-page: 333
  year: 2019
  ident: 280_CR67
  publication-title: J. Investig. Dermatol.
  doi: 10.1016/j.jid.2018.07.044
– ident: 280_CR69
  doi: 10.1038/s41431-020-00763-z
– volume: 619
  start-page: 868
  year: 2023
  ident: 280_CR38
  publication-title: Nature
  doi: 10.1038/s41586-023-06323-x
– volume: 9
  start-page: 653
  year: 2000
  ident: 280_CR56
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/9.4.653
– volume: 12
  year: 2021
  ident: 280_CR71
  publication-title: Mob. DNA
  doi: 10.1186/s13100-021-00256-w
– volume: 79
  start-page: 12507
  year: 2005
  ident: 280_CR27
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.19.12507-12514.2005
– volume: 9
  year: 2018
  ident: 280_CR51
  publication-title: Mob. DNA
  doi: 10.1186/s13100-018-0142-3
– ident: 280_CR35
  doi: 10.1038/s41431-023-01478-7
– volume: 73
  start-page: 1444
  year: 2003
  ident: 280_CR7
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/380207
SSID ssj0001594813
Score 2.2650535
SecondaryResourceType review_article
Snippet The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human...
Abstract The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23
SubjectTerms 631/208/205/2138
631/208/457/649/2157
Artificial intelligence
Biomedical and Life Sciences
Biomedicine
Disease
Gene Expression
Gene Function
Gene Therapy
Genetic disorders
Genetic diversity
Genetic factors
Genome-wide association studies
Genomes
Genotyping
Haplotypes
Human Genetics
Integration
Molecular Medicine
Nucleotide sequence
Population genetics
Population studies
Quantitative trait loci
Review Article
Skin diseases
Statistical genetics
Statistics
Structure-function relationships
Whole genome sequencing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iQbyIb1errOBNg9tN0mRPomIpQj1Z6C3k6UW3YlvBf-8k2daKr4vXbDZkv_3CzGQyXxA64YUjQniITizlmHpjsCrjEaiSc2eVcSrsQ_bvOr0BvR2y4cJVX-FMWJIHTsCdF4Rq4KEzHcupYKXQQQFegWMinOcs1pGDzVsIplJ9cFAhIU2VTEHE-ZiCZ1BhMEk4phNx-5MlioL933mZXzKk0fB019Fa4zHml2mmG2jJ1Ztopd_kxLfQxYJURv2QP400LPTcpWPh-SvEwmlTLtdveSgfisrMMCAwJxQwjrfRoHtzf93DzbUI2IB1n2BvtLU86NQ5QMKBfWG2UJbqomNUqb0rraPGO6ZE0L5RhkDI5ohiGlDUhpEdtFyPareHclYJzQlEMMozyg2vKg9gF14LZhVEQhlqzyCSptEMD1dXPMqYuyZCJlglwCojrLKdodP5O89JMePX3lcB-XnPoHYdG4ADsuGA_IsDGWrN_ptsluBYQiwE4VUlOiJDx_PHsHhCRkTVbjSNfQhl4CGTDO2m_z2fCVAY2hk8OZsR4GPwnz9o_z8-6ACtlpGpDJOihZYnL1N3CM7PRB9Fnr8DGdz7OA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RIqFeKrrQEigoSNyo1Wxsr51TBahVhbScqLQ3y89eaFI2u5X494wdZ7eotNf4Iccee76Zsb8B-CQqT6UMaJ04JggL1hJdpytQtRDeaet19EPOf8wur9j3BV9kh1ufr1WOZ2I6qF1no4_8FKEtouVGzuTZ7W8Ss0bF6GpOobEDzyN1WZRqsRBbH0viIqH5rUxF5WnPEB80BBUTSUFFMv1HHyXa_v9hzQdx0qR-Ll7CfsaN5ZdhoQ_gmW8n8GKeI-MT2IuocSBdfgVn99gz2uvypjO490s_3BQv79A8Hvx0pflT9mM77B2FKb5p7F_D1cX5z2-XJGdKIBYV_ooEa5wTkbrOSyY9qhzuKu2YqWZW1yb42nlmg-daRjocbSlacZ5qboS3xnJ6CLtt1_o3UPJGGkHRqNGBM2FF0wRDqyoYyZ1G46iA6ThfymYa8ZjN4pdK4Wwq1TDHCudYpTlW0wI-b9rcDiQaT9b-GpdhUzMSYKcP3fJa5f2kKspwWDj6mRNM8lqamBhAI16VPgguCjgeF1HlXdmrrQwV8HFTjPspBkl067t1qkMZR9BMCzgaFn8zEpRq_M6x5GSUhm3nj__Q26fH8g726iSQnNDqGHZXy7V_j0hnZT4kcf4LyHf4Vg
  priority: 102
  providerName: ProQuest
Title Investigating mobile element variations by statistical genetics
URI https://link.springer.com/article/10.1038/s41439-024-00280-1
https://www.ncbi.nlm.nih.gov/pubmed/38816353
https://www.proquest.com/docview/3062309868
https://www.proquest.com/docview/3063459163
https://doaj.org/article/034b307ec6d748528b0848a1928ef757
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_8APGl1FbtWntswbcaXDfJJvsk56HIgSK2wr2FfPpi94p3Cv73TrK7p1It9GkhOwmzk8nOV_ILwJ4oPJUyYHTimCAsWEt0mbZAlUJ4p63XMQ95flGdXbPxhE-WoOzPwqRN-wnSMv2m-91hBzOGhr0maFFIqgYSjHhWI1Q76vbqcDj-OX7OrCQEEtqdkCmofKPzKyuUwPrf8jD_qo4mo3P6ET503mI-bPnbgCXffIK1864e_hmOXsBkNDf576nBRZ77dkt4_oBxcJuQy81jHo8OJVRmHBC1Jh5enG3C9enJr9EZ6a5EIBYt-5wEa5wTEaPOSyY92hbuCu2YKSqrSxN86TyzwXMtI-6NthTDNU81N8JbYzndgpVm2vgvkPNaGkExetGBM2FFXQdDiyIYyZ3GKCiDw15EynZ44fHailuV6tZUqlasCsWqkljVYQY_Fn3-tGgZ_6Q-jpJfUEak69QwvbtR3cyrgjJkC7mvnGCSl9LEGwA0OqbSB8FFBrv9vKlu-c0UxkEYWtWykhl8X7zGhROrIbrx0_tEQxlH75hmsN3O94ITVF9s5_hmv1eA58Hf_6Cd_yP_Cutl0klOaLELK_O7e_8NXZy5GcCymIhBp9n4PD65uLzC1lE1GqS0wRPahfdi
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRYJeUFseDS0QJDiBVW9sr50Dqsqj2tJuT620N-NXeoGkNFtQ_xS_kbGT7IKA3nqNH3LG45lvZuwZgJeSBqZUhdaJ55LwyjliinQFqpAyeOOCiX7I6cl4csY_zcRsBX4Ob2HitcpBJiZB7RsXfeS7CG0RLZdqrPYuvpFYNSpGV4cSGh1bHIXrH2iytW8PP-D-viqKg4-n7yekrypAHCrHOamc9V7GNG9BcRVQPAtPjeeWjp0pbBUKH7irgjAqpo4xjqHFE5gRVgZnXawSgSL_DipeGo09OZNLn07KfcL6tzmUqd2WIx4pCSpCkoKYZPSH_ktlAv6Fbf-KyyZ1d7AO93ucmu93jLUBK6HehLvTPhK_CWsRpXZJnh_A3m_ZOurz_GtjUdbkobuZnn9Hc7zzC-b2Om-HcTg7Mm98Q9k-hLNboeEjWK2bOmxBLkplJUMjylSCSyfLsrKM0soq4Q0aYxmMBnpp16ctj9UzvugUPmdKdzTWSGOdaKxHGbxejLnoknbc2Ptd3IZFz5hwO31oLs91f341ZRyXhasfe8mVKJSNhQgM4mMVKilkBjvDJupeCrR6ybMZvFg04_mNQRlTh-Yq9WFcIEhnGTzuNn-xEjxF-F1gy5uBG5aT__-Hnty8ludwb3I6PdbHhydH27BWJOYUhNEdWJ1fXoWniLLm9lli7Rw-3_ZZ-gWxoDe8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ-QIyG8GMWvFdQ10Sdtbm_bXrsPhohwAZELMZLwVvvJi-4Cd2j41_zrnHZ37zQqb7xuP9Kdzkx_M9POALwUhadSBrROHBOEBWuJLtMVqFII77T1Ovohj6bj_RP24ZSfrsDP_i1MvFbZ68SkqF1jo498iNAW0XIlx3IYumsRx7uT7fMLEitIxUhrX06jZZFDf_0DzbfZ24Nd3OtXZTnZ-_x-n3QVBojFg3JOgjXOiZjyzUsmPapq7grtmCnGVpcm-NJ5ZoPnWsY0MtpStH481dwIb42NFSNQ_a-KaBUNYHVnb3r8aenhSZlQaPdSp6ByOGOITiqCxyJJIU0y-uM0TEUD_oV0_4rSpsNvchfudKg1f9ey2T1Y8fUGrB11cfkNWI-YtU35fB-2f8vdUZ_l3xqDmif37T31_Dsa562XMDfX-awfh7MjK8cXlbMHcHIrVHwIg7qp_WPIeSWNoGhS6cCZsKKqgqFFEYzkTqNplsGop5eyXRLzWEvjq0rBdCpVS2OFNFaJxmqUwevFmPM2hceNvXfiNix6xvTb6UNzeaY6aVYFZbgsXP3YCSZ5KU0sS6ARLUsfBBcZbPWbqDqdMFNLDs7gxaIZpTmGaHTtm6vUhzKOkJ1m8Kjd_MVKUKbwO8eWNz03LCf__w89uXktz2EN5Uh9PJgebsJ6mXiTE1pswWB-eeWfIuSam2cdb-fw5bbF6ReerD1X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+mobile+element+variations+by+statistical+genetics&rft.jtitle=Human+genome+variation&rft.au=Kojima%2C+Shohei&rft.date=2024-05-30&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2054-345X&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41439-024-00280-1&rft.externalDocID=10_1038_s41439_024_00280_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-345X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-345X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-345X&client=summon