Investigating mobile element variations by statistical genetics
The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and...
Saved in:
Published in | Human genome variation Vol. 11; no. 1; pp. 23 - 6 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.05.2024
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants.
Genetic insights: mobile element variations influence human complex traits
This research investigates how mobile elements contribute to human genetic diversity and disease. Researchers conducted a review using various sequencing technologies to analyze MEs in different human populations, focusing on three main families:
Alu
, LINE-1, and SVA. They studied these elements in over 2,500 individuals worldwide, finding that MEs significantly contribute to genetic variation and are linked to certain diseases. Using the short-read sequencing method, they identified thousands of ME variations, some linked to genetic disorders. These methods help uncover how MEs affect genome structure and function. The results show that MEs account for a large part of human structural variations, influencing gene expression and contributing to populations’ genetic makeup. Future studies may clarify how MEs contribute to genetic diversity and disease, leading to new diagnostic and therapeutic strategies. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. |
---|---|
AbstractList | Abstract The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants. The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants. The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants. Genetic insights: mobile element variations influence human complex traits This research investigates how mobile elements contribute to human genetic diversity and disease. Researchers conducted a review using various sequencing technologies to analyze MEs in different human populations, focusing on three main families: Alu , LINE-1, and SVA. They studied these elements in over 2,500 individuals worldwide, finding that MEs significantly contribute to genetic variation and are linked to certain diseases. Using the short-read sequencing method, they identified thousands of ME variations, some linked to genetic disorders. These methods help uncover how MEs affect genome structure and function. The results show that MEs account for a large part of human structural variations, influencing gene expression and contributing to populations’ genetic makeup. Future studies may clarify how MEs contribute to genetic diversity and disease, leading to new diagnostic and therapeutic strategies. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants.The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants. The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants.Genetic insights: mobile element variations influence human complex traitsThis research investigates how mobile elements contribute to human genetic diversity and disease. Researchers conducted a review using various sequencing technologies to analyze MEs in different human populations, focusing on three main families: Alu, LINE-1, and SVA. They studied these elements in over 2,500 individuals worldwide, finding that MEs significantly contribute to genetic variation and are linked to certain diseases. Using the short-read sequencing method, they identified thousands of ME variations, some linked to genetic disorders. These methods help uncover how MEs affect genome structure and function. The results show that MEs account for a large part of human structural variations, influencing gene expression and contributing to populations’ genetic makeup. Future studies may clarify how MEs contribute to genetic diversity and disease, leading to new diagnostic and therapeutic strategies. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. |
ArticleNumber | 23 |
Author | Kojima, Shohei |
Author_xml | – sequence: 1 givenname: Shohei orcidid: 0000-0002-6764-4818 surname: Kojima fullname: Kojima, Shohei email: shohei.kojima@riken.jp organization: Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38816353$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS1UREvpH2CBIrFhExi_EmeFUMXjSpXYgMTOsp1JlKvELnZupf57pjctoC668sj-znjmnJfsJKaIjL3m8J6DNB-K4kp2NQhVAwgDNX_GzgRoVUulf538V5-yi1L2AMB1pwyXL9ipNIY3Ussz9nEXb7Cs0-jWKY7Vkvw0Y4UzLhjX6sbliR5SLJW_rcpKNbHBzdWIEakqr9jzwc0FL-7Pc_bzy-cfl9_qq-9fd5efruqgoVvrIfi-b03TaDTKoDBK9-B65aEJTvgBRY8qDKid4V3TuSBb3qJ02rcYfNDynO22vn1ye3udp8XlW5vcZI8XKY_WZRpoRgtSeQmka_pWGS2MB_rT8U4YHFrdUq93W6_rnH4faHu7TCXgPLuI6VCshIZ868ghQt8-QvfpkCNtekcJCZ1pDFFv7qmDX7D_O96DzQSYDQg5lZJxsGFaj8au2U2z5WDvQrVbqJZCtcdQLSepeCR96P6kSG6iQnAcMf8b-wnVH3_4sps |
CitedBy_id | crossref_primary_10_1111_cge_14655 |
Cites_doi | 10.1038/s41586-023-06277-0 10.1016/S0092-8674(00)81998-4 10.1371/journal.pgen.1002236 10.1186/s13059-014-0488-x 10.1101/gad.351051.123 10.1186/1759-8753-1-7 10.1038/s41587-023-01964-9 10.1016/j.cell.2016.11.038 10.1101/gr.275323.121 10.1038/s41467-021-24041-8 10.1146/annurev.genet.35.102401.091032 10.1016/j.jmb.2006.01.089 10.1093/ve/vex023 10.1038/ng.3834 10.1093/nar/gkaa074 10.1101/gr.247965.118 10.1038/s41588-023-01390-2 10.1186/s12977-015-0162-8 10.1186/s13059-020-02101-4 10.1126/science.aad5497 10.1534/genetics.105.043976 10.1016/j.biopsych.2020.06.011 10.1038/s41586-020-2287-8 10.1093/nar/9.23.6439 10.1016/j.xgen.2023.100294 10.1038/28653 10.3390/ijms22126319 10.1126/science.abf7117 10.1093/bioinformatics/btz106 10.1186/s12859-019-3113-x 10.1101/gr.10.4.411 10.1101/gr.275488.121 10.1186/s13059-023-02898-w 10.1126/science.adh7699 10.1371/journal.pgen.1010680 10.1016/j.cell.2010.10.027 10.1093/nar/15.21.8725 10.1016/j.xgen.2023.100328 10.1038/s41586-023-06046-z 10.1038/s41431-022-01137-3 10.1038/ng.3009 10.1016/S0092-8674(00)81997-2 10.1093/bioinformatics/bts697 10.1101/gr.149400 10.1016/j.cell.2018.02.011 10.1038/ng0597-37 10.1038/nature08248 10.1073/pnas.1004290107 10.1073/pnas.1704117114 10.1016/j.cell.2022.06.032 10.1016/0888-7543(91)90414-A 10.1186/s13100-020-00230-y 10.1073/pnas.1602336113 10.1002/ajmg.a.38167 10.1098/rstb.2019.0331 10.1007/BF00163207 10.1002/mds.27441 10.1016/j.jmb.2005.09.085 10.1093/hmg/ddad039 10.1016/j.ajhg.2023.09.008 10.1038/s41588-022-01043-w 10.1016/j.tig.2022.02.009 10.1038/ng1223 10.1038/s41431-022-01250-3 10.1093/nar/gkad821 10.1101/gr.218032.116 10.1093/bioinformatics/btz205 10.1038/s41588-019-0562-0 10.1073/pnas.1712526114 10.1038/s41467-021-27438-7 10.1093/emboj/cdf592 10.1038/sdata.2016.25 10.1016/j.jid.2018.07.044 10.1038/s41431-020-00763-z 10.1038/s41586-023-06323-x 10.1093/hmg/9.4.653 10.1186/s13100-021-00256-w 10.1128/JVI.79.19.12507-12514.2005 10.1186/s13100-018-0142-3 10.1038/s41431-023-01478-7 10.1086/380207 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). Copyright Springer Nature B.V. 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Springer Nature B.V. 2024 |
DBID | C6C AAYXX CITATION NPM 3V. 7T3 7X7 7XB 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.1038/s41439-024-00280-1 |
DatabaseName | SpringerOpen CrossRef PubMed ProQuest Central (Corporate) Human Genome Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Human Genome Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics |
EISSN | 2054-345X |
EndPage | 6 |
ExternalDocumentID | oai_doaj_org_article_034b307ec6d748528b0848a1928ef757 38816353 10_1038_s41439_024_00280_1 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 22K15385 funderid: https://doi.org/10.13039/501100001691 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 22K15385 |
GroupedDBID | 0R~ 53G 5VS 7X7 8FI AAJSJ AASML ABUWG ACGFS ADBBV AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C DIK EBLON EBS EMOBN FYUFA GROUPED_DOAJ HCIFZ HYE KQ8 M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RPM SNYQT UKHRP 8FJ AAYXX CCPQU CITATION HMCUK PHGZM PHGZT AJTQC NPM 3V. 7T3 7XB 8FD 8FE 8FH 8FK AARCD AZQEC DWQXO FR3 GNUQQ K9. LK8 P64 PKEHL PQEST PQGLB PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c509t-fcbdd78665e848e2845d0ad4b06ca2bfe2de4cfe5a81969ac3717e3a5b7ecbc53 |
IEDL.DBID | AAJSJ |
ISSN | 2054-345X |
IngestDate | Wed Aug 27 01:26:39 EDT 2025 Thu Jul 10 17:17:21 EDT 2025 Wed Aug 13 03:37:47 EDT 2025 Thu Apr 03 07:02:51 EDT 2025 Tue Jul 01 02:40:52 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Mon Jul 21 06:08:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-fcbdd78665e848e2845d0ad4b06ca2bfe2de4cfe5a81969ac3717e3a5b7ecbc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6764-4818 |
OpenAccessLink | https://www.nature.com/articles/s41439-024-00280-1 |
PMID | 38816353 |
PQID | 3062309868 |
PQPubID | 2041955 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_034b307ec6d748528b0848a1928ef757 proquest_miscellaneous_3063459163 proquest_journals_3062309868 pubmed_primary_38816353 crossref_citationtrail_10_1038_s41439_024_00280_1 crossref_primary_10_1038_s41439_024_00280_1 springer_journals_10_1038_s41439_024_00280_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-30 |
PublicationDateYYYYMMDD | 2024-05-30 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Human genome variation |
PublicationTitleAbbrev | Hum Genome Var |
PublicationTitleAlternate | Hum Genome Var |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | C Goubert (280_CR39) 2020; 375 DT Thung (280_CR46) 2014; 15 C Groza (280_CR37) 2023; 3 LM Payer (280_CR36) 2017; 114 280_CR80 FM Sheen (280_CR20) 2000; 10 TJ Meyer (280_CR55) 2010; 1 B Rodriguez-Martin (280_CR53) 2020; 52 DM Sassaman (280_CR3) 1997; 16 B Mulvey (280_CR74) 2021; 89 JA Morris (280_CR77) 2023; 380 JH Wildschutte (280_CR25) 2016; 113 OK Pickeral (280_CR57) 2000; 10 AJ Scott (280_CR40) 2021; 31 J Skowronski (280_CR2) 1988; 8 M Ono (280_CR6) 1987; 15 GJ Cost (280_CR83) 2002; 21 C Chiang (280_CR65) 2017; 49 280_CR35 P Garret (280_CR70) 2023; 31 G Spirito (280_CR63) 2019; 20 M Dewannieux (280_CR12) 2003; 35 SA Fuhrman (280_CR9) 1981; 9 MA Batzer (280_CR4) 1991; 9 L Liang (280_CR38) 2023; 619 CM Macfarlane (280_CR26) 2015; 12 K Kobayashi (280_CR30) 1998; 394 K Tamura (280_CR31) 2023; 32 SL Gasior (280_CR84) 2006; 357 C Goubert (280_CR44) 2020; 48 G Pascarella (280_CR54) 2022; 185 JM Zook (280_CR59) 2016; 3 GD Swergold (280_CR10) 1990; 10 MA Batzer (280_CR5) 1996; 42 JM Kidd (280_CR1) 2010; 143 F Wünnemann (280_CR78) 2023; 19 C Chu (280_CR42) 2021; 12 NK Tuano (280_CR79) 2023; 24 J Feusier (280_CR24) 2019; 29 R Belshaw (280_CR27) 2005; 79 JL Goodier (280_CR56) 2000; 9 NT Chuang (280_CR17) 2021; 31 A Rakovic (280_CR33) 2018; 33 S Koks (280_CR64) 2021; 22 J Storer (280_CR22) 2021; 12 B Zhao (280_CR86) 2023; 110 X Chen (280_CR48) 2019; 35 T Jiang (280_CR50) 2019; 35 T Aneichyk (280_CR32) 2018; 172 NG Coufal (280_CR72) 2009; 460 R Borges-Monroy (280_CR71) 2021; 12 MV Almeida (280_CR15) 2022; 38 Q Feng (280_CR13) 1996; 87 EM Ostertag (280_CR7) 2003; 73 T Takenouchi (280_CR29) 2017; 173 TM Keane (280_CR45) 2013; 29 EM Ostertag (280_CR11) 2001; 35 EJ Gardner (280_CR41) 2017; 27 CG Santander (280_CR47) 2017; 3 R Rajaby (280_CR49) 2018; 46 X Cao (280_CR66) 2020; 21 JB Kinney (280_CR75) 2010; 107 C Chu (280_CR43) 2023; 51 JF Hughes (280_CR52) 2005; 171 A Dixit (280_CR81) 2016; 167 L Wang (280_CR62) 2017; 45 CH Nam (280_CR73) 2023; 617 J Kim (280_CR85) 2023; 619 W Chen (280_CR61) 2021; 12 C Mendez-Dorantes (280_CR82) 2023; 37 B Zhao (280_CR28) 2022; 30 C Stewart (280_CR16) 2011; 7 E Peter (280_CR19) 2021; 372 M Fujita (280_CR67) 2019; 139 CD Arnold (280_CR76) 2014; 46 J Ebler (280_CR58) 2022; 54 H Wang (280_CR8) 2005; 354 RL Collins (280_CR18) 2020; 581 280_CR21 J Thomas (280_CR51) 2018; 9 DC Bragg (280_CR34) 2017; 114 S Kosugi (280_CR60) 2023; 3 280_CR69 JV Moran (280_CR14) 1996; 87 280_CR23 EB Chuong (280_CR68) 2016; 351 |
References_xml | – volume: 619 start-page: 828 year: 2023 ident: 280_CR85 publication-title: Nature doi: 10.1038/s41586-023-06277-0 – volume: 87 start-page: 917 year: 1996 ident: 280_CR14 publication-title: Cell doi: 10.1016/S0092-8674(00)81998-4 – volume: 7 start-page: e1002236 year: 2011 ident: 280_CR16 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002236 – volume: 15 year: 2014 ident: 280_CR46 publication-title: Genome Biol. doi: 10.1186/s13059-014-0488-x – volume: 37 start-page: 948 year: 2023 ident: 280_CR82 publication-title: Genes Dev. doi: 10.1101/gad.351051.123 – volume: 1 year: 2010 ident: 280_CR55 publication-title: Mob. DNA doi: 10.1186/1759-8753-1-7 – ident: 280_CR80 doi: 10.1038/s41587-023-01964-9 – volume: 167 start-page: 1853 year: 2016 ident: 280_CR81 publication-title: Cell doi: 10.1016/j.cell.2016.11.038 – volume: 31 start-page: 2225 year: 2021 ident: 280_CR17 publication-title: Genome Res. doi: 10.1101/gr.275323.121 – volume: 12 year: 2021 ident: 280_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24041-8 – volume: 35 start-page: 501 year: 2001 ident: 280_CR11 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.35.102401.091032 – volume: 357 start-page: 1383 year: 2006 ident: 280_CR84 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.01.089 – volume: 3 start-page: vex023 year: 2017 ident: 280_CR47 publication-title: Virus Evol. doi: 10.1093/ve/vex023 – volume: 49 start-page: 692 year: 2017 ident: 280_CR65 publication-title: Nat. Genet. doi: 10.1038/ng.3834 – volume: 48 start-page: e36 year: 2020 ident: 280_CR44 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa074 – volume: 46 start-page: e122 year: 2018 ident: 280_CR49 publication-title: Nucleic Acids Res. – volume: 29 start-page: 1567 year: 2019 ident: 280_CR24 publication-title: Genome Res. doi: 10.1101/gr.247965.118 – ident: 280_CR23 doi: 10.1038/s41588-023-01390-2 – volume: 12 year: 2015 ident: 280_CR26 publication-title: Retrovirology doi: 10.1186/s12977-015-0162-8 – volume: 45 start-page: 2318 year: 2017 ident: 280_CR62 publication-title: Nucleic Acids Res. – volume: 21 year: 2020 ident: 280_CR66 publication-title: Genome Biol. doi: 10.1186/s13059-020-02101-4 – volume: 351 start-page: 1083 year: 2016 ident: 280_CR68 publication-title: Science doi: 10.1126/science.aad5497 – volume: 171 start-page: 1183 year: 2005 ident: 280_CR52 publication-title: Genetics doi: 10.1534/genetics.105.043976 – volume: 89 start-page: 76 year: 2021 ident: 280_CR74 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2020.06.011 – volume: 581 start-page: 444 year: 2020 ident: 280_CR18 publication-title: Nature doi: 10.1038/s41586-020-2287-8 – ident: 280_CR21 – volume: 8 start-page: 1385 year: 1988 ident: 280_CR2 publication-title: Mol. Cell Biol. – volume: 9 start-page: 6439 year: 1981 ident: 280_CR9 publication-title: Nucleic Acids Res. doi: 10.1093/nar/9.23.6439 – volume: 3 year: 2023 ident: 280_CR37 publication-title: Cell Genom. doi: 10.1016/j.xgen.2023.100294 – volume: 394 start-page: 388 year: 1998 ident: 280_CR30 publication-title: Nature doi: 10.1038/28653 – volume: 22 start-page: 6319 year: 2021 ident: 280_CR64 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22126319 – volume: 372 start-page: eabf7117 year: 2021 ident: 280_CR19 publication-title: Science doi: 10.1126/science.abf7117 – volume: 35 start-page: 3484 year: 2019 ident: 280_CR50 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz106 – volume: 20 year: 2019 ident: 280_CR63 publication-title: BMC Bioinform. doi: 10.1186/s12859-019-3113-x – volume: 10 start-page: 411 year: 2000 ident: 280_CR57 publication-title: Genome Res. doi: 10.1101/gr.10.4.411 – volume: 31 start-page: 2249 year: 2021 ident: 280_CR40 publication-title: Genome Res. doi: 10.1101/gr.275488.121 – volume: 24 year: 2023 ident: 280_CR79 publication-title: Genome Biol. doi: 10.1186/s13059-023-02898-w – volume: 380 year: 2023 ident: 280_CR77 publication-title: Science doi: 10.1126/science.adh7699 – volume: 19 start-page: e1010680 year: 2023 ident: 280_CR78 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1010680 – volume: 143 start-page: 837 year: 2010 ident: 280_CR1 publication-title: Cell doi: 10.1016/j.cell.2010.10.027 – volume: 15 start-page: 8725 year: 1987 ident: 280_CR6 publication-title: Nucleic Acids Res. doi: 10.1093/nar/15.21.8725 – volume: 3 year: 2023 ident: 280_CR60 publication-title: Cell Genom. doi: 10.1016/j.xgen.2023.100328 – volume: 617 start-page: 540 year: 2023 ident: 280_CR73 publication-title: Nature doi: 10.1038/s41586-023-06046-z – volume: 30 start-page: 1083 year: 2022 ident: 280_CR28 publication-title: Eur. J. Hum. Genet doi: 10.1038/s41431-022-01137-3 – volume: 46 start-page: 685 year: 2014 ident: 280_CR76 publication-title: Nat. Genet. doi: 10.1038/ng.3009 – volume: 87 start-page: 905 year: 1996 ident: 280_CR13 publication-title: Cell doi: 10.1016/S0092-8674(00)81997-2 – volume: 29 start-page: 389 year: 2013 ident: 280_CR45 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts697 – volume: 10 start-page: 6718 year: 1990 ident: 280_CR10 publication-title: Mol. Cell Biol. – volume: 10 start-page: 1496 year: 2000 ident: 280_CR20 publication-title: Genome Res. doi: 10.1101/gr.149400 – volume: 172 start-page: 897 year: 2018 ident: 280_CR32 publication-title: Cell doi: 10.1016/j.cell.2018.02.011 – volume: 16 start-page: 37 year: 1997 ident: 280_CR3 publication-title: Nat. Genet doi: 10.1038/ng0597-37 – volume: 460 start-page: 1127 year: 2009 ident: 280_CR72 publication-title: Nature doi: 10.1038/nature08248 – volume: 107 start-page: 9158 year: 2010 ident: 280_CR75 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1004290107 – volume: 114 start-page: E3984 year: 2017 ident: 280_CR36 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1704117114 – volume: 185 start-page: 3025 year: 2022 ident: 280_CR54 publication-title: Cell doi: 10.1016/j.cell.2022.06.032 – volume: 9 start-page: 481 year: 1991 ident: 280_CR4 publication-title: Genomics doi: 10.1016/0888-7543(91)90414-A – volume: 12 year: 2021 ident: 280_CR22 publication-title: Mob. DNA doi: 10.1186/s13100-020-00230-y – volume: 113 start-page: E2326 LP year: 2016 ident: 280_CR25 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1602336113 – volume: 173 start-page: 1353 year: 2017 ident: 280_CR29 publication-title: Am. J. Med. Genet. A doi: 10.1002/ajmg.a.38167 – volume: 375 start-page: 20190331 year: 2020 ident: 280_CR39 publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2019.0331 – volume: 42 start-page: 22 year: 1996 ident: 280_CR5 publication-title: J. Mol. Evol. doi: 10.1007/BF00163207 – volume: 33 start-page: 1108 year: 2018 ident: 280_CR33 publication-title: Mov. Disord. doi: 10.1002/mds.27441 – volume: 354 start-page: 994 year: 2005 ident: 280_CR8 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.09.085 – volume: 32 start-page: 2046 year: 2023 ident: 280_CR31 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddad039 – volume: 110 start-page: 1976 year: 2023 ident: 280_CR86 publication-title: Am. J. Hum. Genet doi: 10.1016/j.ajhg.2023.09.008 – volume: 54 start-page: 518 year: 2022 ident: 280_CR58 publication-title: Nat. Genet. doi: 10.1038/s41588-022-01043-w – volume: 38 start-page: 529 year: 2022 ident: 280_CR15 publication-title: Trends Genet. doi: 10.1016/j.tig.2022.02.009 – volume: 35 start-page: 41 year: 2003 ident: 280_CR12 publication-title: Nat. Genet. doi: 10.1038/ng1223 – volume: 31 start-page: 761 year: 2023 ident: 280_CR70 publication-title: Eur. J. Hum. Genet. doi: 10.1038/s41431-022-01250-3 – volume: 51 start-page: 11453 year: 2023 ident: 280_CR43 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad821 – volume: 27 start-page: 1916 year: 2017 ident: 280_CR41 publication-title: Genome Res. doi: 10.1101/gr.218032.116 – volume: 35 start-page: 3913 year: 2019 ident: 280_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz205 – volume: 52 start-page: 306 year: 2020 ident: 280_CR53 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0562-0 – volume: 114 start-page: E11020 year: 2017 ident: 280_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1712526114 – volume: 12 year: 2021 ident: 280_CR61 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27438-7 – volume: 21 start-page: 5899 year: 2002 ident: 280_CR83 publication-title: EMBO J. doi: 10.1093/emboj/cdf592 – volume: 3 year: 2016 ident: 280_CR59 publication-title: Sci. Data doi: 10.1038/sdata.2016.25 – volume: 139 start-page: 333 year: 2019 ident: 280_CR67 publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2018.07.044 – ident: 280_CR69 doi: 10.1038/s41431-020-00763-z – volume: 619 start-page: 868 year: 2023 ident: 280_CR38 publication-title: Nature doi: 10.1038/s41586-023-06323-x – volume: 9 start-page: 653 year: 2000 ident: 280_CR56 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.4.653 – volume: 12 year: 2021 ident: 280_CR71 publication-title: Mob. DNA doi: 10.1186/s13100-021-00256-w – volume: 79 start-page: 12507 year: 2005 ident: 280_CR27 publication-title: J. Virol. doi: 10.1128/JVI.79.19.12507-12514.2005 – volume: 9 year: 2018 ident: 280_CR51 publication-title: Mob. DNA doi: 10.1186/s13100-018-0142-3 – ident: 280_CR35 doi: 10.1038/s41431-023-01478-7 – volume: 73 start-page: 1444 year: 2003 ident: 280_CR7 publication-title: Am. J. Hum. Genet. doi: 10.1086/380207 |
SSID | ssj0001594813 |
Score | 2.2650535 |
SecondaryResourceType | review_article |
Snippet | The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human... Abstract The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 23 |
SubjectTerms | 631/208/205/2138 631/208/457/649/2157 Artificial intelligence Biomedical and Life Sciences Biomedicine Disease Gene Expression Gene Function Gene Therapy Genetic disorders Genetic diversity Genetic factors Genome-wide association studies Genomes Genotyping Haplotypes Human Genetics Integration Molecular Medicine Nucleotide sequence Population genetics Population studies Quantitative trait loci Review Article Skin diseases Statistical genetics Statistics Structure-function relationships Whole genome sequencing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iQbyIb1errOBNg9tN0mRPomIpQj1Z6C3k6UW3YlvBf-8k2daKr4vXbDZkv_3CzGQyXxA64YUjQniITizlmHpjsCrjEaiSc2eVcSrsQ_bvOr0BvR2y4cJVX-FMWJIHTsCdF4Rq4KEzHcupYKXQQQFegWMinOcs1pGDzVsIplJ9cFAhIU2VTEHE-ZiCZ1BhMEk4phNx-5MlioL933mZXzKk0fB019Fa4zHml2mmG2jJ1Ztopd_kxLfQxYJURv2QP400LPTcpWPh-SvEwmlTLtdveSgfisrMMCAwJxQwjrfRoHtzf93DzbUI2IB1n2BvtLU86NQ5QMKBfWG2UJbqomNUqb0rraPGO6ZE0L5RhkDI5ohiGlDUhpEdtFyPareHclYJzQlEMMozyg2vKg9gF14LZhVEQhlqzyCSptEMD1dXPMqYuyZCJlglwCojrLKdodP5O89JMePX3lcB-XnPoHYdG4ADsuGA_IsDGWrN_ptsluBYQiwE4VUlOiJDx_PHsHhCRkTVbjSNfQhl4CGTDO2m_z2fCVAY2hk8OZsR4GPwnz9o_z8-6ACtlpGpDJOihZYnL1N3CM7PRB9Fnr8DGdz7OA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RIqFeKrrQEigoSNyo1Wxsr51TBahVhbScqLQ3y89eaFI2u5X494wdZ7eotNf4Iccee76Zsb8B-CQqT6UMaJ04JggL1hJdpytQtRDeaet19EPOf8wur9j3BV9kh1ufr1WOZ2I6qF1no4_8FKEtouVGzuTZ7W8Ss0bF6GpOobEDzyN1WZRqsRBbH0viIqH5rUxF5WnPEB80BBUTSUFFMv1HHyXa_v9hzQdx0qR-Ll7CfsaN5ZdhoQ_gmW8n8GKeI-MT2IuocSBdfgVn99gz2uvypjO490s_3BQv79A8Hvx0pflT9mM77B2FKb5p7F_D1cX5z2-XJGdKIBYV_ooEa5wTkbrOSyY9qhzuKu2YqWZW1yb42nlmg-daRjocbSlacZ5qboS3xnJ6CLtt1_o3UPJGGkHRqNGBM2FF0wRDqyoYyZ1G46iA6ThfymYa8ZjN4pdK4Wwq1TDHCudYpTlW0wI-b9rcDiQaT9b-GpdhUzMSYKcP3fJa5f2kKspwWDj6mRNM8lqamBhAI16VPgguCjgeF1HlXdmrrQwV8HFTjPspBkl067t1qkMZR9BMCzgaFn8zEpRq_M6x5GSUhm3nj__Q26fH8g726iSQnNDqGHZXy7V_j0hnZT4kcf4LyHf4Vg priority: 102 providerName: ProQuest |
Title | Investigating mobile element variations by statistical genetics |
URI | https://link.springer.com/article/10.1038/s41439-024-00280-1 https://www.ncbi.nlm.nih.gov/pubmed/38816353 https://www.proquest.com/docview/3062309868 https://www.proquest.com/docview/3063459163 https://doaj.org/article/034b307ec6d748528b0848a1928ef757 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_8APGl1FbtWntswbcaXDfJJvsk56HIgSK2wr2FfPpi94p3Cv73TrK7p1It9GkhOwmzk8nOV_ILwJ4oPJUyYHTimCAsWEt0mbZAlUJ4p63XMQ95flGdXbPxhE-WoOzPwqRN-wnSMv2m-91hBzOGhr0maFFIqgYSjHhWI1Q76vbqcDj-OX7OrCQEEtqdkCmofKPzKyuUwPrf8jD_qo4mo3P6ET503mI-bPnbgCXffIK1864e_hmOXsBkNDf576nBRZ77dkt4_oBxcJuQy81jHo8OJVRmHBC1Jh5enG3C9enJr9EZ6a5EIBYt-5wEa5wTEaPOSyY92hbuCu2YKSqrSxN86TyzwXMtI-6NthTDNU81N8JbYzndgpVm2vgvkPNaGkExetGBM2FFXQdDiyIYyZ3GKCiDw15EynZ44fHailuV6tZUqlasCsWqkljVYQY_Fn3-tGgZ_6Q-jpJfUEak69QwvbtR3cyrgjJkC7mvnGCSl9LEGwA0OqbSB8FFBrv9vKlu-c0UxkEYWtWykhl8X7zGhROrIbrx0_tEQxlH75hmsN3O94ITVF9s5_hmv1eA58Hf_6Cd_yP_Cutl0klOaLELK_O7e_8NXZy5GcCymIhBp9n4PD65uLzC1lE1GqS0wRPahfdi |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRYJeUFseDS0QJDiBVW9sr50Dqsqj2tJuT620N-NXeoGkNFtQ_xS_kbGT7IKA3nqNH3LG45lvZuwZgJeSBqZUhdaJ55LwyjliinQFqpAyeOOCiX7I6cl4csY_zcRsBX4Ob2HitcpBJiZB7RsXfeS7CG0RLZdqrPYuvpFYNSpGV4cSGh1bHIXrH2iytW8PP-D-viqKg4-n7yekrypAHCrHOamc9V7GNG9BcRVQPAtPjeeWjp0pbBUKH7irgjAqpo4xjqHFE5gRVgZnXawSgSL_DipeGo09OZNLn07KfcL6tzmUqd2WIx4pCSpCkoKYZPSH_ktlAv6Fbf-KyyZ1d7AO93ucmu93jLUBK6HehLvTPhK_CWsRpXZJnh_A3m_ZOurz_GtjUdbkobuZnn9Hc7zzC-b2Om-HcTg7Mm98Q9k-hLNboeEjWK2bOmxBLkplJUMjylSCSyfLsrKM0soq4Q0aYxmMBnpp16ctj9UzvugUPmdKdzTWSGOdaKxHGbxejLnoknbc2Ptd3IZFz5hwO31oLs91f341ZRyXhasfe8mVKJSNhQgM4mMVKilkBjvDJupeCrR6ybMZvFg04_mNQRlTh-Yq9WFcIEhnGTzuNn-xEjxF-F1gy5uBG5aT__-Hnty8ludwb3I6PdbHhydH27BWJOYUhNEdWJ1fXoWniLLm9lli7Rw-3_ZZ-gWxoDe8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ-QIyG8GMWvFdQ10Sdtbm_bXrsPhohwAZELMZLwVvvJi-4Cd2j41_zrnHZ37zQqb7xuP9Kdzkx_M9POALwUhadSBrROHBOEBWuJLtMVqFII77T1Ovohj6bj_RP24ZSfrsDP_i1MvFbZ68SkqF1jo498iNAW0XIlx3IYumsRx7uT7fMLEitIxUhrX06jZZFDf_0DzbfZ24Nd3OtXZTnZ-_x-n3QVBojFg3JOgjXOiZjyzUsmPapq7grtmCnGVpcm-NJ5ZoPnWsY0MtpStH481dwIb42NFSNQ_a-KaBUNYHVnb3r8aenhSZlQaPdSp6ByOGOITiqCxyJJIU0y-uM0TEUD_oV0_4rSpsNvchfudKg1f9ey2T1Y8fUGrB11cfkNWI-YtU35fB-2f8vdUZ_l3xqDmif37T31_Dsa562XMDfX-awfh7MjK8cXlbMHcHIrVHwIg7qp_WPIeSWNoGhS6cCZsKKqgqFFEYzkTqNplsGop5eyXRLzWEvjq0rBdCpVS2OFNFaJxmqUwevFmPM2hceNvXfiNix6xvTb6UNzeaY6aVYFZbgsXP3YCSZ5KU0sS6ARLUsfBBcZbPWbqDqdMFNLDs7gxaIZpTmGaHTtm6vUhzKOkJ1m8Kjd_MVKUKbwO8eWNz03LCf__w89uXktz2EN5Uh9PJgebsJ6mXiTE1pswWB-eeWfIuSam2cdb-fw5bbF6ReerD1X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+mobile+element+variations+by+statistical+genetics&rft.jtitle=Human+genome+variation&rft.au=Kojima%2C+Shohei&rft.date=2024-05-30&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2054-345X&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41439-024-00280-1&rft.externalDocID=10_1038_s41439_024_00280_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-345X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-345X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-345X&client=summon |