Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection
Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be i...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 16; pp. 9112 - 9121 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
21.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (doublestranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection. |
---|---|
AbstractList | Auxin signaling plays essential roles in almost every aspect of plant growth and development. Auxin response factors (ARFs) are key transcriptional regulators of auxin signaling. However, it is not clear what roles ARF transcription factors may play in plant–pathogen, and specifically plant–virus, interactions. This study reveals that an ARF transcription factor is targeted by several independently evolved viral proteins of very different plant RNA viruses. These viral proteins impede the ARF activity in different ways, but in each case, these interactions benefit viral infection. These findings demonstrate that manipulation of the auxin signaling by viral proteins is a common pathogenicity strategy in plant RNA viruses.
Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection. Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection.Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection. Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (doublestranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection. Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection. |
Author | Zhang, Ruifang Hong, Gaojie Tan, Xiaoxiang Li, Junmin Yan, Fei Li, Lulu Wei, Zhongyan Xie, Kaili Li, Jing Yan, Chengqi Qin, Qingqing Li, Yi Zhang, Hehong Chen, Changhai He, Yuqing Sun, Zongtao Chen, Jianping |
Author_xml | – sequence: 1 givenname: Hehong surname: Zhang fullname: Zhang, Hehong – sequence: 2 givenname: Lulu surname: Li fullname: Li, Lulu – sequence: 3 givenname: Yuqing surname: He fullname: He, Yuqing – sequence: 4 givenname: Qingqing surname: Qin fullname: Qin, Qingqing – sequence: 5 givenname: Changhai surname: Chen fullname: Chen, Changhai – sequence: 6 givenname: Zhongyan surname: Wei fullname: Wei, Zhongyan – sequence: 7 givenname: Xiaoxiang surname: Tan fullname: Tan, Xiaoxiang – sequence: 8 givenname: Kaili surname: Xie fullname: Xie, Kaili – sequence: 9 givenname: Ruifang surname: Zhang fullname: Zhang, Ruifang – sequence: 10 givenname: Gaojie surname: Hong fullname: Hong, Gaojie – sequence: 11 givenname: Jing surname: Li fullname: Li, Jing – sequence: 12 givenname: Junmin surname: Li fullname: Li, Junmin – sequence: 13 givenname: Chengqi surname: Yan fullname: Yan, Chengqi – sequence: 14 givenname: Fei surname: Yan fullname: Yan, Fei – sequence: 15 givenname: Yi surname: Li fullname: Li, Yi – sequence: 16 givenname: Jianping surname: Chen fullname: Chen, Jianping – sequence: 17 givenname: Zongtao surname: Sun fullname: Sun, Zongtao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32253321$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFTEYhYNU7G117UoJdONm2nxMvjbCpbYqFAtF1yGTSTSXuck0mSn23zfjrVftwk1CyHPOe17OETiIKToAXmN0ipGgZ2M05RQrLAlrMRbPwAojhRveKnQAVggR0ciWtIfgqJQNQkgxiV6AQ0oIo5TgFbj9EMoUop3gNvWuwOTh1sQwzoOZQorLOwfroJl_hgizK2OKxUFv7JQyvC7rm0ssYHcP--C9yy5OcBxMPW--rOFdyHOppr6iIXpnF8uX4Lk3Q3GvHu9j8O3y4uv5p-bq-uPn8_VVYxlSU-OVFIrZ3lIumEDet7blxPTCi07K3nfO0Y5K6qnkPZGt65gSFDOqWKc8Y_QYvN_5jnO3db2t0bIZ9JjD1uR7nUzQ__7E8EN_T3daYEmxFNXg3aNBTrezK5PehmLdUNdzaS6aUCkI45yTip48QTdpzrGuVynVEk54uyR6-3eifZTfbVTgbAfYnErJzu8RjPTSt1761n_6rgr2RGHD9Ku5ulIY_qN7s9NtSu1xP4ZwRRSXmD4A5Yq6AA |
CitedBy_id | crossref_primary_10_3390_v12121387 crossref_primary_10_1080_15592324_2021_1906574 crossref_primary_10_1111_pbi_13663 crossref_primary_10_1371_journal_pone_0275588 crossref_primary_10_1371_journal_ppat_1009118 crossref_primary_10_3389_fmicb_2022_897589 crossref_primary_10_1038_s41467_023_38805_x crossref_primary_10_3390_v15040973 crossref_primary_10_1016_j_gene_2021_145905 crossref_primary_10_3390_v13050752 crossref_primary_10_3389_fpls_2024_1516884 crossref_primary_10_3389_fmicb_2023_1191403 crossref_primary_10_1016_j_molp_2024_12_005 crossref_primary_10_1016_j_pbi_2022_102258 crossref_primary_10_1038_s41467_024_51726_7 crossref_primary_10_1093_jxb_erae468 crossref_primary_10_1016_j_plaphy_2024_109452 crossref_primary_10_3390_ijms222413229 crossref_primary_10_3390_agronomy12030565 crossref_primary_10_1111_tpj_16934 crossref_primary_10_1093_plphys_kiae070 crossref_primary_10_3390_ijms252312895 crossref_primary_10_1016_j_cj_2024_08_002 crossref_primary_10_3390_app12031360 crossref_primary_10_1111_jipb_13484 crossref_primary_10_1038_s41467_022_34649_z crossref_primary_10_1111_ppl_70165 crossref_primary_10_1186_s12284_023_00652_1 crossref_primary_10_1186_s12870_022_03861_w crossref_primary_10_3390_ijms23105309 crossref_primary_10_1007_s00438_024_02106_9 crossref_primary_10_1021_acs_jafc_2c02165 crossref_primary_10_3389_fmicb_2023_1131212 crossref_primary_10_1111_pce_14494 crossref_primary_10_1128_jvi_00463_23 crossref_primary_10_3390_ijms231810527 crossref_primary_10_1111_mpp_13122 crossref_primary_10_1002_advs_202412835 crossref_primary_10_3389_fmicb_2023_1257355 crossref_primary_10_1101_cshperspect_a040022 crossref_primary_10_3390_v14102258 crossref_primary_10_1016_j_plgene_2021_100320 crossref_primary_10_1002_ps_7605 crossref_primary_10_1016_j_jia_2024_09_035 crossref_primary_10_3390_v13050842 crossref_primary_10_1371_journal_ppat_1010548 crossref_primary_10_1007_s13205_020_02541_6 crossref_primary_10_1186_s12870_025_06394_0 crossref_primary_10_3390_genes15121579 crossref_primary_10_1016_j_celrep_2024_113838 crossref_primary_10_1111_nph_70018 crossref_primary_10_3390_v14020392 crossref_primary_10_1016_j_cj_2021_02_009 crossref_primary_10_1016_j_virusres_2023_199061 crossref_primary_10_3390_ijms25179491 crossref_primary_10_1021_acs_jafc_4c09561 crossref_primary_10_1016_j_pld_2020_11_004 crossref_primary_10_1042_EBC20210089 crossref_primary_10_1016_j_virol_2023_109870 crossref_primary_10_1186_s42483_024_00266_5 crossref_primary_10_1126_sciadv_abm0660 crossref_primary_10_1111_pbi_14325 crossref_primary_10_1146_annurev_phyto_020620_113020 crossref_primary_10_1093_plphys_kiac099 crossref_primary_10_1111_nph_19391 crossref_primary_10_3389_fpls_2023_1112821 crossref_primary_10_1016_j_virol_2025_110449 crossref_primary_10_1111_jipb_13722 crossref_primary_10_1093_plphys_kiab565 crossref_primary_10_3389_fmicb_2023_1241076 crossref_primary_10_1111_tpj_17141 crossref_primary_10_3389_fpls_2023_1122978 crossref_primary_10_3389_fpls_2022_876428 crossref_primary_10_1186_s12284_021_00528_2 crossref_primary_10_3390_jof9121184 crossref_primary_10_1111_ppa_13763 crossref_primary_10_3390_ijms23042361 crossref_primary_10_3389_fpls_2022_959859 crossref_primary_10_3389_fpls_2024_1398818 crossref_primary_10_1101_cshperspect_a040071 crossref_primary_10_1111_pce_15420 crossref_primary_10_1016_j_tplants_2020_10_009 crossref_primary_10_1016_j_coviro_2021_01_002 crossref_primary_10_1016_j_tim_2024_03_001 crossref_primary_10_1371_journal_ppat_1009242 crossref_primary_10_3390_ijms26010191 crossref_primary_10_1016_j_xplc_2020_100102 crossref_primary_10_1007_s00122_022_04207_8 crossref_primary_10_1016_j_pmpp_2025_102640 crossref_primary_10_1016_j_plantsci_2022_111504 crossref_primary_10_1016_j_jgg_2022_04_002 crossref_primary_10_1111_mpp_13446 crossref_primary_10_3390_cimb46100659 crossref_primary_10_1073_pnas_2016673118 crossref_primary_10_1111_jipb_13580 crossref_primary_10_1002_bies_202300018 crossref_primary_10_3390_v13102100 crossref_primary_10_3390_v16010073 crossref_primary_10_1016_j_molp_2023_09_009 crossref_primary_10_1007_s11427_024_2680_3 |
Cites_doi | 10.1111/mpp.12814 10.1371/journal.ppat.1007201 10.1104/pp.106.1.37 10.1073/pnas.0704901104 10.3389/fmicb.2016.02140 10.1105/tpc.018630 10.1104/pp.113.219659 10.1073/pnas.1424077112 10.1105/tpc.008417 10.1094/MPMI-08-10-0194 10.1126/science.276.5320.1865 10.1101/cshperspect.a001438 10.1073/pnas.94.22.11786 10.1073/pnas.1400074111 10.1016/j.coviro.2015.11.003 10.1016/j.pbi.2007.08.014 10.1105/tpc.114.133744 10.1146/annurev-arplant-043015-112122 10.1126/stke.4012007re6 10.1023/A:1015255030047 10.3389/fmicb.2013.00270 10.1111/mpp.12204 10.1371/journal.ppat.1007655 10.1038/ncomms4617 10.1128/JVI.79.4.2549-2558.2005 10.1371/journal.ppat.1005847 10.1016/j.molp.2017.06.007 10.1105/tpc.010289 10.1073/pnas.96.10.5844 10.1094/MPMI-19-0864 10.1073/pnas.1000672107 10.1111/j.1364-3703.2011.00716.x 10.1016/j.cell.2013.12.027 10.1038/nrm2020 10.1104/pp.105.072306 10.1105/tpc.010884 10.1023/A:1019818110761 10.1094/MPMI-10-18-0285-R 10.1111/nph.14376 10.1073/pnas.1524390113 10.1111/j.1469-8137.2012.04208.x 10.1111/j.1469-8137.2011.03910.x 10.1016/j.febslet.2007.04.071 10.1111/pce.13372 10.1016/j.jplph.2018.06.001 10.1111/pce.12397 10.1093/jxb/erq208 10.1146/annurev-phyto-080615-095900 10.1007/s11434-008-0467-2 10.1111/j.1439-0434.2010.01679.x |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Apr 21, 2020 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Apr 21, 2020 – notice: 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1918254117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 9121 |
ExternalDocumentID | PMC7183187 32253321 10_1073_pnas_1918254117 26929681 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Plan grantid: 2016YFD0200804 – fundername: Ningbo Science and Technology Innovation 2025 Major Project grantid: 2019B10004 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-f98795cdc367570ff4c462ad7f7b88dfbee3b383f386d284eb597315395b9f553 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:34:39 EDT 2025 Fri Jul 11 00:51:27 EDT 2025 Mon Jun 30 09:54:43 EDT 2025 Thu Apr 03 07:05:41 EDT 2025 Tue Jul 01 03:40:19 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Thu May 29 09:14:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | OsARF17 auxin response factor rice virus viral proteins auxin signaling |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-f98795cdc367570ff4c462ad7f7b88dfbee3b383f386d284eb597315395b9f553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Mark Estelle, University of California San Diego, La Jolla, CA, and approved March 11, 2020 (received for review October 17, 2019) 1H.Z. and L.L. contributed equally to this work. Author contributions: H.Z., J.C., and Z.S. designed research; H.Z., L.L., Y.H., Q.Q., C.C., Z.W., X.T., K.X., R.Z., and Z.S. performed research; G.H., Jing Li, Junmin Li, C.Y., F.Y., Y.L., J.C., and Z.S. analyzed data; and H.Z. and Z.S. wrote the paper. |
ORCID | 0000-0002-3462-8600 0000-0002-8385-8912 0000-0002-3849-4080 0000-0003-1679-3116 0000-0002-5254-5358 0000-0002-7633-9188 0000-0003-3300-8984 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7183187 |
PMID | 32253321 |
PQID | 2394262645 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183187 proquest_miscellaneous_2387256662 proquest_journals_2394262645 pubmed_primary_32253321 crossref_primary_10_1073_pnas_1918254117 crossref_citationtrail_10_1073_pnas_1918254117 jstor_primary_26929681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-21 |
PublicationDateYYYYMMDD | 2020-04-21 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 Liu Z. B. (e_1_3_3_46_2) 1994; 6 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 Li S. B. (e_1_3_3_51_2) 2016; 7 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_36_2 doi: 10.1111/mpp.12814 – ident: e_1_3_3_32_2 doi: 10.1371/journal.ppat.1007201 – ident: e_1_3_3_47_2 doi: 10.1104/pp.106.1.37 – ident: e_1_3_3_25_2 doi: 10.1073/pnas.0704901104 – ident: e_1_3_3_35_2 doi: 10.3389/fmicb.2016.02140 – ident: e_1_3_3_15_2 doi: 10.1105/tpc.018630 – ident: e_1_3_3_50_2 doi: 10.1104/pp.113.219659 – ident: e_1_3_3_38_2 doi: 10.1073/pnas.1424077112 – ident: e_1_3_3_37_2 doi: 10.1105/tpc.008417 – ident: e_1_3_3_49_2 doi: 10.1094/MPMI-08-10-0194 – ident: e_1_3_3_16_2 doi: 10.1126/science.276.5320.1865 – ident: e_1_3_3_23_2 doi: 10.1101/cshperspect.a001438 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.94.22.11786 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.1400074111 – ident: e_1_3_3_5_2 doi: 10.1016/j.coviro.2015.11.003 – ident: e_1_3_3_13_2 doi: 10.1016/j.pbi.2007.08.014 – ident: e_1_3_3_20_2 doi: 10.1105/tpc.114.133744 – ident: e_1_3_3_11_2 doi: 10.1146/annurev-arplant-043015-112122 – ident: e_1_3_3_18_2 doi: 10.1126/stke.4012007re6 – ident: e_1_3_3_39_2 doi: 10.1023/A:1015255030047 – ident: e_1_3_3_1_2 doi: 10.3389/fmicb.2013.00270 – ident: e_1_3_3_3_2 doi: 10.1111/mpp.12204 – ident: e_1_3_3_34_2 doi: 10.1371/journal.ppat.1007655 – ident: e_1_3_3_19_2 doi: 10.1038/ncomms4617 – ident: e_1_3_3_26_2 doi: 10.1128/JVI.79.4.2549-2558.2005 – ident: e_1_3_3_28_2 doi: 10.1371/journal.ppat.1005847 – ident: e_1_3_3_45_2 doi: 10.1016/j.molp.2017.06.007 – ident: e_1_3_3_22_2 doi: 10.1105/tpc.010289 – ident: e_1_3_3_41_2 doi: 10.1073/pnas.96.10.5844 – volume: 6 start-page: 645 year: 1994 ident: e_1_3_3_46_2 article-title: Soybean GH3 promoter contains multiple auxin-inducible elements publication-title: Plant Cell – ident: e_1_3_3_4_2 doi: 10.1094/MPMI-19-0864 – ident: e_1_3_3_44_2 doi: 10.1073/pnas.1000672107 – ident: e_1_3_3_33_2 doi: 10.1111/j.1364-3703.2011.00716.x – ident: e_1_3_3_21_2 doi: 10.1016/j.cell.2013.12.027 – ident: e_1_3_3_10_2 doi: 10.1038/nrm2020 – ident: e_1_3_3_6_2 doi: 10.1104/pp.105.072306 – volume: 7 start-page: 47 year: 2016 ident: e_1_3_3_51_2 article-title: A review of auxin response factors (ARFs) in plants publication-title: Front Plant Sci. – ident: e_1_3_3_14_2 doi: 10.1105/tpc.010884 – ident: e_1_3_3_52_2 doi: 10.1023/A:1019818110761 – ident: e_1_3_3_9_2 doi: 10.1094/MPMI-10-18-0285-R – ident: e_1_3_3_7_2 doi: 10.1111/nph.14376 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.1524390113 – ident: e_1_3_3_24_2 doi: 10.1111/j.1469-8137.2012.04208.x – ident: e_1_3_3_43_2 doi: 10.1111/j.1469-8137.2011.03910.x – ident: e_1_3_3_42_2 doi: 10.1016/j.febslet.2007.04.071 – ident: e_1_3_3_8_2 doi: 10.1111/pce.13372 – ident: e_1_3_3_2_2 doi: 10.1016/j.jplph.2018.06.001 – ident: e_1_3_3_48_2 doi: 10.1111/pce.12397 – ident: e_1_3_3_17_2 doi: 10.1093/jxb/erq208 – ident: e_1_3_3_29_2 doi: 10.1146/annurev-phyto-080615-095900 – ident: e_1_3_3_30_2 doi: 10.1007/s11434-008-0467-2 – ident: e_1_3_3_31_2 doi: 10.1111/j.1439-0434.2010.01679.x |
SSID | ssj0009580 |
Score | 2.6041088 |
Snippet | Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied... Auxin signaling plays essential roles in almost every aspect of plant growth and development. Auxin response factors (ARFs) are key transcriptional regulators... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9112 |
SubjectTerms | Biological Sciences Deoxyribonucleic acid Dimerization Disease Resistance - genetics DNA Double-stranded RNA Gene Expression Regulation, Plant - immunology Host-Pathogen Interactions - genetics Host-Pathogen Interactions - immunology Indoleacetic Acids - metabolism Modulators Mutation Nicotiana - genetics Nicotiana - metabolism Nicotiana - virology Oryza - genetics Oryza - immunology Oryza - virology Plant Diseases - genetics Plant Diseases - immunology Plant Diseases - virology Plant growth Plant Leaves - metabolism Plant Proteins - genetics Plant Proteins - metabolism Plant resistance Plant viruses Plant Viruses - immunology Plant Viruses - metabolism Plants, Genetically Modified Protein Multimerization - immunology Proteins Recombinant Proteins - genetics Recombinant Proteins - metabolism Ribonucleic acid RNA RNA viruses RNA Viruses - immunology RNA Viruses - metabolism Signal Transduction - immunology Signaling Transcription activation Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Viral Proteins - immunology Viral Proteins - metabolism Viruses |
Title | Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection |
URI | https://www.jstor.org/stable/26929681 https://www.ncbi.nlm.nih.gov/pubmed/32253321 https://www.proquest.com/docview/2394262645 https://www.proquest.com/docview/2387256662 https://pubmed.ncbi.nlm.nih.gov/PMC7183187 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAIFLRIHIoih8Zre-1jBFQREqFUrdSb5bV3aaTKobWNgB_G72NmX3ZKKxUuTmxvNnHm8zzWM_MR8jqLwGqmWRiwQgkIUIQK0qhkQVhJlsYFryKd7f5pmSxOoo-n8elo9HuQtdS1Ylr-urau5H-kCsdArlgl-w-S9ZPCAXgP8oUtSBi2t5Lxe7xB67LVfDY6JwO7WThGLtzHlkGTovuhq1Z0Nqy0FDuTz8386GDG0f90LCktkkrD9mg5n3xfXXaN1N0afMZWPXRlD73pa1yiwdKtLM77OhWrPJpJMDlc9qzHfqF6Ic_W1npiXpAp1u7Ou36RVluJ7mLVj_piGh_Ay1d_2K5chJhGGphyaF9JABYyMjXUU2kUMPgvQRIZClGvoU15p4PiUOGCrg4HxjubmS_4yzCAJkM247pophChYljsJt1owX3FNPqERf2onrMcJ8j7Ce6QuyGEJzqhdDFs9pya0id7fa6lFGdvr_yCDW_IJMReF-pczdgduEDHD8h9G7vQuQHiNhnJ-iHZdgKme7aF-ZtH5MIhk2pk0rWiQ2TiPiKTamRSh0xqkEktMqn4ST0yqUYmBWRSi0wKyKQemY_JycGH43eLwJJ7BCX4qG2gMqS5L6uSQcjK95WKyigJi4orLtK0UkJKJljKFEuTCnwoKWJkWYtZFotMxTHbIVv1upZPCa0EgGtfCJVx8LWKtKgUCECWKlZxxLNkTKbuT85L2_keCVjO8xvEOiZ7_gPfTNOXm4fuaKn5cWECAUeSzsZk14kxtyqjyUOWIQNEEsVj8sqfBoWOT-mKWq47HJNyiEOSJByTJ0bqfnK0voyFMDnfwIMfgM3iN8_UqzPdNB58UDDf_NntL-05udfftbtkq73s5AvwwFvxUsP9D5Tu27M |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+modes+of+manipulation+of+rice+auxin+response+factor+OsARF17+by+different+plant+RNA+viruses+for+infection&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Hehong&rft.au=Li%2C+Lulu&rft.au=He%2C+Yuqing&rft.au=Qin%2C+Qingqing&rft.date=2020-04-21&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=16&rft.spage=9112&rft.epage=9121&rft_id=info:doi/10.1073%2Fpnas.1918254117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1918254117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |