Hybrid Grid Pattern Star Identification Algorithm Based on Multi-Calibration Star Verification
In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes, this paper proposes a star identification algorithm based on a hybrid grid pattern. The application of a hybrid pattern generated by multi-cali...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 5; p. 1661 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
04.03.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes, this paper proposes a star identification algorithm based on a hybrid grid pattern. The application of a hybrid pattern generated by multi-calibration stars in the initial matching enables the position distribution features of neighboring stars around the main star to be more comprehensively described and avoids the interference of position noise and magnitude noise as much as possible. Moreover, calibration star filtering is adopted to eliminate incorrect candidates and pick the true matched navigation star from candidate stars in the initial match. Then, the reference star image is utilized to efficiently verify and determine the final identification results of the algorithm via the nearest principle. The performance of the proposed algorithm in simulation experiments shows that, when the position noise is 2 pixels, the identification rate of the algorithm is 96.43%, which is higher than that of the optimized grid algorithm by 2.21% and the grid algorithm by 4.05%; when the magnitude noise is 0.3 mag, the star identification rate of the algorithm is 96.45%, which is superior to the optimized grid algorithm by 2.03% and to the grid algorithm by 3.82%. In addition, in the actual star image test, star magnitude values of ≤12 mag can be successfully identified using the proposed algorithm. |
---|---|
AbstractList | In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes, this paper proposes a star identification algorithm based on a hybrid grid pattern. The application of a hybrid pattern generated by multi-calibration stars in the initial matching enables the position distribution features of neighboring stars around the main star to be more comprehensively described and avoids the interference of position noise and magnitude noise as much as possible. Moreover, calibration star filtering is adopted to eliminate incorrect candidates and pick the true matched navigation star from candidate stars in the initial match. Then, the reference star image is utilized to efficiently verify and determine the final identification results of the algorithm via the nearest principle. The performance of the proposed algorithm in simulation experiments shows that, when the position noise is 2 pixels, the identification rate of the algorithm is 96.43%, which is higher than that of the optimized grid algorithm by 2.21% and the grid algorithm by 4.05%; when the magnitude noise is 0.3 mag, the star identification rate of the algorithm is 96.45%, which is superior to the optimized grid algorithm by 2.03% and to the grid algorithm by 3.82%. In addition, in the actual star image test, star magnitude values of ≤12 mag can be successfully identified using the proposed algorithm. In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes, this paper proposes a star identification algorithm based on a hybrid grid pattern. The application of a hybrid pattern generated by multi-calibration stars in the initial matching enables the position distribution features of neighboring stars around the main star to be more comprehensively described and avoids the interference of position noise and magnitude noise as much as possible. Moreover, calibration star filtering is adopted to eliminate incorrect candidates and pick the true matched navigation star from candidate stars in the initial match. Then, the reference star image is utilized to efficiently verify and determine the final identification results of the algorithm via the nearest principle. The performance of the proposed algorithm in simulation experiments shows that, when the position noise is 2 pixels, the identification rate of the algorithm is 96.43%, which is higher than that of the optimized grid algorithm by 2.21% and the grid algorithm by 4.05%; when the magnitude noise is 0.3 mag, the star identification rate of the algorithm is 96.45%, which is superior to the optimized grid algorithm by 2.03% and to the grid algorithm by 3.82%. In addition, in the actual star image test, star magnitude values of ≤12 mag can be successfully identified using the proposed algorithm.In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes, this paper proposes a star identification algorithm based on a hybrid grid pattern. The application of a hybrid pattern generated by multi-calibration stars in the initial matching enables the position distribution features of neighboring stars around the main star to be more comprehensively described and avoids the interference of position noise and magnitude noise as much as possible. Moreover, calibration star filtering is adopted to eliminate incorrect candidates and pick the true matched navigation star from candidate stars in the initial match. Then, the reference star image is utilized to efficiently verify and determine the final identification results of the algorithm via the nearest principle. The performance of the proposed algorithm in simulation experiments shows that, when the position noise is 2 pixels, the identification rate of the algorithm is 96.43%, which is higher than that of the optimized grid algorithm by 2.21% and the grid algorithm by 4.05%; when the magnitude noise is 0.3 mag, the star identification rate of the algorithm is 96.45%, which is superior to the optimized grid algorithm by 2.03% and to the grid algorithm by 3.82%. In addition, in the actual star image test, star magnitude values of ≤12 mag can be successfully identified using the proposed algorithm. |
Audience | Academic |
Author | Ma, Caiwen Wang, Yuanbo Shen, Chao Gao, Wei |
AuthorAffiliation | Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China; shenchao@opt.ac.cn (C.S.); gaowei@opt.ac.cn (W.G.); wangyuanbo@opt.ac.cn (Y.W.) |
AuthorAffiliation_xml | – name: Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China; shenchao@opt.ac.cn (C.S.); gaowei@opt.ac.cn (W.G.); wangyuanbo@opt.ac.cn (Y.W.) |
Author_xml | – sequence: 1 givenname: Chao surname: Shen fullname: Shen, Chao – sequence: 2 givenname: Caiwen surname: Ma fullname: Ma, Caiwen – sequence: 3 givenname: Wei surname: Gao fullname: Gao, Wei – sequence: 4 givenname: Yuanbo surname: Wang fullname: Wang, Yuanbo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38475196$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1v3CAQhlGVqvloD_0DlaVemoMTMBjDqdqu0mSlVK3Uj2MRhmHDyjYpxpXy78uuk1WSCgnQ8L4PzDDH6GAIAyD0luAzSiU-HyuGa8I5eYGOCKtYKaoKHzzaH6LjcdxgXFFKxSt0SAVraiL5Efp9dddGb4vL7fRNpwRxKL4nHYuVhSF5541OPgzFoluH6NNNX3zSI9gih75MXfLlUne-jbNoZ_wFcW97jV463Y3w5n49QT8_X_xYXpXXXy9Xy8V1aWosU-kEaWthqHUcGkkrh0VTM04JBdNK2zayIY5a25i2ZU5TSYyhzgEXhEALkp6g1cy1QW_UbfS9jncqaK92gRDXSsfkTQdKCMk1q6mkDFgDRGjHLGUV4ZjqFnhmfZxZt1PbgzW5DFF3T6BPTwZ_o9bhryJY5vLWOBM-3BNi-DPBmFTvRwNdpwcI06gqWXO-zbDK0vfPpJswxSHXaquqJZYVJ1l1NqvWOmfgBxfyxSYPC703uRmcz_FFIzijmc2y4d3jHPaPf_j4LDifBSaGcYzglPFp92WZ7Luci9q2ltq3VnacPnM8QP_X_gN7zszx |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3520559 crossref_primary_10_3390_s24134147 |
Cites_doi | 10.1109/ACCESS.2019.2927684 10.1109/TAES.2009.5089538 10.1109/TAES.2018.2845198 10.2514/1.30393 10.1109/TAES.2018.2864431 10.1016/j.asr.2018.02.029 10.1109/TAES.2008.4560198 10.2514/2.4025 10.1016/j.actaastro.2021.02.026 10.1016/j.asr.2018.12.027 10.1109/62.387971 10.1109/TAES.2006.314572 10.3390/rs14194699 10.1016/j.imavis.2007.10.006 10.1109/TAES.2022.3160134 10.2514/1.13314 10.3390/s20113027 10.1109/JSEN.2022.3157860 10.1002/j.2161-4296.2004.tb00349.x 10.1109/7.869495 10.1109/TAES.2007.4383600 10.1109/7.570743 10.1109/ACCESS.2019.2961271 10.1016/j.asr.2017.01.034 10.1109/MAES.2004.1275309 10.1109/TAES.2016.150053 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24051661 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_8896a453934e47e18af4d3421603abe6 PMC10933850 A786439564 38475196 10_3390_s24051661 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Chinese Academy of Sciences grantid: E09041WHA1 – fundername: the basic research project grantid: E09041WHA1 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-f81b58c3df6e7932f087546313ecb9db7971f3dd7cbb4fa391cc3ffe6811ebe93 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:23:35 EDT 2025 Thu Aug 21 18:34:53 EDT 2025 Thu Aug 07 15:04:24 EDT 2025 Sat Jul 26 00:17:18 EDT 2025 Tue Jun 10 21:11:38 EDT 2025 Mon Jul 21 05:46:34 EDT 2025 Tue Jul 01 03:50:47 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | hybrid grid pattern reference star map verification multi-calibration star verification star identification |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-f81b58c3df6e7932f087546313ecb9db7971f3dd7cbb4fa391cc3ffe6811ebe93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24051661 |
PMID | 38475196 |
PQID | 2955909261 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8896a453934e47e18af4d3421603abe6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10933850 proquest_miscellaneous_2956687542 proquest_journals_2955909261 gale_infotracacademiconefile_A786439564 pubmed_primary_38475196 crossref_citationtrail_10_3390_s24051661 crossref_primary_10_3390_s24051661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240304 |
PublicationDateYYYYMMDD | 2024-03-04 |
PublicationDate_xml | – month: 3 year: 2024 text: 20240304 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Silani (ref_20) 2006; 42 Wei (ref_25) 2009; 6 Zhang (ref_21) 2008; 26 Mehta (ref_23) 2018; 61 ref_13 Clouse (ref_18) 2000; 36 Li (ref_9) 2019; 8 Harman (ref_28) 1997; 20 Wang (ref_2) 2004; 19 Liebe (ref_3) 2002; 10 Yang (ref_14) 2022; 58 Wei (ref_22) 2019; 63 Mehta (ref_27) 2019; 55 Schiattarella (ref_5) 2017; 59 Liu (ref_11) 2021; 183 Mehta (ref_12) 2019; 55 Mortari (ref_10) 2004; 51 ref_1 Padgett (ref_16) 1997; 33 Leeghim (ref_19) 2007; 43 Cole (ref_6) 2006; 29 Liu (ref_24) 2022; 22 Aghaei (ref_26) 2017; 52 Na (ref_17) 2009; 45 Kolomenkin (ref_4) 2008; 44 ref_7 Liu (ref_8) 2019; 56 Xu (ref_15) 2019; 7 |
References_xml | – volume: 7 start-page: 92193 year: 2019 ident: ref_15 article-title: RPNet: A representation learning based star identification algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927684 – volume: 45 start-page: 516 year: 2009 ident: ref_17 article-title: Modified grid algorithm for noisy all-sky autonomous star identification publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2009.5089538 – volume: 55 start-page: 17 year: 2019 ident: ref_27 article-title: A hamming distance and spearman correlation based star identification algorithm publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2018.2845198 – volume: 6 start-page: 483 year: 2009 ident: ref_25 article-title: Star identification algorithm based on log-polar transform publication-title: J. Aerosp. Comput. Inf. Commun. doi: 10.2514/1.30393 – volume: 55 start-page: 689 year: 2019 ident: ref_12 article-title: A Rotation-Invariant Additive Vector Sequence Based Star Pattern Recognition publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2018.2864431 – volume: 61 start-page: 2647 year: 2018 ident: ref_23 article-title: A robust star identification algorithm with star shortlisting publication-title: Adv. Space Res. doi: 10.1016/j.asr.2018.02.029 – volume: 44 start-page: 441 year: 2008 ident: ref_4 article-title: Geometric voting algorithm for star trackers publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2008.4560198 – volume: 20 start-page: 208 year: 1997 ident: ref_28 article-title: Optimized TRIAD algorithm for attitude determination publication-title: J. Guid. Control Dyn. doi: 10.2514/2.4025 – volume: 183 start-page: 11 year: 2021 ident: ref_11 article-title: A star identification algorithm based on simplest general subgraph publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2021.02.026 – volume: 63 start-page: 2245 year: 2019 ident: ref_22 article-title: A star identification algorithm based on radial and dynamic cyclic features of star pattern publication-title: Adv. Space Res. doi: 10.1016/j.asr.2018.12.027 – volume: 10 start-page: 10 year: 2002 ident: ref_3 article-title: Star trackers for attitude determination publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/62.387971 – volume: 42 start-page: 1275 year: 2006 ident: ref_20 article-title: Star identification algorithms: Novel approach and comparison study publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2006.314572 – ident: ref_1 doi: 10.3390/rs14194699 – volume: 26 start-page: 891 year: 2008 ident: ref_21 article-title: Full-sky autonomous star identification based on radial and cyclic features of star pattern publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2007.10.006 – volume: 58 start-page: 4156 year: 2022 ident: ref_14 article-title: Robust and Efficient Star Identification Algorithm based on 1-D Convolutional Neural Network publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2022.3160134 – volume: 29 start-page: 64 year: 2006 ident: ref_6 article-title: Fast star-pattern recognition using planar triangles publication-title: J. Guid. Control Dyn. doi: 10.2514/1.13314 – ident: ref_7 doi: 10.3390/s20113027 – volume: 22 start-page: 8030 year: 2022 ident: ref_24 article-title: A Star Identification Algorithm Based on Recommended Radial Pattern publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3157860 – volume: 51 start-page: 171 year: 2004 ident: ref_10 article-title: The pyramid star identification technique publication-title: Navigation doi: 10.1002/j.2161-4296.2004.tb00349.x – volume: 36 start-page: 773 year: 2000 ident: ref_18 article-title: Small field-of-view star identification using Bayesian decision theory publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.869495 – volume: 43 start-page: 1112 year: 2007 ident: ref_19 article-title: Star pattern identification technique by modified grid algorithm publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2007.4383600 – volume: 33 start-page: 202 year: 1997 ident: ref_16 article-title: A grid algorithm for autonomous star identification publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.570743 – volume: 8 start-page: 1010 year: 2019 ident: ref_9 article-title: Improved grid algorithm based on star pair pattern and two-dimensional angular distances for full-sky star identification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961271 – volume: 59 start-page: 2133 year: 2017 ident: ref_5 article-title: A novel star identification technique robust to high presence of false objects: The multi-poles algorithm publication-title: Adv. Space Res. doi: 10.1016/j.asr.2017.01.034 – ident: ref_13 – volume: 19 start-page: 10 year: 2004 ident: ref_2 article-title: An all-sky autonomous star map identification algorithm publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2004.1275309 – volume: 52 start-page: 2080 year: 2017 ident: ref_26 article-title: Grid star identification improvement using optimization approaches publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2016.150053 – volume: 56 start-page: 3055 year: 2019 ident: ref_8 article-title: Star identification based on Spider-Web image and hierarchical CNN publication-title: IEEE Trans. Aerosp. Electron. Syst. |
SSID | ssj0023338 |
Score | 2.4237494 |
Snippet | In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes,... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1661 |
SubjectTerms | Algorithms Artificial intelligence Calibration Cameras Cost control hybrid grid pattern Identification multi-calibration star verification Neural networks Optimization algorithms Pattern recognition Random variables reference star map verification Sensors star identification Star maps |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUFBASXKKuPY7jHLeIsuKAOFDUE5aftFKbRdvtgX_PjJ2NNgKJC5ccEicaj2fyzSSebxh7AxrjYoSBJulONjI40VgfQ6OcitB11O8l77b4rFan8tNZe7bX6ov2hBV64KK4I617ZWULPcgou8i1TTKAFNQe2bqYybYR83bJ1JhqAWZehUcIMKk_ukbcarlSfIY-maT_z1fxHhbN90nuAc_JPXZ3jBjrZZH0PrsVhwfszh6P4EP2ffWLCq_qj3T4khkzhxrDyE1d6nDT-GGuXl7-WG8utudX9TGiV6jxVK7AbahEyxVjKDd-w0fvbnvETk8-fH2_asbGCY1H_N-i3rlrtYeQVET_E4lo66UCDtG7Priu73iCEDrvnEwWeu49pBSV5hwXtYfH7GBYD_Epqy06qUtBEO-XXMSFxQxJO8W9gyBSHyr2bqdQ40dWcWpucWkwuyDdm0n3FXs9Df1ZqDT-NuiYVmUaQOzX-QTahBltwvzLJir2ltbUkI-iMN6OpQY4JWK7MstOUyDWKlmxw92ym9F5r40gVr5FL0iaV9NldDv6l2KHuL7JY5QirYqKPSlWMskMiPgYGKMYemY_s0nNrwwX55nam8i9QLeLZ_9DDc_ZbYEhWN4xJw_ZwXZzE19gCLV1L7O3_Aa7hRkE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SZ9oICQ4BJ1HTuOc0JbxHbFAXGgqCes-NVWKtmyuz3033fG8aYbgbjkYDuR7ZnxzDgz3wC85wrtYlQDRVC1KIQzZdFa7wpppOd1TfVeYrTFNzk_EV9Pq9N04bZKYZWbMzEe1G5h6Y78sCSotEmDBv-nqz8FVY2iv6uphMZ9eMBQ01BIl5odDw4XR_-rRxPi6NofrlB7VUxKNtJBEar_7wN5SyONoyW31M_sCTxOdmM-7Qn9FO757hk82kITfA6_5jeUfpUf0-N7xM3scjQml3mfjRvS9Vw-vTzDla3Pf-dHqMNcjk0xD7egRC3Ts0T_4k_89Oa1F3Ay-_Lj87xI5RMKi1bAGnefmUpZ7oL0KIVlIPB6ITnj3prGmbqpWeDO1dYYEVreMGt5CF4qxpC0DX8JO92i868hb1FUTXAloX-JiZ-06CcpI5k13JWhcRl83GyotglbnEpcXGr0MWjv9bD3Gbwbhl71gBr_GnREVBkGEAZ2bFgsz3QSKa1UI1tR8YYLL2rPVBuE46Kkwtmt8TKDD0RTTZKKk7FtSjjAJRHmlZ7WisyxSooM9jdk10mEV_qO4TJ4O3Sj8NEflbbzi-s4BrmOighn8KrnkmHOHPU-msc4DTXin9Gixj3dxXkE-CaIL66qye7_57UHD0s0sWJEnNiHnfXy2h-gibQ2b6Ic3AK-TRGI priority: 102 providerName: ProQuest |
Title | Hybrid Grid Pattern Star Identification Algorithm Based on Multi-Calibration Star Verification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38475196 https://www.proquest.com/docview/2955909261 https://www.proquest.com/docview/2956687542 https://pubmed.ncbi.nlm.nih.gov/PMC10933850 https://doaj.org/article/8896a453934e47e18af4d3421603abe6 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTULjAfFNYFQBIcFLoLEd23lAqEXrKiSmCVHUJ6I4trdJXTqyTmL_PXf5UiP2xEse7HPk-O58d7HvdwBvuUa_GM1A5LUSkbCGRXnhbCSNdFwpqvdS37Y4lvOF-LpMljvQ1dhsF_Dq1tCO6kktqtWHP79vPqPCf6KIE0P2j1dolZJYUhC0hwZJUSGDb6I_TGAcw7AGVGhIvg93OW7O6MPIgVWqwfv_3aK3bNTw_uSWQZo9gPutJxlOGtY_hB1XPoJ7W_iCj-HX_IYSssIjepzUSJpliO5lFTb5ub79YRdOVqfr6nxzdhFO0arZEJvqzNyIUrdMIyTNwJ_46m7YE1jMDn98mUdtQYWoQL9gg_yITaILbr10qJfME5y9kDzmrjCpNSpVsefWqsIY4XOexkXBvXdSxzEyO-VPYbdcl-45hDkqr_GWER6YGLtxjpGTNjIuDLfMpzaA992CZkWLNk5FL1YZRh3EhqxnQwBvetLLBmLjNqIpcaUnIFTsumFdnWatkmVapzIXCU-5cEK5WOdeWC4YldLOjZMBvCOeZiRNOJkib1MQ8JMIBSubKE0OWiJFAAcd27NOJjNGaH3jlNFsXvfdqI50xpKXbn1d00hJq8oCeNZIST_nTtgC0AP5GXzUsKc8P6shvwn0i-tk_OL_h76EfYYOWX1_ThzA7qa6dq_QodqYEdxRS4VPPTsawd708Pjk-6j-OTGqFekvsUQkyQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDcpBQICwSVq_IjjHBDaAtstLRWHFvXUEL9apDZbdrdC_VP8RmacBxuBuPWSgx_ReDyeR-L5hpCXXIFfDGYg8SoXibCaJZVxNpFaOp7nWO8l3LbYk5MD8ekwO1whv7pcGLxW2enEoKjt1OA38g2GUGlpAQ7_u_MfCVaNwr-rXQmNRix23OVPCNnmb7c_wP6-Ymz8cf_9JGmrCiQGjOMCiKI6U4ZbLx0IJ_OI6S4kp9wZXVidFzn13NrcaC18xQtqDPfeSUUprBjBl0DlXxMcLDlmpo-3-gCPQ7zXoBdBZ7oxB2uZUSnpwOaF0gB_G4AlCzi8nblk7sa3ya3WT41HjWDdISuuvktuLqEX3iNHk0tM94q38PEl4HTWMTivs7jJ_vXt58B4dHoMnFycnMWbYDNtDE0h7zfBxDDdiGAz8Su8upt2nxxcCWMfkNV6WrtHJK5ANWhvGaKNidSlFcRlSktqNLfMFzYibzqGlqbFMseSGqclxDTI-7LnfURe9EPPGwCPfw3axF3pByDmdmiYzo7L9giXShWyEhkvuHAid1RVXlguGBbqrrSTEXmNe1qiZgBiTNUmOMCSEGOrHOUK3b9Mioisd9tetipjXv4R8Ig877vhsOMfnKp204swRkrkKovIw0ZKepo5-BngjgMZaiA_g0UNe-rvJwFQHCHFuMrStf_T9Yxcn-x_3i13t_d2HpMbDNy7cBtPrJPVxezCPQH3bKGfhjMRk29XfQh_A94pT-4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqYTggHhjKGAQCC5WbO96vT4glNCGlKIoQhT1hPG-WqTilCQV6l_j1zHjF7FA3HrJwV5Hs7PztGe-AXjOJMbF6AYCJ1MecKPioNDWBEIJy9KU5r1U1RYzMT3k74-Soy341fbCUFllaxMrQ20Wmt6RD2OCSgszDPiHrimLmO9O3pz9CGiCFH1pbcdp1CJyYC9-Yvq2er2_i2f9Io4ne5_eToNmwkCg0VGukcBIJVIz44RFQY0d4btzwSJmtcqMSrM0csyYVCvFXcGySGvmnBUyinD3BMSE5n87paxoANvjvdn8Y5fuMcz-aiwjxrJwuELfmURCRD0PWA0K-NsdbPjDfq3mhvOb3IDrTdTqj2oxuwlbtrwF1zawDG_Dl-kFNX_57-hnXqF2lj6Gsku_7gV2zctBf3R6jLxcn3z3x-hBjY-Xqi7ggNrEVC2Q9YOf8a_bx-7A4aWw9i4MykVp74NfoKFQzsSEPcZDGxaYpUklIq2YiV1mPHjVMjTXDbI5Ddg4zTHDId7nHe89eNYtPavhPP61aEyn0i0gBO7qwmJ5nDcKnUuZiYInLGPc8tRGsnDcMB7T2O5CWeHBSzrTnOwEEqOLpt0Bt0SIW_kolRQMJoJ7sNMee94YkFX-R9w9eNrdRtWn7zlFaRfn1RohiKuxB_dqKeloZhh1YHCOZMie_PQ21b9Tfjup4MUJYIzJJHzwf7qewBVUwPzD_uzgIVyNMdarSvP4DgzWy3P7CGO1tXrcKIUPXy9bD38D47pVgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Grid+Pattern+Star+Identification+Algorithm+Based+on+Multi-Calibration+Star+Verification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shen%2C+Chao&rft.au=Ma%2C+Caiwen&rft.au=Gao%2C+Wei&rft.au=Wang%2C+Yuanbo&rft.date=2024-03-04&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=24&rft.issue=5&rft_id=info:doi/10.3390%2Fs24051661&rft_id=info%3Apmid%2F38475196&rft.externalDocID=PMC10933850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |