Hybrid Grid Pattern Star Identification Algorithm Based on Multi-Calibration Star Verification

In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes, this paper proposes a star identification algorithm based on a hybrid grid pattern. The application of a hybrid pattern generated by multi-cali...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 5; p. 1661
Main Authors Shen, Chao, Ma, Caiwen, Gao, Wei, Wang, Yuanbo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.03.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes, this paper proposes a star identification algorithm based on a hybrid grid pattern. The application of a hybrid pattern generated by multi-calibration stars in the initial matching enables the position distribution features of neighboring stars around the main star to be more comprehensively described and avoids the interference of position noise and magnitude noise as much as possible. Moreover, calibration star filtering is adopted to eliminate incorrect candidates and pick the true matched navigation star from candidate stars in the initial match. Then, the reference star image is utilized to efficiently verify and determine the final identification results of the algorithm via the nearest principle. The performance of the proposed algorithm in simulation experiments shows that, when the position noise is 2 pixels, the identification rate of the algorithm is 96.43%, which is higher than that of the optimized grid algorithm by 2.21% and the grid algorithm by 4.05%; when the magnitude noise is 0.3 mag, the star identification rate of the algorithm is 96.45%, which is superior to the optimized grid algorithm by 2.03% and to the grid algorithm by 3.82%. In addition, in the actual star image test, star magnitude values of ≤12 mag can be successfully identified using the proposed algorithm.
AbstractList In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes, this paper proposes a star identification algorithm based on a hybrid grid pattern. The application of a hybrid pattern generated by multi-calibration stars in the initial matching enables the position distribution features of neighboring stars around the main star to be more comprehensively described and avoids the interference of position noise and magnitude noise as much as possible. Moreover, calibration star filtering is adopted to eliminate incorrect candidates and pick the true matched navigation star from candidate stars in the initial match. Then, the reference star image is utilized to efficiently verify and determine the final identification results of the algorithm via the nearest principle. The performance of the proposed algorithm in simulation experiments shows that, when the position noise is 2 pixels, the identification rate of the algorithm is 96.43%, which is higher than that of the optimized grid algorithm by 2.21% and the grid algorithm by 4.05%; when the magnitude noise is 0.3 mag, the star identification rate of the algorithm is 96.45%, which is superior to the optimized grid algorithm by 2.03% and to the grid algorithm by 3.82%. In addition, in the actual star image test, star magnitude values of ≤12 mag can be successfully identified using the proposed algorithm.
In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes, this paper proposes a star identification algorithm based on a hybrid grid pattern. The application of a hybrid pattern generated by multi-calibration stars in the initial matching enables the position distribution features of neighboring stars around the main star to be more comprehensively described and avoids the interference of position noise and magnitude noise as much as possible. Moreover, calibration star filtering is adopted to eliminate incorrect candidates and pick the true matched navigation star from candidate stars in the initial match. Then, the reference star image is utilized to efficiently verify and determine the final identification results of the algorithm via the nearest principle. The performance of the proposed algorithm in simulation experiments shows that, when the position noise is 2 pixels, the identification rate of the algorithm is 96.43%, which is higher than that of the optimized grid algorithm by 2.21% and the grid algorithm by 4.05%; when the magnitude noise is 0.3 mag, the star identification rate of the algorithm is 96.45%, which is superior to the optimized grid algorithm by 2.03% and to the grid algorithm by 3.82%. In addition, in the actual star image test, star magnitude values of ≤12 mag can be successfully identified using the proposed algorithm.In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes, this paper proposes a star identification algorithm based on a hybrid grid pattern. The application of a hybrid pattern generated by multi-calibration stars in the initial matching enables the position distribution features of neighboring stars around the main star to be more comprehensively described and avoids the interference of position noise and magnitude noise as much as possible. Moreover, calibration star filtering is adopted to eliminate incorrect candidates and pick the true matched navigation star from candidate stars in the initial match. Then, the reference star image is utilized to efficiently verify and determine the final identification results of the algorithm via the nearest principle. The performance of the proposed algorithm in simulation experiments shows that, when the position noise is 2 pixels, the identification rate of the algorithm is 96.43%, which is higher than that of the optimized grid algorithm by 2.21% and the grid algorithm by 4.05%; when the magnitude noise is 0.3 mag, the star identification rate of the algorithm is 96.45%, which is superior to the optimized grid algorithm by 2.03% and to the grid algorithm by 3.82%. In addition, in the actual star image test, star magnitude values of ≤12 mag can be successfully identified using the proposed algorithm.
Audience Academic
Author Ma, Caiwen
Wang, Yuanbo
Shen, Chao
Gao, Wei
AuthorAffiliation Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China; shenchao@opt.ac.cn (C.S.); gaowei@opt.ac.cn (W.G.); wangyuanbo@opt.ac.cn (Y.W.)
AuthorAffiliation_xml – name: Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China; shenchao@opt.ac.cn (C.S.); gaowei@opt.ac.cn (W.G.); wangyuanbo@opt.ac.cn (Y.W.)
Author_xml – sequence: 1
  givenname: Chao
  surname: Shen
  fullname: Shen, Chao
– sequence: 2
  givenname: Caiwen
  surname: Ma
  fullname: Ma, Caiwen
– sequence: 3
  givenname: Wei
  surname: Gao
  fullname: Gao, Wei
– sequence: 4
  givenname: Yuanbo
  surname: Wang
  fullname: Wang, Yuanbo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38475196$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v3CAQhlGVqvloD_0DlaVemoMTMBjDqdqu0mSlVK3Uj2MRhmHDyjYpxpXy78uuk1WSCgnQ8L4PzDDH6GAIAyD0luAzSiU-HyuGa8I5eYGOCKtYKaoKHzzaH6LjcdxgXFFKxSt0SAVraiL5Efp9dddGb4vL7fRNpwRxKL4nHYuVhSF5541OPgzFoluH6NNNX3zSI9gih75MXfLlUne-jbNoZ_wFcW97jV463Y3w5n49QT8_X_xYXpXXXy9Xy8V1aWosU-kEaWthqHUcGkkrh0VTM04JBdNK2zayIY5a25i2ZU5TSYyhzgEXhEALkp6g1cy1QW_UbfS9jncqaK92gRDXSsfkTQdKCMk1q6mkDFgDRGjHLGUV4ZjqFnhmfZxZt1PbgzW5DFF3T6BPTwZ_o9bhryJY5vLWOBM-3BNi-DPBmFTvRwNdpwcI06gqWXO-zbDK0vfPpJswxSHXaquqJZYVJ1l1NqvWOmfgBxfyxSYPC703uRmcz_FFIzijmc2y4d3jHPaPf_j4LDifBSaGcYzglPFp92WZ7Luci9q2ltq3VnacPnM8QP_X_gN7zszx
CitedBy_id crossref_primary_10_1109_JSEN_2024_3520559
crossref_primary_10_3390_s24134147
Cites_doi 10.1109/ACCESS.2019.2927684
10.1109/TAES.2009.5089538
10.1109/TAES.2018.2845198
10.2514/1.30393
10.1109/TAES.2018.2864431
10.1016/j.asr.2018.02.029
10.1109/TAES.2008.4560198
10.2514/2.4025
10.1016/j.actaastro.2021.02.026
10.1016/j.asr.2018.12.027
10.1109/62.387971
10.1109/TAES.2006.314572
10.3390/rs14194699
10.1016/j.imavis.2007.10.006
10.1109/TAES.2022.3160134
10.2514/1.13314
10.3390/s20113027
10.1109/JSEN.2022.3157860
10.1002/j.2161-4296.2004.tb00349.x
10.1109/7.869495
10.1109/TAES.2007.4383600
10.1109/7.570743
10.1109/ACCESS.2019.2961271
10.1016/j.asr.2017.01.034
10.1109/MAES.2004.1275309
10.1109/TAES.2016.150053
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24051661
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Publicly Available Content Database



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8896a453934e47e18af4d3421603abe6
PMC10933850
A786439564
38475196
10_3390_s24051661
Genre Journal Article
GrantInformation_xml – fundername: Chinese Academy of Sciences
  grantid: E09041WHA1
– fundername: the basic research project
  grantid: E09041WHA1
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-f81b58c3df6e7932f087546313ecb9db7971f3dd7cbb4fa391cc3ffe6811ebe93
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:23:35 EDT 2025
Thu Aug 21 18:34:53 EDT 2025
Thu Aug 07 15:04:24 EDT 2025
Sat Jul 26 00:17:18 EDT 2025
Tue Jun 10 21:11:38 EDT 2025
Mon Jul 21 05:46:34 EDT 2025
Tue Jul 01 03:50:47 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords hybrid grid pattern
reference star map verification
multi-calibration star verification
star identification
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-f81b58c3df6e7932f087546313ecb9db7971f3dd7cbb4fa391cc3ffe6811ebe93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24051661
PMID 38475196
PQID 2955909261
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8896a453934e47e18af4d3421603abe6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10933850
proquest_miscellaneous_2956687542
proquest_journals_2955909261
gale_infotracacademiconefile_A786439564
pubmed_primary_38475196
crossref_citationtrail_10_3390_s24051661
crossref_primary_10_3390_s24051661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240304
PublicationDateYYYYMMDD 2024-03-04
PublicationDate_xml – month: 3
  year: 2024
  text: 20240304
  day: 4
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Silani (ref_20) 2006; 42
Wei (ref_25) 2009; 6
Zhang (ref_21) 2008; 26
Mehta (ref_23) 2018; 61
ref_13
Clouse (ref_18) 2000; 36
Li (ref_9) 2019; 8
Harman (ref_28) 1997; 20
Wang (ref_2) 2004; 19
Liebe (ref_3) 2002; 10
Yang (ref_14) 2022; 58
Wei (ref_22) 2019; 63
Mehta (ref_27) 2019; 55
Schiattarella (ref_5) 2017; 59
Liu (ref_11) 2021; 183
Mehta (ref_12) 2019; 55
Mortari (ref_10) 2004; 51
ref_1
Padgett (ref_16) 1997; 33
Leeghim (ref_19) 2007; 43
Cole (ref_6) 2006; 29
Liu (ref_24) 2022; 22
Aghaei (ref_26) 2017; 52
Na (ref_17) 2009; 45
Kolomenkin (ref_4) 2008; 44
ref_7
Liu (ref_8) 2019; 56
Xu (ref_15) 2019; 7
References_xml – volume: 7
  start-page: 92193
  year: 2019
  ident: ref_15
  article-title: RPNet: A representation learning based star identification algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927684
– volume: 45
  start-page: 516
  year: 2009
  ident: ref_17
  article-title: Modified grid algorithm for noisy all-sky autonomous star identification
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2009.5089538
– volume: 55
  start-page: 17
  year: 2019
  ident: ref_27
  article-title: A hamming distance and spearman correlation based star identification algorithm
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2018.2845198
– volume: 6
  start-page: 483
  year: 2009
  ident: ref_25
  article-title: Star identification algorithm based on log-polar transform
  publication-title: J. Aerosp. Comput. Inf. Commun.
  doi: 10.2514/1.30393
– volume: 55
  start-page: 689
  year: 2019
  ident: ref_12
  article-title: A Rotation-Invariant Additive Vector Sequence Based Star Pattern Recognition
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2018.2864431
– volume: 61
  start-page: 2647
  year: 2018
  ident: ref_23
  article-title: A robust star identification algorithm with star shortlisting
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2018.02.029
– volume: 44
  start-page: 441
  year: 2008
  ident: ref_4
  article-title: Geometric voting algorithm for star trackers
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2008.4560198
– volume: 20
  start-page: 208
  year: 1997
  ident: ref_28
  article-title: Optimized TRIAD algorithm for attitude determination
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.4025
– volume: 183
  start-page: 11
  year: 2021
  ident: ref_11
  article-title: A star identification algorithm based on simplest general subgraph
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2021.02.026
– volume: 63
  start-page: 2245
  year: 2019
  ident: ref_22
  article-title: A star identification algorithm based on radial and dynamic cyclic features of star pattern
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2018.12.027
– volume: 10
  start-page: 10
  year: 2002
  ident: ref_3
  article-title: Star trackers for attitude determination
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/62.387971
– volume: 42
  start-page: 1275
  year: 2006
  ident: ref_20
  article-title: Star identification algorithms: Novel approach and comparison study
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2006.314572
– ident: ref_1
  doi: 10.3390/rs14194699
– volume: 26
  start-page: 891
  year: 2008
  ident: ref_21
  article-title: Full-sky autonomous star identification based on radial and cyclic features of star pattern
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2007.10.006
– volume: 58
  start-page: 4156
  year: 2022
  ident: ref_14
  article-title: Robust and Efficient Star Identification Algorithm based on 1-D Convolutional Neural Network
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2022.3160134
– volume: 29
  start-page: 64
  year: 2006
  ident: ref_6
  article-title: Fast star-pattern recognition using planar triangles
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.13314
– ident: ref_7
  doi: 10.3390/s20113027
– volume: 22
  start-page: 8030
  year: 2022
  ident: ref_24
  article-title: A Star Identification Algorithm Based on Recommended Radial Pattern
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3157860
– volume: 51
  start-page: 171
  year: 2004
  ident: ref_10
  article-title: The pyramid star identification technique
  publication-title: Navigation
  doi: 10.1002/j.2161-4296.2004.tb00349.x
– volume: 36
  start-page: 773
  year: 2000
  ident: ref_18
  article-title: Small field-of-view star identification using Bayesian decision theory
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.869495
– volume: 43
  start-page: 1112
  year: 2007
  ident: ref_19
  article-title: Star pattern identification technique by modified grid algorithm
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2007.4383600
– volume: 33
  start-page: 202
  year: 1997
  ident: ref_16
  article-title: A grid algorithm for autonomous star identification
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.570743
– volume: 8
  start-page: 1010
  year: 2019
  ident: ref_9
  article-title: Improved grid algorithm based on star pair pattern and two-dimensional angular distances for full-sky star identification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961271
– volume: 59
  start-page: 2133
  year: 2017
  ident: ref_5
  article-title: A novel star identification technique robust to high presence of false objects: The multi-poles algorithm
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2017.01.034
– ident: ref_13
– volume: 19
  start-page: 10
  year: 2004
  ident: ref_2
  article-title: An all-sky autonomous star map identification algorithm
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2004.1275309
– volume: 52
  start-page: 2080
  year: 2017
  ident: ref_26
  article-title: Grid star identification improvement using optimization approaches
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2016.150053
– volume: 56
  start-page: 3055
  year: 2019
  ident: ref_8
  article-title: Star identification based on Spider-Web image and hierarchical CNN
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
SSID ssj0023338
Score 2.4237494
Snippet In order to solve the star identification problem in the lost space mode for scientific cameras with small fields of view and higher instruction magnitudes,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1661
SubjectTerms Algorithms
Artificial intelligence
Calibration
Cameras
Cost control
hybrid grid pattern
Identification
multi-calibration star verification
Neural networks
Optimization algorithms
Pattern recognition
Random variables
reference star map verification
Sensors
star identification
Star maps
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUFBASXKKuPY7jHLeIsuKAOFDUE5aftFKbRdvtgX_PjJ2NNgKJC5ccEicaj2fyzSSebxh7AxrjYoSBJulONjI40VgfQ6OcitB11O8l77b4rFan8tNZe7bX6ov2hBV64KK4I617ZWULPcgou8i1TTKAFNQe2bqYybYR83bJ1JhqAWZehUcIMKk_ukbcarlSfIY-maT_z1fxHhbN90nuAc_JPXZ3jBjrZZH0PrsVhwfszh6P4EP2ffWLCq_qj3T4khkzhxrDyE1d6nDT-GGuXl7-WG8utudX9TGiV6jxVK7AbahEyxVjKDd-w0fvbnvETk8-fH2_asbGCY1H_N-i3rlrtYeQVET_E4lo66UCDtG7Priu73iCEDrvnEwWeu49pBSV5hwXtYfH7GBYD_Epqy06qUtBEO-XXMSFxQxJO8W9gyBSHyr2bqdQ40dWcWpucWkwuyDdm0n3FXs9Df1ZqDT-NuiYVmUaQOzX-QTahBltwvzLJir2ltbUkI-iMN6OpQY4JWK7MstOUyDWKlmxw92ym9F5r40gVr5FL0iaV9NldDv6l2KHuL7JY5QirYqKPSlWMskMiPgYGKMYemY_s0nNrwwX55nam8i9QLeLZ_9DDc_ZbYEhWN4xJw_ZwXZzE19gCLV1L7O3_Aa7hRkE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SZ9oICQ4BJ1HTuOc0JbxHbFAXGgqCes-NVWKtmyuz3033fG8aYbgbjkYDuR7ZnxzDgz3wC85wrtYlQDRVC1KIQzZdFa7wpppOd1TfVeYrTFNzk_EV9Pq9N04bZKYZWbMzEe1G5h6Y78sCSotEmDBv-nqz8FVY2iv6uphMZ9eMBQ01BIl5odDw4XR_-rRxPi6NofrlB7VUxKNtJBEar_7wN5SyONoyW31M_sCTxOdmM-7Qn9FO757hk82kITfA6_5jeUfpUf0-N7xM3scjQml3mfjRvS9Vw-vTzDla3Pf-dHqMNcjk0xD7egRC3Ts0T_4k_89Oa1F3Ay-_Lj87xI5RMKi1bAGnefmUpZ7oL0KIVlIPB6ITnj3prGmbqpWeDO1dYYEVreMGt5CF4qxpC0DX8JO92i868hb1FUTXAloX-JiZ-06CcpI5k13JWhcRl83GyotglbnEpcXGr0MWjv9bD3Gbwbhl71gBr_GnREVBkGEAZ2bFgsz3QSKa1UI1tR8YYLL2rPVBuE46Kkwtmt8TKDD0RTTZKKk7FtSjjAJRHmlZ7WisyxSooM9jdk10mEV_qO4TJ4O3Sj8NEflbbzi-s4BrmOighn8KrnkmHOHPU-msc4DTXin9Gixj3dxXkE-CaIL66qye7_57UHD0s0sWJEnNiHnfXy2h-gibQ2b6Ic3AK-TRGI
  priority: 102
  providerName: ProQuest
Title Hybrid Grid Pattern Star Identification Algorithm Based on Multi-Calibration Star Verification
URI https://www.ncbi.nlm.nih.gov/pubmed/38475196
https://www.proquest.com/docview/2955909261
https://www.proquest.com/docview/2956687542
https://pubmed.ncbi.nlm.nih.gov/PMC10933850
https://doaj.org/article/8896a453934e47e18af4d3421603abe6
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTULjAfFNYFQBIcFLoLEd23lAqEXrKiSmCVHUJ6I4trdJXTqyTmL_PXf5UiP2xEse7HPk-O58d7HvdwBvuUa_GM1A5LUSkbCGRXnhbCSNdFwpqvdS37Y4lvOF-LpMljvQ1dhsF_Dq1tCO6kktqtWHP79vPqPCf6KIE0P2j1dolZJYUhC0hwZJUSGDb6I_TGAcw7AGVGhIvg93OW7O6MPIgVWqwfv_3aK3bNTw_uSWQZo9gPutJxlOGtY_hB1XPoJ7W_iCj-HX_IYSssIjepzUSJpliO5lFTb5ub79YRdOVqfr6nxzdhFO0arZEJvqzNyIUrdMIyTNwJ_46m7YE1jMDn98mUdtQYWoQL9gg_yITaILbr10qJfME5y9kDzmrjCpNSpVsefWqsIY4XOexkXBvXdSxzEyO-VPYbdcl-45hDkqr_GWER6YGLtxjpGTNjIuDLfMpzaA992CZkWLNk5FL1YZRh3EhqxnQwBvetLLBmLjNqIpcaUnIFTsumFdnWatkmVapzIXCU-5cEK5WOdeWC4YldLOjZMBvCOeZiRNOJkib1MQ8JMIBSubKE0OWiJFAAcd27NOJjNGaH3jlNFsXvfdqI50xpKXbn1d00hJq8oCeNZIST_nTtgC0AP5GXzUsKc8P6shvwn0i-tk_OL_h76EfYYOWX1_ThzA7qa6dq_QodqYEdxRS4VPPTsawd708Pjk-6j-OTGqFekvsUQkyQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDcpBQICwSVq_IjjHBDaAtstLRWHFvXUEL9apDZbdrdC_VP8RmacBxuBuPWSgx_ReDyeR-L5hpCXXIFfDGYg8SoXibCaJZVxNpFaOp7nWO8l3LbYk5MD8ekwO1whv7pcGLxW2enEoKjt1OA38g2GUGlpAQ7_u_MfCVaNwr-rXQmNRix23OVPCNnmb7c_wP6-Ymz8cf_9JGmrCiQGjOMCiKI6U4ZbLx0IJ_OI6S4kp9wZXVidFzn13NrcaC18xQtqDPfeSUUprBjBl0DlXxMcLDlmpo-3-gCPQ7zXoBdBZ7oxB2uZUSnpwOaF0gB_G4AlCzi8nblk7sa3ya3WT41HjWDdISuuvktuLqEX3iNHk0tM94q38PEl4HTWMTivs7jJ_vXt58B4dHoMnFycnMWbYDNtDE0h7zfBxDDdiGAz8Su8upt2nxxcCWMfkNV6WrtHJK5ANWhvGaKNidSlFcRlSktqNLfMFzYibzqGlqbFMseSGqclxDTI-7LnfURe9EPPGwCPfw3axF3pByDmdmiYzo7L9giXShWyEhkvuHAid1RVXlguGBbqrrSTEXmNe1qiZgBiTNUmOMCSEGOrHOUK3b9Mioisd9tetipjXv4R8Ig877vhsOMfnKp204swRkrkKovIw0ZKepo5-BngjgMZaiA_g0UNe-rvJwFQHCHFuMrStf_T9Yxcn-x_3i13t_d2HpMbDNy7cBtPrJPVxezCPQH3bKGfhjMRk29XfQh_A94pT-4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqYTggHhjKGAQCC5WbO96vT4glNCGlKIoQhT1hPG-WqTilCQV6l_j1zHjF7FA3HrJwV5Hs7PztGe-AXjOJMbF6AYCJ1MecKPioNDWBEIJy9KU5r1U1RYzMT3k74-Soy341fbCUFllaxMrQ20Wmt6RD2OCSgszDPiHrimLmO9O3pz9CGiCFH1pbcdp1CJyYC9-Yvq2er2_i2f9Io4ne5_eToNmwkCg0VGukcBIJVIz44RFQY0d4btzwSJmtcqMSrM0csyYVCvFXcGySGvmnBUyinD3BMSE5n87paxoANvjvdn8Y5fuMcz-aiwjxrJwuELfmURCRD0PWA0K-NsdbPjDfq3mhvOb3IDrTdTqj2oxuwlbtrwF1zawDG_Dl-kFNX_57-hnXqF2lj6Gsku_7gV2zctBf3R6jLxcn3z3x-hBjY-Xqi7ggNrEVC2Q9YOf8a_bx-7A4aWw9i4MykVp74NfoKFQzsSEPcZDGxaYpUklIq2YiV1mPHjVMjTXDbI5Ddg4zTHDId7nHe89eNYtPavhPP61aEyn0i0gBO7qwmJ5nDcKnUuZiYInLGPc8tRGsnDcMB7T2O5CWeHBSzrTnOwEEqOLpt0Bt0SIW_kolRQMJoJ7sNMee94YkFX-R9w9eNrdRtWn7zlFaRfn1RohiKuxB_dqKeloZhh1YHCOZMie_PQ21b9Tfjup4MUJYIzJJHzwf7qewBVUwPzD_uzgIVyNMdarSvP4DgzWy3P7CGO1tXrcKIUPXy9bD38D47pVgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Grid+Pattern+Star+Identification+Algorithm+Based+on+Multi-Calibration+Star+Verification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shen%2C+Chao&rft.au=Ma%2C+Caiwen&rft.au=Gao%2C+Wei&rft.au=Wang%2C+Yuanbo&rft.date=2024-03-04&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=24&rft.issue=5&rft_id=info:doi/10.3390%2Fs24051661&rft_id=info%3Apmid%2F38475196&rft.externalDocID=PMC10933850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon