Reliability and subject specificity of personalized whole-brain dynamical models
•Reliability of whole-brain dynamical models ranges from ”poor” to ”good”.•Reliability and specificity of modeling results may exceed those of empirical data.•Model personalization has a positive influence on the reliability and specificity.•Parcellations have a much larger effect on modeling result...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 257; p. 119321 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.08.2022
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2022.119321 |
Cover
Loading…
Abstract | •Reliability of whole-brain dynamical models ranges from ”poor” to ”good”.•Reliability and specificity of modeling results may exceed those of empirical data.•Model personalization has a positive influence on the reliability and specificity.•Parcellations have a much larger effect on modeling results than on empirical data.
Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a ”poor” to ”good” reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with ”poor” reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results. |
---|---|
AbstractList | •Reliability of whole-brain dynamical models ranges from ”poor” to ”good”.•Reliability and specificity of modeling results may exceed those of empirical data.•Model personalization has a positive influence on the reliability and specificity.•Parcellations have a much larger effect on modeling results than on empirical data.
Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a ”poor” to ”good” reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with ”poor” reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results. Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a ”poor” to ”good” reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with ”poor” reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results. Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a "poor" to "good" reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with "poor" reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a "poor" to "good" reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with "poor" reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results. |
ArticleNumber | 119321 |
Author | Eickhoff, Simon B. Popovych, Oleksandr V. Domhof, Justin W.M. |
Author_xml | – sequence: 1 givenname: Justin W.M. surname: Domhof fullname: Domhof, Justin W.M. organization: Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany – sequence: 2 givenname: Simon B. surname: Eickhoff fullname: Eickhoff, Simon B. organization: Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany – sequence: 3 givenname: Oleksandr V. orcidid: 0000-0001-9994-1764 surname: Popovych fullname: Popovych, Oleksandr V. email: o.popovych@fz-juelich.de organization: Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35580807$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUuLFDEURoOMOA_9C1Lgxk21edQrG1EHRwcGZhBdh1upG02ZStqkSml__aTocYRe9SohOfeD-51zcuKDR0IKRjeMsubNuPG4xGAn-I4bTjnfMCYFZ0_IGaOyLmXd8pP1Xouyy1-n5DylkVIqWdU9I6eirjva0faM3H1BZ6G3zs67AvxQpKUfUc9F2qK2xur1PZhiizEFD87-xaH48yM4LPsI1hfDzsNkNbhiCgO69Jw8NeASvng4L8i3q49fLz-XN7efri_f35S6pnIuDdemNZ0AwyXvocKeGtpUVLRIJXCArkLTyqoHgZKLnmnoYZACJDZ5UogL8nqfu43h14JpVpNNGp0Dj2FJijdNU1dt3XYZfXWAjmGJeZmVahspqGxZpl4-UEs_4aC2Mdcbd-pfVxno9oCOIaWI5hFhVK1a1Kj-a1GrFrXXkkffHozmXmG2wc-5RHdMwId9QG4Yf1uMKmmLXuNgY7alhmCPCXl3EKKd9au7n7g7LuIeVXLGdg |
CitedBy_id | crossref_primary_10_1038_s41598_024_80196_6 crossref_primary_10_1073_pnas_2409577121 crossref_primary_10_1016_j_neuroimage_2023_120042 crossref_primary_10_1016_j_neuroimage_2022_119782 crossref_primary_10_3390_brainsci14020125 crossref_primary_10_34133_icomputing_0055 crossref_primary_10_1002_alz_13788 crossref_primary_10_1016_j_csbj_2022_11_060 crossref_primary_10_1162_netn_a_00406 crossref_primary_10_3390_brainsci13010006 crossref_primary_10_1093_braincomms_fcac331 crossref_primary_10_3389_fneur_2023_1279875 |
Cites_doi | 10.1073/pnas.0701519104 10.1371/journal.pcbi.1000196 10.1016/j.neuroimage.2011.09.015 10.1073/pnas.1921475117 10.1016/j.neuroimage.2012.02.018 10.1016/j.neuroimage.2013.05.081 10.1176/appi.ajp.162.7.1256 10.1371/journal.pcbi.1004762 10.1523/JNEUROSCI.2523-11.2012 10.1016/j.neuroimage.2016.12.061 10.1523/JNEUROSCI.1672-16.2016 10.1038/s41598-017-03073-5 10.1016/j.tics.2020.01.008 10.1016/j.neuroimage.2021.118254 10.1016/j.neuroimage.2017.06.006 10.1109/MCSE.2011.37 10.1093/cercor/bhx170 10.1016/j.neuroimage.2019.116137 10.1371/journal.pcbi.1003530 10.1523/JNEUROSCI.3733-05.2006 10.1523/JNEUROSCI.5068-13.2014 10.1016/j.neuroimage.2017.02.018 10.1016/j.schres.2005.11.020 10.1089/brain.2011.0008 10.1523/JNEUROSCI.1091-13.2013 10.1002/nbm.3752 10.1109/TMI.2010.2046908 10.1523/JNEUROSCI.4423-13.2014 10.1162/NECO_a_00936 10.1002/hbm.20623 10.1038/s41583-018-0071-7 10.1162/netn_a_00166 10.1016/j.neuroimage.2013.05.099 10.1038/s41598-019-44909-6 10.1073/pnas.2021852118 10.1152/jn.00783.2009 10.1016/j.neuroimage.2013.05.041 10.1016/j.neuroimage.2011.03.058 10.1162/netn_a_00055 10.1016/j.neuroimage.2015.08.069 10.1093/cercor/bhn256 10.1016/j.neuroimage.2021.118170 10.1038/s41467-021-26704-y 10.1006/nimg.1998.0395 10.1038/nn.4135 10.1016/j.tics.2021.09.005 10.1186/s13408-020-00086-9 10.1371/journal.pcbi.1006007 10.1371/journal.pone.0157292 10.1016/j.neuroimage.2022.119051 10.1002/hbm.24866 10.1093/cercor/bhx230 10.1016/j.neuroimage.2006.01.021 10.1016/j.neuron.2019.01.017 10.1016/j.neuroimage.2019.116157 10.1038/nrn2961 10.1016/j.neuroimage.2013.05.079 10.1016/S1053-8119(03)00202-7 10.1016/j.neuroimage.2013.03.059 10.1016/j.neuroimage.2017.07.016 10.1016/S0006-3495(72)86068-5 10.3389/fnhum.2018.00341 10.1038/s41598-018-25089-1 10.1016/j.euroneuro.2010.03.008 10.1016/j.neuroimage.2009.12.027 10.1016/j.nicl.2018.04.017 10.1016/j.neuroimage.2015.07.075 10.1016/j.neuroimage.2013.05.056 10.1016/j.neuroimage.2017.04.014 10.1016/j.neuroimage.2013.02.070 10.1089/brain.2012.0120 10.17815/jlsrf-4-121-1 10.1006/nimg.2001.0978 10.1093/cercor/bhx179 10.1016/j.neuroimage.2016.12.069 10.3389/fninf.2011.00006 10.1002/hbm.25379 10.1002/hbm.23909 10.1016/j.neuroimage.2014.11.001 10.1016/j.neuroimage.2021.118176 10.1103/PhysRevE.90.012707 10.1016/j.neuron.2015.12.001 10.1002/hbm.23500 10.1016/j.neuroimage.2017.12.009 10.1038/s41592-019-0686-2 10.1002/hbm.24572 10.1073/pnas.0901831106 10.1016/j.neuroimage.2021.117844 10.1016/j.neuroimage.2015.01.002 10.1038/nn.4497 10.1073/pnas.1905534116 10.1016/j.biopsych.2006.06.027 10.1038/s41467-017-01285-x 10.1016/j.neuroimage.2021.118201 10.1037/0033-2909.86.2.420 10.1016/j.conb.2018.04.014 10.1016/j.neuroimage.2016.04.049 10.1371/journal.pone.0002148 10.1073/pnas.0811168106 10.1371/journal.pone.0219854 10.3389/fnhum.2013.00529 10.1002/jmri.27188 10.1162/netn_a_00041 10.1016/j.neuroimage.2015.02.001 10.1103/PhysRevE.85.011912 10.1016/j.cub.2018.07.083 10.1016/j.neuroimage.2014.03.034 10.1371/journal.pcbi.1004100 10.1016/j.neuroimage.2011.04.010 10.1016/j.neuron.2014.08.034 10.1002/hbm.21333 10.1371/journal.pcbi.1005076 10.3389/fnsys.2018.00068 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier Inc. Copyright Elsevier Limited Aug 15, 2022 |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Aug 15, 2022 |
DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2022.119321 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection (ProQuest) ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Collection Biological science database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | 35580807 10_1016_j_neuroimage_2022_119321 S1053811922004402 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c509t-f2cf7f83af292ba4eb0f064037e09a2aa84ef794ba3e923b1cabad93a9e6cf733 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 01:45:00 EDT 2025 Wed Aug 13 06:00:10 EDT 2025 Wed Sep 03 05:47:21 EDT 2025 Tue Jul 01 03:02:23 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Fri Feb 23 02:39:48 EST 2024 Tue Aug 26 17:21:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain connectome Whole-brain model Resting-state brain dynamics Reliability Subject specificity |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-f2cf7f83af292ba4eb0f064037e09a2aa84ef794ba3e923b1cabad93a9e6cf733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9994-1764 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811922004402 |
PMID | 35580807 |
PQID | 2676930971 |
PQPubID | 2031077 |
ParticipantIDs | proquest_miscellaneous_2666547578 proquest_journals_2676930971 pubmed_primary_35580807 crossref_primary_10_1016_j_neuroimage_2022_119321 crossref_citationtrail_10_1016_j_neuroimage_2022_119321 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_119321 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_119321 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-15 |
PublicationDateYYYYMMDD | 2022-08-15 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Breakspear (bib0011) 2017; 20 Makris, Goldstein, Kennedy, Hodge, Caviness, Faraone, Seidman (bib0075) 2006; 83 Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong, Descoteaux (bib0074) 2017; 8 Arslan, Ktena, Makropoulos, Robinson, Rueckert, Parisot (bib0006) 2018; 170 Deco, Cabral, Saenger, Boly, Tagliazucchi, Laufs, Kringelbach (bib0021) 2018; 169 Jung, Eickhoff, Popovych (bib0066) 2021; 237 Goldstein, Seidman, Makris, Ahern, O’Brien, Caviness, Tsuang (bib0051) 2007; 61 Amunts, Zilles (bib0004) 2015; 88 Galán (bib0048) 2008; 3 Bolt, Nomi, Rubinov, Uddin (bib0010) 2017; 38 Messé, Rudrauf, Benali, Marrelec (bib0078) 2014; 10 Deco, Kringelbach (bib0027) 2014; 84 Kong, Kong, Orban, Wang, Zhang, Anderson, Yeo (bib0067) 2021; 12 Rolls, Joliot, Tzourio-Mazoyer (bib0092) 2015; 122 Chen, Taylor, Haller, Kircanski, Stoddard, Pine, Cox (bib0015) 2018; 39 Preti, Bolton, Van De Ville (bib0088) 2017; 160 Wang, Wang, Zang, Yang, Tang, Gong, He (bib0115) 2009; 30 Zimmermann, Perry, Breakspear, Schirner, Sachdev, Wen, Solodkin (bib0122) 2018; 19 Dale, Fischl, Sereno (bib0019) 1999; 9 Liljequist, Elfving, Roaldsen (bib0073) 2019; 14 van der Walt, Colbert, Varoquaux (bib0114) 2011; 13 Cicchetti, Sparrow (bib0016) 1981; 86 Finn (bib0041) 2021; 25 Noble, Spann, Tokoglu, Shen, Constable, Scheinost (bib0083) 2017; 27 Messé, Rudrauf, Giron, Marrelec (bib0079) 2015; 111 Deco, Cruzat, Cabral, Tagliazucchi, Laufs, Logothetis, Kringelbach (bib0023) 2019; 116 Domhof, Jung, Eickhoff, Popovych (bib0036) 2022 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Constable (bib0043) 2015; 18 Robinson, Sarkar, Pandejee, Henderson (bib0091) 2014; 90 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0110) 2013; 80 Aquino, Fulcher, Oldham, Parkes, Gollo, Deco, Fornito (bib0005) 2022; 256 van den Heuvel, Hulshoff Pol (bib0059) 2010; 20 Van Dijk, Hedden, Venkataraman, Evans, Lazar, Buckner (bib0109) 2010; 103 Yeh, Jones, Liang, Descoteaux, Connelly (bib0119) 2021; 53 Kringelbach, Cruzat, Cabral, Knudsen, Carhart-Harris, Whybrow, Deco (bib0068) 2020; 117 Wilson, Cowan (bib0116) 1972; 12 Finn, Rosenberg (bib0042) 2021; 239 Friston, Harrison, Penny (bib0047) 2003; 19 Naskar, Vattikonda, Deco, Roy, Banerjee (bib0081) 2021; 5 Deco, Jirsa, McIntosh, Sporns, Kötter (bib0024) 2009; 106 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, van Mulbregt (bib0112) 2020; 17 Abeysuriya, Hadida, Sotiropoulos, Jbabdi, Becker, Hunt, Woolrich (bib0001) 2018; 14 Valdes-Sosa, Roebroeck, Daunizeau, Friston (bib0108) 2011; 58 Albers, Ambrosen, Liptrot, Dyrby, Schmidt, Mørup (bib0002) 2021; 238 Liégeois, Santos, Matta, Van De Ville, Sayed (bib0072) 2020; 4 Craddock, James, Holtzheimer, Hu, Mayberg (bib0017) 2012; 33 Ponce-Alvarez, Deco, Hagmann, Romani, Mantini, Corbetta (bib0085) 2015; 11 Suárez, Markello, Betzel, Misic (bib0103) 2020; 24 Pannunzi, Hindriks, Bettinardi, Wenger, Lisofsky, Martensson, Deco (bib0084) 2017; 157 Honey, Sporns, Cammoun, Gigandet, Thiran, Meuli, Hagmann (bib0061) 2009; 106 Larson-Prior, Oostenveld, Della Penna, Michalareas, Prior, Babajani-Feremi, Snyder (bib0070) 2013; 80 Saggio, Ritter, Jirsa (bib0093) 2016; 11 Wong, Wang (bib0117) 2006; 26 Muldoon, Pasqualetti, Gu, Cieslak, Grafton, Vettel, Bassett (bib0080) 2016; 12 Schaefer, Kong, Gordon, Laumann, Zuo, Holmes, Yeo (bib0096) 2018; 28 Deco, McIntosh, Shen, Hutchison, Menon, Everling, Jirsa (bib0029) 2014; 34 Woolrich, Stephan (bib0118) 2013; 80 Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Killiany (bib0033) 2006; 31 Birn, Molloy, Patriat, Parker, Meier, Kirk, Prabhakaran (bib0009) 2013; 83 Spitoni, Cimmino, Bozzacchi, Pizzamiglio, Di Russo (bib0102) 2013; 7 (bib0014) 2018; 4 Li, Wisner, Atluri (bib0071) 2021; 42 Peña Gómez, Avena-Koenigsberger, Sepulcre, Sporns (bib0052) 2018; 28 Hellyer, Jachs, Clopath, Leech (bib0058) 2016; 124 Bick, Goodfellow, Laing, Martens (bib0008) 2020; 10 Jirsa, Proix, Perdikis, Woodman, Wang, Gonzalez-Martinez, Bartolomei (bib0065) 2017; 145 Zalesky, Fornito, Harding, Cocchi, Yücel, Pantelis, Bullmore (bib0120) 2010; 50 Fraga González, Smit, van der Molen, Tijms, Stam, de Geus, van der Molen (bib0044) 2018; 12 Ghosh, Rho, McIntosh, Kötter, Jirsa (bib0049) 2008; 4 Zimmermann, Griffiths, Schirner, Ritter, McIntosh (bib0121) 2018; 3 Domhof, Jung, Eickhoff, Popovych (bib0035) 2021 Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Chang (bib0062) 2013; 80 Popovych, Jung, Manos, Diaz-Pier, Hoffstaedter, Schreiber, Eickhoff (bib0086) 2021; 236 Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Yacoub (bib0111) 2012; 62 Urchs, Armoza, Moreau, Benhajali, St-Aubin, Orban, Bellec (bib0107) 2019; 1 Sanz-Leon, Knock, Spiegler, Jirsa (bib0094) 2015; 111 Shrout, Fleiss (bib0100) 1979; 86 Deco, Jirsa, McIntosh (bib0026) 2011; 12 Brovelli, Badier, Bonini, Bartolomei, Coulon, Auzias (bib0012) 2017; 37 Shehzad, Kelly, Reiss, Gee, Gotimer, Uddin, Milham (bib0098) 2009; 19 Robinson (bib0090) 2012; 85 Deco, Kringelbach, Jirsa, Ritter (bib0028) 2017; 7 Noble, Scheinost, Constable (bib0082) 2019; 203 Deco, Ponce-Alvarez, Mantini, Romani, Hagmann, Corbetta (bib0031) 2013; 33 Grabner, Janke, Budge, Smith, Pruessner, Collins (bib0053) 2006 Heitmann, Breakspear (bib0057) 2018; 02 Daffertshofer, van Wijk (bib0018) 2011; 5 Kuramoto (bib0069) 1984 Hahn, Skeide, Mantini, Ganzetti, Destexhe, Friederici, Deco (bib0055) 2019; 9 Ritter, Schirner, McIntosh, Jirsa (bib0089) 2013; 3 Messé (bib0077) 2020; 41 Eickhoff, Constable, Yeo (bib0039) 2018; 170 Friston (bib0046) 2011; 1 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Joliot (bib0106) 2002; 15 Tournier, Smith, Raffelt, Tabbara, Dhollander, Pietsch, Connelly (bib0104) 2019; 202 Deco, Jirsa (bib0025) 2012; 32 Deco, Cruzat, Cabral, Knudsen, Carhart-Harris, Whybrow, Kringelbach (bib0022) 2018; 28 Sotiropoulos, Zalesky (bib0101) 2019; 32 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Smith (bib0054) 2014; 95 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib0105) 2010; 29 Domhof, Jung, Eickhoff, Popovych (bib0034) 2021 Iravani, Arshamian, Fransson, Kaboodvand (bib0063) 2021; 231 Cabral, Hugues, Sporns, Deco (bib0013) 2011; 57 Honey, Kötter, Breakspear, Sporns (bib0060) 2007; 104 Sarar, Rao, Liu (bib0095) 2021; 118 Eickhoff, Yeo, Genon (bib0040) 2018; 19 Frazier, Chiu, Breeze, Makris, Lange, Kennedy, Biederman (bib0045) 2005; 162 Mayhew, Ostwald, Porcaro, Bagshaw (bib0076) 2013; 76 Scholtens, de Reus, de Lange, Schmidt, van den Heuvel (bib0097) 2018; 170 von Economo, C., Koskinas, G. N., 1925. Die Cytoarchitektonik der Hirnrinde des erwachsenen MenschenWien, Springer. Waller, Walter, Kruschwitz, Reuter, Müller, Erk, Veer (bib0113) 2017; 158 Amico, Goñi (bib0003) 2018; 8 Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0064) 2012; 62 Hansen, Battaglia, Spiegler, Deco, Jirsa (bib0056) 2015; 105 Popovych, Manos, Hoffstaedter, Eickhoff (bib0087) 2019; 12 Das, Sampson, Lainscsek, Muller, Lin, Doyle, Sejnowski (bib0020) 2017; 29 Shen, Tokoglu, Papademetris, Constable (bib0099) 2013; 82 Deco, Ponce-Alvarez, Hagmann, Romani, Mantini, Corbetta (bib0030) 2014; 34 Donnelly-Kehoe, Saenger, Lisofsky, Kühn, Kringelbach, Schwarzbach, Deco (bib0037) 2019; 40 Gilson, Moreno-Bote, Ponce-Alvarez, Ritter, Deco (bib0050) 2016; 12 Demirtaş, Burt, Helmer, Ji, Adkinson, Glasser, Murray (bib0032) 2019; 101 Bansal, Nakuci, Muldoon (bib0007) 2018; 52 Abeysuriya (10.1016/j.neuroimage.2022.119321_bib0001) 2018; 14 Woolrich (10.1016/j.neuroimage.2022.119321_bib0118) 2013; 80 Popovych (10.1016/j.neuroimage.2022.119321_bib0086) 2021; 236 Hellyer (10.1016/j.neuroimage.2022.119321_bib0058) 2016; 124 Kuramoto (10.1016/j.neuroimage.2022.119321_bib0069) 1984 Messé (10.1016/j.neuroimage.2022.119321_bib0077) 2020; 41 Eickhoff (10.1016/j.neuroimage.2022.119321_bib0039) 2018; 170 Brovelli (10.1016/j.neuroimage.2022.119321_bib0012) 2017; 37 Iravani (10.1016/j.neuroimage.2022.119321_bib0063) 2021; 231 Pannunzi (10.1016/j.neuroimage.2022.119321_bib0084) 2017; 157 Craddock (10.1016/j.neuroimage.2022.119321_bib0017) 2012; 33 Demirtaş (10.1016/j.neuroimage.2022.119321_sbref0032) 2019; 101 Das (10.1016/j.neuroimage.2022.119321_bib0020) 2017; 29 Popovych (10.1016/j.neuroimage.2022.119321_bib0087) 2019; 12 Domhof (10.1016/j.neuroimage.2022.119321_bib0034) 2021 Robinson (10.1016/j.neuroimage.2022.119321_bib0090) 2012; 85 Finn (10.1016/j.neuroimage.2022.119321_bib0041) 2021; 25 Sarar (10.1016/j.neuroimage.2022.119321_sbref0095) 2021; 118 Suárez (10.1016/j.neuroimage.2022.119321_bib0103) 2020; 24 Cabral (10.1016/j.neuroimage.2022.119321_bib0013) 2011; 57 Shen (10.1016/j.neuroimage.2022.119321_bib0099) 2013; 82 Deco (10.1016/j.neuroimage.2022.119321_bib0030) 2014; 34 van der Walt (10.1016/j.neuroimage.2022.119321_bib0114) 2011; 13 Frazier (10.1016/j.neuroimage.2022.119321_bib0045) 2005; 162 Fraga González (10.1016/j.neuroimage.2022.119321_bib0044) 2018; 12 Hahn (10.1016/j.neuroimage.2022.119321_bib0055) 2019; 9 Urchs (10.1016/j.neuroimage.2022.119321_bib0107) 2019; 1 Tustison (10.1016/j.neuroimage.2022.119321_bib0105) 2010; 29 Ghosh (10.1016/j.neuroimage.2022.119321_bib0049) 2008; 4 Dale (10.1016/j.neuroimage.2022.119321_bib0019) 1999; 9 Ritter (10.1016/j.neuroimage.2022.119321_bib0089) 2013; 3 Galán (10.1016/j.neuroimage.2022.119321_bib0048) 2008; 3 Hansen (10.1016/j.neuroimage.2022.119321_bib0056) 2015; 105 Deco (10.1016/j.neuroimage.2022.119321_bib0024) 2009; 106 Amico (10.1016/j.neuroimage.2022.119321_bib0003) 2018; 8 Muldoon (10.1016/j.neuroimage.2022.119321_bib0080) 2016; 12 Deco (10.1016/j.neuroimage.2022.119321_bib0026) 2011; 12 Liégeois (10.1016/j.neuroimage.2022.119321_bib0072) 2020; 4 Van Essen (10.1016/j.neuroimage.2022.119321_bib0111) 2012; 62 Donnelly-Kehoe (10.1016/j.neuroimage.2022.119321_bib0037) 2019; 40 Honey (10.1016/j.neuroimage.2022.119321_bib0060) 2007; 104 Kringelbach (10.1016/j.neuroimage.2022.119321_bib0068) 2020; 117 Deco (10.1016/j.neuroimage.2022.119321_bib0029) 2014; 34 Eickhoff (10.1016/j.neuroimage.2022.119321_bib0040) 2018; 19 Liljequist (10.1016/j.neuroimage.2022.119321_bib0073) 2019; 14 Mayhew (10.1016/j.neuroimage.2022.119321_bib0076) 2013; 76 Domhof (10.1016/j.neuroimage.2022.119321_bib0035) 2021 Schaefer (10.1016/j.neuroimage.2022.119321_bib0096) 2018; 28 Chen (10.1016/j.neuroimage.2022.119321_bib0015) 2018; 39 Tournier (10.1016/j.neuroimage.2022.119321_bib0104) 2019; 202 Shehzad (10.1016/j.neuroimage.2022.119321_bib0098) 2009; 19 Amunts (10.1016/j.neuroimage.2022.119321_bib0004) 2015; 88 Finn (10.1016/j.neuroimage.2022.119321_bib0042) 2021; 239 Shrout (10.1016/j.neuroimage.2022.119321_bib0100) 1979; 86 Wilson (10.1016/j.neuroimage.2022.119321_bib0116) 1972; 12 Van Essen (10.1016/j.neuroimage.2022.119321_bib0110) 2013; 80 Griffanti (10.1016/j.neuroimage.2022.119321_bib0054) 2014; 95 Daffertshofer (10.1016/j.neuroimage.2022.119321_bib0018) 2011; 5 Friston (10.1016/j.neuroimage.2022.119321_bib0046) 2011; 1 van den Heuvel (10.1016/j.neuroimage.2022.119321_bib0059) 2010; 20 Birn (10.1016/j.neuroimage.2022.119321_bib0009) 2013; 83 10.1016/j.neuroimage.2022.119321_bib0038 Kong (10.1016/j.neuroimage.2022.119321_bib0067) 2021; 12 Zimmermann (10.1016/j.neuroimage.2022.119321_bib0121) 2018; 3 Zimmermann (10.1016/j.neuroimage.2022.119321_bib0122) 2018; 19 Peña Gómez (10.1016/j.neuroimage.2022.119321_bib0052) 2018; 28 Wong (10.1016/j.neuroimage.2022.119321_bib0117) 2006; 26 Deco (10.1016/j.neuroimage.2022.119321_bib0023) 2019; 116 Saggio (10.1016/j.neuroimage.2022.119321_bib0093) 2016; 11 Rolls (10.1016/j.neuroimage.2022.119321_bib0092) 2015; 122 Deco (10.1016/j.neuroimage.2022.119321_bib0025) 2012; 32 Van Dijk (10.1016/j.neuroimage.2022.119321_bib0109) 2010; 103 Cicchetti (10.1016/j.neuroimage.2022.119321_bib0016) 1981; 86 Desikan (10.1016/j.neuroimage.2022.119321_bib0033) 2006; 31 Albers (10.1016/j.neuroimage.2022.119321_bib0002) 2021; 238 Larson-Prior (10.1016/j.neuroimage.2022.119321_bib0070) 2013; 80 Deco (10.1016/j.neuroimage.2022.119321_bib0028) 2017; 7 Makris (10.1016/j.neuroimage.2022.119321_bib0075) 2006; 83 Domhof (10.1016/j.neuroimage.2022.119321_bib0036) 2022 Hutchison (10.1016/j.neuroimage.2022.119321_bib0062) 2013; 80 Maier-Hein (10.1016/j.neuroimage.2022.119321_bib0074) 2017; 8 Preti (10.1016/j.neuroimage.2022.119321_bib0088) 2017; 160 Waller (10.1016/j.neuroimage.2022.119321_bib0113) 2017; 158 Aquino (10.1016/j.neuroimage.2022.119321_bib0005) 2022; 256 Li (10.1016/j.neuroimage.2022.119321_bib0071) 2021; 42 Messé (10.1016/j.neuroimage.2022.119321_bib0079) 2015; 111 Naskar (10.1016/j.neuroimage.2022.119321_bib0081) 2021; 5 Messé (10.1016/j.neuroimage.2022.119321_bib0078) 2014; 10 Wang (10.1016/j.neuroimage.2022.119321_bib0115) 2009; 30 Gilson (10.1016/j.neuroimage.2022.119321_bib0050) 2016; 12 Deco (10.1016/j.neuroimage.2022.119321_bib0027) 2014; 84 Scholtens (10.1016/j.neuroimage.2022.119321_bib0097) 2018; 170 Bansal (10.1016/j.neuroimage.2022.119321_bib0007) 2018; 52 Bolt (10.1016/j.neuroimage.2022.119321_bib0010) 2017; 38 Heitmann (10.1016/j.neuroimage.2022.119321_bib0057) 2018; 02 Bick (10.1016/j.neuroimage.2022.119321_bib0008) 2020; 10 Deco (10.1016/j.neuroimage.2022.119321_bib0031) 2013; 33 Ponce-Alvarez (10.1016/j.neuroimage.2022.119321_bib0085) 2015; 11 Robinson (10.1016/j.neuroimage.2022.119321_bib0091) 2014; 90 Valdes-Sosa (10.1016/j.neuroimage.2022.119321_bib0108) 2011; 58 Grabner (10.1016/j.neuroimage.2022.119321_bib0053) 2006 Breakspear (10.1016/j.neuroimage.2022.119321_bib0011) 2017; 20 Finn (10.1016/j.neuroimage.2022.119321_bib0043) 2015; 18 Deco (10.1016/j.neuroimage.2022.119321_sbref0022) 2018; 28 Spitoni (10.1016/j.neuroimage.2022.119321_bib0102) 2013; 7 (10.1016/j.neuroimage.2022.119321_bib0014) 2018; 4 Honey (10.1016/j.neuroimage.2022.119321_bib0061) 2009; 106 Jenkinson (10.1016/j.neuroimage.2022.119321_bib0064) 2012; 62 Friston (10.1016/j.neuroimage.2022.119321_bib0047) 2003; 19 Arslan (10.1016/j.neuroimage.2022.119321_bib0006) 2018; 170 Goldstein (10.1016/j.neuroimage.2022.119321_bib0051) 2007; 61 Noble (10.1016/j.neuroimage.2022.119321_bib0082) 2019; 203 Noble (10.1016/j.neuroimage.2022.119321_bib0083) 2017; 27 Sotiropoulos (10.1016/j.neuroimage.2022.119321_bib0101) 2019; 32 Yeh (10.1016/j.neuroimage.2022.119321_bib0119) 2021; 53 Tzourio-Mazoyer (10.1016/j.neuroimage.2022.119321_bib0106) 2002; 15 Jirsa (10.1016/j.neuroimage.2022.119321_bib0065) 2017; 145 Jung (10.1016/j.neuroimage.2022.119321_bib0066) 2021; 237 Virtanen (10.1016/j.neuroimage.2022.119321_bib0112) 2020; 17 Sanz-Leon (10.1016/j.neuroimage.2022.119321_bib0094) 2015; 111 Deco (10.1016/j.neuroimage.2022.119321_bib0021) 2018; 169 Zalesky (10.1016/j.neuroimage.2022.119321_bib0120) 2010; 50 |
References_xml | – volume: 256 start-page: 119051 year: 2022 ident: bib0005 article-title: On the intersection between data quality and dynamical modelling of large-scale fMRI signals publication-title: Neuroimage – volume: 52 start-page: 42 year: 2018 end-page: 47 ident: bib0007 article-title: Personalized brain network models for assessing structure-function relationships publication-title: Curr. Opin. Neurobiol. – volume: 88 start-page: 1086 year: 2015 end-page: 1107 ident: bib0004 article-title: Architectonic mapping of the human brain beyond brodmann publication-title: Neuron – volume: 27 start-page: 5415 year: 2017 end-page: 5429 ident: bib0083 article-title: Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility publication-title: Cerebral Cortex – volume: 41 start-page: 1167 year: 2020 end-page: 1180 ident: bib0077 article-title: Parcellation influence on the connectivity-based structure-function relationship in the human brain publication-title: Hum Brain Mapp – volume: 4 start-page: A132 year: 2018 ident: bib0014 article-title: JURECA: Modular supercomputer at Jülich Supercomputing Centre publication-title: Journal of large-scale research facilities – volume: 111 start-page: 65 year: 2015 end-page: 75 ident: bib0079 article-title: Predicting functional connectivity from structural connectivity via computational models using MRI: an extensive comparison study publication-title: Neuroimage – volume: 86 start-page: 127 year: 1981 end-page: 137 ident: bib0016 article-title: Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior publication-title: Am J Ment Defic – volume: 80 start-page: 360 year: 2013 end-page: 378 ident: bib0062 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bib0064 article-title: FSL publication-title: Neuroimage – volume: 83 start-page: 155 year: 2006 end-page: 171 ident: bib0075 article-title: Decreased volume of left and total anterior insular lobule in schizophrenia publication-title: Schizophr. Res. – volume: 7 start-page: 3095 year: 2017 ident: bib0028 article-title: The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core publication-title: Sci Rep – volume: 30 start-page: 1511 year: 2009 end-page: 1523 ident: bib0115 article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study publication-title: Hum Brain Mapp – volume: 28 start-page: 2922 year: 2018 end-page: 2934 ident: bib0052 article-title: Spatiotemporal network markers of individual variability in the human functional connectome publication-title: Cerebral Cortex – volume: 106 start-page: 10302 year: 2009 end-page: 10307 ident: bib0024 article-title: Key role of coupling, delay, and noise in resting brain fluctuations publication-title: Proceedings of the National Academy of Sciences – volume: 19 start-page: 2209 year: 2009 end-page: 2229 ident: bib0098 article-title: The resting brain: unconstrained yet reliable publication-title: Cerebral Cortex – volume: 117 start-page: 9566 year: 2020 end-page: 9576 ident: bib0068 article-title: Dynamic coupling of whole-brain neuronal and neurotransmitter systems publication-title: Proceedings of the National Academy of Sciences – volume: 12 start-page: 6373 year: 2021 ident: bib0067 article-title: Sensory-motor cortices shape functional connectivity dynamics in the human brain publication-title: Nat Commun – volume: 105 start-page: 525 year: 2015 end-page: 535 ident: bib0056 article-title: Functional connectivity dynamics: modeling the switching behavior of the resting state publication-title: Neuroimage – volume: 14 start-page: e1006007 year: 2018 ident: bib0001 article-title: A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks publication-title: PLoS Comput. Biol. – volume: 8 start-page: 1349 year: 2017 ident: bib0074 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat Commun – volume: 5 start-page: 757 year: 2021 end-page: 782 ident: bib0081 article-title: Multiscale dynamic mean field (MDMF) model relates resting-state brain dynamics with local cortical excitatory-inhibitory neurotransmitter homeostasis publication-title: Network Neurosci. – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bib0105 article-title: N4ITK: Improved N3 bias correction publication-title: IEEE Trans Med Imaging – volume: 103 start-page: 297 year: 2010 end-page: 321 ident: bib0109 article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization publication-title: J. Neurophysiol. – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: bib0033 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – volume: 106 start-page: 2035 year: 2009 end-page: 2040 ident: bib0061 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proceedings of the National Academy of Sciences – year: 1984 ident: bib0069 article-title: Chemical oscillations, waves, and turbulence publication-title: Chemical oscillations, waves, and turbulence – volume: 118 year: 2021 ident: bib0095 article-title: Functional connectome fingerprinting using shallow feedforward neural networks publication-title: Proceedings of the National Academy of Sciences – volume: 40 start-page: 2967 year: 2019 end-page: 2980 ident: bib0037 article-title: Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity publication-title: Hum Brain Mapp – volume: 124 start-page: 85 year: 2016 end-page: 95 ident: bib0058 article-title: Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks publication-title: Neuroimage – volume: 12 start-page: 341 year: 2018 ident: bib0044 article-title: EEG Resting state functional connectivity in adult dyslexics using phase lag index and graph analysis publication-title: Front Hum Neurosci – volume: 203 start-page: 116157 year: 2019 ident: bib0082 article-title: A decade of test-retest reliability of functional connectivity: a systematic review and meta-analysis publication-title: Neuroimage – volume: 83 start-page: 550 year: 2013 end-page: 558 ident: bib0009 article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates publication-title: Neuroimage – volume: 238 start-page: 118170 year: 2021 ident: bib0002 article-title: Using connectomics for predictive assessment of brain parcellations publication-title: Neuroimage – volume: 11 start-page: e1004100 year: 2015 ident: bib0085 article-title: Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity publication-title: PLoS Comput. Biol. – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bib0019 article-title: Cortical surface-based analysis: i. segmentation and surface reconstruction publication-title: Neuroimage – volume: 02 start-page: 150 year: 2018 end-page: 174 ident: bib0057 article-title: Putting the “dynamic” back into dynamic functional connectivity publication-title: Network Neurosci. – volume: 20 start-page: 519 year: 2010 end-page: 534 ident: bib0059 article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity publication-title: Eur. Neuropsychopharmacol. – volume: 101 start-page: 1181 year: 2019 end-page: 1194 ident: bib0032 article-title: Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics publication-title: Neuron – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib0110 article-title: The WU-minn human connectome project: an overview publication-title: Neuroimage – volume: 231 start-page: 117844 year: 2021 ident: bib0063 article-title: Whole-brain modelling of resting state fMRI differentiates ADHD subtypes and facilitates stratified neuro-stimulation therapy publication-title: Neuroimage – volume: 13 start-page: 22 year: 2011 end-page: 30 ident: bib0114 article-title: The NumPy array: a structure for efficient numerical computation publication-title: Computing in Science Engineering – volume: 12 start-page: e1004762 year: 2016 ident: bib0050 article-title: Estimation of directed effective connectivity from fMRI functional connectivity hints at asymmetries of cortical connectome publication-title: PLoS Comput. Biol. – volume: 33 start-page: 11239 year: 2013 end-page: 11252 ident: bib0031 article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations publication-title: J. Neurosci. – volume: 53 start-page: 1666 year: 2021 end-page: 1682 ident: bib0119 article-title: Mapping structural connectivity using diffusion MRI: challenges and opportunities publication-title: J. Magn. Reson. Imaging – volume: 34 start-page: 7910 year: 2014 end-page: 7916 ident: bib0029 article-title: Identification of optimal structural connectivity using functional connectivity and neural modeling publication-title: J. Neurosci. – volume: 1 start-page: 13 year: 2011 end-page: 36 ident: bib0046 article-title: Functional and effective connectivity: areview publication-title: Brain Connect – volume: 33 start-page: 1914 year: 2012 end-page: 1928 ident: bib0017 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum Brain Mapp – volume: 25 start-page: 1021 year: 2021 end-page: 1032 ident: bib0041 article-title: Is it time to put rest to rest? publication-title: Trends Cogn. Sci. (Regul. Ed.) – volume: 170 start-page: 332 year: 2018 end-page: 347 ident: bib0039 article-title: Topographic organization of the cerebral cortex and brain cartography publication-title: Neuroimage – volume: 57 start-page: 130 year: 2011 end-page: 139 ident: bib0013 article-title: Role of local network oscillations in resting-state functional connectivity publication-title: Neuroimage – volume: 237 start-page: 118176 year: 2021 ident: bib0066 article-title: Tractography density affects whole-brain structural architecture and resting-state dynamical modeling publication-title: Neuroimage – volume: 169 start-page: 46 year: 2018 end-page: 56 ident: bib0021 article-title: Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states publication-title: Neuroimage – volume: 11 start-page: e0157292 year: 2016 ident: bib0093 article-title: Analytical operations relate structural and functional connectivity in the brain publication-title: PLoS ONE – volume: 7 start-page: 529 year: 2013 ident: bib0102 article-title: Modulation of spontaneous alpha brain rhythms using low-intensity transcranial direct-current stimulation publication-title: Front Hum Neurosci – volume: 28 start-page: 3095 year: 2018 end-page: 3114 ident: bib0096 article-title: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI publication-title: Cerebral Cortex – volume: 202 start-page: 116137 year: 2019 ident: bib0104 article-title: MRTrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage – volume: 38 start-page: 1992 year: 2017 end-page: 2007 ident: bib0010 article-title: Correspondence between evoked and intrinsic functional brain network configurations publication-title: Hum Brain Mapp – volume: 12 start-page: 1 year: 1972 end-page: 24 ident: bib0116 article-title: Excitatory and inhibitory interactions in localized populations of model neurons publication-title: Biophys. J. – volume: 116 start-page: 18088 year: 2019 end-page: 18097 ident: bib0023 article-title: Awakening: predicting external stimulation to force transitions between different brain states publication-title: Proceedings of the National Academy of Sciences – volume: 3 start-page: e2148 year: 2008 ident: bib0048 article-title: On how network architecture determines the dominant patterns of spontaneous neural activity publication-title: PLoS ONE – volume: 42 start-page: 3717 year: 2021 end-page: 3732 ident: bib0071 article-title: Feature selection framework for functional connectome fingerprinting publication-title: Hum Brain Mapp – volume: 29 start-page: 603 year: 2017 end-page: 642 ident: bib0020 article-title: Interpretation of the precision matrix and its application in estimating sparse brain connectivity during sleep spindles from human electrocorticography recordings publication-title: Neural Comput – volume: 76 start-page: 362 year: 2013 end-page: 372 ident: bib0076 article-title: Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network publication-title: Neuroimage – volume: 3 start-page: 121 year: 2013 end-page: 145 ident: bib0089 article-title: The virtual brain integrates computational modeling and multimodal neuroimaging publication-title: Brain Connect – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: bib0111 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage – volume: 162 start-page: 1256 year: 2005 end-page: 1265 ident: bib0045 article-title: Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder publication-title: American Journal of Psychiatry – volume: 50 start-page: 970 year: 2010 end-page: 983 ident: bib0120 article-title: Whole-brain anatomical networks: does the choice of nodes matter? publication-title: Neuroimage – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: bib0054 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage – volume: 84 start-page: 892 year: 2014 end-page: 905 ident: bib0027 article-title: Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders publication-title: Neuron – reference: von Economo, C., Koskinas, G. N., 1925. Die Cytoarchitektonik der Hirnrinde des erwachsenen MenschenWien, Springer. – volume: 10 start-page: e1003530 year: 2014 ident: bib0078 article-title: Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities publication-title: PLoS Comput. Biol. – volume: 19 start-page: 1273 year: 2003 end-page: 1302 ident: bib0047 article-title: Dynamic causal modelling publication-title: Neuroimage – volume: 19 start-page: 240 year: 2018 end-page: 251 ident: bib0122 article-title: Differentiation of Alzheimer’s disease based on local and global parameters in personalized Virtual Brain models publication-title: NeuroImage: Clinical – volume: 80 start-page: 190 year: 2013 end-page: 201 ident: bib0070 article-title: Adding dynamics to the human connectome project with MEG publication-title: Neuroimage – volume: 4 start-page: e1000196 year: 2008 ident: bib0049 article-title: Noise during rest enables the exploration of the brain’s dynamic repertoire publication-title: PLoS Comput. Biol. – volume: 14 start-page: e0219854 year: 2019 ident: bib0073 article-title: Intraclass correlation - a discussion and demonstration of basic features publication-title: PLoS ONE – volume: 19 start-page: 672 year: 2018 end-page: 686 ident: bib0040 article-title: Imaging-based parcellations of the human brain publication-title: Nat. Rev. Neurosci. – volume: 34 start-page: 7886 year: 2014 end-page: 7898 ident: bib0030 article-title: How local excitation-inhibition ratio impacts the whole brain dynamics publication-title: J. Neurosci. – volume: 236 start-page: 118201 year: 2021 ident: bib0086 article-title: Inter-subject and inter-parcellation variability of resting-state whole-brain dynamical modeling publication-title: Neuroimage – volume: 4 start-page: 1235 year: 2020 end-page: 1251 ident: bib0072 article-title: Revisiting correlation-based functional connectivity and its relationship with structural connectivity publication-title: Network Neurosci. – volume: 26 start-page: 1314 year: 2006 end-page: 1328 ident: bib0117 article-title: A recurrent network mechanism of time integration in perceptual decisions publication-title: Journal of Neuroscience – volume: 12 start-page: e1005076 year: 2016 ident: bib0080 article-title: Stimulation-based control of dynamic brain networks publication-title: PLoS Comput. Biol. – volume: 80 start-page: 330 year: 2013 end-page: 338 ident: bib0118 article-title: Biophysical network models and the human connectome publication-title: Neuroimage – year: 2022 ident: bib0036 article-title: Parcellation-based resting-state blood-oxygen-level-dependent (BOLD) signals of a healthy cohort (v1.0) [Dataset] publication-title: EBRAINS – volume: 61 start-page: 935 year: 2007 end-page: 945 ident: bib0051 article-title: Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability publication-title: Biol. Psychiatry – volume: 9 start-page: 8479 year: 2019 ident: bib0055 article-title: A new computational approach to estimate whole-brain effective connectivity from functional and structural MRI, applied to language development publication-title: Sci Rep – volume: 157 start-page: 250 year: 2017 end-page: 262 ident: bib0084 article-title: Resting-state fMRI correlations: from link-wise unreliability to whole brain stability publication-title: Neuroimage – volume: 82 start-page: 403 year: 2013 end-page: 415 ident: bib0099 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage – volume: 20 start-page: 340 year: 2017 end-page: 352 ident: bib0011 article-title: Dynamic models of large-scale brain activity publication-title: Nat. Neurosci. – volume: 3 start-page: 90 year: 2018 end-page: 106 ident: bib0121 article-title: Subject specificity of the correlation between large-scale structural and functional connectivity publication-title: Network Neurosci. – volume: 160 start-page: 41 year: 2017 end-page: 54 ident: bib0088 article-title: The dynamic functional connectome: state-of-the-art and perspectives publication-title: Neuroimage – volume: 170 start-page: 249 year: 2018 end-page: 256 ident: bib0097 article-title: An MRI Von Economo - Koskinas atlas publication-title: Neuroimage – volume: 8 start-page: 8254 year: 2018 ident: bib0003 article-title: The quest for identifiability in human functional connectomes publication-title: Sci Rep – volume: 170 start-page: 5 year: 2018 end-page: 30 ident: bib0006 article-title: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex publication-title: Neuroimage – volume: 145 start-page: 377 year: 2017 end-page: 388 ident: bib0065 article-title: The virtual epileptic patient: individualized whole-brain models of epilepsy spread publication-title: Neuroimage – year: 2021 ident: bib0034 article-title: Parcellation-based structural and resting-state functional brain connectomes of a healthy cohort [Dataset] publication-title: EBRAINS – volume: 28 start-page: 3065 year: 2018 end-page: 3074 ident: bib0022 article-title: Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD publication-title: Current Biology – volume: 86 start-page: 420 year: 1979 end-page: 428 ident: bib0100 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol Bull – volume: 111 start-page: 385 year: 2015 end-page: 430 ident: bib0094 article-title: Mathematical framework for large-scale brain network modeling in the virtual brain publication-title: Neuroimage – volume: 85 start-page: 011912 year: 2012 ident: bib0090 article-title: Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory publication-title: Physical Review E – volume: 12 start-page: 43 year: 2011 end-page: 56 ident: bib0026 article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain publication-title: Nat. Rev. Neurosci. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib0106 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 104 start-page: 10240 year: 2007 end-page: 10245 ident: bib0060 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proceedings of the National Academy of Sciences – volume: 32 start-page: 3366 year: 2012 end-page: 3375 ident: bib0025 article-title: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors publication-title: J. Neurosci. – volume: 37 start-page: 839 year: 2017 end-page: 853 ident: bib0012 article-title: Dynamic reconfiguration of visuomotor-related functional connectivity networks publication-title: J. Neurosci. – volume: 122 start-page: 1 year: 2015 end-page: 5 ident: bib0092 article-title: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas publication-title: Neuroimage – volume: 12 start-page: 68 year: 2019 ident: bib0087 article-title: What can computational models contribute to neuroimaging data analytics? publication-title: Front Syst Neurosci – volume: 1 year: 2019 ident: bib0107 article-title: MIST: A multi-resolution parcellation of functional brain networks [version 2; peer review: 4 approved] publication-title: MNI Open Research – volume: 58 start-page: 339 year: 2011 end-page: 361 ident: bib0108 article-title: Effective connectivity: influence, causality and biophysical modeling publication-title: Neuroimage – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: bib0043 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 39 start-page: 1187 year: 2018 end-page: 1206 ident: bib0015 article-title: Intraclass correlation: improved modeling approaches and applications for neuroimaging publication-title: Hum Brain Mapp – volume: 24 start-page: 302 year: 2020 end-page: 315 ident: bib0103 article-title: Linking structure and function in macroscale brain networks publication-title: Trends Cogn. Sci. (Regul. Ed.) – volume: 5 start-page: 6 year: 2011 ident: bib0018 article-title: On the influence of amplitude on the connectivity between phases publication-title: Front Neuroinform – volume: 90 start-page: 012707 year: 2014 ident: bib0091 article-title: Determination of effective brain connectivity from functional connectivity with application to resting state connectivities publication-title: Physical Review E – volume: 239 start-page: 118254 year: 2021 ident: bib0042 article-title: Beyond fingerprinting: choosing predictive connectomes over reliable connectomes publication-title: Neuroimage – volume: 158 start-page: 371 year: 2017 end-page: 377 ident: bib0113 article-title: Evaluating the replicability, specificity, and generalizability of connectome fingerprints publication-title: Neuroimage – start-page: 1 year: 2021 end-page: 56 ident: bib0035 article-title: Parcellation-induced variation of empirical and simulated brain connectomes at group and subject levels publication-title: Network Neurosci. – volume: 32 start-page: e3752 year: 2019 ident: bib0101 article-title: Building connectomes using diffusion MRI: why, how and but publication-title: NMR Biomed – start-page: 58 year: 2006 end-page: 66 ident: bib0053 article-title: Symmetric Atlasing and Model Based Segmentation: an Application to the Hippocampus in Older Adults publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2006 Medical Image Computing and Computer-Assisted Intervention - MICCAI, 2006 – volume: 10 start-page: 9 year: 2020 ident: bib0008 article-title: Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review publication-title: The Journal of Mathematical Neuroscience – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: bib0112 article-title: Scipy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods – volume: 104 start-page: 10240 issue: 24 year: 2007 ident: 10.1016/j.neuroimage.2022.119321_bib0060 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0701519104 – volume: 4 start-page: e1000196 issue: 10 year: 2008 ident: 10.1016/j.neuroimage.2022.119321_bib0049 article-title: Noise during rest enables the exploration of the brain’s dynamic repertoire publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000196 – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2022.119321_bib0064 article-title: FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 117 start-page: 9566 issue: 17 year: 2020 ident: 10.1016/j.neuroimage.2022.119321_bib0068 article-title: Dynamic coupling of whole-brain neuronal and neurotransmitter systems publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1921475117 – volume: 62 start-page: 2222 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2022.119321_bib0111 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – year: 1984 ident: 10.1016/j.neuroimage.2022.119321_bib0069 article-title: Chemical oscillations, waves, and turbulence – volume: 82 start-page: 403 year: 2013 ident: 10.1016/j.neuroimage.2022.119321_bib0099 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.081 – volume: 162 start-page: 1256 issue: 7 year: 2005 ident: 10.1016/j.neuroimage.2022.119321_bib0045 article-title: Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder publication-title: American Journal of Psychiatry doi: 10.1176/appi.ajp.162.7.1256 – volume: 12 start-page: e1004762 issue: 3 year: 2016 ident: 10.1016/j.neuroimage.2022.119321_bib0050 article-title: Estimation of directed effective connectivity from fMRI functional connectivity hints at asymmetries of cortical connectome publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004762 – volume: 32 start-page: 3366 issue: 10 year: 2012 ident: 10.1016/j.neuroimage.2022.119321_bib0025 article-title: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2523-11.2012 – volume: 160 start-page: 41 year: 2017 ident: 10.1016/j.neuroimage.2022.119321_bib0088 article-title: The dynamic functional connectome: state-of-the-art and perspectives publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.061 – volume: 37 start-page: 839 issue: 4 year: 2017 ident: 10.1016/j.neuroimage.2022.119321_bib0012 article-title: Dynamic reconfiguration of visuomotor-related functional connectivity networks publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1672-16.2016 – volume: 7 start-page: 3095 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2022.119321_bib0028 article-title: The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core publication-title: Sci Rep doi: 10.1038/s41598-017-03073-5 – volume: 24 start-page: 302 issue: 4 year: 2020 ident: 10.1016/j.neuroimage.2022.119321_bib0103 article-title: Linking structure and function in macroscale brain networks publication-title: Trends Cogn. Sci. (Regul. Ed.) doi: 10.1016/j.tics.2020.01.008 – volume: 239 start-page: 118254 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0042 article-title: Beyond fingerprinting: choosing predictive connectomes over reliable connectomes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118254 – volume: 157 start-page: 250 year: 2017 ident: 10.1016/j.neuroimage.2022.119321_bib0084 article-title: Resting-state fMRI correlations: from link-wise unreliability to whole brain stability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.006 – volume: 13 start-page: 22 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2022.119321_bib0114 article-title: The NumPy array: a structure for efficient numerical computation publication-title: Computing in Science Engineering doi: 10.1109/MCSE.2011.37 – volume: 28 start-page: 2922 issue: 8 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0052 article-title: Spatiotemporal network markers of individual variability in the human functional connectome publication-title: Cerebral Cortex doi: 10.1093/cercor/bhx170 – volume: 202 start-page: 116137 year: 2019 ident: 10.1016/j.neuroimage.2022.119321_bib0104 article-title: MRTrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116137 – volume: 10 start-page: e1003530 issue: 3 year: 2014 ident: 10.1016/j.neuroimage.2022.119321_bib0078 article-title: Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003530 – volume: 26 start-page: 1314 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2022.119321_bib0117 article-title: A recurrent network mechanism of time integration in perceptual decisions publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3733-05.2006 – volume: 34 start-page: 7886 issue: 23 year: 2014 ident: 10.1016/j.neuroimage.2022.119321_bib0030 article-title: How local excitation-inhibition ratio impacts the whole brain dynamics publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5068-13.2014 – start-page: 1 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0035 article-title: Parcellation-induced variation of empirical and simulated brain connectomes at group and subject levels publication-title: Network Neurosci. – volume: 170 start-page: 332 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0039 article-title: Topographic organization of the cerebral cortex and brain cartography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.018 – volume: 83 start-page: 155 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2022.119321_bib0075 article-title: Decreased volume of left and total anterior insular lobule in schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2005.11.020 – volume: 5 start-page: 757 issue: 3 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0081 article-title: Multiscale dynamic mean field (MDMF) model relates resting-state brain dynamics with local cortical excitatory-inhibitory neurotransmitter homeostasis publication-title: Network Neurosci. – volume: 1 start-page: 13 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2022.119321_bib0046 article-title: Functional and effective connectivity: areview publication-title: Brain Connect doi: 10.1089/brain.2011.0008 – volume: 33 start-page: 11239 issue: 27 year: 2013 ident: 10.1016/j.neuroimage.2022.119321_bib0031 article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1091-13.2013 – volume: 32 start-page: e3752 issue: 4 year: 2019 ident: 10.1016/j.neuroimage.2022.119321_bib0101 article-title: Building connectomes using diffusion MRI: why, how and but publication-title: NMR Biomed doi: 10.1002/nbm.3752 – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 10.1016/j.neuroimage.2022.119321_bib0105 article-title: N4ITK: Improved N3 bias correction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2010.2046908 – volume: 34 start-page: 7910 issue: 23 year: 2014 ident: 10.1016/j.neuroimage.2022.119321_bib0029 article-title: Identification of optimal structural connectivity using functional connectivity and neural modeling publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4423-13.2014 – volume: 29 start-page: 603 issue: 3 year: 2017 ident: 10.1016/j.neuroimage.2022.119321_bib0020 article-title: Interpretation of the precision matrix and its application in estimating sparse brain connectivity during sleep spindles from human electrocorticography recordings publication-title: Neural Comput doi: 10.1162/NECO_a_00936 – volume: 30 start-page: 1511 issue: 5 year: 2009 ident: 10.1016/j.neuroimage.2022.119321_bib0115 article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study publication-title: Hum Brain Mapp doi: 10.1002/hbm.20623 – volume: 19 start-page: 672 issue: 11 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0040 article-title: Imaging-based parcellations of the human brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-018-0071-7 – volume: 4 start-page: 1235 issue: 4 year: 2020 ident: 10.1016/j.neuroimage.2022.119321_bib0072 article-title: Revisiting correlation-based functional connectivity and its relationship with structural connectivity publication-title: Network Neurosci. doi: 10.1162/netn_a_00166 – volume: 83 start-page: 550 year: 2013 ident: 10.1016/j.neuroimage.2022.119321_bib0009 article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.099 – volume: 9 start-page: 8479 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2022.119321_bib0055 article-title: A new computational approach to estimate whole-brain effective connectivity from functional and structural MRI, applied to language development publication-title: Sci Rep doi: 10.1038/s41598-019-44909-6 – volume: 118 issue: 15 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_sbref0095 article-title: Functional connectome fingerprinting using shallow feedforward neural networks publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.2021852118 – volume: 103 start-page: 297 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2022.119321_bib0109 article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization publication-title: J. Neurophysiol. doi: 10.1152/jn.00783.2009 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2022.119321_bib0110 article-title: The WU-minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 58 start-page: 339 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2022.119321_bib0108 article-title: Effective connectivity: influence, causality and biophysical modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.058 – volume: 3 start-page: 90 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0121 article-title: Subject specificity of the correlation between large-scale structural and functional connectivity publication-title: Network Neurosci. doi: 10.1162/netn_a_00055 – volume: 124 start-page: 85 year: 2016 ident: 10.1016/j.neuroimage.2022.119321_bib0058 article-title: Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.08.069 – volume: 19 start-page: 2209 issue: 10 year: 2009 ident: 10.1016/j.neuroimage.2022.119321_bib0098 article-title: The resting brain: unconstrained yet reliable publication-title: Cerebral Cortex doi: 10.1093/cercor/bhn256 – volume: 238 start-page: 118170 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0002 article-title: Using connectomics for predictive assessment of brain parcellations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118170 – volume: 12 start-page: 6373 issue: 1 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0067 article-title: Sensory-motor cortices shape functional connectivity dynamics in the human brain publication-title: Nat Commun doi: 10.1038/s41467-021-26704-y – volume: 9 start-page: 179 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2022.119321_bib0019 article-title: Cortical surface-based analysis: i. segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 18 start-page: 1664 issue: 11 year: 2015 ident: 10.1016/j.neuroimage.2022.119321_bib0043 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 25 start-page: 1021 issue: 12 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0041 article-title: Is it time to put rest to rest? publication-title: Trends Cogn. Sci. (Regul. Ed.) doi: 10.1016/j.tics.2021.09.005 – start-page: 58 year: 2006 ident: 10.1016/j.neuroimage.2022.119321_bib0053 article-title: Symmetric Atlasing and Model Based Segmentation: an Application to the Hippocampus in Older Adults – volume: 10 start-page: 9 issue: 1 year: 2020 ident: 10.1016/j.neuroimage.2022.119321_bib0008 article-title: Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review publication-title: The Journal of Mathematical Neuroscience doi: 10.1186/s13408-020-00086-9 – volume: 14 start-page: e1006007 issue: 2 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0001 article-title: A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006007 – volume: 11 start-page: e0157292 issue: 8 year: 2016 ident: 10.1016/j.neuroimage.2022.119321_bib0093 article-title: Analytical operations relate structural and functional connectivity in the brain publication-title: PLoS ONE doi: 10.1371/journal.pone.0157292 – volume: 256 start-page: 119051 year: 2022 ident: 10.1016/j.neuroimage.2022.119321_bib0005 article-title: On the intersection between data quality and dynamical modelling of large-scale fMRI signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.119051 – volume: 41 start-page: 1167 issue: 5 year: 2020 ident: 10.1016/j.neuroimage.2022.119321_bib0077 article-title: Parcellation influence on the connectivity-based structure-function relationship in the human brain publication-title: Hum Brain Mapp doi: 10.1002/hbm.24866 – volume: 27 start-page: 5415 issue: 11 year: 2017 ident: 10.1016/j.neuroimage.2022.119321_bib0083 article-title: Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility publication-title: Cerebral Cortex doi: 10.1093/cercor/bhx230 – volume: 31 start-page: 968 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2022.119321_bib0033 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 101 start-page: 1181 issue: 6 year: 2019 ident: 10.1016/j.neuroimage.2022.119321_sbref0032 article-title: Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics publication-title: Neuron doi: 10.1016/j.neuron.2019.01.017 – volume: 203 start-page: 116157 year: 2019 ident: 10.1016/j.neuroimage.2022.119321_bib0082 article-title: A decade of test-retest reliability of functional connectivity: a systematic review and meta-analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116157 – volume: 12 start-page: 43 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2022.119321_bib0026 article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2961 – volume: 80 start-page: 360 year: 2013 ident: 10.1016/j.neuroimage.2022.119321_bib0062 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 19 start-page: 1273 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2022.119321_bib0047 article-title: Dynamic causal modelling publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00202-7 – volume: 80 start-page: 330 year: 2013 ident: 10.1016/j.neuroimage.2022.119321_bib0118 article-title: Biophysical network models and the human connectome publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.059 – volume: 86 start-page: 127 issue: 2 year: 1981 ident: 10.1016/j.neuroimage.2022.119321_bib0016 article-title: Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior publication-title: Am J Ment Defic – volume: 158 start-page: 371 year: 2017 ident: 10.1016/j.neuroimage.2022.119321_bib0113 article-title: Evaluating the replicability, specificity, and generalizability of connectome fingerprints publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.016 – volume: 1 issue: 3 year: 2019 ident: 10.1016/j.neuroimage.2022.119321_bib0107 article-title: MIST: A multi-resolution parcellation of functional brain networks [version 2; peer review: 4 approved] publication-title: MNI Open Research – ident: 10.1016/j.neuroimage.2022.119321_bib0038 – volume: 12 start-page: 1 issue: 1 year: 1972 ident: 10.1016/j.neuroimage.2022.119321_bib0116 article-title: Excitatory and inhibitory interactions in localized populations of model neurons publication-title: Biophys. J. doi: 10.1016/S0006-3495(72)86068-5 – volume: 12 start-page: 341 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0044 article-title: EEG Resting state functional connectivity in adult dyslexics using phase lag index and graph analysis publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2018.00341 – volume: 8 start-page: 8254 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0003 article-title: The quest for identifiability in human functional connectomes publication-title: Sci Rep doi: 10.1038/s41598-018-25089-1 – volume: 20 start-page: 519 issue: 8 year: 2010 ident: 10.1016/j.neuroimage.2022.119321_bib0059 article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2010.03.008 – volume: 50 start-page: 970 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2022.119321_bib0120 article-title: Whole-brain anatomical networks: does the choice of nodes matter? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.027 – volume: 19 start-page: 240 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0122 article-title: Differentiation of Alzheimer’s disease based on local and global parameters in personalized Virtual Brain models publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2018.04.017 – volume: 122 start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2022.119321_bib0092 article-title: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.075 – volume: 80 start-page: 190 year: 2013 ident: 10.1016/j.neuroimage.2022.119321_bib0070 article-title: Adding dynamics to the human connectome project with MEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.056 – volume: 170 start-page: 5 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0006 article-title: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.014 – volume: 76 start-page: 362 year: 2013 ident: 10.1016/j.neuroimage.2022.119321_bib0076 article-title: Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.070 – volume: 3 start-page: 121 issue: 2 year: 2013 ident: 10.1016/j.neuroimage.2022.119321_bib0089 article-title: The virtual brain integrates computational modeling and multimodal neuroimaging publication-title: Brain Connect doi: 10.1089/brain.2012.0120 – volume: 4 start-page: A132 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0014 article-title: JURECA: Modular supercomputer at Jülich Supercomputing Centre publication-title: Journal of large-scale research facilities doi: 10.17815/jlsrf-4-121-1 – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2022.119321_bib0106 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 28 start-page: 3095 issue: 9 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0096 article-title: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI publication-title: Cerebral Cortex doi: 10.1093/cercor/bhx179 – volume: 170 start-page: 249 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0097 article-title: An MRI Von Economo - Koskinas atlas publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.069 – volume: 5 start-page: 6 year: 2011 ident: 10.1016/j.neuroimage.2022.119321_bib0018 article-title: On the influence of amplitude on the connectivity between phases publication-title: Front Neuroinform doi: 10.3389/fninf.2011.00006 – volume: 42 start-page: 3717 issue: 12 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0071 article-title: Feature selection framework for functional connectome fingerprinting publication-title: Hum Brain Mapp doi: 10.1002/hbm.25379 – volume: 39 start-page: 1187 issue: 3 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0015 article-title: Intraclass correlation: improved modeling approaches and applications for neuroimaging publication-title: Hum Brain Mapp doi: 10.1002/hbm.23909 – volume: 105 start-page: 525 year: 2015 ident: 10.1016/j.neuroimage.2022.119321_bib0056 article-title: Functional connectivity dynamics: modeling the switching behavior of the resting state publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.001 – volume: 237 start-page: 118176 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0066 article-title: Tractography density affects whole-brain structural architecture and resting-state dynamical modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118176 – volume: 90 start-page: 012707 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2022.119321_bib0091 article-title: Determination of effective brain connectivity from functional connectivity with application to resting state connectivities publication-title: Physical Review E doi: 10.1103/PhysRevE.90.012707 – volume: 88 start-page: 1086 issue: 6 year: 2015 ident: 10.1016/j.neuroimage.2022.119321_bib0004 article-title: Architectonic mapping of the human brain beyond brodmann publication-title: Neuron doi: 10.1016/j.neuron.2015.12.001 – volume: 38 start-page: 1992 issue: 4 year: 2017 ident: 10.1016/j.neuroimage.2022.119321_bib0010 article-title: Correspondence between evoked and intrinsic functional brain network configurations publication-title: Hum Brain Mapp doi: 10.1002/hbm.23500 – volume: 169 start-page: 46 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0021 article-title: Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.009 – volume: 17 start-page: 261 issue: 3 year: 2020 ident: 10.1016/j.neuroimage.2022.119321_bib0112 article-title: Scipy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0034 article-title: Parcellation-based structural and resting-state functional brain connectomes of a healthy cohort [Dataset] publication-title: EBRAINS – volume: 40 start-page: 2967 issue: 10 year: 2019 ident: 10.1016/j.neuroimage.2022.119321_bib0037 article-title: Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity publication-title: Hum Brain Mapp doi: 10.1002/hbm.24572 – volume: 106 start-page: 10302 issue: 25 year: 2009 ident: 10.1016/j.neuroimage.2022.119321_bib0024 article-title: Key role of coupling, delay, and noise in resting brain fluctuations publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0901831106 – volume: 231 start-page: 117844 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0063 article-title: Whole-brain modelling of resting state fMRI differentiates ADHD subtypes and facilitates stratified neuro-stimulation therapy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.117844 – year: 2022 ident: 10.1016/j.neuroimage.2022.119321_bib0036 article-title: Parcellation-based resting-state blood-oxygen-level-dependent (BOLD) signals of a healthy cohort (v1.0) [Dataset] publication-title: EBRAINS – volume: 111 start-page: 385 year: 2015 ident: 10.1016/j.neuroimage.2022.119321_bib0094 article-title: Mathematical framework for large-scale brain network modeling in the virtual brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.002 – volume: 20 start-page: 340 issue: 3 year: 2017 ident: 10.1016/j.neuroimage.2022.119321_bib0011 article-title: Dynamic models of large-scale brain activity publication-title: Nat. Neurosci. doi: 10.1038/nn.4497 – volume: 116 start-page: 18088 issue: 36 year: 2019 ident: 10.1016/j.neuroimage.2022.119321_bib0023 article-title: Awakening: predicting external stimulation to force transitions between different brain states publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1905534116 – volume: 61 start-page: 935 issue: 8 year: 2007 ident: 10.1016/j.neuroimage.2022.119321_bib0051 article-title: Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2006.06.027 – volume: 8 start-page: 1349 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2022.119321_bib0074 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat Commun doi: 10.1038/s41467-017-01285-x – volume: 236 start-page: 118201 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0086 article-title: Inter-subject and inter-parcellation variability of resting-state whole-brain dynamical modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118201 – volume: 86 start-page: 420 issue: 2 year: 1979 ident: 10.1016/j.neuroimage.2022.119321_bib0100 article-title: Intraclass correlations: uses in assessing rater reliability publication-title: Psychol Bull doi: 10.1037/0033-2909.86.2.420 – volume: 52 start-page: 42 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0007 article-title: Personalized brain network models for assessing structure-function relationships publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.04.014 – volume: 145 start-page: 377 year: 2017 ident: 10.1016/j.neuroimage.2022.119321_bib0065 article-title: The virtual epileptic patient: individualized whole-brain models of epilepsy spread publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.049 – volume: 3 start-page: e2148 issue: 5 year: 2008 ident: 10.1016/j.neuroimage.2022.119321_bib0048 article-title: On how network architecture determines the dominant patterns of spontaneous neural activity publication-title: PLoS ONE doi: 10.1371/journal.pone.0002148 – volume: 106 start-page: 2035 issue: 6 year: 2009 ident: 10.1016/j.neuroimage.2022.119321_bib0061 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0811168106 – volume: 14 start-page: e0219854 issue: 7 year: 2019 ident: 10.1016/j.neuroimage.2022.119321_bib0073 article-title: Intraclass correlation - a discussion and demonstration of basic features publication-title: PLoS ONE doi: 10.1371/journal.pone.0219854 – volume: 7 start-page: 529 year: 2013 ident: 10.1016/j.neuroimage.2022.119321_bib0102 article-title: Modulation of spontaneous alpha brain rhythms using low-intensity transcranial direct-current stimulation publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2013.00529 – volume: 53 start-page: 1666 issue: 6 year: 2021 ident: 10.1016/j.neuroimage.2022.119321_bib0119 article-title: Mapping structural connectivity using diffusion MRI: challenges and opportunities publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.27188 – volume: 02 start-page: 150 issue: 02 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_bib0057 article-title: Putting the “dynamic” back into dynamic functional connectivity publication-title: Network Neurosci. doi: 10.1162/netn_a_00041 – volume: 111 start-page: 65 year: 2015 ident: 10.1016/j.neuroimage.2022.119321_bib0079 article-title: Predicting functional connectivity from structural connectivity via computational models using MRI: an extensive comparison study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.001 – volume: 85 start-page: 011912 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2022.119321_bib0090 article-title: Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory publication-title: Physical Review E doi: 10.1103/PhysRevE.85.011912 – volume: 28 start-page: 3065 issue: 19 year: 2018 ident: 10.1016/j.neuroimage.2022.119321_sbref0022 article-title: Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD publication-title: Current Biology doi: 10.1016/j.cub.2018.07.083 – volume: 95 start-page: 232 year: 2014 ident: 10.1016/j.neuroimage.2022.119321_bib0054 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 11 start-page: e1004100 issue: 2 year: 2015 ident: 10.1016/j.neuroimage.2022.119321_bib0085 article-title: Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004100 – volume: 57 start-page: 130 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2022.119321_bib0013 article-title: Role of local network oscillations in resting-state functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.04.010 – volume: 84 start-page: 892 issue: 5 year: 2014 ident: 10.1016/j.neuroimage.2022.119321_bib0027 article-title: Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders publication-title: Neuron doi: 10.1016/j.neuron.2014.08.034 – volume: 33 start-page: 1914 issue: 8 year: 2012 ident: 10.1016/j.neuroimage.2022.119321_bib0017 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum Brain Mapp doi: 10.1002/hbm.21333 – volume: 12 start-page: e1005076 issue: 9 year: 2016 ident: 10.1016/j.neuroimage.2022.119321_bib0080 article-title: Stimulation-based control of dynamic brain networks publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005076 – volume: 12 start-page: 68 year: 2019 ident: 10.1016/j.neuroimage.2022.119321_bib0087 article-title: What can computational models contribute to neuroimaging data analytics? publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2018.00068 |
SSID | ssj0009148 |
Score | 2.4739316 |
Snippet | •Reliability of whole-brain dynamical models ranges from ”poor” to ”good”.•Reliability and specificity of modeling results may exceed those of empirical... Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119321 |
SubjectTerms | Brain Brain connectome Hypothesis testing Magnetic resonance imaging Neural networks Reliability Resting-state brain dynamics Structure-function relationships Subject specificity Whole-brain model |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBclh7LL6Me2Zk2LC7tqsT5sWew0QksotBS2Qm9CsiXIaJ3QJIzt0L-971lySg-FQI-W9LD8pPf0s_T0foR8awSzhXUVzS2rKKZ8o5UXOdWOFZ4H71SD-x1X1-X0Vl7eFXc7ZNLfhcGwyuT7o0_vvHUqGSdtjhez2fgXIANYbgCh8I43Gf2wlApn-fenlzAPzWS8DlcIiq1TNE-M8epyRs4ewHLhT5Fz8B8AZ9hbS9RbELRbii72yMeEIbOfsZv7ZMe3B2T3Kp2SH5IbjDOO-bf_ZbZtsuXa4XZLhtcqMTQIy-chW_RA_L9vsr9IlEsdMkZkTaSph3d0RDnLT-T24vz3ZEoTcwKtAQCsaOB1UKESNnDNnZXe5QGP7ITyubbc2kr6AJborPCA8ByrrbONFlb7EiSF-EwG7bz1RyQrA2acD2UZci9VLl3NGiW11WUovRdiSFSvLFOntOLIbnFv-vixP-ZFzQbVbKKah4RtJBcxtcYWMrofD9NfHQVnZ8D_byH7YyP7aoptKT3qh98kM18aHqkktYLqs001GCieutjWz9fYpiN4Bs84JF_itNl8Lua2B8iuvr6ra8fkAz7hTjcrRmSwelz7E4BKK3fa2cIzU9gTbA priority: 102 providerName: Elsevier |
Title | Reliability and subject specificity of personalized whole-brain dynamical models |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922004402 https://dx.doi.org/10.1016/j.neuroimage.2022.119321 https://www.ncbi.nlm.nih.gov/pubmed/35580807 https://www.proquest.com/docview/2676930971 https://www.proquest.com/docview/2666547578 |
Volume | 257 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7ygNJLSNPXNuniQq9qLcu2LHooSUjYJGQJpYG9CcmWoKX1brO7lOTQ394ZS949JezJYGv80GP0eTT6PoCPjeCmMLZiqeEVI8o3VjmRMmV54TLvrGwo3nE9Lke3-eWkmMSA2zymVfY-sXPUzbSmGPnnLKj2Kcm_zv4wUo2i1dUoobENu0RdRildciLXpLs8D1vhCsEqLBAzeUJ-V8cX-eM3jlr8S8wy9B0IZfhj09Nj8LObhs73YS_ix-Q4NPgL2HLtATy7jivkL-GGcowD9_Z9YtommS8thVoS2lJJaUF0fuqTWQ_CH1yT_CWRXGZJLSJpgkQ9PqMTyZm_gtvzs--nIxZVE1iNk_-C-az20lfC-Exl1uTOpp6W64R0qTKZMVXuPI5Ca4RDdGd5baxplDDKlWgpxGvYaaetewtJ6Ylt3pelT10u09zWvJG5Mqr0pXNCDED2laXrSClOyha_dJ879lOvq1lTNetQzQPgK8tZoNXYwEb17aH7baPo6DT6_g1sv6xsI7QIkGFD66O--XUc4nO97pAD-LC6jIOTVlxM66ZLKtOJO6NXHMCb0G1Wn0u89gjX5bunb34Iz-lNKIzNiyPYWdwt3XvEQQs7hO1P__iw6_JD2D2-uBqN8XhyNr75NuxiC_8BXecNcQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqQRcEO8GChgJjhZre18WQohHq5Q2UYVaqTdj79oSCDaBJKrCj-I3MrPeTU5FufSazax2x7Ofx-Px9wG8rJWwmXUlT6woOVG-8dKrhGsnMi-Dd0VN9Y7xJB-dp58vsosd-NufhaG2yh4TW6CupxXVyF_LqNqnC_Fu9ouTahTtrvYSGjEsjv3qEpds87dHn3B8X0l5eHD2ccQ7VQFe4eS44EFWoQilskFq6WzqXRJoO0sVPtFWWlumPmCUOqs8Zj9OVNbZWiurfY6WVABFyN9NFS5lBrD74WBy-mVD8yvSePguU7wUQne9Q7GjrGWo_PYTcQLXpVIiWmHyJK6aEK9KeNuJ7_AO3O4yVvY-hthd2PHNPbgx7vbk78MpdTVHtu8Vs03N5ktHxR1GhzipEYl-nwY269P-P75mlyTLyx3pU7B61diWtIC1sjzzB3B-LR59CINm2vg9YHkgfvuQ5yHxaZGkrhJ1kWqr85B7r9QQit5ZpupIzElL44fpu9W-m42bDbnZRDcPQawtZ5HIYwsb3Y-H6Q-qIrQanG22sH2ztu2SmZikbGm93w-_6UBlbjafwBBerC8jHNAej238dEn_aeWkEYeH8CiGzfp1iUkfFwjF4__f_DncHJ2NT8zJ0eT4Cdyip6Iiusj2YbD4vfRPMQtbuGdd6DP4et1f2z9pQkiR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1VRaq4IL4JFDASHK2u7d31WgghRIlaSqseqJSbsXdtqQg2gSSqwk_j1zGz3k1ORbn0mmSi3fH4eTwevwfwulHCFc5XPHOi4kT5xqugMm68KIKMweuG6h2nZ-XRRf55Ukx24O9wF4baKgdM7IC6mdZUIz-QSbXPaHEQ-7aI88Px-9kvTgpSdNI6yGmkEDkJqyvcvs3fHR_iWL-Rcvzp68cj3isM8BoXygWPso46VspFaaR3efBZpKMtpUNmnHSuykPEiPVOBcyEvKidd41RzoQSLakYivB_S6tC0BzTE70h_BV5uoZXKF4JYfouotRb1nFVXv5ExMAdqpSIW5hGieuWxutS324JHN-FO33uyj6kYLsHO6G9D3un_en8Azin_ubE-71irm3YfOmpzMPoOie1JNHn08hmwwbgT2jYFQn0ck9KFaxZta6jL2CdQM_8IVzciD8fwW47bcMTYGUkpvtYljELuc5yX4tG58aZMpYhKDUCPTjL1j2dOalq_LBD39p3u3GzJTfb5OYRiLXlLFF6bGFjhvGww5VVBFmL684Wtm_Xtn1ak9KVLa33h-G3PbzM7WYyjODV-msEBjrtcW2YLuk3nbA0IvIIHqewWb8ucerjVkE__f-fv4Q9nGP2y_HZyTO4TQ9F1XRR7MPu4vcyPMd0bOFfdHHP4NtNT7R_5jlLYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+and+subject+specificity+of+personalized+whole-brain+dynamical+models&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Domhof%2C+Justin+WM&rft.au=Eickhoff%2C+Simon+B&rft.au=Popovych%2C+Oleksandr+V&rft.date=2022-08-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=257&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.119321&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |