Reliability and subject specificity of personalized whole-brain dynamical models

•Reliability of whole-brain dynamical models ranges from ”poor” to ”good”.•Reliability and specificity of modeling results may exceed those of empirical data.•Model personalization has a positive influence on the reliability and specificity.•Parcellations have a much larger effect on modeling result...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 257; p. 119321
Main Authors Domhof, Justin W.M., Eickhoff, Simon B., Popovych, Oleksandr V.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.08.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2022.119321

Cover

Loading…
Abstract •Reliability of whole-brain dynamical models ranges from ”poor” to ”good”.•Reliability and specificity of modeling results may exceed those of empirical data.•Model personalization has a positive influence on the reliability and specificity.•Parcellations have a much larger effect on modeling results than on empirical data. Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a ”poor” to ”good” reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with ”poor” reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.
AbstractList •Reliability of whole-brain dynamical models ranges from ”poor” to ”good”.•Reliability and specificity of modeling results may exceed those of empirical data.•Model personalization has a positive influence on the reliability and specificity.•Parcellations have a much larger effect on modeling results than on empirical data. Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a ”poor” to ”good” reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with ”poor” reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.
Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a ”poor” to ”good” reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with ”poor” reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.
Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a "poor" to "good" reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with "poor" reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a "poor" to "good" reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with "poor" reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.
ArticleNumber 119321
Author Eickhoff, Simon B.
Popovych, Oleksandr V.
Domhof, Justin W.M.
Author_xml – sequence: 1
  givenname: Justin W.M.
  surname: Domhof
  fullname: Domhof, Justin W.M.
  organization: Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
– sequence: 2
  givenname: Simon B.
  surname: Eickhoff
  fullname: Eickhoff, Simon B.
  organization: Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
– sequence: 3
  givenname: Oleksandr V.
  orcidid: 0000-0001-9994-1764
  surname: Popovych
  fullname: Popovych, Oleksandr V.
  email: o.popovych@fz-juelich.de
  organization: Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35580807$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuLFDEURoOMOA_9C1Lgxk21edQrG1EHRwcGZhBdh1upG02ZStqkSml__aTocYRe9SohOfeD-51zcuKDR0IKRjeMsubNuPG4xGAn-I4bTjnfMCYFZ0_IGaOyLmXd8pP1Xouyy1-n5DylkVIqWdU9I6eirjva0faM3H1BZ6G3zs67AvxQpKUfUc9F2qK2xur1PZhiizEFD87-xaH48yM4LPsI1hfDzsNkNbhiCgO69Jw8NeASvng4L8i3q49fLz-XN7efri_f35S6pnIuDdemNZ0AwyXvocKeGtpUVLRIJXCArkLTyqoHgZKLnmnoYZACJDZ5UogL8nqfu43h14JpVpNNGp0Dj2FJijdNU1dt3XYZfXWAjmGJeZmVahspqGxZpl4-UEs_4aC2Mdcbd-pfVxno9oCOIaWI5hFhVK1a1Kj-a1GrFrXXkkffHozmXmG2wc-5RHdMwId9QG4Yf1uMKmmLXuNgY7alhmCPCXl3EKKd9au7n7g7LuIeVXLGdg
CitedBy_id crossref_primary_10_1038_s41598_024_80196_6
crossref_primary_10_1073_pnas_2409577121
crossref_primary_10_1016_j_neuroimage_2023_120042
crossref_primary_10_1016_j_neuroimage_2022_119782
crossref_primary_10_3390_brainsci14020125
crossref_primary_10_34133_icomputing_0055
crossref_primary_10_1002_alz_13788
crossref_primary_10_1016_j_csbj_2022_11_060
crossref_primary_10_1162_netn_a_00406
crossref_primary_10_3390_brainsci13010006
crossref_primary_10_1093_braincomms_fcac331
crossref_primary_10_3389_fneur_2023_1279875
Cites_doi 10.1073/pnas.0701519104
10.1371/journal.pcbi.1000196
10.1016/j.neuroimage.2011.09.015
10.1073/pnas.1921475117
10.1016/j.neuroimage.2012.02.018
10.1016/j.neuroimage.2013.05.081
10.1176/appi.ajp.162.7.1256
10.1371/journal.pcbi.1004762
10.1523/JNEUROSCI.2523-11.2012
10.1016/j.neuroimage.2016.12.061
10.1523/JNEUROSCI.1672-16.2016
10.1038/s41598-017-03073-5
10.1016/j.tics.2020.01.008
10.1016/j.neuroimage.2021.118254
10.1016/j.neuroimage.2017.06.006
10.1109/MCSE.2011.37
10.1093/cercor/bhx170
10.1016/j.neuroimage.2019.116137
10.1371/journal.pcbi.1003530
10.1523/JNEUROSCI.3733-05.2006
10.1523/JNEUROSCI.5068-13.2014
10.1016/j.neuroimage.2017.02.018
10.1016/j.schres.2005.11.020
10.1089/brain.2011.0008
10.1523/JNEUROSCI.1091-13.2013
10.1002/nbm.3752
10.1109/TMI.2010.2046908
10.1523/JNEUROSCI.4423-13.2014
10.1162/NECO_a_00936
10.1002/hbm.20623
10.1038/s41583-018-0071-7
10.1162/netn_a_00166
10.1016/j.neuroimage.2013.05.099
10.1038/s41598-019-44909-6
10.1073/pnas.2021852118
10.1152/jn.00783.2009
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2011.03.058
10.1162/netn_a_00055
10.1016/j.neuroimage.2015.08.069
10.1093/cercor/bhn256
10.1016/j.neuroimage.2021.118170
10.1038/s41467-021-26704-y
10.1006/nimg.1998.0395
10.1038/nn.4135
10.1016/j.tics.2021.09.005
10.1186/s13408-020-00086-9
10.1371/journal.pcbi.1006007
10.1371/journal.pone.0157292
10.1016/j.neuroimage.2022.119051
10.1002/hbm.24866
10.1093/cercor/bhx230
10.1016/j.neuroimage.2006.01.021
10.1016/j.neuron.2019.01.017
10.1016/j.neuroimage.2019.116157
10.1038/nrn2961
10.1016/j.neuroimage.2013.05.079
10.1016/S1053-8119(03)00202-7
10.1016/j.neuroimage.2013.03.059
10.1016/j.neuroimage.2017.07.016
10.1016/S0006-3495(72)86068-5
10.3389/fnhum.2018.00341
10.1038/s41598-018-25089-1
10.1016/j.euroneuro.2010.03.008
10.1016/j.neuroimage.2009.12.027
10.1016/j.nicl.2018.04.017
10.1016/j.neuroimage.2015.07.075
10.1016/j.neuroimage.2013.05.056
10.1016/j.neuroimage.2017.04.014
10.1016/j.neuroimage.2013.02.070
10.1089/brain.2012.0120
10.17815/jlsrf-4-121-1
10.1006/nimg.2001.0978
10.1093/cercor/bhx179
10.1016/j.neuroimage.2016.12.069
10.3389/fninf.2011.00006
10.1002/hbm.25379
10.1002/hbm.23909
10.1016/j.neuroimage.2014.11.001
10.1016/j.neuroimage.2021.118176
10.1103/PhysRevE.90.012707
10.1016/j.neuron.2015.12.001
10.1002/hbm.23500
10.1016/j.neuroimage.2017.12.009
10.1038/s41592-019-0686-2
10.1002/hbm.24572
10.1073/pnas.0901831106
10.1016/j.neuroimage.2021.117844
10.1016/j.neuroimage.2015.01.002
10.1038/nn.4497
10.1073/pnas.1905534116
10.1016/j.biopsych.2006.06.027
10.1038/s41467-017-01285-x
10.1016/j.neuroimage.2021.118201
10.1037/0033-2909.86.2.420
10.1016/j.conb.2018.04.014
10.1016/j.neuroimage.2016.04.049
10.1371/journal.pone.0002148
10.1073/pnas.0811168106
10.1371/journal.pone.0219854
10.3389/fnhum.2013.00529
10.1002/jmri.27188
10.1162/netn_a_00041
10.1016/j.neuroimage.2015.02.001
10.1103/PhysRevE.85.011912
10.1016/j.cub.2018.07.083
10.1016/j.neuroimage.2014.03.034
10.1371/journal.pcbi.1004100
10.1016/j.neuroimage.2011.04.010
10.1016/j.neuron.2014.08.034
10.1002/hbm.21333
10.1371/journal.pcbi.1005076
10.3389/fnsys.2018.00068
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier Inc.
Copyright Elsevier Limited Aug 15, 2022
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Aug 15, 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2022.119321
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Collection
Biological science database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID 35580807
10_1016_j_neuroimage_2022_119321
S1053811922004402
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c509t-f2cf7f83af292ba4eb0f064037e09a2aa84ef794ba3e923b1cabad93a9e6cf733
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 01:45:00 EDT 2025
Wed Aug 13 06:00:10 EDT 2025
Wed Sep 03 05:47:21 EDT 2025
Tue Jul 01 03:02:23 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Fri Feb 23 02:39:48 EST 2024
Tue Aug 26 17:21:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Brain connectome
Whole-brain model
Resting-state brain dynamics
Reliability
Subject specificity
Language English
License This is an open access article under the CC BY license.
Copyright © 2022. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-f2cf7f83af292ba4eb0f064037e09a2aa84ef794ba3e923b1cabad93a9e6cf733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9994-1764
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811922004402
PMID 35580807
PQID 2676930971
PQPubID 2031077
ParticipantIDs proquest_miscellaneous_2666547578
proquest_journals_2676930971
pubmed_primary_35580807
crossref_primary_10_1016_j_neuroimage_2022_119321
crossref_citationtrail_10_1016_j_neuroimage_2022_119321
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_119321
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_119321
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Breakspear (bib0011) 2017; 20
Makris, Goldstein, Kennedy, Hodge, Caviness, Faraone, Seidman (bib0075) 2006; 83
Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong, Descoteaux (bib0074) 2017; 8
Arslan, Ktena, Makropoulos, Robinson, Rueckert, Parisot (bib0006) 2018; 170
Deco, Cabral, Saenger, Boly, Tagliazucchi, Laufs, Kringelbach (bib0021) 2018; 169
Jung, Eickhoff, Popovych (bib0066) 2021; 237
Goldstein, Seidman, Makris, Ahern, O’Brien, Caviness, Tsuang (bib0051) 2007; 61
Amunts, Zilles (bib0004) 2015; 88
Galán (bib0048) 2008; 3
Bolt, Nomi, Rubinov, Uddin (bib0010) 2017; 38
Messé, Rudrauf, Benali, Marrelec (bib0078) 2014; 10
Deco, Kringelbach (bib0027) 2014; 84
Kong, Kong, Orban, Wang, Zhang, Anderson, Yeo (bib0067) 2021; 12
Rolls, Joliot, Tzourio-Mazoyer (bib0092) 2015; 122
Chen, Taylor, Haller, Kircanski, Stoddard, Pine, Cox (bib0015) 2018; 39
Preti, Bolton, Van De Ville (bib0088) 2017; 160
Wang, Wang, Zang, Yang, Tang, Gong, He (bib0115) 2009; 30
Zimmermann, Perry, Breakspear, Schirner, Sachdev, Wen, Solodkin (bib0122) 2018; 19
Dale, Fischl, Sereno (bib0019) 1999; 9
Liljequist, Elfving, Roaldsen (bib0073) 2019; 14
van der Walt, Colbert, Varoquaux (bib0114) 2011; 13
Cicchetti, Sparrow (bib0016) 1981; 86
Finn (bib0041) 2021; 25
Noble, Spann, Tokoglu, Shen, Constable, Scheinost (bib0083) 2017; 27
Messé, Rudrauf, Giron, Marrelec (bib0079) 2015; 111
Deco, Cruzat, Cabral, Tagliazucchi, Laufs, Logothetis, Kringelbach (bib0023) 2019; 116
Domhof, Jung, Eickhoff, Popovych (bib0036) 2022
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Constable (bib0043) 2015; 18
Robinson, Sarkar, Pandejee, Henderson (bib0091) 2014; 90
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0110) 2013; 80
Aquino, Fulcher, Oldham, Parkes, Gollo, Deco, Fornito (bib0005) 2022; 256
van den Heuvel, Hulshoff Pol (bib0059) 2010; 20
Van Dijk, Hedden, Venkataraman, Evans, Lazar, Buckner (bib0109) 2010; 103
Yeh, Jones, Liang, Descoteaux, Connelly (bib0119) 2021; 53
Kringelbach, Cruzat, Cabral, Knudsen, Carhart-Harris, Whybrow, Deco (bib0068) 2020; 117
Wilson, Cowan (bib0116) 1972; 12
Finn, Rosenberg (bib0042) 2021; 239
Friston, Harrison, Penny (bib0047) 2003; 19
Naskar, Vattikonda, Deco, Roy, Banerjee (bib0081) 2021; 5
Deco, Jirsa, McIntosh, Sporns, Kötter (bib0024) 2009; 106
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, van Mulbregt (bib0112) 2020; 17
Abeysuriya, Hadida, Sotiropoulos, Jbabdi, Becker, Hunt, Woolrich (bib0001) 2018; 14
Valdes-Sosa, Roebroeck, Daunizeau, Friston (bib0108) 2011; 58
Albers, Ambrosen, Liptrot, Dyrby, Schmidt, Mørup (bib0002) 2021; 238
Liégeois, Santos, Matta, Van De Ville, Sayed (bib0072) 2020; 4
Craddock, James, Holtzheimer, Hu, Mayberg (bib0017) 2012; 33
Ponce-Alvarez, Deco, Hagmann, Romani, Mantini, Corbetta (bib0085) 2015; 11
Suárez, Markello, Betzel, Misic (bib0103) 2020; 24
Pannunzi, Hindriks, Bettinardi, Wenger, Lisofsky, Martensson, Deco (bib0084) 2017; 157
Honey, Sporns, Cammoun, Gigandet, Thiran, Meuli, Hagmann (bib0061) 2009; 106
Larson-Prior, Oostenveld, Della Penna, Michalareas, Prior, Babajani-Feremi, Snyder (bib0070) 2013; 80
Saggio, Ritter, Jirsa (bib0093) 2016; 11
Wong, Wang (bib0117) 2006; 26
Muldoon, Pasqualetti, Gu, Cieslak, Grafton, Vettel, Bassett (bib0080) 2016; 12
Schaefer, Kong, Gordon, Laumann, Zuo, Holmes, Yeo (bib0096) 2018; 28
Deco, McIntosh, Shen, Hutchison, Menon, Everling, Jirsa (bib0029) 2014; 34
Woolrich, Stephan (bib0118) 2013; 80
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Killiany (bib0033) 2006; 31
Birn, Molloy, Patriat, Parker, Meier, Kirk, Prabhakaran (bib0009) 2013; 83
Spitoni, Cimmino, Bozzacchi, Pizzamiglio, Di Russo (bib0102) 2013; 7
(bib0014) 2018; 4
Li, Wisner, Atluri (bib0071) 2021; 42
Peña Gómez, Avena-Koenigsberger, Sepulcre, Sporns (bib0052) 2018; 28
Hellyer, Jachs, Clopath, Leech (bib0058) 2016; 124
Bick, Goodfellow, Laing, Martens (bib0008) 2020; 10
Jirsa, Proix, Perdikis, Woodman, Wang, Gonzalez-Martinez, Bartolomei (bib0065) 2017; 145
Zalesky, Fornito, Harding, Cocchi, Yücel, Pantelis, Bullmore (bib0120) 2010; 50
Fraga González, Smit, van der Molen, Tijms, Stam, de Geus, van der Molen (bib0044) 2018; 12
Ghosh, Rho, McIntosh, Kötter, Jirsa (bib0049) 2008; 4
Zimmermann, Griffiths, Schirner, Ritter, McIntosh (bib0121) 2018; 3
Domhof, Jung, Eickhoff, Popovych (bib0035) 2021
Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Chang (bib0062) 2013; 80
Popovych, Jung, Manos, Diaz-Pier, Hoffstaedter, Schreiber, Eickhoff (bib0086) 2021; 236
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Yacoub (bib0111) 2012; 62
Urchs, Armoza, Moreau, Benhajali, St-Aubin, Orban, Bellec (bib0107) 2019; 1
Sanz-Leon, Knock, Spiegler, Jirsa (bib0094) 2015; 111
Shrout, Fleiss (bib0100) 1979; 86
Deco, Jirsa, McIntosh (bib0026) 2011; 12
Brovelli, Badier, Bonini, Bartolomei, Coulon, Auzias (bib0012) 2017; 37
Shehzad, Kelly, Reiss, Gee, Gotimer, Uddin, Milham (bib0098) 2009; 19
Robinson (bib0090) 2012; 85
Deco, Kringelbach, Jirsa, Ritter (bib0028) 2017; 7
Noble, Scheinost, Constable (bib0082) 2019; 203
Deco, Ponce-Alvarez, Mantini, Romani, Hagmann, Corbetta (bib0031) 2013; 33
Grabner, Janke, Budge, Smith, Pruessner, Collins (bib0053) 2006
Heitmann, Breakspear (bib0057) 2018; 02
Daffertshofer, van Wijk (bib0018) 2011; 5
Kuramoto (bib0069) 1984
Hahn, Skeide, Mantini, Ganzetti, Destexhe, Friederici, Deco (bib0055) 2019; 9
Ritter, Schirner, McIntosh, Jirsa (bib0089) 2013; 3
Messé (bib0077) 2020; 41
Eickhoff, Constable, Yeo (bib0039) 2018; 170
Friston (bib0046) 2011; 1
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Joliot (bib0106) 2002; 15
Tournier, Smith, Raffelt, Tabbara, Dhollander, Pietsch, Connelly (bib0104) 2019; 202
Deco, Jirsa (bib0025) 2012; 32
Deco, Cruzat, Cabral, Knudsen, Carhart-Harris, Whybrow, Kringelbach (bib0022) 2018; 28
Sotiropoulos, Zalesky (bib0101) 2019; 32
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Smith (bib0054) 2014; 95
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib0105) 2010; 29
Domhof, Jung, Eickhoff, Popovych (bib0034) 2021
Iravani, Arshamian, Fransson, Kaboodvand (bib0063) 2021; 231
Cabral, Hugues, Sporns, Deco (bib0013) 2011; 57
Honey, Kötter, Breakspear, Sporns (bib0060) 2007; 104
Sarar, Rao, Liu (bib0095) 2021; 118
Eickhoff, Yeo, Genon (bib0040) 2018; 19
Frazier, Chiu, Breeze, Makris, Lange, Kennedy, Biederman (bib0045) 2005; 162
Mayhew, Ostwald, Porcaro, Bagshaw (bib0076) 2013; 76
Scholtens, de Reus, de Lange, Schmidt, van den Heuvel (bib0097) 2018; 170
von Economo, C., Koskinas, G. N., 1925. Die Cytoarchitektonik der Hirnrinde des erwachsenen MenschenWien, Springer.
Waller, Walter, Kruschwitz, Reuter, Müller, Erk, Veer (bib0113) 2017; 158
Amico, Goñi (bib0003) 2018; 8
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0064) 2012; 62
Hansen, Battaglia, Spiegler, Deco, Jirsa (bib0056) 2015; 105
Popovych, Manos, Hoffstaedter, Eickhoff (bib0087) 2019; 12
Das, Sampson, Lainscsek, Muller, Lin, Doyle, Sejnowski (bib0020) 2017; 29
Shen, Tokoglu, Papademetris, Constable (bib0099) 2013; 82
Deco, Ponce-Alvarez, Hagmann, Romani, Mantini, Corbetta (bib0030) 2014; 34
Donnelly-Kehoe, Saenger, Lisofsky, Kühn, Kringelbach, Schwarzbach, Deco (bib0037) 2019; 40
Gilson, Moreno-Bote, Ponce-Alvarez, Ritter, Deco (bib0050) 2016; 12
Demirtaş, Burt, Helmer, Ji, Adkinson, Glasser, Murray (bib0032) 2019; 101
Bansal, Nakuci, Muldoon (bib0007) 2018; 52
Abeysuriya (10.1016/j.neuroimage.2022.119321_bib0001) 2018; 14
Woolrich (10.1016/j.neuroimage.2022.119321_bib0118) 2013; 80
Popovych (10.1016/j.neuroimage.2022.119321_bib0086) 2021; 236
Hellyer (10.1016/j.neuroimage.2022.119321_bib0058) 2016; 124
Kuramoto (10.1016/j.neuroimage.2022.119321_bib0069) 1984
Messé (10.1016/j.neuroimage.2022.119321_bib0077) 2020; 41
Eickhoff (10.1016/j.neuroimage.2022.119321_bib0039) 2018; 170
Brovelli (10.1016/j.neuroimage.2022.119321_bib0012) 2017; 37
Iravani (10.1016/j.neuroimage.2022.119321_bib0063) 2021; 231
Pannunzi (10.1016/j.neuroimage.2022.119321_bib0084) 2017; 157
Craddock (10.1016/j.neuroimage.2022.119321_bib0017) 2012; 33
Demirtaş (10.1016/j.neuroimage.2022.119321_sbref0032) 2019; 101
Das (10.1016/j.neuroimage.2022.119321_bib0020) 2017; 29
Popovych (10.1016/j.neuroimage.2022.119321_bib0087) 2019; 12
Domhof (10.1016/j.neuroimage.2022.119321_bib0034) 2021
Robinson (10.1016/j.neuroimage.2022.119321_bib0090) 2012; 85
Finn (10.1016/j.neuroimage.2022.119321_bib0041) 2021; 25
Sarar (10.1016/j.neuroimage.2022.119321_sbref0095) 2021; 118
Suárez (10.1016/j.neuroimage.2022.119321_bib0103) 2020; 24
Cabral (10.1016/j.neuroimage.2022.119321_bib0013) 2011; 57
Shen (10.1016/j.neuroimage.2022.119321_bib0099) 2013; 82
Deco (10.1016/j.neuroimage.2022.119321_bib0030) 2014; 34
van der Walt (10.1016/j.neuroimage.2022.119321_bib0114) 2011; 13
Frazier (10.1016/j.neuroimage.2022.119321_bib0045) 2005; 162
Fraga González (10.1016/j.neuroimage.2022.119321_bib0044) 2018; 12
Hahn (10.1016/j.neuroimage.2022.119321_bib0055) 2019; 9
Urchs (10.1016/j.neuroimage.2022.119321_bib0107) 2019; 1
Tustison (10.1016/j.neuroimage.2022.119321_bib0105) 2010; 29
Ghosh (10.1016/j.neuroimage.2022.119321_bib0049) 2008; 4
Dale (10.1016/j.neuroimage.2022.119321_bib0019) 1999; 9
Ritter (10.1016/j.neuroimage.2022.119321_bib0089) 2013; 3
Galán (10.1016/j.neuroimage.2022.119321_bib0048) 2008; 3
Hansen (10.1016/j.neuroimage.2022.119321_bib0056) 2015; 105
Deco (10.1016/j.neuroimage.2022.119321_bib0024) 2009; 106
Amico (10.1016/j.neuroimage.2022.119321_bib0003) 2018; 8
Muldoon (10.1016/j.neuroimage.2022.119321_bib0080) 2016; 12
Deco (10.1016/j.neuroimage.2022.119321_bib0026) 2011; 12
Liégeois (10.1016/j.neuroimage.2022.119321_bib0072) 2020; 4
Van Essen (10.1016/j.neuroimage.2022.119321_bib0111) 2012; 62
Donnelly-Kehoe (10.1016/j.neuroimage.2022.119321_bib0037) 2019; 40
Honey (10.1016/j.neuroimage.2022.119321_bib0060) 2007; 104
Kringelbach (10.1016/j.neuroimage.2022.119321_bib0068) 2020; 117
Deco (10.1016/j.neuroimage.2022.119321_bib0029) 2014; 34
Eickhoff (10.1016/j.neuroimage.2022.119321_bib0040) 2018; 19
Liljequist (10.1016/j.neuroimage.2022.119321_bib0073) 2019; 14
Mayhew (10.1016/j.neuroimage.2022.119321_bib0076) 2013; 76
Domhof (10.1016/j.neuroimage.2022.119321_bib0035) 2021
Schaefer (10.1016/j.neuroimage.2022.119321_bib0096) 2018; 28
Chen (10.1016/j.neuroimage.2022.119321_bib0015) 2018; 39
Tournier (10.1016/j.neuroimage.2022.119321_bib0104) 2019; 202
Shehzad (10.1016/j.neuroimage.2022.119321_bib0098) 2009; 19
Amunts (10.1016/j.neuroimage.2022.119321_bib0004) 2015; 88
Finn (10.1016/j.neuroimage.2022.119321_bib0042) 2021; 239
Shrout (10.1016/j.neuroimage.2022.119321_bib0100) 1979; 86
Wilson (10.1016/j.neuroimage.2022.119321_bib0116) 1972; 12
Van Essen (10.1016/j.neuroimage.2022.119321_bib0110) 2013; 80
Griffanti (10.1016/j.neuroimage.2022.119321_bib0054) 2014; 95
Daffertshofer (10.1016/j.neuroimage.2022.119321_bib0018) 2011; 5
Friston (10.1016/j.neuroimage.2022.119321_bib0046) 2011; 1
van den Heuvel (10.1016/j.neuroimage.2022.119321_bib0059) 2010; 20
Birn (10.1016/j.neuroimage.2022.119321_bib0009) 2013; 83
10.1016/j.neuroimage.2022.119321_bib0038
Kong (10.1016/j.neuroimage.2022.119321_bib0067) 2021; 12
Zimmermann (10.1016/j.neuroimage.2022.119321_bib0121) 2018; 3
Zimmermann (10.1016/j.neuroimage.2022.119321_bib0122) 2018; 19
Peña Gómez (10.1016/j.neuroimage.2022.119321_bib0052) 2018; 28
Wong (10.1016/j.neuroimage.2022.119321_bib0117) 2006; 26
Deco (10.1016/j.neuroimage.2022.119321_bib0023) 2019; 116
Saggio (10.1016/j.neuroimage.2022.119321_bib0093) 2016; 11
Rolls (10.1016/j.neuroimage.2022.119321_bib0092) 2015; 122
Deco (10.1016/j.neuroimage.2022.119321_bib0025) 2012; 32
Van Dijk (10.1016/j.neuroimage.2022.119321_bib0109) 2010; 103
Cicchetti (10.1016/j.neuroimage.2022.119321_bib0016) 1981; 86
Desikan (10.1016/j.neuroimage.2022.119321_bib0033) 2006; 31
Albers (10.1016/j.neuroimage.2022.119321_bib0002) 2021; 238
Larson-Prior (10.1016/j.neuroimage.2022.119321_bib0070) 2013; 80
Deco (10.1016/j.neuroimage.2022.119321_bib0028) 2017; 7
Makris (10.1016/j.neuroimage.2022.119321_bib0075) 2006; 83
Domhof (10.1016/j.neuroimage.2022.119321_bib0036) 2022
Hutchison (10.1016/j.neuroimage.2022.119321_bib0062) 2013; 80
Maier-Hein (10.1016/j.neuroimage.2022.119321_bib0074) 2017; 8
Preti (10.1016/j.neuroimage.2022.119321_bib0088) 2017; 160
Waller (10.1016/j.neuroimage.2022.119321_bib0113) 2017; 158
Aquino (10.1016/j.neuroimage.2022.119321_bib0005) 2022; 256
Li (10.1016/j.neuroimage.2022.119321_bib0071) 2021; 42
Messé (10.1016/j.neuroimage.2022.119321_bib0079) 2015; 111
Naskar (10.1016/j.neuroimage.2022.119321_bib0081) 2021; 5
Messé (10.1016/j.neuroimage.2022.119321_bib0078) 2014; 10
Wang (10.1016/j.neuroimage.2022.119321_bib0115) 2009; 30
Gilson (10.1016/j.neuroimage.2022.119321_bib0050) 2016; 12
Deco (10.1016/j.neuroimage.2022.119321_bib0027) 2014; 84
Scholtens (10.1016/j.neuroimage.2022.119321_bib0097) 2018; 170
Bansal (10.1016/j.neuroimage.2022.119321_bib0007) 2018; 52
Bolt (10.1016/j.neuroimage.2022.119321_bib0010) 2017; 38
Heitmann (10.1016/j.neuroimage.2022.119321_bib0057) 2018; 02
Bick (10.1016/j.neuroimage.2022.119321_bib0008) 2020; 10
Deco (10.1016/j.neuroimage.2022.119321_bib0031) 2013; 33
Ponce-Alvarez (10.1016/j.neuroimage.2022.119321_bib0085) 2015; 11
Robinson (10.1016/j.neuroimage.2022.119321_bib0091) 2014; 90
Valdes-Sosa (10.1016/j.neuroimage.2022.119321_bib0108) 2011; 58
Grabner (10.1016/j.neuroimage.2022.119321_bib0053) 2006
Breakspear (10.1016/j.neuroimage.2022.119321_bib0011) 2017; 20
Finn (10.1016/j.neuroimage.2022.119321_bib0043) 2015; 18
Deco (10.1016/j.neuroimage.2022.119321_sbref0022) 2018; 28
Spitoni (10.1016/j.neuroimage.2022.119321_bib0102) 2013; 7
(10.1016/j.neuroimage.2022.119321_bib0014) 2018; 4
Honey (10.1016/j.neuroimage.2022.119321_bib0061) 2009; 106
Jenkinson (10.1016/j.neuroimage.2022.119321_bib0064) 2012; 62
Friston (10.1016/j.neuroimage.2022.119321_bib0047) 2003; 19
Arslan (10.1016/j.neuroimage.2022.119321_bib0006) 2018; 170
Goldstein (10.1016/j.neuroimage.2022.119321_bib0051) 2007; 61
Noble (10.1016/j.neuroimage.2022.119321_bib0082) 2019; 203
Noble (10.1016/j.neuroimage.2022.119321_bib0083) 2017; 27
Sotiropoulos (10.1016/j.neuroimage.2022.119321_bib0101) 2019; 32
Yeh (10.1016/j.neuroimage.2022.119321_bib0119) 2021; 53
Tzourio-Mazoyer (10.1016/j.neuroimage.2022.119321_bib0106) 2002; 15
Jirsa (10.1016/j.neuroimage.2022.119321_bib0065) 2017; 145
Jung (10.1016/j.neuroimage.2022.119321_bib0066) 2021; 237
Virtanen (10.1016/j.neuroimage.2022.119321_bib0112) 2020; 17
Sanz-Leon (10.1016/j.neuroimage.2022.119321_bib0094) 2015; 111
Deco (10.1016/j.neuroimage.2022.119321_bib0021) 2018; 169
Zalesky (10.1016/j.neuroimage.2022.119321_bib0120) 2010; 50
References_xml – volume: 256
  start-page: 119051
  year: 2022
  ident: bib0005
  article-title: On the intersection between data quality and dynamical modelling of large-scale fMRI signals
  publication-title: Neuroimage
– volume: 52
  start-page: 42
  year: 2018
  end-page: 47
  ident: bib0007
  article-title: Personalized brain network models for assessing structure-function relationships
  publication-title: Curr. Opin. Neurobiol.
– volume: 88
  start-page: 1086
  year: 2015
  end-page: 1107
  ident: bib0004
  article-title: Architectonic mapping of the human brain beyond brodmann
  publication-title: Neuron
– volume: 27
  start-page: 5415
  year: 2017
  end-page: 5429
  ident: bib0083
  article-title: Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility
  publication-title: Cerebral Cortex
– volume: 41
  start-page: 1167
  year: 2020
  end-page: 1180
  ident: bib0077
  article-title: Parcellation influence on the connectivity-based structure-function relationship in the human brain
  publication-title: Hum Brain Mapp
– volume: 4
  start-page: A132
  year: 2018
  ident: bib0014
  article-title: JURECA: Modular supercomputer at Jülich Supercomputing Centre
  publication-title: Journal of large-scale research facilities
– volume: 111
  start-page: 65
  year: 2015
  end-page: 75
  ident: bib0079
  article-title: Predicting functional connectivity from structural connectivity via computational models using MRI: an extensive comparison study
  publication-title: Neuroimage
– volume: 86
  start-page: 127
  year: 1981
  end-page: 137
  ident: bib0016
  article-title: Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior
  publication-title: Am J Ment Defic
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  ident: bib0062
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0064
  article-title: FSL
  publication-title: Neuroimage
– volume: 83
  start-page: 155
  year: 2006
  end-page: 171
  ident: bib0075
  article-title: Decreased volume of left and total anterior insular lobule in schizophrenia
  publication-title: Schizophr. Res.
– volume: 7
  start-page: 3095
  year: 2017
  ident: bib0028
  article-title: The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core
  publication-title: Sci Rep
– volume: 30
  start-page: 1511
  year: 2009
  end-page: 1523
  ident: bib0115
  article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study
  publication-title: Hum Brain Mapp
– volume: 28
  start-page: 2922
  year: 2018
  end-page: 2934
  ident: bib0052
  article-title: Spatiotemporal network markers of individual variability in the human functional connectome
  publication-title: Cerebral Cortex
– volume: 106
  start-page: 10302
  year: 2009
  end-page: 10307
  ident: bib0024
  article-title: Key role of coupling, delay, and noise in resting brain fluctuations
  publication-title: Proceedings of the National Academy of Sciences
– volume: 19
  start-page: 2209
  year: 2009
  end-page: 2229
  ident: bib0098
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cerebral Cortex
– volume: 117
  start-page: 9566
  year: 2020
  end-page: 9576
  ident: bib0068
  article-title: Dynamic coupling of whole-brain neuronal and neurotransmitter systems
  publication-title: Proceedings of the National Academy of Sciences
– volume: 12
  start-page: 6373
  year: 2021
  ident: bib0067
  article-title: Sensory-motor cortices shape functional connectivity dynamics in the human brain
  publication-title: Nat Commun
– volume: 105
  start-page: 525
  year: 2015
  end-page: 535
  ident: bib0056
  article-title: Functional connectivity dynamics: modeling the switching behavior of the resting state
  publication-title: Neuroimage
– volume: 14
  start-page: e1006007
  year: 2018
  ident: bib0001
  article-title: A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks
  publication-title: PLoS Comput. Biol.
– volume: 8
  start-page: 1349
  year: 2017
  ident: bib0074
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat Commun
– volume: 5
  start-page: 757
  year: 2021
  end-page: 782
  ident: bib0081
  article-title: Multiscale dynamic mean field (MDMF) model relates resting-state brain dynamics with local cortical excitatory-inhibitory neurotransmitter homeostasis
  publication-title: Network Neurosci.
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib0105
  article-title: N4ITK: Improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
– volume: 103
  start-page: 297
  year: 2010
  end-page: 321
  ident: bib0109
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: J. Neurophysiol.
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: bib0033
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 106
  start-page: 2035
  year: 2009
  end-page: 2040
  ident: bib0061
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proceedings of the National Academy of Sciences
– year: 1984
  ident: bib0069
  article-title: Chemical oscillations, waves, and turbulence
  publication-title: Chemical oscillations, waves, and turbulence
– volume: 118
  year: 2021
  ident: bib0095
  article-title: Functional connectome fingerprinting using shallow feedforward neural networks
  publication-title: Proceedings of the National Academy of Sciences
– volume: 40
  start-page: 2967
  year: 2019
  end-page: 2980
  ident: bib0037
  article-title: Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
  publication-title: Hum Brain Mapp
– volume: 124
  start-page: 85
  year: 2016
  end-page: 95
  ident: bib0058
  article-title: Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks
  publication-title: Neuroimage
– volume: 12
  start-page: 341
  year: 2018
  ident: bib0044
  article-title: EEG Resting state functional connectivity in adult dyslexics using phase lag index and graph analysis
  publication-title: Front Hum Neurosci
– volume: 203
  start-page: 116157
  year: 2019
  ident: bib0082
  article-title: A decade of test-retest reliability of functional connectivity: a systematic review and meta-analysis
  publication-title: Neuroimage
– volume: 83
  start-page: 550
  year: 2013
  end-page: 558
  ident: bib0009
  article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates
  publication-title: Neuroimage
– volume: 238
  start-page: 118170
  year: 2021
  ident: bib0002
  article-title: Using connectomics for predictive assessment of brain parcellations
  publication-title: Neuroimage
– volume: 11
  start-page: e1004100
  year: 2015
  ident: bib0085
  article-title: Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity
  publication-title: PLoS Comput. Biol.
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bib0019
  article-title: Cortical surface-based analysis: i. segmentation and surface reconstruction
  publication-title: Neuroimage
– volume: 02
  start-page: 150
  year: 2018
  end-page: 174
  ident: bib0057
  article-title: Putting the “dynamic” back into dynamic functional connectivity
  publication-title: Network Neurosci.
– volume: 20
  start-page: 519
  year: 2010
  end-page: 534
  ident: bib0059
  article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity
  publication-title: Eur. Neuropsychopharmacol.
– volume: 101
  start-page: 1181
  year: 2019
  end-page: 1194
  ident: bib0032
  article-title: Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics
  publication-title: Neuron
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0110
  article-title: The WU-minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 231
  start-page: 117844
  year: 2021
  ident: bib0063
  article-title: Whole-brain modelling of resting state fMRI differentiates ADHD subtypes and facilitates stratified neuro-stimulation therapy
  publication-title: Neuroimage
– volume: 13
  start-page: 22
  year: 2011
  end-page: 30
  ident: bib0114
  article-title: The NumPy array: a structure for efficient numerical computation
  publication-title: Computing in Science Engineering
– volume: 12
  start-page: e1004762
  year: 2016
  ident: bib0050
  article-title: Estimation of directed effective connectivity from fMRI functional connectivity hints at asymmetries of cortical connectome
  publication-title: PLoS Comput. Biol.
– volume: 33
  start-page: 11239
  year: 2013
  end-page: 11252
  ident: bib0031
  article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
  publication-title: J. Neurosci.
– volume: 53
  start-page: 1666
  year: 2021
  end-page: 1682
  ident: bib0119
  article-title: Mapping structural connectivity using diffusion MRI: challenges and opportunities
  publication-title: J. Magn. Reson. Imaging
– volume: 34
  start-page: 7910
  year: 2014
  end-page: 7916
  ident: bib0029
  article-title: Identification of optimal structural connectivity using functional connectivity and neural modeling
  publication-title: J. Neurosci.
– volume: 1
  start-page: 13
  year: 2011
  end-page: 36
  ident: bib0046
  article-title: Functional and effective connectivity: areview
  publication-title: Brain Connect
– volume: 33
  start-page: 1914
  year: 2012
  end-page: 1928
  ident: bib0017
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum Brain Mapp
– volume: 25
  start-page: 1021
  year: 2021
  end-page: 1032
  ident: bib0041
  article-title: Is it time to put rest to rest?
  publication-title: Trends Cogn. Sci. (Regul. Ed.)
– volume: 170
  start-page: 332
  year: 2018
  end-page: 347
  ident: bib0039
  article-title: Topographic organization of the cerebral cortex and brain cartography
  publication-title: Neuroimage
– volume: 57
  start-page: 130
  year: 2011
  end-page: 139
  ident: bib0013
  article-title: Role of local network oscillations in resting-state functional connectivity
  publication-title: Neuroimage
– volume: 237
  start-page: 118176
  year: 2021
  ident: bib0066
  article-title: Tractography density affects whole-brain structural architecture and resting-state dynamical modeling
  publication-title: Neuroimage
– volume: 169
  start-page: 46
  year: 2018
  end-page: 56
  ident: bib0021
  article-title: Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
  publication-title: Neuroimage
– volume: 11
  start-page: e0157292
  year: 2016
  ident: bib0093
  article-title: Analytical operations relate structural and functional connectivity in the brain
  publication-title: PLoS ONE
– volume: 7
  start-page: 529
  year: 2013
  ident: bib0102
  article-title: Modulation of spontaneous alpha brain rhythms using low-intensity transcranial direct-current stimulation
  publication-title: Front Hum Neurosci
– volume: 28
  start-page: 3095
  year: 2018
  end-page: 3114
  ident: bib0096
  article-title: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cerebral Cortex
– volume: 202
  start-page: 116137
  year: 2019
  ident: bib0104
  article-title: MRTrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
– volume: 38
  start-page: 1992
  year: 2017
  end-page: 2007
  ident: bib0010
  article-title: Correspondence between evoked and intrinsic functional brain network configurations
  publication-title: Hum Brain Mapp
– volume: 12
  start-page: 1
  year: 1972
  end-page: 24
  ident: bib0116
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophys. J.
– volume: 116
  start-page: 18088
  year: 2019
  end-page: 18097
  ident: bib0023
  article-title: Awakening: predicting external stimulation to force transitions between different brain states
  publication-title: Proceedings of the National Academy of Sciences
– volume: 3
  start-page: e2148
  year: 2008
  ident: bib0048
  article-title: On how network architecture determines the dominant patterns of spontaneous neural activity
  publication-title: PLoS ONE
– volume: 42
  start-page: 3717
  year: 2021
  end-page: 3732
  ident: bib0071
  article-title: Feature selection framework for functional connectome fingerprinting
  publication-title: Hum Brain Mapp
– volume: 29
  start-page: 603
  year: 2017
  end-page: 642
  ident: bib0020
  article-title: Interpretation of the precision matrix and its application in estimating sparse brain connectivity during sleep spindles from human electrocorticography recordings
  publication-title: Neural Comput
– volume: 76
  start-page: 362
  year: 2013
  end-page: 372
  ident: bib0076
  article-title: Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network
  publication-title: Neuroimage
– volume: 3
  start-page: 121
  year: 2013
  end-page: 145
  ident: bib0089
  article-title: The virtual brain integrates computational modeling and multimodal neuroimaging
  publication-title: Brain Connect
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib0111
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
– volume: 162
  start-page: 1256
  year: 2005
  end-page: 1265
  ident: bib0045
  article-title: Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder
  publication-title: American Journal of Psychiatry
– volume: 50
  start-page: 970
  year: 2010
  end-page: 983
  ident: bib0120
  article-title: Whole-brain anatomical networks: does the choice of nodes matter?
  publication-title: Neuroimage
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib0054
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
– volume: 84
  start-page: 892
  year: 2014
  end-page: 905
  ident: bib0027
  article-title: Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders
  publication-title: Neuron
– reference: von Economo, C., Koskinas, G. N., 1925. Die Cytoarchitektonik der Hirnrinde des erwachsenen MenschenWien, Springer.
– volume: 10
  start-page: e1003530
  year: 2014
  ident: bib0078
  article-title: Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities
  publication-title: PLoS Comput. Biol.
– volume: 19
  start-page: 1273
  year: 2003
  end-page: 1302
  ident: bib0047
  article-title: Dynamic causal modelling
  publication-title: Neuroimage
– volume: 19
  start-page: 240
  year: 2018
  end-page: 251
  ident: bib0122
  article-title: Differentiation of Alzheimer’s disease based on local and global parameters in personalized Virtual Brain models
  publication-title: NeuroImage: Clinical
– volume: 80
  start-page: 190
  year: 2013
  end-page: 201
  ident: bib0070
  article-title: Adding dynamics to the human connectome project with MEG
  publication-title: Neuroimage
– volume: 4
  start-page: e1000196
  year: 2008
  ident: bib0049
  article-title: Noise during rest enables the exploration of the brain’s dynamic repertoire
  publication-title: PLoS Comput. Biol.
– volume: 14
  start-page: e0219854
  year: 2019
  ident: bib0073
  article-title: Intraclass correlation - a discussion and demonstration of basic features
  publication-title: PLoS ONE
– volume: 19
  start-page: 672
  year: 2018
  end-page: 686
  ident: bib0040
  article-title: Imaging-based parcellations of the human brain
  publication-title: Nat. Rev. Neurosci.
– volume: 34
  start-page: 7886
  year: 2014
  end-page: 7898
  ident: bib0030
  article-title: How local excitation-inhibition ratio impacts the whole brain dynamics
  publication-title: J. Neurosci.
– volume: 236
  start-page: 118201
  year: 2021
  ident: bib0086
  article-title: Inter-subject and inter-parcellation variability of resting-state whole-brain dynamical modeling
  publication-title: Neuroimage
– volume: 4
  start-page: 1235
  year: 2020
  end-page: 1251
  ident: bib0072
  article-title: Revisiting correlation-based functional connectivity and its relationship with structural connectivity
  publication-title: Network Neurosci.
– volume: 26
  start-page: 1314
  year: 2006
  end-page: 1328
  ident: bib0117
  article-title: A recurrent network mechanism of time integration in perceptual decisions
  publication-title: Journal of Neuroscience
– volume: 12
  start-page: e1005076
  year: 2016
  ident: bib0080
  article-title: Stimulation-based control of dynamic brain networks
  publication-title: PLoS Comput. Biol.
– volume: 80
  start-page: 330
  year: 2013
  end-page: 338
  ident: bib0118
  article-title: Biophysical network models and the human connectome
  publication-title: Neuroimage
– year: 2022
  ident: bib0036
  article-title: Parcellation-based resting-state blood-oxygen-level-dependent (BOLD) signals of a healthy cohort (v1.0) [Dataset]
  publication-title: EBRAINS
– volume: 61
  start-page: 935
  year: 2007
  end-page: 945
  ident: bib0051
  article-title: Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability
  publication-title: Biol. Psychiatry
– volume: 9
  start-page: 8479
  year: 2019
  ident: bib0055
  article-title: A new computational approach to estimate whole-brain effective connectivity from functional and structural MRI, applied to language development
  publication-title: Sci Rep
– volume: 157
  start-page: 250
  year: 2017
  end-page: 262
  ident: bib0084
  article-title: Resting-state fMRI correlations: from link-wise unreliability to whole brain stability
  publication-title: Neuroimage
– volume: 82
  start-page: 403
  year: 2013
  end-page: 415
  ident: bib0099
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
– volume: 20
  start-page: 340
  year: 2017
  end-page: 352
  ident: bib0011
  article-title: Dynamic models of large-scale brain activity
  publication-title: Nat. Neurosci.
– volume: 3
  start-page: 90
  year: 2018
  end-page: 106
  ident: bib0121
  article-title: Subject specificity of the correlation between large-scale structural and functional connectivity
  publication-title: Network Neurosci.
– volume: 160
  start-page: 41
  year: 2017
  end-page: 54
  ident: bib0088
  article-title: The dynamic functional connectome: state-of-the-art and perspectives
  publication-title: Neuroimage
– volume: 170
  start-page: 249
  year: 2018
  end-page: 256
  ident: bib0097
  article-title: An MRI Von Economo - Koskinas atlas
  publication-title: Neuroimage
– volume: 8
  start-page: 8254
  year: 2018
  ident: bib0003
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Sci Rep
– volume: 170
  start-page: 5
  year: 2018
  end-page: 30
  ident: bib0006
  article-title: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex
  publication-title: Neuroimage
– volume: 145
  start-page: 377
  year: 2017
  end-page: 388
  ident: bib0065
  article-title: The virtual epileptic patient: individualized whole-brain models of epilepsy spread
  publication-title: Neuroimage
– year: 2021
  ident: bib0034
  article-title: Parcellation-based structural and resting-state functional brain connectomes of a healthy cohort [Dataset]
  publication-title: EBRAINS
– volume: 28
  start-page: 3065
  year: 2018
  end-page: 3074
  ident: bib0022
  article-title: Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD
  publication-title: Current Biology
– volume: 86
  start-page: 420
  year: 1979
  end-page: 428
  ident: bib0100
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol Bull
– volume: 111
  start-page: 385
  year: 2015
  end-page: 430
  ident: bib0094
  article-title: Mathematical framework for large-scale brain network modeling in the virtual brain
  publication-title: Neuroimage
– volume: 85
  start-page: 011912
  year: 2012
  ident: bib0090
  article-title: Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory
  publication-title: Physical Review E
– volume: 12
  start-page: 43
  year: 2011
  end-page: 56
  ident: bib0026
  article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain
  publication-title: Nat. Rev. Neurosci.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib0106
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 104
  start-page: 10240
  year: 2007
  end-page: 10245
  ident: bib0060
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proceedings of the National Academy of Sciences
– volume: 32
  start-page: 3366
  year: 2012
  end-page: 3375
  ident: bib0025
  article-title: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors
  publication-title: J. Neurosci.
– volume: 37
  start-page: 839
  year: 2017
  end-page: 853
  ident: bib0012
  article-title: Dynamic reconfiguration of visuomotor-related functional connectivity networks
  publication-title: J. Neurosci.
– volume: 122
  start-page: 1
  year: 2015
  end-page: 5
  ident: bib0092
  article-title: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas
  publication-title: Neuroimage
– volume: 12
  start-page: 68
  year: 2019
  ident: bib0087
  article-title: What can computational models contribute to neuroimaging data analytics?
  publication-title: Front Syst Neurosci
– volume: 1
  year: 2019
  ident: bib0107
  article-title: MIST: A multi-resolution parcellation of functional brain networks [version 2; peer review: 4 approved]
  publication-title: MNI Open Research
– volume: 58
  start-page: 339
  year: 2011
  end-page: 361
  ident: bib0108
  article-title: Effective connectivity: influence, causality and biophysical modeling
  publication-title: Neuroimage
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: bib0043
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– volume: 39
  start-page: 1187
  year: 2018
  end-page: 1206
  ident: bib0015
  article-title: Intraclass correlation: improved modeling approaches and applications for neuroimaging
  publication-title: Hum Brain Mapp
– volume: 24
  start-page: 302
  year: 2020
  end-page: 315
  ident: bib0103
  article-title: Linking structure and function in macroscale brain networks
  publication-title: Trends Cogn. Sci. (Regul. Ed.)
– volume: 5
  start-page: 6
  year: 2011
  ident: bib0018
  article-title: On the influence of amplitude on the connectivity between phases
  publication-title: Front Neuroinform
– volume: 90
  start-page: 012707
  year: 2014
  ident: bib0091
  article-title: Determination of effective brain connectivity from functional connectivity with application to resting state connectivities
  publication-title: Physical Review E
– volume: 239
  start-page: 118254
  year: 2021
  ident: bib0042
  article-title: Beyond fingerprinting: choosing predictive connectomes over reliable connectomes
  publication-title: Neuroimage
– volume: 158
  start-page: 371
  year: 2017
  end-page: 377
  ident: bib0113
  article-title: Evaluating the replicability, specificity, and generalizability of connectome fingerprints
  publication-title: Neuroimage
– start-page: 1
  year: 2021
  end-page: 56
  ident: bib0035
  article-title: Parcellation-induced variation of empirical and simulated brain connectomes at group and subject levels
  publication-title: Network Neurosci.
– volume: 32
  start-page: e3752
  year: 2019
  ident: bib0101
  article-title: Building connectomes using diffusion MRI: why, how and but
  publication-title: NMR Biomed
– start-page: 58
  year: 2006
  end-page: 66
  ident: bib0053
  article-title: Symmetric Atlasing and Model Based Segmentation: an Application to the Hippocampus in Older Adults
  publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2006 Medical Image Computing and Computer-Assisted Intervention - MICCAI, 2006
– volume: 10
  start-page: 9
  year: 2020
  ident: bib0008
  article-title: Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review
  publication-title: The Journal of Mathematical Neuroscience
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: bib0112
  article-title: Scipy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
– volume: 104
  start-page: 10240
  issue: 24
  year: 2007
  ident: 10.1016/j.neuroimage.2022.119321_bib0060
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0701519104
– volume: 4
  start-page: e1000196
  issue: 10
  year: 2008
  ident: 10.1016/j.neuroimage.2022.119321_bib0049
  article-title: Noise during rest enables the exploration of the brain’s dynamic repertoire
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000196
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119321_bib0064
  article-title: FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 117
  start-page: 9566
  issue: 17
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119321_bib0068
  article-title: Dynamic coupling of whole-brain neuronal and neurotransmitter systems
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1921475117
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119321_bib0111
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– year: 1984
  ident: 10.1016/j.neuroimage.2022.119321_bib0069
  article-title: Chemical oscillations, waves, and turbulence
– volume: 82
  start-page: 403
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119321_bib0099
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.081
– volume: 162
  start-page: 1256
  issue: 7
  year: 2005
  ident: 10.1016/j.neuroimage.2022.119321_bib0045
  article-title: Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder
  publication-title: American Journal of Psychiatry
  doi: 10.1176/appi.ajp.162.7.1256
– volume: 12
  start-page: e1004762
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119321_bib0050
  article-title: Estimation of directed effective connectivity from fMRI functional connectivity hints at asymmetries of cortical connectome
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004762
– volume: 32
  start-page: 3366
  issue: 10
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119321_bib0025
  article-title: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2523-11.2012
– volume: 160
  start-page: 41
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119321_bib0088
  article-title: The dynamic functional connectome: state-of-the-art and perspectives
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.061
– volume: 37
  start-page: 839
  issue: 4
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119321_bib0012
  article-title: Dynamic reconfiguration of visuomotor-related functional connectivity networks
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1672-16.2016
– volume: 7
  start-page: 3095
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119321_bib0028
  article-title: The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-03073-5
– volume: 24
  start-page: 302
  issue: 4
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119321_bib0103
  article-title: Linking structure and function in macroscale brain networks
  publication-title: Trends Cogn. Sci. (Regul. Ed.)
  doi: 10.1016/j.tics.2020.01.008
– volume: 239
  start-page: 118254
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0042
  article-title: Beyond fingerprinting: choosing predictive connectomes over reliable connectomes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118254
– volume: 157
  start-page: 250
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119321_bib0084
  article-title: Resting-state fMRI correlations: from link-wise unreliability to whole brain stability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.006
– volume: 13
  start-page: 22
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119321_bib0114
  article-title: The NumPy array: a structure for efficient numerical computation
  publication-title: Computing in Science Engineering
  doi: 10.1109/MCSE.2011.37
– volume: 28
  start-page: 2922
  issue: 8
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0052
  article-title: Spatiotemporal network markers of individual variability in the human functional connectome
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhx170
– volume: 202
  start-page: 116137
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119321_bib0104
  article-title: MRTrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 10
  start-page: e1003530
  issue: 3
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119321_bib0078
  article-title: Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003530
– volume: 26
  start-page: 1314
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2022.119321_bib0117
  article-title: A recurrent network mechanism of time integration in perceptual decisions
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3733-05.2006
– volume: 34
  start-page: 7886
  issue: 23
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119321_bib0030
  article-title: How local excitation-inhibition ratio impacts the whole brain dynamics
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5068-13.2014
– start-page: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0035
  article-title: Parcellation-induced variation of empirical and simulated brain connectomes at group and subject levels
  publication-title: Network Neurosci.
– volume: 170
  start-page: 332
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0039
  article-title: Topographic organization of the cerebral cortex and brain cartography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.018
– volume: 83
  start-page: 155
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2022.119321_bib0075
  article-title: Decreased volume of left and total anterior insular lobule in schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2005.11.020
– volume: 5
  start-page: 757
  issue: 3
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0081
  article-title: Multiscale dynamic mean field (MDMF) model relates resting-state brain dynamics with local cortical excitatory-inhibitory neurotransmitter homeostasis
  publication-title: Network Neurosci.
– volume: 1
  start-page: 13
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119321_bib0046
  article-title: Functional and effective connectivity: areview
  publication-title: Brain Connect
  doi: 10.1089/brain.2011.0008
– volume: 33
  start-page: 11239
  issue: 27
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119321_bib0031
  article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1091-13.2013
– volume: 32
  start-page: e3752
  issue: 4
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119321_bib0101
  article-title: Building connectomes using diffusion MRI: why, how and but
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3752
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119321_bib0105
  article-title: N4ITK: Improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 34
  start-page: 7910
  issue: 23
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119321_bib0029
  article-title: Identification of optimal structural connectivity using functional connectivity and neural modeling
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4423-13.2014
– volume: 29
  start-page: 603
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119321_bib0020
  article-title: Interpretation of the precision matrix and its application in estimating sparse brain connectivity during sleep spindles from human electrocorticography recordings
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00936
– volume: 30
  start-page: 1511
  issue: 5
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119321_bib0115
  article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20623
– volume: 19
  start-page: 672
  issue: 11
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0040
  article-title: Imaging-based parcellations of the human brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-018-0071-7
– volume: 4
  start-page: 1235
  issue: 4
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119321_bib0072
  article-title: Revisiting correlation-based functional connectivity and its relationship with structural connectivity
  publication-title: Network Neurosci.
  doi: 10.1162/netn_a_00166
– volume: 83
  start-page: 550
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119321_bib0009
  article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.099
– volume: 9
  start-page: 8479
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119321_bib0055
  article-title: A new computational approach to estimate whole-brain effective connectivity from functional and structural MRI, applied to language development
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-44909-6
– volume: 118
  issue: 15
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_sbref0095
  article-title: Functional connectome fingerprinting using shallow feedforward neural networks
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.2021852118
– volume: 103
  start-page: 297
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119321_bib0109
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00783.2009
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119321_bib0110
  article-title: The WU-minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 58
  start-page: 339
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119321_bib0108
  article-title: Effective connectivity: influence, causality and biophysical modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.058
– volume: 3
  start-page: 90
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0121
  article-title: Subject specificity of the correlation between large-scale structural and functional connectivity
  publication-title: Network Neurosci.
  doi: 10.1162/netn_a_00055
– volume: 124
  start-page: 85
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119321_bib0058
  article-title: Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.08.069
– volume: 19
  start-page: 2209
  issue: 10
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119321_bib0098
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhn256
– volume: 238
  start-page: 118170
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0002
  article-title: Using connectomics for predictive assessment of brain parcellations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118170
– volume: 12
  start-page: 6373
  issue: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0067
  article-title: Sensory-motor cortices shape functional connectivity dynamics in the human brain
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26704-y
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2022.119321_bib0019
  article-title: Cortical surface-based analysis: i. segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119321_bib0043
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 25
  start-page: 1021
  issue: 12
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0041
  article-title: Is it time to put rest to rest?
  publication-title: Trends Cogn. Sci. (Regul. Ed.)
  doi: 10.1016/j.tics.2021.09.005
– start-page: 58
  year: 2006
  ident: 10.1016/j.neuroimage.2022.119321_bib0053
  article-title: Symmetric Atlasing and Model Based Segmentation: an Application to the Hippocampus in Older Adults
– volume: 10
  start-page: 9
  issue: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119321_bib0008
  article-title: Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review
  publication-title: The Journal of Mathematical Neuroscience
  doi: 10.1186/s13408-020-00086-9
– volume: 14
  start-page: e1006007
  issue: 2
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0001
  article-title: A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006007
– volume: 11
  start-page: e0157292
  issue: 8
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119321_bib0093
  article-title: Analytical operations relate structural and functional connectivity in the brain
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157292
– volume: 256
  start-page: 119051
  year: 2022
  ident: 10.1016/j.neuroimage.2022.119321_bib0005
  article-title: On the intersection between data quality and dynamical modelling of large-scale fMRI signals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119051
– volume: 41
  start-page: 1167
  issue: 5
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119321_bib0077
  article-title: Parcellation influence on the connectivity-based structure-function relationship in the human brain
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24866
– volume: 27
  start-page: 5415
  issue: 11
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119321_bib0083
  article-title: Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhx230
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2022.119321_bib0033
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 101
  start-page: 1181
  issue: 6
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119321_sbref0032
  article-title: Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.01.017
– volume: 203
  start-page: 116157
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119321_bib0082
  article-title: A decade of test-retest reliability of functional connectivity: a systematic review and meta-analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116157
– volume: 12
  start-page: 43
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119321_bib0026
  article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2961
– volume: 80
  start-page: 360
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119321_bib0062
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 19
  start-page: 1273
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2022.119321_bib0047
  article-title: Dynamic causal modelling
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00202-7
– volume: 80
  start-page: 330
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119321_bib0118
  article-title: Biophysical network models and the human connectome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.059
– volume: 86
  start-page: 127
  issue: 2
  year: 1981
  ident: 10.1016/j.neuroimage.2022.119321_bib0016
  article-title: Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior
  publication-title: Am J Ment Defic
– volume: 158
  start-page: 371
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119321_bib0113
  article-title: Evaluating the replicability, specificity, and generalizability of connectome fingerprints
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.016
– volume: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119321_bib0107
  article-title: MIST: A multi-resolution parcellation of functional brain networks [version 2; peer review: 4 approved]
  publication-title: MNI Open Research
– ident: 10.1016/j.neuroimage.2022.119321_bib0038
– volume: 12
  start-page: 1
  issue: 1
  year: 1972
  ident: 10.1016/j.neuroimage.2022.119321_bib0116
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(72)86068-5
– volume: 12
  start-page: 341
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0044
  article-title: EEG Resting state functional connectivity in adult dyslexics using phase lag index and graph analysis
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2018.00341
– volume: 8
  start-page: 8254
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0003
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25089-1
– volume: 20
  start-page: 519
  issue: 8
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119321_bib0059
  article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2010.03.008
– volume: 50
  start-page: 970
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2022.119321_bib0120
  article-title: Whole-brain anatomical networks: does the choice of nodes matter?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.027
– volume: 19
  start-page: 240
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0122
  article-title: Differentiation of Alzheimer’s disease based on local and global parameters in personalized Virtual Brain models
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2018.04.017
– volume: 122
  start-page: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119321_bib0092
  article-title: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.075
– volume: 80
  start-page: 190
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119321_bib0070
  article-title: Adding dynamics to the human connectome project with MEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.056
– volume: 170
  start-page: 5
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0006
  article-title: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.014
– volume: 76
  start-page: 362
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119321_bib0076
  article-title: Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.070
– volume: 3
  start-page: 121
  issue: 2
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119321_bib0089
  article-title: The virtual brain integrates computational modeling and multimodal neuroimaging
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0120
– volume: 4
  start-page: A132
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0014
  article-title: JURECA: Modular supercomputer at Jülich Supercomputing Centre
  publication-title: Journal of large-scale research facilities
  doi: 10.17815/jlsrf-4-121-1
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2022.119321_bib0106
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 28
  start-page: 3095
  issue: 9
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0096
  article-title: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhx179
– volume: 170
  start-page: 249
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0097
  article-title: An MRI Von Economo - Koskinas atlas
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.069
– volume: 5
  start-page: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119321_bib0018
  article-title: On the influence of amplitude on the connectivity between phases
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2011.00006
– volume: 42
  start-page: 3717
  issue: 12
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0071
  article-title: Feature selection framework for functional connectome fingerprinting
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25379
– volume: 39
  start-page: 1187
  issue: 3
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0015
  article-title: Intraclass correlation: improved modeling approaches and applications for neuroimaging
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23909
– volume: 105
  start-page: 525
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119321_bib0056
  article-title: Functional connectivity dynamics: modeling the switching behavior of the resting state
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.001
– volume: 237
  start-page: 118176
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0066
  article-title: Tractography density affects whole-brain structural architecture and resting-state dynamical modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118176
– volume: 90
  start-page: 012707
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119321_bib0091
  article-title: Determination of effective brain connectivity from functional connectivity with application to resting state connectivities
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.90.012707
– volume: 88
  start-page: 1086
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119321_bib0004
  article-title: Architectonic mapping of the human brain beyond brodmann
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.12.001
– volume: 38
  start-page: 1992
  issue: 4
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119321_bib0010
  article-title: Correspondence between evoked and intrinsic functional brain network configurations
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23500
– volume: 169
  start-page: 46
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0021
  article-title: Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.009
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 10.1016/j.neuroimage.2022.119321_bib0112
  article-title: Scipy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0034
  article-title: Parcellation-based structural and resting-state functional brain connectomes of a healthy cohort [Dataset]
  publication-title: EBRAINS
– volume: 40
  start-page: 2967
  issue: 10
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119321_bib0037
  article-title: Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24572
– volume: 106
  start-page: 10302
  issue: 25
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119321_bib0024
  article-title: Key role of coupling, delay, and noise in resting brain fluctuations
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0901831106
– volume: 231
  start-page: 117844
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0063
  article-title: Whole-brain modelling of resting state fMRI differentiates ADHD subtypes and facilitates stratified neuro-stimulation therapy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.117844
– year: 2022
  ident: 10.1016/j.neuroimage.2022.119321_bib0036
  article-title: Parcellation-based resting-state blood-oxygen-level-dependent (BOLD) signals of a healthy cohort (v1.0) [Dataset]
  publication-title: EBRAINS
– volume: 111
  start-page: 385
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119321_bib0094
  article-title: Mathematical framework for large-scale brain network modeling in the virtual brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.002
– volume: 20
  start-page: 340
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119321_bib0011
  article-title: Dynamic models of large-scale brain activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4497
– volume: 116
  start-page: 18088
  issue: 36
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119321_bib0023
  article-title: Awakening: predicting external stimulation to force transitions between different brain states
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1905534116
– volume: 61
  start-page: 935
  issue: 8
  year: 2007
  ident: 10.1016/j.neuroimage.2022.119321_bib0051
  article-title: Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2006.06.027
– volume: 8
  start-page: 1349
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119321_bib0074
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01285-x
– volume: 236
  start-page: 118201
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0086
  article-title: Inter-subject and inter-parcellation variability of resting-state whole-brain dynamical modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118201
– volume: 86
  start-page: 420
  issue: 2
  year: 1979
  ident: 10.1016/j.neuroimage.2022.119321_bib0100
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.86.2.420
– volume: 52
  start-page: 42
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0007
  article-title: Personalized brain network models for assessing structure-function relationships
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.04.014
– volume: 145
  start-page: 377
  year: 2017
  ident: 10.1016/j.neuroimage.2022.119321_bib0065
  article-title: The virtual epileptic patient: individualized whole-brain models of epilepsy spread
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.049
– volume: 3
  start-page: e2148
  issue: 5
  year: 2008
  ident: 10.1016/j.neuroimage.2022.119321_bib0048
  article-title: On how network architecture determines the dominant patterns of spontaneous neural activity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002148
– volume: 106
  start-page: 2035
  issue: 6
  year: 2009
  ident: 10.1016/j.neuroimage.2022.119321_bib0061
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0811168106
– volume: 14
  start-page: e0219854
  issue: 7
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119321_bib0073
  article-title: Intraclass correlation - a discussion and demonstration of basic features
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0219854
– volume: 7
  start-page: 529
  year: 2013
  ident: 10.1016/j.neuroimage.2022.119321_bib0102
  article-title: Modulation of spontaneous alpha brain rhythms using low-intensity transcranial direct-current stimulation
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00529
– volume: 53
  start-page: 1666
  issue: 6
  year: 2021
  ident: 10.1016/j.neuroimage.2022.119321_bib0119
  article-title: Mapping structural connectivity using diffusion MRI: challenges and opportunities
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27188
– volume: 02
  start-page: 150
  issue: 02
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_bib0057
  article-title: Putting the “dynamic” back into dynamic functional connectivity
  publication-title: Network Neurosci.
  doi: 10.1162/netn_a_00041
– volume: 111
  start-page: 65
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119321_bib0079
  article-title: Predicting functional connectivity from structural connectivity via computational models using MRI: an extensive comparison study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.001
– volume: 85
  start-page: 011912
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119321_bib0090
  article-title: Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.85.011912
– volume: 28
  start-page: 3065
  issue: 19
  year: 2018
  ident: 10.1016/j.neuroimage.2022.119321_sbref0022
  article-title: Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD
  publication-title: Current Biology
  doi: 10.1016/j.cub.2018.07.083
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119321_bib0054
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 11
  start-page: e1004100
  issue: 2
  year: 2015
  ident: 10.1016/j.neuroimage.2022.119321_bib0085
  article-title: Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004100
– volume: 57
  start-page: 130
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2022.119321_bib0013
  article-title: Role of local network oscillations in resting-state functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.04.010
– volume: 84
  start-page: 892
  issue: 5
  year: 2014
  ident: 10.1016/j.neuroimage.2022.119321_bib0027
  article-title: Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.08.034
– volume: 33
  start-page: 1914
  issue: 8
  year: 2012
  ident: 10.1016/j.neuroimage.2022.119321_bib0017
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21333
– volume: 12
  start-page: e1005076
  issue: 9
  year: 2016
  ident: 10.1016/j.neuroimage.2022.119321_bib0080
  article-title: Stimulation-based control of dynamic brain networks
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005076
– volume: 12
  start-page: 68
  year: 2019
  ident: 10.1016/j.neuroimage.2022.119321_bib0087
  article-title: What can computational models contribute to neuroimaging data analytics?
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2018.00068
SSID ssj0009148
Score 2.4739316
Snippet •Reliability of whole-brain dynamical models ranges from ”poor” to ”good”.•Reliability and specificity of modeling results may exceed those of empirical...
Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119321
SubjectTerms Brain
Brain connectome
Hypothesis testing
Magnetic resonance imaging
Neural networks
Reliability
Resting-state brain dynamics
Structure-function relationships
Subject specificity
Whole-brain model
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBclh7LL6Me2Zk2LC7tqsT5sWew0QksotBS2Qm9CsiXIaJ3QJIzt0L-971lySg-FQI-W9LD8pPf0s_T0foR8awSzhXUVzS2rKKZ8o5UXOdWOFZ4H71SD-x1X1-X0Vl7eFXc7ZNLfhcGwyuT7o0_vvHUqGSdtjhez2fgXIANYbgCh8I43Gf2wlApn-fenlzAPzWS8DlcIiq1TNE-M8epyRs4ewHLhT5Fz8B8AZ9hbS9RbELRbii72yMeEIbOfsZv7ZMe3B2T3Kp2SH5IbjDOO-bf_ZbZtsuXa4XZLhtcqMTQIy-chW_RA_L9vsr9IlEsdMkZkTaSph3d0RDnLT-T24vz3ZEoTcwKtAQCsaOB1UKESNnDNnZXe5QGP7ITyubbc2kr6AJborPCA8ByrrbONFlb7EiSF-EwG7bz1RyQrA2acD2UZci9VLl3NGiW11WUovRdiSFSvLFOntOLIbnFv-vixP-ZFzQbVbKKah4RtJBcxtcYWMrofD9NfHQVnZ8D_byH7YyP7aoptKT3qh98kM18aHqkktYLqs001GCieutjWz9fYpiN4Bs84JF_itNl8Lua2B8iuvr6ra8fkAz7hTjcrRmSwelz7E4BKK3fa2cIzU9gTbA
  priority: 102
  providerName: Elsevier
Title Reliability and subject specificity of personalized whole-brain dynamical models
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922004402
https://dx.doi.org/10.1016/j.neuroimage.2022.119321
https://www.ncbi.nlm.nih.gov/pubmed/35580807
https://www.proquest.com/docview/2676930971
https://www.proquest.com/docview/2666547578
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7ygNJLSNPXNuniQq9qLcu2LHooSUjYJGQJpYG9CcmWoKX1brO7lOTQ394ZS949JezJYGv80GP0eTT6PoCPjeCmMLZiqeEVI8o3VjmRMmV54TLvrGwo3nE9Lke3-eWkmMSA2zymVfY-sXPUzbSmGPnnLKj2Kcm_zv4wUo2i1dUoobENu0RdRildciLXpLs8D1vhCsEqLBAzeUJ-V8cX-eM3jlr8S8wy9B0IZfhj09Nj8LObhs73YS_ix-Q4NPgL2HLtATy7jivkL-GGcowD9_Z9YtommS8thVoS2lJJaUF0fuqTWQ_CH1yT_CWRXGZJLSJpgkQ9PqMTyZm_gtvzs--nIxZVE1iNk_-C-az20lfC-Exl1uTOpp6W64R0qTKZMVXuPI5Ca4RDdGd5baxplDDKlWgpxGvYaaetewtJ6Ylt3pelT10u09zWvJG5Mqr0pXNCDED2laXrSClOyha_dJ879lOvq1lTNetQzQPgK8tZoNXYwEb17aH7baPo6DT6_g1sv6xsI7QIkGFD66O--XUc4nO97pAD-LC6jIOTVlxM66ZLKtOJO6NXHMCb0G1Wn0u89gjX5bunb34Iz-lNKIzNiyPYWdwt3XvEQQs7hO1P__iw6_JD2D2-uBqN8XhyNr75NuxiC_8BXecNcQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqQRcEO8GChgJjhZre18WQohHq5Q2UYVaqTdj79oSCDaBJKrCj-I3MrPeTU5FufSazax2x7Ofx-Px9wG8rJWwmXUlT6woOVG-8dKrhGsnMi-Dd0VN9Y7xJB-dp58vsosd-NufhaG2yh4TW6CupxXVyF_LqNqnC_Fu9ouTahTtrvYSGjEsjv3qEpds87dHn3B8X0l5eHD2ccQ7VQFe4eS44EFWoQilskFq6WzqXRJoO0sVPtFWWlumPmCUOqs8Zj9OVNbZWiurfY6WVABFyN9NFS5lBrD74WBy-mVD8yvSePguU7wUQne9Q7GjrGWo_PYTcQLXpVIiWmHyJK6aEK9KeNuJ7_AO3O4yVvY-hthd2PHNPbgx7vbk78MpdTVHtu8Vs03N5ktHxR1GhzipEYl-nwY269P-P75mlyTLyx3pU7B61diWtIC1sjzzB3B-LR59CINm2vg9YHkgfvuQ5yHxaZGkrhJ1kWqr85B7r9QQit5ZpupIzElL44fpu9W-m42bDbnZRDcPQawtZ5HIYwsb3Y-H6Q-qIrQanG22sH2ztu2SmZikbGm93w-_6UBlbjafwBBerC8jHNAej238dEn_aeWkEYeH8CiGzfp1iUkfFwjF4__f_DncHJ2NT8zJ0eT4Cdyip6Iiusj2YbD4vfRPMQtbuGdd6DP4et1f2z9pQkiR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1VRaq4IL4JFDASHK2u7d31WgghRIlaSqseqJSbsXdtqQg2gSSqwk_j1zGz3k1ORbn0mmSi3fH4eTwevwfwulHCFc5XPHOi4kT5xqugMm68KIKMweuG6h2nZ-XRRf55Ukx24O9wF4baKgdM7IC6mdZUIz-QSbXPaHEQ-7aI88Px-9kvTgpSdNI6yGmkEDkJqyvcvs3fHR_iWL-Rcvzp68cj3isM8BoXygWPso46VspFaaR3efBZpKMtpUNmnHSuykPEiPVOBcyEvKidd41RzoQSLakYivB_S6tC0BzTE70h_BV5uoZXKF4JYfouotRb1nFVXv5ExMAdqpSIW5hGieuWxutS324JHN-FO33uyj6kYLsHO6G9D3un_en8Azin_ubE-71irm3YfOmpzMPoOie1JNHn08hmwwbgT2jYFQn0ck9KFaxZta6jL2CdQM_8IVzciD8fwW47bcMTYGUkpvtYljELuc5yX4tG58aZMpYhKDUCPTjL1j2dOalq_LBD39p3u3GzJTfb5OYRiLXlLFF6bGFjhvGww5VVBFmL684Wtm_Xtn1ak9KVLa33h-G3PbzM7WYyjODV-msEBjrtcW2YLuk3nbA0IvIIHqewWb8ucerjVkE__f-fv4Q9nGP2y_HZyTO4TQ9F1XRR7MPu4vcyPMd0bOFfdHHP4NtNT7R_5jlLYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+and+subject+specificity+of+personalized+whole-brain+dynamical+models&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Domhof%2C+Justin+WM&rft.au=Eickhoff%2C+Simon+B&rft.au=Popovych%2C+Oleksandr+V&rft.date=2022-08-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=257&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.119321&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon