Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke

Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiologica...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 115; p. 103516
Main Authors Hilbert, A., Ramos, L.A., van Os, H.J.A., Olabarriaga, S.D., Tolhuisen, M.L., Wermer, M.J.H., Barros, R.S., van der Schaaf, I., Dippel, D., Roos, Y.B.W.E.M., van Zwam, W.H., Yoo, A.J., Emmer, B.J., Lycklama à Nijeholt, G.J., Zwinderman, A.H., Strijkers, G.J., Majoie, C.B.L.M., Marquering, H.A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2019.103516

Cover

Loading…
Abstract Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection. [Display omitted] •We proposed a Deep Learning approach for predicting outcomes of acute ischemic stroke patients using CT angiography images.•We found out that in most cases, pre-training with auto-encoders improved the prediction.•Our approach does not require expert annotation of the images and is fast to compute.•Gradient-weighted Class Activation Mapping allows visualization of the imaging features to interpret our models.•Our models had a higher predictive value than models using common radiological image biomarkers for outcome prediction.
AbstractList Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection. [Display omitted] •We proposed a Deep Learning approach for predicting outcomes of acute ischemic stroke patients using CT angiography images.•We found out that in most cases, pre-training with auto-encoders improved the prediction.•Our approach does not require expert annotation of the images and is fast to compute.•Gradient-weighted Class Activation Mapping allows visualization of the imaging features to interpret our models.•Our models had a higher predictive value than models using common radiological image biomarkers for outcome prediction.
Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection.
Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection.Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection.
ArticleNumber 103516
Author Barros, R.S.
van der Schaaf, I.
Lycklama à Nijeholt, G.J.
Strijkers, G.J.
Zwinderman, A.H.
Majoie, C.B.L.M.
Ramos, L.A.
Roos, Y.B.W.E.M.
Hilbert, A.
Yoo, A.J.
Marquering, H.A.
van Zwam, W.H.
Tolhuisen, M.L.
Emmer, B.J.
Olabarriaga, S.D.
van Os, H.J.A.
Dippel, D.
Wermer, M.J.H.
Author_xml – sequence: 1
  givenname: A.
  surname: Hilbert
  fullname: Hilbert, A.
  organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 2
  givenname: L.A.
  surname: Ramos
  fullname: Ramos, L.A.
  email: l.a.ramos@amsterdamumc.nl
  organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 3
  givenname: H.J.A.
  surname: van Os
  fullname: van Os, H.J.A.
  organization: Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 4
  givenname: S.D.
  surname: Olabarriaga
  fullname: Olabarriaga, S.D.
  organization: Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 5
  givenname: M.L.
  surname: Tolhuisen
  fullname: Tolhuisen, M.L.
  organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 6
  givenname: M.J.H.
  surname: Wermer
  fullname: Wermer, M.J.H.
  organization: Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
– sequence: 7
  givenname: R.S.
  surname: Barros
  fullname: Barros, R.S.
  organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 8
  givenname: I.
  surname: van der Schaaf
  fullname: van der Schaaf, I.
  organization: Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
– sequence: 9
  givenname: D.
  surname: Dippel
  fullname: Dippel, D.
  organization: Department of Neurology, Erasmus MC - University Medical Center, Rotterdam, the Netherlands
– sequence: 10
  givenname: Y.B.W.E.M.
  surname: Roos
  fullname: Roos, Y.B.W.E.M.
  organization: Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 11
  givenname: W.H.
  surname: van Zwam
  fullname: van Zwam, W.H.
  organization: Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
– sequence: 12
  givenname: A.J.
  surname: Yoo
  fullname: Yoo, A.J.
  organization: Neurointervention, Texas Stroke Institute, Dallas-Fort Worth, Texas, USA
– sequence: 13
  givenname: B.J.
  surname: Emmer
  fullname: Emmer, B.J.
  organization: Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 14
  givenname: G.J.
  surname: Lycklama à Nijeholt
  fullname: Lycklama à Nijeholt, G.J.
  organization: Radiology, Haaglanden Medical Center, The Hague, the Netherlands
– sequence: 15
  givenname: A.H.
  surname: Zwinderman
  fullname: Zwinderman, A.H.
  organization: Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 16
  givenname: G.J.
  surname: Strijkers
  fullname: Strijkers, G.J.
  organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 17
  givenname: C.B.L.M.
  surname: Majoie
  fullname: Majoie, C.B.L.M.
  organization: Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
– sequence: 18
  givenname: H.A.
  surname: Marquering
  fullname: Marquering, H.A.
  organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31707199$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFV0CW2LDJYMf5sTcIWn6lSmxgbd04N1NPEzvYTlFfgyfG0bRCmtWsLNnnfvfoHF-QM-cdEkI523LGm3f7rfHT3Fk_Yb8tGVf5WtS8eUY2XLaqYLWozsiGMc6KSpb1ObmIcc8Yq5hgL8i54C1ruVIb8vcTJChwGKyx6BLtEWc6IgRn3Y76gQborR_9zhoYqZ1gh7TPI3TwgfolZR9I54C9Ncl6R2FIGCi63t9DNMsIgaaAkKYVnnEzpHVPpH9suqVgloTURnOLkzU0puDv8CV5PsAY8dXjeUl-ffn88_pbcfPj6_frjzeFqZlKxVB2ZSexqwXvBLaNkQ2reF_JDnmplJCq6gyAbKoOWhCtwpqVZaWGJj8BV-KSvD1w5-B_LxiTnrITHEdw6JeoS8FFU5e8lVn65ki690tw2V1W5TCbmrE2q14_qpYuF6PnkPMKD_op7Sx4fxCY4GMMOGhjE6y5pQB21JzptV691__r1Wu9-lBvBsgjwNOOE0avDqOYI723GHRcGze5uYAm6d7bUyAfjiBmtG79Gnf4cBriH4Z33Tk
CitedBy_id crossref_primary_10_1016_j_procs_2024_08_067
crossref_primary_10_1007_s42058_023_00129_6
crossref_primary_10_3389_fneur_2021_734345
crossref_primary_10_1155_2022_3185211
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_105796
crossref_primary_10_1016_j_compbiomed_2021_104414
crossref_primary_10_3389_fgene_2021_827522
crossref_primary_10_3389_fonc_2022_895544
crossref_primary_10_3389_frai_2024_1369702
crossref_primary_10_1111_1754_9485_13193
crossref_primary_10_1161_STROKEAHA_120_033445
crossref_primary_10_1016_j_neucom_2022_07_005
crossref_primary_10_3390_diagnostics13243604
crossref_primary_10_1097_MD_0000000000039217
crossref_primary_10_3389_fneur_2022_809343
crossref_primary_10_1063_5_0011697
crossref_primary_10_1016_j_media_2024_103381
crossref_primary_10_3390_jimaging10100239
crossref_primary_10_3389_fneur_2022_945813
crossref_primary_10_1177_20584601211060347
crossref_primary_10_1007_s11547_023_01735_1
crossref_primary_10_1227_NEU_0000000000001736
crossref_primary_10_53070_bbd_1172807
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_1109_ACCESS_2020_3004977
crossref_primary_10_3389_fneur_2024_1367854
crossref_primary_10_12677_acm_2024_1441068
crossref_primary_10_3390_diagnostics12081786
crossref_primary_10_1007_s11517_024_03243_4
crossref_primary_10_1177_23969873211067662
crossref_primary_10_12677_acm_2025_153839
crossref_primary_10_1016_j_neurad_2021_05_001
crossref_primary_10_1161_STROKEAHA_123_042496
crossref_primary_10_3389_fneur_2023_1039794
crossref_primary_10_1016_j_eswa_2023_120473
crossref_primary_10_1136_jnis_2024_021556
crossref_primary_10_1186_s41747_024_00452_2
crossref_primary_10_1161_STROKEAHA_122_041442
crossref_primary_10_5853_jos_2023_03426
crossref_primary_10_1007_s00062_023_01276_0
crossref_primary_10_3389_fneur_2023_1294723
crossref_primary_10_1007_s10278_022_00611_0
crossref_primary_10_3390_diagnostics13091571
crossref_primary_10_1186_s41747_021_00225_1
crossref_primary_10_1016_j_media_2022_102470
crossref_primary_10_1038_s41569_021_00527_2
crossref_primary_10_3390_jpm10040286
crossref_primary_10_1007_s00270_021_03044_4
crossref_primary_10_1016_j_cej_2025_159933
crossref_primary_10_3389_fstro_2023_1242901
crossref_primary_10_1007_s10462_025_11119_8
crossref_primary_10_1093_bjro_tzae001
crossref_primary_10_1007_s12065_024_00917_8
crossref_primary_10_1177_0271678X221129230
crossref_primary_10_3390_s24206585
crossref_primary_10_1007_s11831_024_10098_3
crossref_primary_10_3390_jcdd9120468
crossref_primary_10_1016_j_compmedimag_2022_102089
crossref_primary_10_13104_imri_2022_26_4_191
crossref_primary_10_1002_brb3_3307
crossref_primary_10_1016_j_brainresbull_2024_110920
crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105162
crossref_primary_10_3389_fneur_2020_580957
crossref_primary_10_1016_j_compbiomed_2023_106668
crossref_primary_10_1155_2022_7815434
crossref_primary_10_1016_j_ejrad_2024_111405
crossref_primary_10_1136_jnis_2023_021154
crossref_primary_10_1016_j_praneu_2025_01_006
crossref_primary_10_3174_ajnr_A8272
crossref_primary_10_1007_s10916_023_02020_4
crossref_primary_10_1016_j_cmpb_2020_105728
Cites_doi 10.1109/TMI.2009.2035616
10.4329/wjr.v2.i9.354
10.1016/S0140-6736(16)00163-X
10.1117/1.JMI.2.1.014004
10.1016/j.media.2016.10.004
10.1161/STROKEAHA.115.011788
10.1109/TPAMI.2016.2644615
10.1109/TCYB.2016.2536638
10.1161/STROKEAHA.117.019740
10.1136/bmjopen-2016-013699
10.1177/1747493016681020
10.1136/neurintsurg-2018-014060
10.1186/s41747-019-0085-6
10.1038/nature14539
10.1002/ca.1075
10.1136/bmj.j1710
10.1007/s11910-016-0632-y
10.1016/j.artmed.2017.05.006
10.3174/ajnr.A1408
10.1016/j.media.2006.06.003
10.1016/S0140-6736(00)02237-6
10.1371/journal.pone.0149943
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier Ltd.
Copyright Elsevier Limited Dec 2019
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier Ltd.
– notice: Copyright Elsevier Limited Dec 2019
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2019.103516
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Research Library Prep
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
ExternalDocumentID 31707199
10_1016_j_compbiomed_2019_103516
S0010482519303786
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
M0N
RIG
AAYXX
AFCTW
AGRNS
ALIPV
CITATION
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c509t-f2b2b8eb531b3e76c86041d48be12993894bcaa864ba7a379e502249f6389a193
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Fri Jul 11 04:05:41 EDT 2025
Wed Aug 13 05:48:25 EDT 2025
Thu Apr 03 06:58:12 EDT 2025
Tue Jul 01 03:28:35 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Fri Feb 23 02:47:57 EST 2024
Tue Aug 26 16:34:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
RFNN
Radiological images
Gradient-weighted class activation mapping
Acute ischemic stroke
Structured receptive fields
Prognostics
ResNet
Language English
License Copyright © 2019. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-f2b2b8eb531b3e76c86041d48be12993894bcaa864ba7a379e502249f6389a193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S0010482519303786-fx1_lrg.jpg
PMID 31707199
PQID 2331765007
PQPubID 1226355
ParticipantIDs proquest_miscellaneous_2313652178
proquest_journals_2331765007
pubmed_primary_31707199
crossref_citationtrail_10_1016_j_compbiomed_2019_103516
crossref_primary_10_1016_j_compbiomed_2019_103516
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103516
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Jacobsen, van Gemert, Lou, Smeulders (bib21) 2016
Nambiar (bib30) 2014
Mulder (bib40) 2017; 7
Krizhevsky, Sutskever, Hinton (bib42) 2012
Ozdemir, Giray, Arlier, Baş, Inanc, Colak (bib29) 2015; 2015
World Health Organization (bib1) 2018
Alqahtani (bib3) 2017; 9
Berkhemer (bib9) 2016; 47
Öman, Mäkelä, Salli, Savolainen, Kangasniemi (bib39) 2019; 3
Goyal (bib4) 2016; 387
Du, Xiong, Wu, Zhang, Zhang, Tao (bib27) 2017; 47
Zhang, Zhu (bib17) 2018; 19
Kamnitsas (bib38) 2017; 36
Stoel (bib10) 2015; 2
Jansen, Mulder, Goldhoorn (bib18) 2018; 360
Jensen-Kondering (bib45) 2010; 2
Badrinarayanan, Kendall, Cipolla, Member (bib12) 2017; 39
Nagel (bib14) 2017; 12
Website (bib2) 2018
Ribeiro, Singh, Guestrin (bib32) 2016
Tan (bib8) 2009; 30
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” pp. 2921–2929.
Berge, Bergman (bib20) 2001; 14
Van Os (bib5) 2018; 9
Zhang, Shen, Wei, Li, Sangaiah (bib24) 2017; 83
Qazi, Al-Ajlan, Najm, Menon (bib44) 2016; 16
Barber, Demchuk, Zhang, Buchan (bib7) 2000; 355
Kamnitsas (bib15) 2017; 36
Klein, Staring, Murphy, Viergever, Pluim (bib19) 2010; 29
He, Zhang, Ren, Sun (bib31) 2016
Gupta (bib41) 2012; 3
Leischner (bib43) 2019; 11
LeCun, Bengio, Hinton (bib11) 2015; 521
Nielsen, Hansen, Tietze, Mouridsen (bib37) 2018; 49
Venema (bib6) 2017
Oman, Makela, Salli, Savolainen, Kangasniemi (bib16) 2019; 3
Oliveira, Teixeira, Ren, Cavalcanti, Sijbers (bib25) 2016; 11
Erhan, Bengio, Courville, Manzagol, Vincent, Bengio (bib26) 2010; 11
M. Cogswell, A. Das, and D. Batra, “Visual explanations from deep networks via gradient-based localization.”.
He, Zhang, Ren, Sun (bib28) 2016; vol. 9908
Springenberg, Dosovitskiy, Brox, Riedmiller (bib35) 2014
Lindeberg (bib22) 1994
Manniesing, Viergever, Niessen (bib23) 2006; 10
Clèrigues, Valverde, Bernal, Freixenet, Oliver, Lladó (bib13) 2018
Chattopadhyay, Sarkar, Howlader (bib36) 2018
Clèrigues (10.1016/j.compbiomed.2019.103516_bib13) 2018
Berge (10.1016/j.compbiomed.2019.103516_bib20) 2001; 14
Website (10.1016/j.compbiomed.2019.103516_bib2) 2018
LeCun (10.1016/j.compbiomed.2019.103516_bib11) 2015; 521
Leischner (10.1016/j.compbiomed.2019.103516_bib43) 2019; 11
Chattopadhyay (10.1016/j.compbiomed.2019.103516_bib36) 2018
Oman (10.1016/j.compbiomed.2019.103516_bib16) 2019; 3
Springenberg (10.1016/j.compbiomed.2019.103516_bib35) 2014
Erhan (10.1016/j.compbiomed.2019.103516_bib26) 2010; 11
Mulder (10.1016/j.compbiomed.2019.103516_bib40) 2017; 7
Qazi (10.1016/j.compbiomed.2019.103516_bib44) 2016; 16
Lindeberg (10.1016/j.compbiomed.2019.103516_bib22) 1994
World Health Organization (10.1016/j.compbiomed.2019.103516_bib1) 2018
Barber (10.1016/j.compbiomed.2019.103516_bib7) 2000; 355
Du (10.1016/j.compbiomed.2019.103516_bib27) 2017; 47
Nielsen (10.1016/j.compbiomed.2019.103516_bib37) 2018; 49
Tan (10.1016/j.compbiomed.2019.103516_bib8) 2009; 30
He (10.1016/j.compbiomed.2019.103516_bib31) 2016
Klein (10.1016/j.compbiomed.2019.103516_bib19) 2010; 29
Oliveira (10.1016/j.compbiomed.2019.103516_bib25) 2016; 11
Krizhevsky (10.1016/j.compbiomed.2019.103516_bib42) 2012
Nagel (10.1016/j.compbiomed.2019.103516_bib14) 2017; 12
He (10.1016/j.compbiomed.2019.103516_bib28) 2016; vol. 9908
Nambiar (10.1016/j.compbiomed.2019.103516_bib30) 2014
Kamnitsas (10.1016/j.compbiomed.2019.103516_bib15) 2017; 36
Gupta (10.1016/j.compbiomed.2019.103516_bib41) 2012; 3
10.1016/j.compbiomed.2019.103516_bib34
Alqahtani (10.1016/j.compbiomed.2019.103516_bib3) 2017; 9
Van Os (10.1016/j.compbiomed.2019.103516_bib5) 2018; 9
Berkhemer (10.1016/j.compbiomed.2019.103516_bib9) 2016; 47
Zhang (10.1016/j.compbiomed.2019.103516_bib17) 2018; 19
Manniesing (10.1016/j.compbiomed.2019.103516_bib23) 2006; 10
Öman (10.1016/j.compbiomed.2019.103516_bib39) 2019; 3
Jansen (10.1016/j.compbiomed.2019.103516_bib18) 2018; 360
Kamnitsas (10.1016/j.compbiomed.2019.103516_bib38) 2017; 36
Stoel (10.1016/j.compbiomed.2019.103516_bib10) 2015; 2
Zhang (10.1016/j.compbiomed.2019.103516_bib24) 2017; 83
Badrinarayanan (10.1016/j.compbiomed.2019.103516_bib12) 2017; 39
Jacobsen (10.1016/j.compbiomed.2019.103516_bib21) 2016
Ozdemir (10.1016/j.compbiomed.2019.103516_bib29) 2015; 2015
Jensen-Kondering (10.1016/j.compbiomed.2019.103516_bib45) 2010; 2
Venema (10.1016/j.compbiomed.2019.103516_bib6) 2017
10.1016/j.compbiomed.2019.103516_bib33
Goyal (10.1016/j.compbiomed.2019.103516_bib4) 2016; 387
Ribeiro (10.1016/j.compbiomed.2019.103516_bib32) 2016
References_xml – volume: 360
  year: 2018
  ident: bib18
  article-title: Endovascular treatment for acute ischaemic stroke in routine clinical practice: prospective, observational cohort study (MR CLEAN Registry)
  publication-title: BMJ
– volume: 30
  start-page: 525
  year: 2009
  end-page: 531
  ident: bib8
  article-title: CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct
  publication-title: Am. J. Neuroradiol.
– volume: vol. 9908
  start-page: 630
  year: 2016
  end-page: 645
  ident: bib28
  article-title: Identity mappings in deep residual networks
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– year: 2018
  ident: bib13
  article-title: SUNet: a Deep Learning Architecture for Acute Stroke Lesion Segmentation and Outcome Prediction in Multimodal MRI
– volume: 47
  start-page: 1017
  year: 2017
  end-page: 1027
  ident: bib27
  article-title: Stacked convolutional denoising auto-encoders for feature representation
  publication-title: IEEE Trans. Cybern.
– year: 2018
  ident: bib1
  article-title: WHO - the Top 10 Causes of Death
– start-page: 1
  year: 2018
  end-page: 7
  ident: bib2
  article-title: Global Burden of Disease Study 2017 , Country Profile 
– reference: B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” pp. 2921–2929.
– year: 2012
  ident: bib42
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: M. Cogswell, A. Das, and D. Batra, “Visual explanations from deep networks via gradient-based localization.”.
– volume: 3
  start-page: 8
  year: 2019
  ident: bib16
  article-title: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke
  publication-title: Eur. Radiol. Exp.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib5
  article-title: Predicting outcome of endovascular treatment for acute ischemic stroke: potential value of machine learning algorithms
  publication-title: Front. Neurol.
– year: 2014
  ident: bib30
  article-title: CTA collateral status and response to recanalization in patients with acute ischemic stroke
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib12
  article-title: SegNet : a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 439
  year: 2019
  end-page: 442
  ident: bib43
  article-title: Reasons for failed endovascular recanalization attempts in stroke patients
  publication-title: J. Neurointerventional Surg.
– volume: 355
  start-page: 1670
  year: 2000
  end-page: 1674
  ident: bib7
  article-title: Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy
  publication-title: Lancet
– start-page: 839
  year: 2018
  end-page: 847
  ident: bib36
  article-title: Grad-cam ++ : improved visual explanations for deep convolutional networks
  publication-title: IEEE Winter Conf. Appl. Comput. Vis.
– start-page: j1710
  year: 2017
  ident: bib6
  article-title: Selection of patients for intra-arterial treatment for acute ischaemic stroke: development and validation of a clinical decision tool in two randomised trials
  publication-title: BMJ
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib31
  article-title: Deep residual learning for image recognition
  publication-title: Proc IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 11
  start-page: 625
  year: 2010
  end-page: 660
  ident: bib26
  article-title: “Why does unsupervised pre-training help deep Learning ?
  publication-title: J. Mach. Learn. Res.
– volume: 387
  start-page: 1723
  year: 2016
  end-page: 1731
  ident: bib4
  article-title: Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials
  publication-title: Lancet
– volume: 7
  year: 2017
  ident: bib40
  article-title: Towards personalised intra-arterial treatment of patients with acute ischaemic stroke: a study protocol for development and validation of a clinical decision aid
  publication-title: BMJ Open
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: bib38
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
– volume: 2
  year: 2015
  ident: bib10
  article-title: Automated brain computed tomographic densitometry of early ischemic changes in acute stroke
  publication-title: J. Med. Imaging
– volume: 3
  start-page: 414
  year: 2012
  end-page: 425
  ident: bib41
  article-title: Neuroimaging of cerebrovascular disease in the aging brain
  publication-title: Aging Dis.
– volume: 12
  start-page: 615
  year: 2017
  end-page: 622
  ident: bib14
  article-title: e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients
  publication-title: Int. J. Stroke
– start-page: 1135
  year: 2016
  end-page: 1144
  ident: bib32
  article-title: “‘Why should I trust you?’: explaining the predictions of any classifier
– volume: 16
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib44
  article-title: The role of vascular imaging in the initial assessment of patients with acute ischemic stroke
  publication-title: Curr. Neurol. Neurosci. Rep.
– volume: 3
  year: 2019
  ident: bib39
  article-title: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke
  publication-title: European Radiology Experimental
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: bib15
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
– volume: 14
  start-page: 406
  year: 2001
  end-page: 413
  ident: bib20
  article-title: Variations in size and in symmetry of foramina of the human skull
  publication-title: Clin. Anat.
– start-page: 1
  year: 2014
  end-page: 14
  ident: bib35
  article-title: Striving for Simplicity: the All Convolutional Net
– volume: 2015
  year: 2015
  ident: bib29
  article-title: Predictors of a good outcome after endovascular stroke treatment with stent retrievers
– volume: 2
  start-page: 354
  year: 2010
  ident: bib45
  article-title: Hyperdense artery sign on computed tomography in acute ischemic stroke
  publication-title: World J. Radiol.
– volume: 10
  start-page: 815
  year: 2006
  end-page: 825
  ident: bib23
  article-title: Vessel enhancing diffusion. A scale space representation of vessel structures
  publication-title: Med. Image Anal.
– volume: 9
  start-page: 6
  year: 2017
  end-page: 11
  ident: bib3
  article-title: Endovascular management of stroke patients with large vessel occlusion and minor stroke symptoms
  publication-title: Cureus
– volume: 47
  start-page: 768
  year: 2016
  end-page: 776
  ident: bib9
  article-title: Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke
  publication-title: Stroke
– volume: 83
  start-page: 44
  year: 2017
  end-page: 51
  ident: bib24
  article-title: Medical image classification based on multi-scale non-negative sparse coding
  publication-title: Artif. Intell. Med.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib11
  article-title: Deep learning
  publication-title: Nature
– volume: 11
  start-page: 1
  year: 2016
  end-page: 21
  ident: bib25
  article-title: Unsupervised retinal vessel segmentation using combined filters
  publication-title: PLoS One
– volume: 49
  start-page: 1394
  year: 2018
  end-page: 1401
  ident: bib37
  article-title: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning
  publication-title: Stroke
– volume: 19
  start-page: 27
  year: 2018
  end-page: 39
  ident: bib17
  publication-title: Visual Interpretability for Deep Learning: a Survey,
– year: 1994
  ident: bib22
  article-title: Scale-Space Theory in Computer Vision
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  ident: bib19
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Trans. Med. Imaging
– year: 2016
  ident: bib21
  article-title: Structured receptive fields in CNNs
– volume: 29
  start-page: 196
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103516_bib19
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2035616
– start-page: 770
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103516_bib31
  article-title: Deep residual learning for image recognition
  publication-title: Proc IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 11
  start-page: 625
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103516_bib26
  article-title: “Why does unsupervised pre-training help deep Learning ?
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: 10.1016/j.compbiomed.2019.103516_bib13
– volume: 2
  start-page: 354
  issue: 9
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103516_bib45
  article-title: Hyperdense artery sign on computed tomography in acute ischemic stroke
  publication-title: World J. Radiol.
  doi: 10.4329/wjr.v2.i9.354
– volume: 387
  start-page: 1723
  issue: 10029
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103516_bib4
  article-title: Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00163-X
– ident: 10.1016/j.compbiomed.2019.103516_bib34
– volume: 2
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103516_bib10
  article-title: Automated brain computed tomographic densitometry of early ischemic changes in acute stroke
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.2.1.014004
– start-page: 1135
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103516_bib32
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103516_bib38
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 3
  issue: 8
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103516_bib39
  article-title: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke
  publication-title: European Radiology Experimental
– volume: vol. 9908
  start-page: 630
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103516_bib28
  article-title: Identity mappings in deep residual networks
– issue: 1–9
  year: 2012
  ident: 10.1016/j.compbiomed.2019.103516_bib42
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 47
  start-page: 768
  issue: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103516_bib9
  article-title: Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.115.011788
– year: 1994
  ident: 10.1016/j.compbiomed.2019.103516_bib22
– volume: 9
  start-page: 6
  issue: 6
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103516_bib3
  article-title: Endovascular management of stroke patients with large vessel occlusion and minor stroke symptoms
  publication-title: Cureus
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103516_bib12
  article-title: SegNet : a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103516_bib35
– volume: 19
  start-page: 27
  issue: 1423305
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103516_bib17
  publication-title: Visual Interpretability for Deep Learning: a Survey,
– volume: 47
  start-page: 1017
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103516_bib27
  article-title: Stacked convolutional denoising auto-encoders for feature representation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2536638
– volume: 49
  start-page: 1394
  issue: 6
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103516_bib37
  article-title: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.019740
– volume: 7
  issue: 3
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103516_bib40
  article-title: Towards personalised intra-arterial treatment of patients with acute ischaemic stroke: a study protocol for development and validation of a clinical decision aid
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2016-013699
– volume: 12
  start-page: 615
  issue: 6
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103516_bib14
  article-title: e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients
  publication-title: Int. J. Stroke
  doi: 10.1177/1747493016681020
– volume: 11
  start-page: 439
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103516_bib43
  article-title: Reasons for failed endovascular recanalization attempts in stroke patients
  publication-title: J. Neurointerventional Surg.
  doi: 10.1136/neurintsurg-2018-014060
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103516_bib2
– volume: 3
  start-page: 8
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103516_bib16
  article-title: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-019-0085-6
– volume: 9
  start-page: 1
  issue: SEP
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103516_bib5
  article-title: Predicting outcome of endovascular treatment for acute ischemic stroke: potential value of machine learning algorithms
  publication-title: Front. Neurol.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103516_bib11
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 14
  start-page: 406
  issue: 6
  year: 2001
  ident: 10.1016/j.compbiomed.2019.103516_bib20
  article-title: Variations in size and in symmetry of foramina of the human skull
  publication-title: Clin. Anat.
  doi: 10.1002/ca.1075
– ident: 10.1016/j.compbiomed.2019.103516_bib33
– volume: 2015
  issue: Iv
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103516_bib29
  article-title: Predictors of a good outcome after endovascular stroke treatment with stent retrievers
– year: 2018
  ident: 10.1016/j.compbiomed.2019.103516_bib1
– start-page: j1710
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103516_bib6
  article-title: Selection of patients for intra-arterial treatment for acute ischaemic stroke: development and validation of a clinical decision tool in two randomised trials
  publication-title: BMJ
  doi: 10.1136/bmj.j1710
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103516_bib15
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 16
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103516_bib44
  article-title: The role of vascular imaging in the initial assessment of patients with acute ischemic stroke
  publication-title: Curr. Neurol. Neurosci. Rep.
  doi: 10.1007/s11910-016-0632-y
– start-page: 839
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103516_bib36
  article-title: Grad-cam ++ : improved visual explanations for deep convolutional networks
  publication-title: IEEE Winter Conf. Appl. Comput. Vis.
– volume: 83
  start-page: 44
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103516_bib24
  article-title: Medical image classification based on multi-scale non-negative sparse coding
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.05.006
– volume: 30
  start-page: 525
  issue: 3
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103516_bib8
  article-title: CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A1408
– volume: 3
  start-page: 414
  issue: 5
  year: 2012
  ident: 10.1016/j.compbiomed.2019.103516_bib41
  article-title: Neuroimaging of cerebrovascular disease in the aging brain
  publication-title: Aging Dis.
– year: 2014
  ident: 10.1016/j.compbiomed.2019.103516_bib30
– volume: 360
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103516_bib18
  article-title: Endovascular treatment for acute ischaemic stroke in routine clinical practice: prospective, observational cohort study (MR CLEAN Registry)
  publication-title: BMJ
– volume: 10
  start-page: 815
  issue: 6
  year: 2006
  ident: 10.1016/j.compbiomed.2019.103516_bib23
  article-title: Vessel enhancing diffusion. A scale space representation of vessel structures
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2006.06.003
– year: 2016
  ident: 10.1016/j.compbiomed.2019.103516_bib21
– volume: 355
  start-page: 1670
  issue: 9216
  year: 2000
  ident: 10.1016/j.compbiomed.2019.103516_bib7
  article-title: Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02237-6
– volume: 11
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103516_bib25
  article-title: Unsupervised retinal vessel segmentation using combined filters
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0149943
SSID ssj0004030
Score 2.5351872
Snippet Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103516
SubjectTerms Accuracy
Acute ischemic stroke
Algorithms
Angiography
Arteries
Artificial intelligence
Artificial neural networks
Automation
Biomarkers
Cardiovascular system
Clinical decision making
Coders
Computed tomography
Datasets
Decision making
Deep learning
Gradient-weighted class activation mapping
Image analysis
Image annotation
Image processing
Ischemia
Learning algorithms
Machine learning
Medical imaging
Medical prognosis
Neural networks
Occlusion
Patients
Prognostics
Radiological images
Reperfusion
ResNet
RFNN
Software
Stroke
Structured receptive fields
Visualization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagKyEuiDeFBQ0S14gktWNbHBCPXa2QdoUQK-3N8iuoCySlTf8Iv5iZ2kkvgHpOxnIy9sw39jczjL1SQVbctxVqoI4Fb4UsdOPLwlZ17cvKitJRgvP5RXN2yT9diat84LbJtMrRJu4Mdeg9nZG_rhfo6RBOlPLt6ldBXaPodjW30LjJjtAEKzFjR-9PLj5_2WdGlouUhILWhmMwlLk8ieFFpO2U5E4UL03554L6nv_dQf0LgO4c0elddicjSHiXVH6P3YjdfXbrPN-RP2C_P9rBFnFXGgI9CoQYV5CbQ3yDvoW1DcvR5MHyJxoUIJ4oIHyFfjvgfCOs1jQeKQ12XcQhdmFircLETqfhcmXWDdCRLli_HSIsMWYm1j1shnX_PT5kl6cnXz-cFbnzQuERQAxFW7vaqehwg7pFlI1XTcmrwJWLiA80ghzuvLWq4c5Ku5A6CsICuiX8YxETPmKzru_iEwY1hphCV8Ih1ODBahVVVdpaeyeklSHMmRx_t_G5LDl1x_hhRv7ZtdkrypCiTFLUnFWT5CqV5jhARo8aNWPqKRpLg_7jANk3k2yGJwl2HCh9PC4gk83ExuwX9Zy9nB7jBqdbG9vFfkvvEBMRI0c1Z4_Twps-F6URImr99P-DP2O3aSaJhXPMZsN6G58jlhrci7xh_gAnVh_O
  priority: 102
  providerName: ProQuest
Title Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519303786
https://dx.doi.org/10.1016/j.compbiomed.2019.103516
https://www.ncbi.nlm.nih.gov/pubmed/31707199
https://www.proquest.com/docview/2331765007
https://www.proquest.com/docview/2313652178
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBalg7GX0f3O2pUb7NWr7ciWxJ66rlm20TDGCnkzkiwPr50dEud1f0T_4t5Zsstgg8BeHOL4hOKTPn2yv7tj7I0sRcJtlaAHUhfxKhORym0c6SRNbZzoLDYU4HyxyOeX_PMyW-6xsyEWhmSVAfs9pvdoHc6chLt5sqprivHFrUQfeYkwLCSl3eZcUP78t7_vZB48nvowFMQbujqoebzGi2TbPsydRF6KItAzqnz-9yXqXxS0X4pmB-xh4JBw6rv5iO255jG7fxHekj9hNx90pyPXJ4fANQVK51YQykP8gLaCtS7rAfSg_oWQAqQUBSSw0G477K-D1ZraI7dBX0ccXFOOulUY9enUXMjNugF6qAvabjsHNe6aSXcPm27dXrmn7HJ2_v1sHoXaC5FFCtFFVWpSI53BKWqmTuRW5jFPSi6NQ4agkOZwY7WWOTda6KlQLiM2oCpiQBpd8oztN23jXjBIcZOZqSQzSDZ4qZV0Mol1qqzJhBZlOWFiuN2FDYnJqT7GdTEo0H4Wd44qyFGFd9SEJaPlyifn2MFGDR4thuBThMsCV5AdbN-Ntn8M0h2tj4YBVASg2BTpFAkcsuRYTNjr8Wec4vTeRjeu3dI1pEXEvaOcsOd-4I1_F62RJCr18r-6dsge0Dcv0zli-916614h2erMcT-b8CiWAo9y9vGY3Tv99GW-wM_354uv324Bersung
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF1VrQS8IO4NFBgkeLSwN76tEEJAW6W0iRBqpb4tezMKtHZIHCF-gw_hG5nJrp0XQHnpczIrJzM756z3zAxjz0tbJKmpEvQAd1FaZUUkchNHKuHcxInKYk0FzuNJPjpLP5xn51vsd1cLQ7LKLieuErVtDL0jf8mHiHRIJ-Lizex7RFOj6Ha1G6Hhw-LY_fyBR7bF66N99O8Lzg8PTt-PojBVIDIIjm1Ucc116TQGnx66IjdlHqeJTUvtEPsEAniqjVJlnmpVqGEhXEY4JyrCdpVQ8yVM-TtIMwTuop13B5OPn9aVmPHQF71gdkvx8BW0Q15RRiJxX1RPkjJB9e4ZzVn_OyD-i_CugO_wFrsZGCu89SF2m225-g67Ng538nfZr33VqsitWlEggoF1bgZhGMUXaCqYKzvtUixMLzGBAelSAekyNMsWn9fBbE7rUZDAamo5uNr2Klno1fC0XOgEuwB6hQzKLFsHUzyjk8ofFu28-ebusbMr8cl9tl03tdtlwPFIm4kk00htUqtE6cokVlwYnRWqsHbAiu7vlia0QadpHBey07t9lWtHSXKU9I4asKS3nPlWIBvYiM6jsit1xeQsEa82sH3V2wY65GnOhtZ7XQDJkJYWcr2JBuxZ_zEmFLolUrVrlvQdUj7iSbUcsAc-8Pqfi9ZISYV4-P_Fn7Lro9PxiTw5mhw_YjfoqbwCaI9tt_Ole4w8rtVPwuYB9vmq9-sfALlbhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemTpp4QfynMOCQ4DFa4iZxLIQQ0FUbY9WEmLQ3YzvOVP4kpU2F-Bp8HD4dd7WTvgDqy56Ts5Lc-X538e_uGHtWlCJJbZWgBriL0ioTkcxtHOmEcxsnOosNFTifTvOj8_TdRXaxw353tTBEq-x84tpRl42lf-QHfIRIh-FELA6qQIs4G09ezb9HNEGKTlq7cRreRE7czx-Yvi1fHo9R1885nxx-fHsUhQkDkUWgbKOKG24KZ9AQzciJ3BZ5nCZlWhiHOCgRzFNjtS7y1GihR0K6jDBPVoTzOqFGTOj-dwWiYjFgu28Op2cfNlWZ8cgXwKCnSzERCzwizy4jwrgvsCd6maTa94xmrv8dHP8V_K5BcHKDXQ_RK7z25naT7bj6Fts7Defzt9mvsW515NZtKRDNoHRuDmEwxSU0FSx0OevcLcy-oTMD4qgChs7QrFp8XgfzBa1HBgPrCebg6rJnzELPjKflQlfYJdDvZNB21TqYYb5OjH9Ytovmi7vDzq9EJ3fZoG5qd58Bx_Q2k0lmMMxJSy0LVySx5tKaTGhRlkMmus-tbGiJTpM5vqqO-_ZZbRSlSFHKK2rIkl5y7tuCbCEjO42qruwVHbVC7NpC9kUvG0IjH_JsKb3fGZAKLmqpNhtqyJ72l9G50ImRrl2zonuIBYlZazFk97zh9a-L0hieSvng_4s_YXu4T9X74-nJQ3aNHsqTgfbZoF2s3CMM6VrzOOwdYJ-uerv-AQYiX7E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-efficient+deep+learning+of+radiological+image+data+for+outcome+prediction+after+endovascular+treatment+of+patients+with+acute+ischemic+stroke&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Hilbert%2C+A.&rft.au=Ramos%2C+L.A.&rft.au=van+Os%2C+H.J.A.&rft.au=Olabarriaga%2C+S.D.&rft.date=2019-12-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=115&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103516&rft.externalDocID=S0010482519303786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon