Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke
Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiologica...
Saved in:
Published in | Computers in biology and medicine Vol. 115; p. 103516 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.12.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 1879-0534 |
DOI | 10.1016/j.compbiomed.2019.103516 |
Cover
Loading…
Abstract | Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection.
[Display omitted]
•We proposed a Deep Learning approach for predicting outcomes of acute ischemic stroke patients using CT angiography images.•We found out that in most cases, pre-training with auto-encoders improved the prediction.•Our approach does not require expert annotation of the images and is fast to compute.•Gradient-weighted Class Activation Mapping allows visualization of the imaging features to interpret our models.•Our models had a higher predictive value than models using common radiological image biomarkers for outcome prediction. |
---|---|
AbstractList | Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection.
[Display omitted]
•We proposed a Deep Learning approach for predicting outcomes of acute ischemic stroke patients using CT angiography images.•We found out that in most cases, pre-training with auto-encoders improved the prediction.•Our approach does not require expert annotation of the images and is fast to compute.•Gradient-weighted Class Activation Mapping allows visualization of the imaging features to interpret our models.•Our models had a higher predictive value than models using common radiological image biomarkers for outcome prediction. Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection. Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection.Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection. |
ArticleNumber | 103516 |
Author | Barros, R.S. van der Schaaf, I. Lycklama à Nijeholt, G.J. Strijkers, G.J. Zwinderman, A.H. Majoie, C.B.L.M. Ramos, L.A. Roos, Y.B.W.E.M. Hilbert, A. Yoo, A.J. Marquering, H.A. van Zwam, W.H. Tolhuisen, M.L. Emmer, B.J. Olabarriaga, S.D. van Os, H.J.A. Dippel, D. Wermer, M.J.H. |
Author_xml | – sequence: 1 givenname: A. surname: Hilbert fullname: Hilbert, A. organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 2 givenname: L.A. surname: Ramos fullname: Ramos, L.A. email: l.a.ramos@amsterdamumc.nl organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 3 givenname: H.J.A. surname: van Os fullname: van Os, H.J.A. organization: Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands – sequence: 4 givenname: S.D. surname: Olabarriaga fullname: Olabarriaga, S.D. organization: Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 5 givenname: M.L. surname: Tolhuisen fullname: Tolhuisen, M.L. organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 6 givenname: M.J.H. surname: Wermer fullname: Wermer, M.J.H. organization: Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands – sequence: 7 givenname: R.S. surname: Barros fullname: Barros, R.S. organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 8 givenname: I. surname: van der Schaaf fullname: van der Schaaf, I. organization: Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands – sequence: 9 givenname: D. surname: Dippel fullname: Dippel, D. organization: Department of Neurology, Erasmus MC - University Medical Center, Rotterdam, the Netherlands – sequence: 10 givenname: Y.B.W.E.M. surname: Roos fullname: Roos, Y.B.W.E.M. organization: Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 11 givenname: W.H. surname: van Zwam fullname: van Zwam, W.H. organization: Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands – sequence: 12 givenname: A.J. surname: Yoo fullname: Yoo, A.J. organization: Neurointervention, Texas Stroke Institute, Dallas-Fort Worth, Texas, USA – sequence: 13 givenname: B.J. surname: Emmer fullname: Emmer, B.J. organization: Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 14 givenname: G.J. surname: Lycklama à Nijeholt fullname: Lycklama à Nijeholt, G.J. organization: Radiology, Haaglanden Medical Center, The Hague, the Netherlands – sequence: 15 givenname: A.H. surname: Zwinderman fullname: Zwinderman, A.H. organization: Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 16 givenname: G.J. surname: Strijkers fullname: Strijkers, G.J. organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 17 givenname: C.B.L.M. surname: Majoie fullname: Majoie, C.B.L.M. organization: Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands – sequence: 18 givenname: H.A. surname: Marquering fullname: Marquering, H.A. organization: Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31707199$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URKeFV0CW2LDJYMf5sTcIWn6lSmxgbd04N1NPEzvYTlFfgyfG0bRCmtWsLNnnfvfoHF-QM-cdEkI523LGm3f7rfHT3Fk_Yb8tGVf5WtS8eUY2XLaqYLWozsiGMc6KSpb1ObmIcc8Yq5hgL8i54C1ruVIb8vcTJChwGKyx6BLtEWc6IgRn3Y76gQborR_9zhoYqZ1gh7TPI3TwgfolZR9I54C9Ncl6R2FIGCi63t9DNMsIgaaAkKYVnnEzpHVPpH9suqVgloTURnOLkzU0puDv8CV5PsAY8dXjeUl-ffn88_pbcfPj6_frjzeFqZlKxVB2ZSexqwXvBLaNkQ2reF_JDnmplJCq6gyAbKoOWhCtwpqVZaWGJj8BV-KSvD1w5-B_LxiTnrITHEdw6JeoS8FFU5e8lVn65ki690tw2V1W5TCbmrE2q14_qpYuF6PnkPMKD_op7Sx4fxCY4GMMOGhjE6y5pQB21JzptV691__r1Wu9-lBvBsgjwNOOE0avDqOYI723GHRcGze5uYAm6d7bUyAfjiBmtG79Gnf4cBriH4Z33Tk |
CitedBy_id | crossref_primary_10_1016_j_procs_2024_08_067 crossref_primary_10_1007_s42058_023_00129_6 crossref_primary_10_3389_fneur_2021_734345 crossref_primary_10_1155_2022_3185211 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_105796 crossref_primary_10_1016_j_compbiomed_2021_104414 crossref_primary_10_3389_fgene_2021_827522 crossref_primary_10_3389_fonc_2022_895544 crossref_primary_10_3389_frai_2024_1369702 crossref_primary_10_1111_1754_9485_13193 crossref_primary_10_1161_STROKEAHA_120_033445 crossref_primary_10_1016_j_neucom_2022_07_005 crossref_primary_10_3390_diagnostics13243604 crossref_primary_10_1097_MD_0000000000039217 crossref_primary_10_3389_fneur_2022_809343 crossref_primary_10_1063_5_0011697 crossref_primary_10_1016_j_media_2024_103381 crossref_primary_10_3390_jimaging10100239 crossref_primary_10_3389_fneur_2022_945813 crossref_primary_10_1177_20584601211060347 crossref_primary_10_1007_s11547_023_01735_1 crossref_primary_10_1227_NEU_0000000000001736 crossref_primary_10_53070_bbd_1172807 crossref_primary_10_1093_bib_bbaa310 crossref_primary_10_1109_ACCESS_2020_3004977 crossref_primary_10_3389_fneur_2024_1367854 crossref_primary_10_12677_acm_2024_1441068 crossref_primary_10_3390_diagnostics12081786 crossref_primary_10_1007_s11517_024_03243_4 crossref_primary_10_1177_23969873211067662 crossref_primary_10_12677_acm_2025_153839 crossref_primary_10_1016_j_neurad_2021_05_001 crossref_primary_10_1161_STROKEAHA_123_042496 crossref_primary_10_3389_fneur_2023_1039794 crossref_primary_10_1016_j_eswa_2023_120473 crossref_primary_10_1136_jnis_2024_021556 crossref_primary_10_1186_s41747_024_00452_2 crossref_primary_10_1161_STROKEAHA_122_041442 crossref_primary_10_5853_jos_2023_03426 crossref_primary_10_1007_s00062_023_01276_0 crossref_primary_10_3389_fneur_2023_1294723 crossref_primary_10_1007_s10278_022_00611_0 crossref_primary_10_3390_diagnostics13091571 crossref_primary_10_1186_s41747_021_00225_1 crossref_primary_10_1016_j_media_2022_102470 crossref_primary_10_1038_s41569_021_00527_2 crossref_primary_10_3390_jpm10040286 crossref_primary_10_1007_s00270_021_03044_4 crossref_primary_10_1016_j_cej_2025_159933 crossref_primary_10_3389_fstro_2023_1242901 crossref_primary_10_1007_s10462_025_11119_8 crossref_primary_10_1093_bjro_tzae001 crossref_primary_10_1007_s12065_024_00917_8 crossref_primary_10_1177_0271678X221129230 crossref_primary_10_3390_s24206585 crossref_primary_10_1007_s11831_024_10098_3 crossref_primary_10_3390_jcdd9120468 crossref_primary_10_1016_j_compmedimag_2022_102089 crossref_primary_10_13104_imri_2022_26_4_191 crossref_primary_10_1002_brb3_3307 crossref_primary_10_1016_j_brainresbull_2024_110920 crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105162 crossref_primary_10_3389_fneur_2020_580957 crossref_primary_10_1016_j_compbiomed_2023_106668 crossref_primary_10_1155_2022_7815434 crossref_primary_10_1016_j_ejrad_2024_111405 crossref_primary_10_1136_jnis_2023_021154 crossref_primary_10_1016_j_praneu_2025_01_006 crossref_primary_10_3174_ajnr_A8272 crossref_primary_10_1007_s10916_023_02020_4 crossref_primary_10_1016_j_cmpb_2020_105728 |
Cites_doi | 10.1109/TMI.2009.2035616 10.4329/wjr.v2.i9.354 10.1016/S0140-6736(16)00163-X 10.1117/1.JMI.2.1.014004 10.1016/j.media.2016.10.004 10.1161/STROKEAHA.115.011788 10.1109/TPAMI.2016.2644615 10.1109/TCYB.2016.2536638 10.1161/STROKEAHA.117.019740 10.1136/bmjopen-2016-013699 10.1177/1747493016681020 10.1136/neurintsurg-2018-014060 10.1186/s41747-019-0085-6 10.1038/nature14539 10.1002/ca.1075 10.1136/bmj.j1710 10.1007/s11910-016-0632-y 10.1016/j.artmed.2017.05.006 10.3174/ajnr.A1408 10.1016/j.media.2006.06.003 10.1016/S0140-6736(00)02237-6 10.1371/journal.pone.0149943 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier Ltd. Copyright Elsevier Limited Dec 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited Dec 2019 |
DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2019.103516 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
ExternalDocumentID | 31707199 10_1016_j_compbiomed_2019_103516 S0010482519303786 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR M0N RIG AAYXX AFCTW AGRNS ALIPV CITATION NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c509t-f2b2b8eb531b3e76c86041d48be12993894bcaa864ba7a379e502249f6389a193 |
IEDL.DBID | .~1 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Fri Jul 11 04:05:41 EDT 2025 Wed Aug 13 05:48:25 EDT 2025 Thu Apr 03 06:58:12 EDT 2025 Tue Jul 01 03:28:35 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Fri Feb 23 02:47:57 EST 2024 Tue Aug 26 16:34:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning RFNN Radiological images Gradient-weighted class activation mapping Acute ischemic stroke Structured receptive fields Prognostics ResNet |
Language | English |
License | Copyright © 2019. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-f2b2b8eb531b3e76c86041d48be12993894bcaa864ba7a379e502249f6389a193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S0010482519303786-fx1_lrg.jpg |
PMID | 31707199 |
PQID | 2331765007 |
PQPubID | 1226355 |
ParticipantIDs | proquest_miscellaneous_2313652178 proquest_journals_2331765007 pubmed_primary_31707199 crossref_citationtrail_10_1016_j_compbiomed_2019_103516 crossref_primary_10_1016_j_compbiomed_2019_103516 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103516 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103516 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Jacobsen, van Gemert, Lou, Smeulders (bib21) 2016 Nambiar (bib30) 2014 Mulder (bib40) 2017; 7 Krizhevsky, Sutskever, Hinton (bib42) 2012 Ozdemir, Giray, Arlier, Baş, Inanc, Colak (bib29) 2015; 2015 World Health Organization (bib1) 2018 Alqahtani (bib3) 2017; 9 Berkhemer (bib9) 2016; 47 Öman, Mäkelä, Salli, Savolainen, Kangasniemi (bib39) 2019; 3 Goyal (bib4) 2016; 387 Du, Xiong, Wu, Zhang, Zhang, Tao (bib27) 2017; 47 Zhang, Zhu (bib17) 2018; 19 Kamnitsas (bib38) 2017; 36 Stoel (bib10) 2015; 2 Jansen, Mulder, Goldhoorn (bib18) 2018; 360 Jensen-Kondering (bib45) 2010; 2 Badrinarayanan, Kendall, Cipolla, Member (bib12) 2017; 39 Nagel (bib14) 2017; 12 Website (bib2) 2018 Ribeiro, Singh, Guestrin (bib32) 2016 Tan (bib8) 2009; 30 B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” pp. 2921–2929. Berge, Bergman (bib20) 2001; 14 Van Os (bib5) 2018; 9 Zhang, Shen, Wei, Li, Sangaiah (bib24) 2017; 83 Qazi, Al-Ajlan, Najm, Menon (bib44) 2016; 16 Barber, Demchuk, Zhang, Buchan (bib7) 2000; 355 Kamnitsas (bib15) 2017; 36 Klein, Staring, Murphy, Viergever, Pluim (bib19) 2010; 29 He, Zhang, Ren, Sun (bib31) 2016 Gupta (bib41) 2012; 3 Leischner (bib43) 2019; 11 LeCun, Bengio, Hinton (bib11) 2015; 521 Nielsen, Hansen, Tietze, Mouridsen (bib37) 2018; 49 Venema (bib6) 2017 Oman, Makela, Salli, Savolainen, Kangasniemi (bib16) 2019; 3 Oliveira, Teixeira, Ren, Cavalcanti, Sijbers (bib25) 2016; 11 Erhan, Bengio, Courville, Manzagol, Vincent, Bengio (bib26) 2010; 11 M. Cogswell, A. Das, and D. Batra, “Visual explanations from deep networks via gradient-based localization.”. He, Zhang, Ren, Sun (bib28) 2016; vol. 9908 Springenberg, Dosovitskiy, Brox, Riedmiller (bib35) 2014 Lindeberg (bib22) 1994 Manniesing, Viergever, Niessen (bib23) 2006; 10 Clèrigues, Valverde, Bernal, Freixenet, Oliver, Lladó (bib13) 2018 Chattopadhyay, Sarkar, Howlader (bib36) 2018 Clèrigues (10.1016/j.compbiomed.2019.103516_bib13) 2018 Berge (10.1016/j.compbiomed.2019.103516_bib20) 2001; 14 Website (10.1016/j.compbiomed.2019.103516_bib2) 2018 LeCun (10.1016/j.compbiomed.2019.103516_bib11) 2015; 521 Leischner (10.1016/j.compbiomed.2019.103516_bib43) 2019; 11 Chattopadhyay (10.1016/j.compbiomed.2019.103516_bib36) 2018 Oman (10.1016/j.compbiomed.2019.103516_bib16) 2019; 3 Springenberg (10.1016/j.compbiomed.2019.103516_bib35) 2014 Erhan (10.1016/j.compbiomed.2019.103516_bib26) 2010; 11 Mulder (10.1016/j.compbiomed.2019.103516_bib40) 2017; 7 Qazi (10.1016/j.compbiomed.2019.103516_bib44) 2016; 16 Lindeberg (10.1016/j.compbiomed.2019.103516_bib22) 1994 World Health Organization (10.1016/j.compbiomed.2019.103516_bib1) 2018 Barber (10.1016/j.compbiomed.2019.103516_bib7) 2000; 355 Du (10.1016/j.compbiomed.2019.103516_bib27) 2017; 47 Nielsen (10.1016/j.compbiomed.2019.103516_bib37) 2018; 49 Tan (10.1016/j.compbiomed.2019.103516_bib8) 2009; 30 He (10.1016/j.compbiomed.2019.103516_bib31) 2016 Klein (10.1016/j.compbiomed.2019.103516_bib19) 2010; 29 Oliveira (10.1016/j.compbiomed.2019.103516_bib25) 2016; 11 Krizhevsky (10.1016/j.compbiomed.2019.103516_bib42) 2012 Nagel (10.1016/j.compbiomed.2019.103516_bib14) 2017; 12 He (10.1016/j.compbiomed.2019.103516_bib28) 2016; vol. 9908 Nambiar (10.1016/j.compbiomed.2019.103516_bib30) 2014 Kamnitsas (10.1016/j.compbiomed.2019.103516_bib15) 2017; 36 Gupta (10.1016/j.compbiomed.2019.103516_bib41) 2012; 3 10.1016/j.compbiomed.2019.103516_bib34 Alqahtani (10.1016/j.compbiomed.2019.103516_bib3) 2017; 9 Van Os (10.1016/j.compbiomed.2019.103516_bib5) 2018; 9 Berkhemer (10.1016/j.compbiomed.2019.103516_bib9) 2016; 47 Zhang (10.1016/j.compbiomed.2019.103516_bib17) 2018; 19 Manniesing (10.1016/j.compbiomed.2019.103516_bib23) 2006; 10 Öman (10.1016/j.compbiomed.2019.103516_bib39) 2019; 3 Jansen (10.1016/j.compbiomed.2019.103516_bib18) 2018; 360 Kamnitsas (10.1016/j.compbiomed.2019.103516_bib38) 2017; 36 Stoel (10.1016/j.compbiomed.2019.103516_bib10) 2015; 2 Zhang (10.1016/j.compbiomed.2019.103516_bib24) 2017; 83 Badrinarayanan (10.1016/j.compbiomed.2019.103516_bib12) 2017; 39 Jacobsen (10.1016/j.compbiomed.2019.103516_bib21) 2016 Ozdemir (10.1016/j.compbiomed.2019.103516_bib29) 2015; 2015 Jensen-Kondering (10.1016/j.compbiomed.2019.103516_bib45) 2010; 2 Venema (10.1016/j.compbiomed.2019.103516_bib6) 2017 10.1016/j.compbiomed.2019.103516_bib33 Goyal (10.1016/j.compbiomed.2019.103516_bib4) 2016; 387 Ribeiro (10.1016/j.compbiomed.2019.103516_bib32) 2016 |
References_xml | – volume: 360 year: 2018 ident: bib18 article-title: Endovascular treatment for acute ischaemic stroke in routine clinical practice: prospective, observational cohort study (MR CLEAN Registry) publication-title: BMJ – volume: 30 start-page: 525 year: 2009 end-page: 531 ident: bib8 article-title: CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct publication-title: Am. J. Neuroradiol. – volume: vol. 9908 start-page: 630 year: 2016 end-page: 645 ident: bib28 article-title: Identity mappings in deep residual networks publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) – year: 2018 ident: bib13 article-title: SUNet: a Deep Learning Architecture for Acute Stroke Lesion Segmentation and Outcome Prediction in Multimodal MRI – volume: 47 start-page: 1017 year: 2017 end-page: 1027 ident: bib27 article-title: Stacked convolutional denoising auto-encoders for feature representation publication-title: IEEE Trans. Cybern. – year: 2018 ident: bib1 article-title: WHO - the Top 10 Causes of Death – start-page: 1 year: 2018 end-page: 7 ident: bib2 article-title: Global Burden of Disease Study 2017 , Country Profile – reference: B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” pp. 2921–2929. – year: 2012 ident: bib42 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – reference: M. Cogswell, A. Das, and D. Batra, “Visual explanations from deep networks via gradient-based localization.”. – volume: 3 start-page: 8 year: 2019 ident: bib16 article-title: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke publication-title: Eur. Radiol. Exp. – volume: 9 start-page: 1 year: 2018 end-page: 8 ident: bib5 article-title: Predicting outcome of endovascular treatment for acute ischemic stroke: potential value of machine learning algorithms publication-title: Front. Neurol. – year: 2014 ident: bib30 article-title: CTA collateral status and response to recanalization in patients with acute ischemic stroke – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: bib12 article-title: SegNet : a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 11 start-page: 439 year: 2019 end-page: 442 ident: bib43 article-title: Reasons for failed endovascular recanalization attempts in stroke patients publication-title: J. Neurointerventional Surg. – volume: 355 start-page: 1670 year: 2000 end-page: 1674 ident: bib7 article-title: Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy publication-title: Lancet – start-page: 839 year: 2018 end-page: 847 ident: bib36 article-title: Grad-cam ++ : improved visual explanations for deep convolutional networks publication-title: IEEE Winter Conf. Appl. Comput. Vis. – start-page: j1710 year: 2017 ident: bib6 article-title: Selection of patients for intra-arterial treatment for acute ischaemic stroke: development and validation of a clinical decision tool in two randomised trials publication-title: BMJ – start-page: 770 year: 2016 end-page: 778 ident: bib31 article-title: Deep residual learning for image recognition publication-title: Proc IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 11 start-page: 625 year: 2010 end-page: 660 ident: bib26 article-title: “Why does unsupervised pre-training help deep Learning ? publication-title: J. Mach. Learn. Res. – volume: 387 start-page: 1723 year: 2016 end-page: 1731 ident: bib4 article-title: Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials publication-title: Lancet – volume: 7 year: 2017 ident: bib40 article-title: Towards personalised intra-arterial treatment of patients with acute ischaemic stroke: a study protocol for development and validation of a clinical decision aid publication-title: BMJ Open – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: bib38 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. – volume: 2 year: 2015 ident: bib10 article-title: Automated brain computed tomographic densitometry of early ischemic changes in acute stroke publication-title: J. Med. Imaging – volume: 3 start-page: 414 year: 2012 end-page: 425 ident: bib41 article-title: Neuroimaging of cerebrovascular disease in the aging brain publication-title: Aging Dis. – volume: 12 start-page: 615 year: 2017 end-page: 622 ident: bib14 article-title: e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients publication-title: Int. J. Stroke – start-page: 1135 year: 2016 end-page: 1144 ident: bib32 article-title: “‘Why should I trust you?’: explaining the predictions of any classifier – volume: 16 start-page: 1 year: 2016 end-page: 9 ident: bib44 article-title: The role of vascular imaging in the initial assessment of patients with acute ischemic stroke publication-title: Curr. Neurol. Neurosci. Rep. – volume: 3 year: 2019 ident: bib39 article-title: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke publication-title: European Radiology Experimental – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: bib15 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. – volume: 14 start-page: 406 year: 2001 end-page: 413 ident: bib20 article-title: Variations in size and in symmetry of foramina of the human skull publication-title: Clin. Anat. – start-page: 1 year: 2014 end-page: 14 ident: bib35 article-title: Striving for Simplicity: the All Convolutional Net – volume: 2015 year: 2015 ident: bib29 article-title: Predictors of a good outcome after endovascular stroke treatment with stent retrievers – volume: 2 start-page: 354 year: 2010 ident: bib45 article-title: Hyperdense artery sign on computed tomography in acute ischemic stroke publication-title: World J. Radiol. – volume: 10 start-page: 815 year: 2006 end-page: 825 ident: bib23 article-title: Vessel enhancing diffusion. A scale space representation of vessel structures publication-title: Med. Image Anal. – volume: 9 start-page: 6 year: 2017 end-page: 11 ident: bib3 article-title: Endovascular management of stroke patients with large vessel occlusion and minor stroke symptoms publication-title: Cureus – volume: 47 start-page: 768 year: 2016 end-page: 776 ident: bib9 article-title: Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke publication-title: Stroke – volume: 83 start-page: 44 year: 2017 end-page: 51 ident: bib24 article-title: Medical image classification based on multi-scale non-negative sparse coding publication-title: Artif. Intell. Med. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib11 article-title: Deep learning publication-title: Nature – volume: 11 start-page: 1 year: 2016 end-page: 21 ident: bib25 article-title: Unsupervised retinal vessel segmentation using combined filters publication-title: PLoS One – volume: 49 start-page: 1394 year: 2018 end-page: 1401 ident: bib37 article-title: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning publication-title: Stroke – volume: 19 start-page: 27 year: 2018 end-page: 39 ident: bib17 publication-title: Visual Interpretability for Deep Learning: a Survey, – year: 1994 ident: bib22 article-title: Scale-Space Theory in Computer Vision – volume: 29 start-page: 196 year: 2010 end-page: 205 ident: bib19 article-title: Elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans. Med. Imaging – year: 2016 ident: bib21 article-title: Structured receptive fields in CNNs – volume: 29 start-page: 196 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2019.103516_bib19 article-title: Elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2035616 – start-page: 770 year: 2016 ident: 10.1016/j.compbiomed.2019.103516_bib31 article-title: Deep residual learning for image recognition publication-title: Proc IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 11 start-page: 625 year: 2010 ident: 10.1016/j.compbiomed.2019.103516_bib26 article-title: “Why does unsupervised pre-training help deep Learning ? publication-title: J. Mach. Learn. Res. – year: 2018 ident: 10.1016/j.compbiomed.2019.103516_bib13 – volume: 2 start-page: 354 issue: 9 year: 2010 ident: 10.1016/j.compbiomed.2019.103516_bib45 article-title: Hyperdense artery sign on computed tomography in acute ischemic stroke publication-title: World J. Radiol. doi: 10.4329/wjr.v2.i9.354 – volume: 387 start-page: 1723 issue: 10029 year: 2016 ident: 10.1016/j.compbiomed.2019.103516_bib4 article-title: Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials publication-title: Lancet doi: 10.1016/S0140-6736(16)00163-X – ident: 10.1016/j.compbiomed.2019.103516_bib34 – volume: 2 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2019.103516_bib10 article-title: Automated brain computed tomographic densitometry of early ischemic changes in acute stroke publication-title: J. Med. Imaging doi: 10.1117/1.JMI.2.1.014004 – start-page: 1135 year: 2016 ident: 10.1016/j.compbiomed.2019.103516_bib32 – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.compbiomed.2019.103516_bib38 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: 3 issue: 8 year: 2019 ident: 10.1016/j.compbiomed.2019.103516_bib39 article-title: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke publication-title: European Radiology Experimental – volume: vol. 9908 start-page: 630 year: 2016 ident: 10.1016/j.compbiomed.2019.103516_bib28 article-title: Identity mappings in deep residual networks – issue: 1–9 year: 2012 ident: 10.1016/j.compbiomed.2019.103516_bib42 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 47 start-page: 768 issue: 3 year: 2016 ident: 10.1016/j.compbiomed.2019.103516_bib9 article-title: Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke publication-title: Stroke doi: 10.1161/STROKEAHA.115.011788 – year: 1994 ident: 10.1016/j.compbiomed.2019.103516_bib22 – volume: 9 start-page: 6 issue: 6 year: 2017 ident: 10.1016/j.compbiomed.2019.103516_bib3 article-title: Endovascular management of stroke patients with large vessel occlusion and minor stroke symptoms publication-title: Cureus – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.compbiomed.2019.103516_bib12 article-title: SegNet : a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – start-page: 1 year: 2014 ident: 10.1016/j.compbiomed.2019.103516_bib35 – volume: 19 start-page: 27 issue: 1423305 year: 2018 ident: 10.1016/j.compbiomed.2019.103516_bib17 publication-title: Visual Interpretability for Deep Learning: a Survey, – volume: 47 start-page: 1017 issue: 4 year: 2017 ident: 10.1016/j.compbiomed.2019.103516_bib27 article-title: Stacked convolutional denoising auto-encoders for feature representation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2536638 – volume: 49 start-page: 1394 issue: 6 year: 2018 ident: 10.1016/j.compbiomed.2019.103516_bib37 article-title: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning publication-title: Stroke doi: 10.1161/STROKEAHA.117.019740 – volume: 7 issue: 3 year: 2017 ident: 10.1016/j.compbiomed.2019.103516_bib40 article-title: Towards personalised intra-arterial treatment of patients with acute ischaemic stroke: a study protocol for development and validation of a clinical decision aid publication-title: BMJ Open doi: 10.1136/bmjopen-2016-013699 – volume: 12 start-page: 615 issue: 6 year: 2017 ident: 10.1016/j.compbiomed.2019.103516_bib14 article-title: e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients publication-title: Int. J. Stroke doi: 10.1177/1747493016681020 – volume: 11 start-page: 439 issue: 5 year: 2019 ident: 10.1016/j.compbiomed.2019.103516_bib43 article-title: Reasons for failed endovascular recanalization attempts in stroke patients publication-title: J. Neurointerventional Surg. doi: 10.1136/neurintsurg-2018-014060 – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2019.103516_bib2 – volume: 3 start-page: 8 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2019.103516_bib16 article-title: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-019-0085-6 – volume: 9 start-page: 1 issue: SEP year: 2018 ident: 10.1016/j.compbiomed.2019.103516_bib5 article-title: Predicting outcome of endovascular treatment for acute ischemic stroke: potential value of machine learning algorithms publication-title: Front. Neurol. – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.compbiomed.2019.103516_bib11 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 14 start-page: 406 issue: 6 year: 2001 ident: 10.1016/j.compbiomed.2019.103516_bib20 article-title: Variations in size and in symmetry of foramina of the human skull publication-title: Clin. Anat. doi: 10.1002/ca.1075 – ident: 10.1016/j.compbiomed.2019.103516_bib33 – volume: 2015 issue: Iv year: 2015 ident: 10.1016/j.compbiomed.2019.103516_bib29 article-title: Predictors of a good outcome after endovascular stroke treatment with stent retrievers – year: 2018 ident: 10.1016/j.compbiomed.2019.103516_bib1 – start-page: j1710 year: 2017 ident: 10.1016/j.compbiomed.2019.103516_bib6 article-title: Selection of patients for intra-arterial treatment for acute ischaemic stroke: development and validation of a clinical decision tool in two randomised trials publication-title: BMJ doi: 10.1136/bmj.j1710 – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.compbiomed.2019.103516_bib15 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: 16 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.compbiomed.2019.103516_bib44 article-title: The role of vascular imaging in the initial assessment of patients with acute ischemic stroke publication-title: Curr. Neurol. Neurosci. Rep. doi: 10.1007/s11910-016-0632-y – start-page: 839 year: 2018 ident: 10.1016/j.compbiomed.2019.103516_bib36 article-title: Grad-cam ++ : improved visual explanations for deep convolutional networks publication-title: IEEE Winter Conf. Appl. Comput. Vis. – volume: 83 start-page: 44 year: 2017 ident: 10.1016/j.compbiomed.2019.103516_bib24 article-title: Medical image classification based on multi-scale non-negative sparse coding publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2017.05.006 – volume: 30 start-page: 525 issue: 3 year: 2009 ident: 10.1016/j.compbiomed.2019.103516_bib8 article-title: CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A1408 – volume: 3 start-page: 414 issue: 5 year: 2012 ident: 10.1016/j.compbiomed.2019.103516_bib41 article-title: Neuroimaging of cerebrovascular disease in the aging brain publication-title: Aging Dis. – year: 2014 ident: 10.1016/j.compbiomed.2019.103516_bib30 – volume: 360 year: 2018 ident: 10.1016/j.compbiomed.2019.103516_bib18 article-title: Endovascular treatment for acute ischaemic stroke in routine clinical practice: prospective, observational cohort study (MR CLEAN Registry) publication-title: BMJ – volume: 10 start-page: 815 issue: 6 year: 2006 ident: 10.1016/j.compbiomed.2019.103516_bib23 article-title: Vessel enhancing diffusion. A scale space representation of vessel structures publication-title: Med. Image Anal. doi: 10.1016/j.media.2006.06.003 – year: 2016 ident: 10.1016/j.compbiomed.2019.103516_bib21 – volume: 355 start-page: 1670 issue: 9216 year: 2000 ident: 10.1016/j.compbiomed.2019.103516_bib7 article-title: Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy publication-title: Lancet doi: 10.1016/S0140-6736(00)02237-6 – volume: 11 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.compbiomed.2019.103516_bib25 article-title: Unsupervised retinal vessel segmentation using combined filters publication-title: PLoS One doi: 10.1371/journal.pone.0149943 |
SSID | ssj0004030 |
Score | 2.5351872 |
Snippet | Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103516 |
SubjectTerms | Accuracy Acute ischemic stroke Algorithms Angiography Arteries Artificial intelligence Artificial neural networks Automation Biomarkers Cardiovascular system Clinical decision making Coders Computed tomography Datasets Decision making Deep learning Gradient-weighted class activation mapping Image analysis Image annotation Image processing Ischemia Learning algorithms Machine learning Medical imaging Medical prognosis Neural networks Occlusion Patients Prognostics Radiological images Reperfusion ResNet RFNN Software Stroke Structured receptive fields Visualization |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagKyEuiDeFBQ0S14gktWNbHBCPXa2QdoUQK-3N8iuoCySlTf8Iv5iZ2kkvgHpOxnIy9sw39jczjL1SQVbctxVqoI4Fb4UsdOPLwlZ17cvKitJRgvP5RXN2yT9diat84LbJtMrRJu4Mdeg9nZG_rhfo6RBOlPLt6ldBXaPodjW30LjJjtAEKzFjR-9PLj5_2WdGlouUhILWhmMwlLk8ieFFpO2U5E4UL03554L6nv_dQf0LgO4c0elddicjSHiXVH6P3YjdfXbrPN-RP2C_P9rBFnFXGgI9CoQYV5CbQ3yDvoW1DcvR5MHyJxoUIJ4oIHyFfjvgfCOs1jQeKQ12XcQhdmFircLETqfhcmXWDdCRLli_HSIsMWYm1j1shnX_PT5kl6cnXz-cFbnzQuERQAxFW7vaqehwg7pFlI1XTcmrwJWLiA80ghzuvLWq4c5Ku5A6CsICuiX8YxETPmKzru_iEwY1hphCV8Ih1ODBahVVVdpaeyeklSHMmRx_t_G5LDl1x_hhRv7ZtdkrypCiTFLUnFWT5CqV5jhARo8aNWPqKRpLg_7jANk3k2yGJwl2HCh9PC4gk83ExuwX9Zy9nB7jBqdbG9vFfkvvEBMRI0c1Z4_Twps-F6URImr99P-DP2O3aSaJhXPMZsN6G58jlhrci7xh_gAnVh_O priority: 102 providerName: ProQuest |
Title | Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519303786 https://dx.doi.org/10.1016/j.compbiomed.2019.103516 https://www.ncbi.nlm.nih.gov/pubmed/31707199 https://www.proquest.com/docview/2331765007 https://www.proquest.com/docview/2313652178 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBalg7GX0f3O2pUb7NWr7ciWxJ66rlm20TDGCnkzkiwPr50dEud1f0T_4t5Zsstgg8BeHOL4hOKTPn2yv7tj7I0sRcJtlaAHUhfxKhORym0c6SRNbZzoLDYU4HyxyOeX_PMyW-6xsyEWhmSVAfs9pvdoHc6chLt5sqprivHFrUQfeYkwLCSl3eZcUP78t7_vZB48nvowFMQbujqoebzGi2TbPsydRF6KItAzqnz-9yXqXxS0X4pmB-xh4JBw6rv5iO255jG7fxHekj9hNx90pyPXJ4fANQVK51YQykP8gLaCtS7rAfSg_oWQAqQUBSSw0G477K-D1ZraI7dBX0ccXFOOulUY9enUXMjNugF6qAvabjsHNe6aSXcPm27dXrmn7HJ2_v1sHoXaC5FFCtFFVWpSI53BKWqmTuRW5jFPSi6NQ4agkOZwY7WWOTda6KlQLiM2oCpiQBpd8oztN23jXjBIcZOZqSQzSDZ4qZV0Mol1qqzJhBZlOWFiuN2FDYnJqT7GdTEo0H4Wd44qyFGFd9SEJaPlyifn2MFGDR4thuBThMsCV5AdbN-Ntn8M0h2tj4YBVASg2BTpFAkcsuRYTNjr8Wec4vTeRjeu3dI1pEXEvaOcsOd-4I1_F62RJCr18r-6dsge0Dcv0zli-916614h2erMcT-b8CiWAo9y9vGY3Tv99GW-wM_354uv324Bersung |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF1VrQS8IO4NFBgkeLSwN76tEEJAW6W0iRBqpb4tezMKtHZIHCF-gw_hG5nJrp0XQHnpczIrJzM756z3zAxjz0tbJKmpEvQAd1FaZUUkchNHKuHcxInKYk0FzuNJPjpLP5xn51vsd1cLQ7LKLieuErVtDL0jf8mHiHRIJ-Lizex7RFOj6Ha1G6Hhw-LY_fyBR7bF66N99O8Lzg8PTt-PojBVIDIIjm1Ucc116TQGnx66IjdlHqeJTUvtEPsEAniqjVJlnmpVqGEhXEY4JyrCdpVQ8yVM-TtIMwTuop13B5OPn9aVmPHQF71gdkvx8BW0Q15RRiJxX1RPkjJB9e4ZzVn_OyD-i_CugO_wFrsZGCu89SF2m225-g67Ng538nfZr33VqsitWlEggoF1bgZhGMUXaCqYKzvtUixMLzGBAelSAekyNMsWn9fBbE7rUZDAamo5uNr2Klno1fC0XOgEuwB6hQzKLFsHUzyjk8ofFu28-ebusbMr8cl9tl03tdtlwPFIm4kk00htUqtE6cokVlwYnRWqsHbAiu7vlia0QadpHBey07t9lWtHSXKU9I4asKS3nPlWIBvYiM6jsit1xeQsEa82sH3V2wY65GnOhtZ7XQDJkJYWcr2JBuxZ_zEmFLolUrVrlvQdUj7iSbUcsAc-8Pqfi9ZISYV4-P_Fn7Lro9PxiTw5mhw_YjfoqbwCaI9tt_Ole4w8rtVPwuYB9vmq9-sfALlbhQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemTpp4QfynMOCQ4DFa4iZxLIQQ0FUbY9WEmLQ3YzvOVP4kpU2F-Bp8HD4dd7WTvgDqy56Ts5Lc-X538e_uGHtWlCJJbZWgBriL0ioTkcxtHOmEcxsnOosNFTifTvOj8_TdRXaxw353tTBEq-x84tpRl42lf-QHfIRIh-FELA6qQIs4G09ezb9HNEGKTlq7cRreRE7czx-Yvi1fHo9R1885nxx-fHsUhQkDkUWgbKOKG24KZ9AQzciJ3BZ5nCZlWhiHOCgRzFNjtS7y1GihR0K6jDBPVoTzOqFGTOj-dwWiYjFgu28Op2cfNlWZ8cgXwKCnSzERCzwizy4jwrgvsCd6maTa94xmrv8dHP8V_K5BcHKDXQ_RK7z25naT7bj6Fts7Defzt9mvsW515NZtKRDNoHRuDmEwxSU0FSx0OevcLcy-oTMD4qgChs7QrFp8XgfzBa1HBgPrCebg6rJnzELPjKflQlfYJdDvZNB21TqYYb5OjH9Ytovmi7vDzq9EJ3fZoG5qd58Bx_Q2k0lmMMxJSy0LVySx5tKaTGhRlkMmus-tbGiJTpM5vqqO-_ZZbRSlSFHKK2rIkl5y7tuCbCEjO42qruwVHbVC7NpC9kUvG0IjH_JsKb3fGZAKLmqpNhtqyJ72l9G50ImRrl2zonuIBYlZazFk97zh9a-L0hieSvng_4s_YXu4T9X74-nJQ3aNHsqTgfbZoF2s3CMM6VrzOOwdYJ-uerv-AQYiX7E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-efficient+deep+learning+of+radiological+image+data+for+outcome+prediction+after+endovascular+treatment+of+patients+with+acute+ischemic+stroke&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Hilbert%2C+A.&rft.au=Ramos%2C+L.A.&rft.au=van+Os%2C+H.J.A.&rft.au=Olabarriaga%2C+S.D.&rft.date=2019-12-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=115&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103516&rft.externalDocID=S0010482519303786 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |