Down-regulation of Myeloid Cell Leukemia-1 through Inhibiting Erk/Pin 1 Pathway by Sorafenib Facilitates Chemosensitization in Breast Cancer

Myeloid cell leukemia-1 (Mcl-1), a Bcl-2–like antiapoptotic protein, plays a role in cell immortalization and chemoresistance in a number of human malignancies. A peptidyl-prolyl cis/trans isomerase, Pin1 is involved in many cellular events, such as cell cycle progression, cell proliferation, and di...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 68; no. 15; pp. 6109 - 6117
Main Authors Ding, Qingqing, Huo, Longfei, Yang, Jer-Yen, Xia, Weiya, Wei, Yongkun, Liao, Yong, Chang, Chun-Ju, Yang, Yan, Lai, Chien-Chen, Lee, Dung-Fang, Yen, Chia-Jui, Chen, Yun-Ju Rita, Hsu, Jung-Mao, Kuo, Hsu-Ping, Lin, Chun-Yi, Tsai, Fuu-Jen, Li, Long-Yuan, Tsai, Chang-Hai, Hung, Mien-Chie
Format Journal Article
LanguageEnglish
Published United States 01.08.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Myeloid cell leukemia-1 (Mcl-1), a Bcl-2–like antiapoptotic protein, plays a role in cell immortalization and chemoresistance in a number of human malignancies. A peptidyl-prolyl cis/trans isomerase, Pin1 is involved in many cellular events, such as cell cycle progression, cell proliferation, and differentiation through isomerizing prophosphorylated substrates. It has been reported that down-regulation of Pin1 induces apoptosis, and that Erk phosphorylates and up-regulates Mcl-1; however, the underlying mechanisms for the two phenomena are not clear yet. Here, we showed that Pin 1 stabilizes Mcl-1, which is required for Mcl-1 posphorylation by Erk. First, we found expression of Mcl-1 and Pin1 were positively correlated and associated with poor survival in human breast cancer. We then showed that Erk could phosphorylate Mcl-1 at two consensus residues, Thr 92 and 163, which is required for the association of Mcl-1 and Pin1, resulting in stabilization of Mcl-1. Moreover, Pin1 is also required for the up-regulation of Mcl-1 by Erk activation. Based on this newly identified mechanism of Mcl-1 stabilization, two strategies were used to overcome Mcl-1–mediated chemoresistance: inhibiting Erk by Sorafenib, an approved clinical anticancer drug, or knocking down Pin1 by using a SiRNA technique. In conclusion, the current report not only unravels a novel mechanism to link Erk/Pin1 pathway and Mcl-1–mediated chemoresistance but also provides a plausible combination therapy, Taxol (Paclitaxel) plus Sorafenib, which was shown to be effective in killing breast cancer cells. [Cancer Res 2008;68(15):6109–17]
AbstractList Myeloid cell leukemia-1 (Mcl-1), a Bcl-2-like antiapoptotic protein, plays a role in cell immortalization and chemoresistance in a number of human malignancies. A peptidyl-prolyl cis/trans isomerase, Pin1 is involved in many cellular events, such as cell cycle progression, cell proliferation, and differentiation through isomerizing prophosphorylated substrates. It has been reported that down-regulation of Pin1 induces apoptosis, and that Erk phosphorylates and up-regulates Mcl-1; however, the underlying mechanisms for the two phenomena are not clear yet. Here, we showed that Pin 1 stabilizes Mcl-1, which is required for Mcl-1 posphorylation by Erk. First, we found expression of Mcl-1 and Pin1 were positively correlated and associated with poor survival in human breast cancer. We then showed that Erk could phosphorylate Mcl-1 at two consensus residues, Thr 92 and 163, which is required for the association of Mcl-1 and Pin1, resulting in stabilization of Mcl-1. Moreover, Pin1 is also required for the up-regulation of Mcl-1 by Erk activation. Based on this newly identified mechanism of Mcl-1 stabilization, two strategies were used to overcome Mcl-1-mediated chemoresistance: inhibiting Erk by Sorafenib, an approved clinical anticancer drug, or knocking down Pin1 by using a SiRNA technique. In conclusion, the current report not only unravels a novel mechanism to link Erk/Pin1 pathway and Mcl-1-mediated chemoresistance but also provides a plausible combination therapy, Taxol (Paclitaxel) plus Sorafenib, which was shown to be effective in killing breast cancer cells.
Myeloid cell leukemia-1 (Mcl-1), a Bcl-2-like antiapoptotic protein, plays a role in cell immortalization and chemoresistance in a number of human malignancies. A peptidyl-prolyl cis/trans isomerase, Pin1 is involved in many cellular events, such as cell cycle progression, cell proliferation, and differentiation through isomerizing prophosphorylated substrates. It has been reported that down-regulation of Pin1 induces apoptosis, and that Erk phosphorylates and up-regulates Mcl-1; however, the underlying mechanisms for the two phenomena are not clear yet. Here, we showed that Pin 1 stabilizes Mcl-1, which is required for Mcl-1 posphorylation by Erk. First, we found expression of Mcl-1 and Pin1 were positively correlated and associated with poor survival in human breast cancer. We then showed that Erk could phosphorylate Mcl-1 at two consensus residues, Thr 92 and 163, which is required for the association of Mcl-1 and Pin1, resulting in stabilization of Mcl-1. Moreover, Pin1 is also required for the up-regulation of Mcl-1 by Erk activation. Based on this newly identified mechanism of Mcl-1 stabilization, two strategies were used to overcome Mcl-1-mediated chemoresistance: inhibiting Erk by Sorafenib, an approved clinical anticancer drug, or knocking down Pin1 by using a SiRNA technique. In conclusion, the current report not only unravels a novel mechanism to link Erk/Pin1 pathway and Mcl-1-mediated chemoresistance but also provides a plausible combination therapy, Taxol (Paclitaxel) plus Sorafenib, which was shown to be effective in killing breast cancer cells.Myeloid cell leukemia-1 (Mcl-1), a Bcl-2-like antiapoptotic protein, plays a role in cell immortalization and chemoresistance in a number of human malignancies. A peptidyl-prolyl cis/trans isomerase, Pin1 is involved in many cellular events, such as cell cycle progression, cell proliferation, and differentiation through isomerizing prophosphorylated substrates. It has been reported that down-regulation of Pin1 induces apoptosis, and that Erk phosphorylates and up-regulates Mcl-1; however, the underlying mechanisms for the two phenomena are not clear yet. Here, we showed that Pin 1 stabilizes Mcl-1, which is required for Mcl-1 posphorylation by Erk. First, we found expression of Mcl-1 and Pin1 were positively correlated and associated with poor survival in human breast cancer. We then showed that Erk could phosphorylate Mcl-1 at two consensus residues, Thr 92 and 163, which is required for the association of Mcl-1 and Pin1, resulting in stabilization of Mcl-1. Moreover, Pin1 is also required for the up-regulation of Mcl-1 by Erk activation. Based on this newly identified mechanism of Mcl-1 stabilization, two strategies were used to overcome Mcl-1-mediated chemoresistance: inhibiting Erk by Sorafenib, an approved clinical anticancer drug, or knocking down Pin1 by using a SiRNA technique. In conclusion, the current report not only unravels a novel mechanism to link Erk/Pin1 pathway and Mcl-1-mediated chemoresistance but also provides a plausible combination therapy, Taxol (Paclitaxel) plus Sorafenib, which was shown to be effective in killing breast cancer cells.
Myeloid cell leukemia-1 (Mcl-1), a Bcl-2–like antiapoptotic protein, plays a role in cell immortalization and chemoresistance in a number of human malignancies. A peptidyl-prolyl cis/trans isomerase, Pin1 is involved in many cellular events, such as cell cycle progression, cell proliferation, and differentiation through isomerizing prophosphorylated substrates. It has been reported that down-regulation of Pin1 induces apoptosis, and that Erk phosphorylates and up-regulates Mcl-1; however, the underlying mechanisms for the two phenomena are not clear yet. Here, we showed that Pin 1 stabilizes Mcl-1, which is required for Mcl-1 posphorylation by Erk. First, we found expression of Mcl-1 and Pin1 were positively correlated and associated with poor survival in human breast cancer. We then showed that Erk could phosphorylate Mcl-1 at two consensus residues, Thr 92 and 163, which is required for the association of Mcl-1 and Pin1, resulting in stabilization of Mcl-1. Moreover, Pin1 is also required for the up-regulation of Mcl-1 by Erk activation. Based on this newly identified mechanism of Mcl-1 stabilization, two strategies were used to overcome Mcl-1–mediated chemoresistance: inhibiting Erk by Sorafenib, an approved clinical anticancer drug, or knocking down Pin1 by using a SiRNA technique. In conclusion, the current report not only unravels a novel mechanism to link Erk/Pin1 pathway and Mcl-1–mediated chemoresistance but also provides a plausible combination therapy, Taxol (Paclitaxel) plus Sorafenib, which was shown to be effective in killing breast cancer cells. [Cancer Res 2008;68(15):6109–17]
Author Yen, Chia-Jui
Li, Long-Yuan
Ding, Qingqing
Lin, Chun-Yi
Hung, Mien-Chie
Huo, Longfei
Chen, Yun-Ju Rita
Lee, Dung-Fang
Tsai, Chang-Hai
Liao, Yong
Tsai, Fuu-Jen
Yang, Jer-Yen
Hsu, Jung-Mao
Wei, Yongkun
Xia, Weiya
Yang, Yan
Lai, Chien-Chen
Chang, Chun-Ju
Kuo, Hsu-Ping
AuthorAffiliation 7 Asia University, Taichung, Taiwan
3 Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas
1 Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
2 Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
5 China Medical University and Hospital, Taichung, Taiwan
4 Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
6 Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital; Taichung, Taiwan
AuthorAffiliation_xml – name: 7 Asia University, Taichung, Taiwan
– name: 3 Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas
– name: 4 Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
– name: 1 Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
– name: 5 China Medical University and Hospital, Taichung, Taiwan
– name: 6 Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital; Taichung, Taiwan
– name: 2 Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
Author_xml – sequence: 1
  givenname: Qingqing
  surname: Ding
  fullname: Ding, Qingqing
– sequence: 2
  givenname: Longfei
  surname: Huo
  fullname: Huo, Longfei
– sequence: 3
  givenname: Jer-Yen
  surname: Yang
  fullname: Yang, Jer-Yen
– sequence: 4
  givenname: Weiya
  surname: Xia
  fullname: Xia, Weiya
– sequence: 5
  givenname: Yongkun
  surname: Wei
  fullname: Wei, Yongkun
– sequence: 6
  givenname: Yong
  surname: Liao
  fullname: Liao, Yong
– sequence: 7
  givenname: Chun-Ju
  surname: Chang
  fullname: Chang, Chun-Ju
– sequence: 8
  givenname: Yan
  surname: Yang
  fullname: Yang, Yan
– sequence: 9
  givenname: Chien-Chen
  surname: Lai
  fullname: Lai, Chien-Chen
– sequence: 10
  givenname: Dung-Fang
  surname: Lee
  fullname: Lee, Dung-Fang
– sequence: 11
  givenname: Chia-Jui
  surname: Yen
  fullname: Yen, Chia-Jui
– sequence: 12
  givenname: Yun-Ju Rita
  surname: Chen
  fullname: Chen, Yun-Ju Rita
– sequence: 13
  givenname: Jung-Mao
  surname: Hsu
  fullname: Hsu, Jung-Mao
– sequence: 14
  givenname: Hsu-Ping
  surname: Kuo
  fullname: Kuo, Hsu-Ping
– sequence: 15
  givenname: Chun-Yi
  surname: Lin
  fullname: Lin, Chun-Yi
– sequence: 16
  givenname: Fuu-Jen
  surname: Tsai
  fullname: Tsai, Fuu-Jen
– sequence: 17
  givenname: Long-Yuan
  surname: Li
  fullname: Li, Long-Yuan
– sequence: 18
  givenname: Chang-Hai
  surname: Tsai
  fullname: Tsai, Chang-Hai
– sequence: 19
  givenname: Mien-Chie
  surname: Hung
  fullname: Hung, Mien-Chie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18676833$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKctjwDyil3aOIljW0hIJbRQaaCVCmvLTm4mpoldbIdqeAYeGkdTys-mK1_L59xjne8A7VlnAaEXJD8mhPKTPM95RitWHDenn7I055SJJ2hFaMkzVlV0D60eNPvoIISv6UpJTp-hfcJrVvOyXKGf79ydzTxs5lFF4yx2Pf64hdGZDjcwjngN8w1MRmUEx8G7eTPgCzsYbaKxG3zmb06ujMUEX6k43Kkt1lt87bzqwRqNz1VrRhNVhICbASYXwIbk_LHLSsa3HlSIuFG2BX-EnvZqDPD8_jxEX87PPjcfsvXl-4vmdJ21NBcxAy1IocpCEypA07IXpOt0pUnPaQ91JUAxDXXHiO40YYzwDigDyrngtaKqPERvdntvZz1B14KNXo3y1ptJ-a10ysh_X6wZ5MZ9l0WqjbIiLXh1v8C7bzOEKCcT2lSXsuDmIGtRMlYLkoQv_056iPgNIAnoTtB6F4KH_o8klwtouUCUC0SZQMs0L6CT7_V_vnbpObWaPmzGR9y_AHjGsZM
CitedBy_id crossref_primary_10_1016_j_celrep_2015_07_055
crossref_primary_10_1158_1078_0432_CCR_13_0043
crossref_primary_10_1038_nature08646
crossref_primary_10_1038_cgt_2013_8
crossref_primary_10_1186_1476_4598_8_80
crossref_primary_10_1186_s12885_017_3492_1
crossref_primary_10_1080_14656566_2017_1309024
crossref_primary_10_3390_cancers12040875
crossref_primary_10_1016_j_bbrc_2022_01_019
crossref_primary_10_1016_j_phrs_2014_12_005
crossref_primary_10_1038_onc_2013_74
crossref_primary_10_1007_s12272_019_01122_3
crossref_primary_10_1126_scisignal_adi8743
crossref_primary_10_1371_journal_pone_0078570
crossref_primary_10_1080_07391102_2023_2209193
crossref_primary_10_1517_13543784_2012_689824
crossref_primary_10_3390_biomedicines9040359
crossref_primary_10_1016_j_semcancer_2023_03_001
crossref_primary_10_4161_cbt_28931
crossref_primary_10_1158_0008_5472_CAN_10_1033
crossref_primary_10_1074_jbc_M113_478016
crossref_primary_10_1002_hed_24096
crossref_primary_10_1021_acs_jmedchem_1c01686
crossref_primary_10_1093_jnen_nlx076
crossref_primary_10_1186_s12935_019_0936_5
crossref_primary_10_1016_j_molcel_2012_04_012
crossref_primary_10_1016_j_bbagen_2015_02_018
crossref_primary_10_1016_j_bioorg_2023_106642
crossref_primary_10_1016_j_ejmech_2020_113038
crossref_primary_10_1038_bjc_2011_242
crossref_primary_10_1177_1758835920906047
crossref_primary_10_1371_journal_pone_0146073
crossref_primary_10_1016_j_cellsig_2021_109933
crossref_primary_10_1007_s12272_016_0821_x
crossref_primary_10_1038_s41419_020_03351_7
crossref_primary_10_18632_oncotarget_1147
crossref_primary_10_3389_fonc_2019_00094
crossref_primary_10_18632_oncotarget_3042
crossref_primary_10_1016_j_radonc_2012_05_005
crossref_primary_10_1038_labinvest_2015_155
crossref_primary_10_1016_j_bbrc_2024_150972
crossref_primary_10_1007_s10495_012_0799_x
crossref_primary_10_3748_wjg_v22_i45_9921
crossref_primary_10_1007_s10495_016_1307_5
crossref_primary_10_1083_jcb_200912070
crossref_primary_10_1016_j_tibs_2011_07_001
crossref_primary_10_1016_j_phrs_2022_106456
crossref_primary_10_2174_1570178617999200718004012
crossref_primary_10_3390_cells13090731
crossref_primary_10_1016_j_bcp_2013_05_014
crossref_primary_10_1016_j_taap_2018_09_008
crossref_primary_10_1080_07391102_2011_10508589
crossref_primary_10_1007_s00432_013_1429_x
crossref_primary_10_1111_j_1601_0825_2010_01774_x
crossref_primary_10_1016_j_jmgm_2010_04_002
crossref_primary_10_1016_j_bcp_2014_04_002
crossref_primary_10_1080_15384101_2022_2054096
crossref_primary_10_1016_j_bbagen_2017_11_021
crossref_primary_10_1016_j_taap_2019_114662
crossref_primary_10_3892_mmr_2013_1763
crossref_primary_10_1189_jlb_3A1114_537RR
crossref_primary_10_1016_j_bioorg_2024_107171
crossref_primary_10_1074_jbc_M110_105452
crossref_primary_10_1016_j_bbamcr_2015_03_012
crossref_primary_10_1007_s10549_010_1281_5
crossref_primary_10_1158_1535_7163_MCT_16_0017
crossref_primary_10_1016_j_bcp_2010_07_039
crossref_primary_10_1016_j_xcrm_2023_101007
crossref_primary_10_3389_fphar_2018_01477
crossref_primary_10_3390_cancers14020279
crossref_primary_10_1017_S1462399411001906
crossref_primary_10_1096_fj_13_236851
crossref_primary_10_1248_bpb_b15_00245
crossref_primary_10_1100_2011_131539
crossref_primary_10_1158_1078_0432_CCR_12_3909
crossref_primary_10_1080_07391102_2010_10507352
crossref_primary_10_1002_emmm_201302909
crossref_primary_10_1111_j_1600_065X_2012_01123_x
crossref_primary_10_1016_j_jconrel_2018_04_055
crossref_primary_10_1016_j_taap_2020_115013
crossref_primary_10_1038_aja_2010_21
crossref_primary_10_1158_1078_0432_CCR_08_3294
crossref_primary_10_1007_s12029_021_00600_6
crossref_primary_10_3390_antiox11061195
crossref_primary_10_1016_j_critrevonc_2024_104351
crossref_primary_10_3389_fimmu_2024_1482088
crossref_primary_10_3390_cells3020418
crossref_primary_10_1074_jbc_RA118_006029
crossref_primary_10_18632_oncotarget_15967
crossref_primary_10_3389_fonc_2018_00469
crossref_primary_10_1016_j_canlet_2012_03_015
crossref_primary_10_1634_theoncologist_2012_0043
crossref_primary_10_1007_s00280_018_3540_9
crossref_primary_10_1038_ncomms15772
crossref_primary_10_1080_19336918_2017_1393591
crossref_primary_10_3389_fcell_2020_00120
crossref_primary_10_1038_emboj_2010_112
crossref_primary_10_1080_01635581_2016_1142582
crossref_primary_10_1038_embor_2013_20
crossref_primary_10_3892_ol_2016_4843
crossref_primary_10_1080_07391102_2010_10507341
crossref_primary_10_1158_1078_0432_CCR_18_0549
crossref_primary_10_3389_fmolb_2024_1354682
crossref_primary_10_1007_s11010_015_2651_4
crossref_primary_10_15430_JCP_2020_25_4_234
crossref_primary_10_1016_j_ajpath_2012_11_034
crossref_primary_10_1371_journal_pgen_1007983
crossref_primary_10_1074_jbc_M112_414177
crossref_primary_10_3389_fcell_2019_00369
crossref_primary_10_1016_j_bcp_2020_113902
crossref_primary_10_18632_oncotarget_2792
crossref_primary_10_3324_haematol_2021_278369
crossref_primary_10_1016_j_cancergen_2020_04_076
crossref_primary_10_1038_cddis_2013_455
crossref_primary_10_2217_nnm_2016_0178
crossref_primary_10_1016_j_mito_2014_08_003
crossref_primary_10_1096_fj_201900395RR
crossref_primary_10_1016_j_jtice_2010_03_017
crossref_primary_10_1016_j_jhep_2009_10_011
crossref_primary_10_1038_s41380_020_0760_2
crossref_primary_10_1007_s10549_013_2668_x
crossref_primary_10_1186_1745_6215_14_228
crossref_primary_10_1186_s12964_023_01179_0
crossref_primary_10_18632_oncotarget_11147
crossref_primary_10_1038_s41598_018_34906_6
crossref_primary_10_1158_1078_0432_CCR_17_1574
crossref_primary_10_1016_j_canlet_2018_02_036
crossref_primary_10_1016_j_canlet_2012_09_009
crossref_primary_10_1111_j_1476_5381_2010_00838_x
crossref_primary_10_1038_s41419_018_0844_y
crossref_primary_10_1016_j_jbior_2022_100938
crossref_primary_10_1038_cdd_2016_122
crossref_primary_10_18632_oncotarget_1859
crossref_primary_10_1016_j_ejca_2009_12_025
crossref_primary_10_1158_1535_7163_MCT_13_0066
crossref_primary_10_1038_cddis_2012_1
crossref_primary_10_1158_0008_5472_CAN_12_0658
crossref_primary_10_1080_07391102_2010_10507361
crossref_primary_10_1016_j_molmed_2019_08_009
crossref_primary_10_1007_s10549_009_0714_5
crossref_primary_10_1158_1078_0432_CCR_09_0269
crossref_primary_10_1007_s10495_014_1046_4
crossref_primary_10_1016_j_cellsig_2022_110281
crossref_primary_10_3892_mmr_2015_3493
crossref_primary_10_1038_cr_2014_109
crossref_primary_10_4048_jbc_2014_17_1_61
crossref_primary_10_1097_ALN_0b013e31828744a5
crossref_primary_10_1038_s41418_019_0486_3
crossref_primary_10_1172_JCI170169
crossref_primary_10_1002_hed_23749
crossref_primary_10_1016_j_febslet_2010_05_061
crossref_primary_10_18632_oncotarget_4857
crossref_primary_10_1002_pbc_22712
crossref_primary_10_1038_s41598_019_42767_w
crossref_primary_10_1101_gad_302497_117
Cites_doi 10.1038/sj.leu.2402416
10.1016/S1097-2765(03)00490-8
10.1016/S1535-6108(03)00218-6
10.1038/nm1087
10.1080/02699050500284218
10.1007/978-1-4615-4253-7_8
10.1038/ncponc0509
10.1128/MCB.00620-06
10.1016/S0092-8674(00)81683-9
10.1182/blood.V97.12.3902
10.1158/0008-5472.CAN-06-1788
10.1016/j.molcel.2005.06.009
10.1073/pnas.0600511103
10.1016/S0962-8924(02)02253-5
10.1056/NEJMoa071167
10.1101/gad.14.1.23
10.1016/S1097-2765(05)00083-3
10.1515/BC.2005.025
10.1074/jbc.M610010200
10.4161/cc.6.11.4316
10.1016/j.biocel.2004.04.007
10.1038/nrc2107
10.1016/S1097-2765(00)80157-4
10.1158/0008-5472.CAN-04-1443
10.1038/nature02067
10.1038/349254a0
10.1038/nrm1743
10.1016/j.coph.2005.04.007
10.1038/ncb0901-793
10.1002/1521-1878(200007)22:7<673::AID-BIES10>3.0.CO;2-A
10.1038/sj.onc.1207692
10.1038/nature01116
10.1083/jcb.128.6.1173
10.1016/S1097-2765(02)00510-5
10.1073/pnas.90.8.3516
10.1056/NEJMoa060655
10.1038/nrd2130
10.1007/BF02967526
10.1002/mc.20216
10.1038/sj.onc.1210153
10.1126/science.1135380
10.1158/1078-0432.CCR-03-0774
10.1074/jbc.274.3.1801
10.1016/j.tibs.2004.02.002
10.1038/sj.onc.1203973
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/0008-5472.CAN-08-0579
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 6117
ExternalDocumentID PMC2676572
18676833
10_1158_0008_5472_CAN_08_0579
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA116199
– fundername: NCI NIH HHS
  grantid: CA83639
– fundername: NCI NIH HHS
  grantid: P20 CA101936
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: P50 CA116199
– fundername: NCI NIH HHS
  grantid: CA101936
– fundername: NCI NIH HHS
  grantid: P50 CA083639
– fundername: NCI NIH HHS
  grantid: R01 CA109311
– fundername: NCI NIH HHS
  grantid: CA099031
– fundername: NCI NIH HHS
  grantid: CA109311
GroupedDBID ---
-ET
.55
18M
29B
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
6J9
8WZ
A6W
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AFUMD
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
MVM
OHT
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
VH1
W2D
W8F
WH7
WOQ
X7M
XJT
YKV
YZZ
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c509t-eb912a32b159eb53f91ddb4b1f85fe649ea7be6d71bdb17718de57e588986a5a3
ISSN 0008-5472
1538-7445
IngestDate Thu Aug 21 18:10:17 EDT 2025
Mon Jul 21 09:47:13 EDT 2025
Mon Jul 21 05:37:05 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Tue Jul 01 03:44:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-eb912a32b159eb53f91ddb4b1f85fe649ea7be6d71bdb17718de57e588986a5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Q. Ding, L. Huo, and J.Y. Yang contributed equally to this work.
OpenAccessLink http://doi.org/10.1158/0008-5472.CAN-08-0579
PMID 18676833
PQID 69377691
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2676572
proquest_miscellaneous_69377691
pubmed_primary_18676833
crossref_primary_10_1158_0008_5472_CAN_08_0579
crossref_citationtrail_10_1158_0008_5472_CAN_08_0579
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-08-01
2008-Aug-01
20080801
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2008
References 2022061700301972900_B1
2022061700301972900_B29
2022061700301972900_B28
2022061700301972900_B27
2022061700301972900_B26
2022061700301972900_B25
2022061700301972900_B24
2022061700301972900_B23
2022061700301972900_B45
2022061700301972900_B22
2022061700301972900_B44
2022061700301972900_B21
2022061700301972900_B43
2022061700301972900_B20
2022061700301972900_B42
2022061700301972900_B41
2022061700301972900_B40
2022061700301972900_B19
2022061700301972900_B18
2022061700301972900_B17
2022061700301972900_B39
2022061700301972900_B16
2022061700301972900_B38
2022061700301972900_B15
2022061700301972900_B37
2022061700301972900_B14
2022061700301972900_B36
2022061700301972900_B13
2022061700301972900_B35
2022061700301972900_B12
2022061700301972900_B34
2022061700301972900_B11
2022061700301972900_B33
2022061700301972900_B10
2022061700301972900_B32
2022061700301972900_B31
2022061700301972900_B30
2022061700301972900_B7
2022061700301972900_B6
2022061700301972900_B9
2022061700301972900_B8
2022061700301972900_B3
2022061700301972900_B2
2022061700301972900_B5
2022061700301972900_B4
References_xml – ident: 2022061700301972900_B13
  doi: 10.1038/sj.leu.2402416
– ident: 2022061700301972900_B26
  doi: 10.1016/S1097-2765(03)00490-8
– ident: 2022061700301972900_B32
  doi: 10.1016/S1535-6108(03)00218-6
– ident: 2022061700301972900_B2
  doi: 10.1038/nm1087
– ident: 2022061700301972900_B4
  doi: 10.1080/02699050500284218
– ident: 2022061700301972900_B24
  doi: 10.1007/978-1-4615-4253-7_8
– ident: 2022061700301972900_B41
  doi: 10.1038/ncponc0509
– ident: 2022061700301972900_B21
  doi: 10.1128/MCB.00620-06
– ident: 2022061700301972900_B1
  doi: 10.1016/S0092-8674(00)81683-9
– ident: 2022061700301972900_B17
  doi: 10.1182/blood.V97.12.3902
– ident: 2022061700301972900_B20
  doi: 10.1158/0008-5472.CAN-06-1788
– ident: 2022061700301972900_B37
  doi: 10.1016/j.molcel.2005.06.009
– ident: 2022061700301972900_B23
  doi: 10.1073/pnas.0600511103
– ident: 2022061700301972900_B30
  doi: 10.1016/S0962-8924(02)02253-5
– ident: 2022061700301972900_B45
  doi: 10.1056/NEJMoa071167
– ident: 2022061700301972900_B14
  doi: 10.1101/gad.14.1.23
– ident: 2022061700301972900_B28
  doi: 10.1016/S1097-2765(05)00083-3
– ident: 2022061700301972900_B5
  doi: 10.1515/BC.2005.025
– ident: 2022061700301972900_B38
  doi: 10.1074/jbc.M610010200
– ident: 2022061700301972900_B33
  doi: 10.4161/cc.6.11.4316
– ident: 2022061700301972900_B12
  doi: 10.1016/j.biocel.2004.04.007
– ident: 2022061700301972900_B22
  doi: 10.1038/nrc2107
– ident: 2022061700301972900_B43
  doi: 10.1016/S1097-2765(00)80157-4
– ident: 2022061700301972900_B8
  doi: 10.1158/0008-5472.CAN-04-1443
– ident: 2022061700301972900_B15
  doi: 10.1038/nature02067
– ident: 2022061700301972900_B16
  doi: 10.1038/349254a0
– ident: 2022061700301972900_B3
  doi: 10.1038/nrm1743
– ident: 2022061700301972900_B6
  doi: 10.1016/j.coph.2005.04.007
– ident: 2022061700301972900_B27
  doi: 10.1038/ncb0901-793
– ident: 2022061700301972900_B40
  doi: 10.1002/1521-1878(200007)22:7<673::AID-BIES10>3.0.CO;2-A
– ident: 2022061700301972900_B36
  doi: 10.1038/sj.onc.1207692
– ident: 2022061700301972900_B29
  doi: 10.1038/nature01116
– ident: 2022061700301972900_B11
  doi: 10.1083/jcb.128.6.1173
– ident: 2022061700301972900_B42
  doi: 10.1016/S1097-2765(02)00510-5
– ident: 2022061700301972900_B10
  doi: 10.1073/pnas.90.8.3516
– ident: 2022061700301972900_B7
  doi: 10.1056/NEJMoa060655
– ident: 2022061700301972900_B9
  doi: 10.1038/nrd2130
– ident: 2022061700301972900_B44
  doi: 10.1007/BF02967526
– ident: 2022061700301972900_B31
  doi: 10.1002/mc.20216
– ident: 2022061700301972900_B34
  doi: 10.1038/sj.onc.1210153
– ident: 2022061700301972900_B35
  doi: 10.1126/science.1135380
– ident: 2022061700301972900_B19
  doi: 10.1158/1078-0432.CCR-03-0774
– ident: 2022061700301972900_B18
  doi: 10.1074/jbc.274.3.1801
– ident: 2022061700301972900_B25
  doi: 10.1016/j.tibs.2004.02.002
– ident: 2022061700301972900_B39
  doi: 10.1038/sj.onc.1203973
SSID ssj0005105
Score 2.356663
Snippet Myeloid cell leukemia-1 (Mcl-1), a Bcl-2–like antiapoptotic protein, plays a role in cell immortalization and chemoresistance in a number of human...
Myeloid cell leukemia-1 (Mcl-1), a Bcl-2-like antiapoptotic protein, plays a role in cell immortalization and chemoresistance in a number of human...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6109
SubjectTerms Antineoplastic Agents - pharmacology
Benzenesulfonates - pharmacology
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cell Line, Tumor
Down-Regulation
Humans
MAP Kinase Signaling System
Mutagenesis, Site-Directed
Myeloid Cell Leukemia Sequence 1 Protein
Niacinamide - analogs & derivatives
NIMA-Interacting Peptidylprolyl Isomerase
Peptidylprolyl Isomerase - metabolism
Phenylurea Compounds
Phosphorylation
Proto-Oncogene Proteins c-bcl-2 - physiology
Pyridines - pharmacology
Sorafenib
Title Down-regulation of Myeloid Cell Leukemia-1 through Inhibiting Erk/Pin 1 Pathway by Sorafenib Facilitates Chemosensitization in Breast Cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/18676833
https://www.proquest.com/docview/69377691
https://pubmed.ncbi.nlm.nih.gov/PMC2676572
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiHfDcw_cIqf1Y-31saSNSmkqKloRTpbXHhMLY0PiCIXfwK_jFzHrXT-SVEC5ONHau15lvszO7H4zQ8grwSxf7jUa-zxy0EGxZSH3aB-VYexH8T7YPJLRyJMz9_jSOZmyaa_3q8NaWpZiGP24Mq7kf6SKbShXGSV7Dck2g2IDfkf54hUljNd_kvEhutDGXFWT14bfZAVZkcpd2ywbnMLyM3xJQ8Ns6vG8yWepSCuu85FkSY_fpfnAlJn6Z9_DlTRG3yMoEshTMRiHkcrhDYuBTCxQLCTbvdSRm3Kn5LWktJeDkYTOvGvnqpaBTiU0q86KFemjUkpZNuxsQRzquirn-PmtXkorqFVPnxb5pwTSRj_pHe4TmBsf20C2qWL9foB0Fa5tZfCGSNeqZ24wR9XyGUKrkT1H5ZysVbbLu9BkHQUss8d3FnPXVJGh2wsF44pZqV44HB2cVbNhnt-ujDUbYGPBbGiMlQPFuDzA54EcJsBhAlnWE4e5QW5a6LpI3fv2vM1gzzSttn6zjirDYfaunM26vbTlBG1yeTvG0cVdckd7NfRAQfQe6UF-n9yaaN7GA_JzA6m0SKhGKpVIpS1SqUYqbZFKEal7iFNqUo1TKla0wSnt4JRu45RiR4VTqlD5kFyOjy5Gx4auA2JEaM6WBgjftELbEmh6g2B24ptxLBxhJpwl4Do-hJ4AN_ZMEctsaiaPgXnAOPe5G7LQfkR28iKHXUI5j9E_MiHBew4AcIgcLiILYghF5Dp94tS_dhDpJPmyVksW_FHWfTJsun1VWWL-1uFlLcoA9bk8pAtzKJaLwEV_wXN9s08eK8G2A3LXc7lt94m3JvLmAZkpfv1Ons6qjPEW9mSe9eS603xKbrf_02dkp5wv4Tka4aV4UaH6N08S2Jk
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Down-regulation+of+Myeloid+Cell+Leukemia-1+through+Inhibiting+Erk%2FPin+1+Pathway+by+Sorafenib+Facilitates+Chemosensitization+in+Breast+Cancer&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Ding%2C+Qingqing&rft.au=Huo%2C+Longfei&rft.au=Yang%2C+Jer-Yen&rft.au=Xia%2C+Weiya&rft.date=2008-08-01&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=68&rft.issue=15&rft.spage=6109&rft.epage=6117&rft_id=info:doi/10.1158%2F0008-5472.CAN-08-0579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_08_0579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon